
Fast yet Safe: Early-Exiting with Risk Control

Metod Jazbec * 1 Alexander Timans * 1 Tin Hadži Veljković 1 Kaspar Sakmann 2 Dan Zhang 2
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Abstract

Scaling machine learning models significantly im-
proves their performance. However, such gains
come at the cost of inference being slow and
resource-intensive. Early-exit neural networks
(EENNs) offer a promising solution: they acceler-
ate inference by allowing intermediate layers to
‘exit’ and produce a prediction early. Yet a fun-
damental issue with EENNs is how to determine
when to exit without severely degrading perfor-
mance. In other words, when is it ‘safe’ for an
EENN to go ‘fast’? To address this issue, we in-
vestigate how to adapt frameworks of risk control
to EENNs. Risk control offers a distribution-free,
post-hoc solution that tunes the EENN’s exiting
mechanism so that exits only occur when the out-
put is of sufficient quality. We empirically vali-
date our insights on a range of vision and language
tasks, demonstrating that risk control can produce
substantial computational savings, all the while
preserving user-specified performance goals.

1. Introduction
As predictive models continue to grow in size, so do the
costs of running them at inference time (Bolukbasi et al.,
2017; Xu et al., 2018). This presents a challenge to domains
ranging from mobile computing to smart appliances to au-
tonomous vehicles – all of which require models that operate
on resource-constrained hardware (Saravanan & Kouzani,
2023; Liu et al., 2021a). Additionally, since computational
constraints can be dynamic, e.g., due to variable loads in
web traffic or energy demand, it is desirable for models
to be able to adjust their computational needs to changing
conditions (Scardapane et al., 2020).

*Equal contribution 1UvA-Bosch Delta Lab, University of Ams-
terdam 2Bosch Center for AI, Robert Bosch GmbH 3Johns Hopkins
University. Correspondence to: Metod Jazbec <m.jazbec@uva.nl>,
Alexander Timans <a.r.timans@uva.nl>.

Accepted by the Structured Probabilistic Inference & Generative
Modeling workshop of ICML 2024, Vienna, Austria. Copyright
2024 by the author(s).

Early-exit neural networks (EENNs) present a simple yet
effective approach to such dynamic computation (Teerapit-
tayanon et al., 2016; Huang et al., 2018). Leveraging the
neural network’s compositional nature, EENNs can gener-
ate predictions at intermediate layers, thereby ‘exiting’ the
computation ‘early’ when a stop condition is met. This
early-exit ability has proven useful in settings ranging from
vision and language to recommendations ((Han et al., 2021),
see § 4). Yet the flexibility of EENNs does not come for free:
predictions generated at early exits are usually inferior to
those produced by the full model. In turn, a dilemma arises
in which the exit condition must balance computational
savings with predictive performance.

In this work, we address the EENN’s efficiency vs. perfor-
mance trade-off via statistical frameworks of risk control
(RC) (Angelopoulos et al., 2024; Bates et al., 2021). By tun-
ing the EENN’s exiting mechanism based on a user-specified
notion of risk, RC aims to improve the safety of early-exit
outputs. We consider several risks that quantify the differ-
ence between the early-exit and full model’s outputs, both
in terms of prediction quality and uncertainty estimation.
Moreover, we study RC frameworks that control the risk
with varying degrees of stringency (i.e., in expectation vs.
with high probability). We demonstrate the effectiveness of
this light-weight, post-hoc solution across a range of tasks,
including image classification, segmentation, generation,
and language modeling. To summarize our contributions:

• We formalize EENNs as risk-controlling predictors, en-
suring risk control is amenable to the early-exit setting
by explicitly linking risk control and early-exit require-
ments (Prop. 1 & Prop. 2).

• We propose risk functions to control early-exit perfor-
mance both in terms of model predictions and their un-
derlying predictive distributions (Eq. 6 & Eq. 8). Previ-
ous work has considered only prediction quality (Schus-
ter et al., 2022), not uncertainty quality (as we do).

• We improve upon prior work for language modeling
(Schuster et al., 2022), demonstrating that our adaptions
of risk control allow for less conservative early-exiting,
resulting in larger efficiency gains (§ 3.3, § 5.3).

• We apply, for the first time, early-exiting with risk con-
trol to tasks of image classification, semantic segmenta-
tion, and image generation (§ 5).
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2. Background
Data. Let X × Y denote the sample space and assume
a data-generating distribution P over it. We consider
Y := {1, . . . ,K} for classification and Y ⊆ Rd for regres-
sion. Observed samples from P are split into disjoint train,
calibration and test sets, denoted Dtrain, Dcal, and Dtest.
We assume samples (x,y) in Dcal and Dtest to be drawn
i.i.d. from P , whereas Dtrain is permitted to be drawn
randomly from a different distribution (of same support).

Early-Exit Neural Networks. EENNs extend traditional
static network models by dynamically adjusting computa-
tions during the model’s forward pass (e.g., the number of
evaluated network layers) on the basis of an input sam-
ple’s complexity or ‘difficulty’. More formally, we de-
fine an EENN as a sequence of probabilistic classifiers
p̂(y |x = x;ϕl,θl), where l = 1, . . . , L enumerates the
model’s exit layers, and ϕl and θl define the model’s clas-
sification head and backbone parameters at the l-th exit,
respectively. The final index L denotes the full model, i.e.,
all layers are evaluated for a given input sample x. The ob-
tained predictive distribution p̂(y |x = x;ϕl,θl) at the l-th
exit layer, denoted in short as p̂l(y|x), permits to retrieve
both a predicted class label ŷl = argmaxy∈Y p̂l(y |x) and
an associated confidence score ĉl ∈ [0, 1], which aims to
capture model’s certainty about the exit’s current predic-
tion. One common choice for classification tasks is the
maximum class probability ĉl = maxy∈Y p̂l(y |x). How-
ever, different notions of confidence are possible, as we
explore in § 5.2. At test-time, these confidence scores
can be leveraged to determine the early-exit model’s re-
quired computations for new samples via thresholding. For
a given test input x, the EENN exits1 at the first layer
for which its confidence exceeds a pre-specified threshold
value λl ∈ [0, 1]. For simplicity, a single threshold value
λl = λ, ∀ l ∈ {1, . . . , L − 1} is often fixed across exit
layers, a setup we also consider here. The predictive distri-
bution obtained from the model’s early-exit mechanism is
then given by

p̂λ(y|x) := p̂e(y|x), where e =

{
minE if E ̸= ∅
L if E = ∅ ,

E := {l ∈ {1, ..., L− 1} : ĉl ≥ λ}. (1)

The threshold parameter λ regulates the trade-off between
the EENN’s accuracy and efficiency gains. Lower values
equate larger speed-ups by increasing the likelihood of an
early exit (and vice versa), at the cost of generally inferior
predictions. Such marginally monotone behavior, where
model performance improves on average across exits, is a
core assumption for the practical use of EENNs (see also

1Such model-driven exiting is distinct from anytime settings,
where exits are environment-driven (Zilberstein, 1996).

Fig. 1). We formalize it as

E(x,y)∼P [ℓ(p̂l(y|x),y)] ≥ E(x,y)∼P [(ℓ(p̂l+1(y|x),y)]
∀l = 1, . . . , L− 1 (2)

for some arbitrary loss function ℓ, and elaborate on its con-
nection to risk control in § 3.3. It is common to determine
early-exiting criteria by investigating these trade-offs be-
tween performance and efficiency on hold-out data, select-
ing thresholds that ensure the EENN meets a user’s compu-
tational budget (Huang et al., 2018; Teerapittayanon et al.,
2016) or performance goals (Chen et al., 2020; Elbayad
et al., 2020; Liu et al., 2021b). A standard practice is to treat
the EENN’s predictive confidence (e.g., its softmax scores)
as a heuristic for prediction quality. However, this is fallible,
as EENNs can exhibit fluctuating or poorly-calibrated con-
fidences (Kaya et al., 2019; Jazbec et al., 2024; Meronen
et al., 2024), motivating more principled threshold selection.

Risk Control. Statistical frameworks for risk control (RC)
(Angelopoulos et al., 2021; 2024; Bates et al., 2021) aim to
improve prediction reliability by equipping threshold-based
models with safety assurances. Specifically, consider a pre-
trained prediction model f̂λ whose outputs depend on a
threshold λ. For example, in a classification task, the set
predictor f̂λ : X → 2Y , as described by Bates et al. (2021),
includes a class label in the set if its probability exceeds
the threshold, i.e., f̂λ(x) := {y ∈ Y : p̂(y|x) ≥ λ}. Next,
a notion of error for f̂λ is captured by defining a problem-
specific loss function ℓ : Y × Y → R. For instance, a
choice for the set predictor could be the miscoverage loss
ℓ(y, f̂λ(x)) = 1[y /∈ f̂λ(x)], where 1[·] is the indicator
function. The risk associated with a particular threshold
λ ∈ Λ is then defined as the expected loss

R(λ) := E(x,y)∼P
[
ℓ(f̂λ(x),y)

]
, (3)

with Λ the set of potential threshold candidates. RC frame-
works leverage different probabilistic tools – which we de-
tail further in § 3.3 – to determine a subset Λ̂ ⊆ Λ for which
the risk in Eq. 3 is guaranteed to be small. Note that Λ̂ is
retrieved in a post-hoc manner by leveraging the calibration
set Dcal sampled i.i.d. from P . Thus, R(λ̂) is a random
quantity dependent on Dcal for any λ̂ ∈ Λ̂.

Given such a risk, desired safety assurances may vary in
strength. For a tolerated risk level ϵ ∈ (0, 1), risk control in
expectation seeks to guarantee that

EDcal∼Pn

[
R(λ̂)

]
≤ ϵ ∀λ̂ ∈ Λ̂, (4)

where the outer expectation is taken over randomly drawn
calibration data of finite size |Dcal| = n. A stronger state-
ment on risk control with high probability requires addition-
ally specifying a probability level δ ∈ (0, 1), and aims to
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ensure that

PDcal∼Pn(R(λ̂) ≤ ϵ) ≥ 1− δ ∀λ̂ ∈ Λ̂. (5)

That is, rather than the average control over calibration data
in Eq. 4, risk control according to Eq. 5 holds with high prob-
ability for any particular sampled set Dcal. In both cases, we
may refer to f̂λ̂ for any λ̂ ∈ Λ̂ as a risk-controlling predictor.
The risk level ϵ and probability level δ are user-specified
parameters dictating how tightly the risk is controlled, and a
particular choice has to consider the problem-specific setting
and loss ℓ. For example, a reasonable choice for the stated
miscoverage loss may be (ϵ, δ) = (0.05, 0.1). Observing
Λ̂ = ∅ implies that there is no risk-controlling predictor for
the selected (ϵ, δ), indicating overly strict control require-
ments on f̂λ which cannot be satisfied.

The prediction guarantees obtained via RC are highly prac-
tical, since they are (i) distribution-free, i.e., they do not
impose particular assumptions on the generating distribu-
tion P , (ii) are post-hoc applicable to any arbitrary choice
of underlying predictor f̂λ, and (iii) hold in finite samples,
thus not relying on asymptotic limit statements. Indeed, we
experimentally find (§ 5) that the provided assurances hold
even for remarkably small calibration sets (n ≈ 100).

3. Safe Early-Exiting via Risk Control
We now detail our approach for early-exiting with safety
guarantees based on risk control. We begin by formalising
EENNs as risk-controlling predictors (§ 3.1). Next, we
outline two general types of risk to measure performance
drops resulting from early-exiting. Importantly, these risks
can be employed to assess the quality of both predictions
and predictive distributions (§ 3.2). Finally, we describe in
detail how different RC frameworks can be adapted to the
early-exit setting (§ 3.3).

3.1. EENNs as Risk-Controlling Predictors

As mentioned in § 2, risk control requires a predictor f̂λ
whose outputs depend on a threshold λ ∈ Λ. The EENN’s
confidence-based thresholding behaviour ( Eq. 1), lends
itself naturally to such formulation. For a particular exiting
threshold λ ∈ [0, 1], the EENN p̂λ(y|x) acts as such a
predictor. To ensure that the EENN will satisfy the user-
specified risk requirements, one needs to identify the risk-
controlling set of thresholds Λ̂. Importantly, this can be
done post-hoc using a pre-trained EENN by only tuning the
exiting threshold (we defer more details to § 3.3) In order
to obtain the largest computational savings while ensuring
that the user-defined risk is managed, we select λ̂ := min Λ̂,
since a low threshold encourages earlier exiting. If Λ̂ = ∅ is
empty, we default to λ̂ = 1, the equivalent of relying strictly
on the full model output p̂L(y|x).

3.2. Early-Exiting Risks

We next detail two types of risk which can be employed
to guard against performance drops due to early-exiting.
Similarly to Schuster et al. (2022), our risks are defined
in terms of relative exit performance, permitting their cal-
culation for both labelled and unlabelled calibration data.
Moving beyond their setting, we suggest these risks for con-
trolling the quality of both model predictions and predictive
distributions, from which confidence scores can be derived.

Performance Gap Risk. When calibration labels are
present, these can be used measure the early-exit perfor-
mance through supervised losses. Let ôl(x) denote a gen-
eral EENN output for some input x. It takes the form ŷl

for predictions and p̂l(y|x) for the underlying predictive
distribution. The supervised performance gap risk is then
defined as

RG(λ) := E(x,y)∼P
[
ℓ
(
ôλ(x),y

)
− ℓ

(
ôL(x),y

)]
, (6)

where ôλ(x) and ôL(x) refer to early-exit and full model
outputs, respectively. The choice of loss function ℓ is task-
specific, and we outline relevant choices in § 5, such as the
0-1 loss for image classification. For predictive distribution
control, we suggest leveraging a squared distributional loss
which, when averaged across samples, recovers the Brier
score (Brier, 1950). Specifically, we define such a ‘Brier
loss’ for classification tasks as

ℓB(p̂l(y|x),y) :=
K∑

k=1

(
p̂l(k|x)− 1[y = k]

)2
, (7)

where p̂l(k|x) denotes the predicted probability of a partic-
ular class k, and 1[y = k] its one-hot encoded label. The
Brier score is a strictly proper scoring rule (Gneiting &
Raftery, 2007; Gneiting et al., 2007), ensuring its suitability
to assess probabilistic forecasts. Moreover, its mathemati-
cal formulation lends itself favorably to risk control when
compared to other widely used probabilistic metrics. We
defer further details to § A.3. Addressing risk control of the
underlying predictive distribution p̂l(y|x) is a compelling
extension, as uncertainty estimates are often derived from
it. This form of risk control can be highly useful in safety-
critical scenarios where reliable uncertainty estimates are
required (Heal & Millner, 2014; Begoli et al., 2019).

Consistency Risk. In the case of unlabelled calibration
data, an unsupervised version of Eq. 6 can be obtained by
replacing the ground truth labels y with labels ŷL obtained
from the full model. We define the unsupervised consistency
risk as

RC(λ) := E(x,·)∼P
[
ℓ
(
ôλ(x), ŷL

)
− ℓ

(
ôL(x), ŷL

)]
, (8)

where only input samples x ∼ P are required for evaluation.
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Figure 1: Accuracy and Brier score (Brier, 1950) across
exits for different EENNs for image classification on Im-
ageNet (§ 5.1). Marginally monotone performance trends
(Eq. 2) are generally observed across models, with last-layer
exits performing best.

For regular prediction losses, Eq. 8 collapses to evaluat-
ing the per-sample loss ℓ(ŷλ, ŷL), since ℓ(ŷL, ŷL) = 0.
For predictive distribution control, the loss difference re-
mains, and we substitute y in Eq. 7 by sampling a label
ŷL ∼ p̂L(y|x) from the EENN’s final layer. The choice
of using last layer’s output is motivated by the EENN’s
marginal monotonicity (Eq. 2 & Fig. 1). Finally, we note
that both the performance gap risk RG(λ) and consistency
risk RC(λ) are quite agnostic to the EENN’s actual predic-
tive performance. In both cases, the risk formulation aims to
ensure prediction consistency via the relative performance
gap between exits, as opposed to absolute performance with
respect to observed ground truth labels.

3.3. Risk Control Frameworks

After defining our risks for early-exiting above, we next
outline how a desired risk-controlling exit threshold λ̂ can
be computed based on calibration data. We begin by consid-
ering a ‘naive’ empirical approach, followed by risk control
in expectation (Prop. 1) and with high probability (Prop. 2).

Empirical Approach. For a tolerated risk level ϵ ∈ (0, 1),
a ‘naive’ empirical threshold can be selected by picking the
smallest threshold λ ∈ [0, 1] from the candidate set Λ for
which the risk on the calibration set Dcal is controlled, i.e.,

λ̂emp := min{λ ∈ Λ : R̂(λ;Dcal) ≤ ϵ}. (9)

Note that R̂(λ;Dcal) = 1
n

∑n
i=1 ℓ(ôλ(xi),yi) is the em-

pirical calibration risk, an approximation of the true risk in
Eq. 3 computed on Dcal (and likewise R̂(λ;Dtest) denotes
the empirical test risk). For the risks introduced in § 3.2 the
threshold λ̂emp is well-defined, since R̂(λ = 1) is zero.

Risk Control in Expectation. The threshold λ̂emp is a
straight-forward choice, but can fail to control the risk on

test data if the approximation quality of R(λ) by R̂(λ;Dcal)
is poor, e.g., due to badly drawn calibration data. Perhaps
surprisingly, only a slight modification of Eq. 9 is required
to ensure risk control in expectation. Specifically, for a
bounded loss function ℓ ≤ B where B > 0, and assuming a
monotone risk R(λ), the threshold2

λ̂CRC := min

{
λ ∈ Λ :

n

n+ 1
R̂(λ;Dcal) +

B

n+ 1
≤ ϵ

}
(10)

guarantees Eq. 4, thus shielding against arbitrary calibra-
tion draws on average. It is easy to show that λ̂emp =

limn→∞ λ̂CRC, and since our losses are designed to be
upper-bounded by B ∈ {1, 2}, the two thresholds already
coincide for small calibration sets (n ≈ 100). We formalize
risk control in expectation in the following proposition for
our early-exit setting:

Proposition 1. Let ℓ : Λ → (−∞, B] be a right-continuous
bounded loss, and assume a marginally monotone EENN
(Eq. 2). Then the exit threshold λ̂CRC ensures risk control in
expectation, i.e., it holds that EDcal∼Pn

[
R(λ̂CRC)

]
≤ ϵ

for any ϵ ∈ (0, 1).

Our proposition is an extension of Conformal Risk Control
(Angelopoulos et al., 2024) (CRC) to the early-exit setting,
and a proof can be found in § A.1. Our main technical in-
sight is that risk control can be relaxed to assume monotone
risks, rather than monotone losses as in the original formu-
lation (Angelopoulos et al., 2024). This relaxation is crucial
for the early-exit setting, since we can relate monotone risks
to assumptions of marginal monotonicity on the EENN (see
Lemma 1). In contrast, monotone losses translate to assum-
ing conditional monotonicity, a much stronger requirement
suggesting the EENN’s performance improves across exits
per sample, which has been shown to be violated in practice
(Kaya et al., 2019; Wołczyk et al., 2021; Jazbec et al., 2024).

Risk control with High Probability. A stronger guar-
antee can be obtained by ensuring risk control with high
probability for any drawn calibration set. We employ the
Upper Confidence Bound (UCB) from Bates et al. (2021) for
this purpose. First, an empirical upper bound R̂+(λ;Dcal)
is derived to bound the risk R(λ) with high probability.
That is, for a probability level δ ∈ (0, 1) it holds that

PDcal∼Pn

(
R(λ) ≤ R̂+(λ;Dcal)

)
≥ 1− δ ∀λ ∈ Λ.

(11)
An exit threshold ensuring risk control according to Eq. 5 is
then selected as

λ̂UCB := min{λ ∈ Λ : R̂+(λ′;Dcal) < ϵ,∀λ′ ≥ λ}.
(12)

2In Eq. 10 and Eq. 12, we default to λ̂ = 1 if Λ̂ = ∅, implying
that risk control does not permit early-exiting.
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Similarly to Prop. 1, we can now formalize risk control with
high probability for the early-exit setting:

Proposition 2. Let ℓ : Λ → [−B,B] be a bounded loss, and
assume a marginally monotone EENN (Eq. 2). Then the exit
threshold λ̂UCB ensures risk control with high probability,
i.e., it holds that PDcal∼Pn(R(λ̂UCB) ≤ ϵ) ≥ 1 − δ for
any (ϵ, δ) ∈ (0, 1)2.

This restatement of the main theorem from Bates et al.
(2021) (their Thm. A.1) is proven in § A.1, and an algorith-
mic description is given in Appendix B. We employ their
suggested Waudby-Smith-Ramdas bound (Waudby-Smith &
Ramdas, 2024) (WSR) to compute R̂+(λ;Dcal), but relax
the bounding requirements on the loss from ℓ ∈ [0, 1] to
ℓ ∈ [−B,B] for B > 0. This change has important impli-
cations for the early-exit setting as it allows for ‘rewarding’
the EENN for instances where an earlier exit performs bet-
ter than the final one for some test samples, a phenomenon
known as overthinking (Kaya et al., 2019; Jazbec et al.,
2024). In practice, this results in less conservative exiting.
See § A.2 for more details.

Learn-then-Test and CALM (Schuster et al., 2022).
Learn-then-Test (Angelopoulos et al., 2021) (LTT) is an-
other framework for high-probability risk control, where
threshold selection is framed as a multiple hypothesis test-
ing problem. In contrast to UCB (Prop. 2), LTT does not
require risk monotonicity, and can thus also be employed
when the EENN is suspected to violate marginally monotone
behaviour. LTT in the early-exit setting has been employed
by Schuster et al. (2022) (CALM), presumably motivated
by the avoidance of this assumption. However, expecting
an EENN to marginally improve across exits is a core re-
quirement which implicitly underlies any practical imple-
mentation. Additionally, since this assumption is commonly
empirically satisfied (Fig. 1), there is no reason to explicitly
avoid it. Furthermore, correcting for multiple testing in LTT
via fixed sequence testing – as is done for CALM – will
only yield practical savings if monotonicity is satisfied. We
stress these observations since we find that UCB empirically
produces larger computational savings than LTT under the
same guarantees (see Fig. 2 and § 5.3), in particular for the
small-sample regime (n ≈ 100) which is of high practi-
cal interest and was not explored by Schuster et al. (2022).
Moreover, due to LTT’s reliance on the Hoeffding-Bentkus
bound (Bentkus, 2004), it cannot account for instances of
overthinking (see § A.2). Thus, unless Eq. 2 is known to be
violated, we recommend UCB over LTT for early-exiting.

4. Related Work
Early-Exiting (Teerapittayanon et al., 2016; Han et al., 2021)
as a dynamic (or adaptive) approach to accelerate model
inference is both orthogonal and complementary to static
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Figure 2: Empirical test risk (top) and efficiency gains (bot-
tom) for the CALM model (Schuster et al., 2022) for text
summarization on CNN/DM. Our adaptation of UCB (Bates
et al., 2021) (Prop. 2) outperforms the LTT (Angelopoulos
et al., 2021) approach in CALM by yielding larger effi-
ciency gains under the same risk control assurances (see
§ 5.3 for details). Shading denotes the standard deviation
across S = 100 calibration/test splits.

model compression techniques such as pruning, quantiza-
tion, and knowledge-distillation (Bai et al., 2024; Xu et al.,
2024; Sponner et al., 2024; Zhou et al., 2024; Gholami
et al., 2022). Its wide-ranging applicability has been demon-
strated across numerous vision (Huang et al., 2018; Liu
et al., 2021b; Chataoui et al., 2023; Tang et al., 2023; Fei
et al., 2022) and language tasks (Elbayad et al., 2020; Zhou
et al., 2020; Schuster et al., 2022; Xu & McAuley, 2023;
Bae et al., 2023; Pan et al., 2024). While most prior work
has focused on the trade-off between performance quality
and computational savings, the safety of early-exit models
has received less attention to date (Schuster et al., 2021;
2022; Meronen et al., 2024; Jazbec et al., 2023). Risk Con-
trol has gained traction due to interest in efficient, post-hoc
methods for ensuring safety in large models. Most related,
conformal prediction (Shafer & Vovk, 2008) has been popu-
larized as an effective method for uncertainty quantification
with safety assurances on the miscoverage risk (Fontana
et al., 2023; Angelopoulos et al., 2023). Recently, multiple
proposals address the control of more general risk notions
(Angelopoulos et al., 2024; Bates et al., 2021; Angelopou-
los et al., 2021; Snell et al., 2022; Laufer-Goldshtein et al.,
2022), with explored applications ranging from imaging
(Teneggi et al., 2023; Angelopoulos et al., 2022; Xu et al.,
2023; Feldman et al., 2023; Kutiel et al., 2022; Sankara-
narayanan et al., 2022; Timans et al., 2024) to language
(Zollo et al., 2023; Deng et al., 2024; Laufer-Goldshtein
et al., 2022; Quach et al., 2023) and beyond (Jin et al., 2023;
Laufer-Goldshtein et al., 2023). The most closely related
work to our own is by Schuster et al. (2022), which first
employed risk control for safe early-exiting in language
modeling. We move beyond their setting by (i) controlling
the quality of both model predictions and confidence esti-
mates (§ 3.2), (ii) obtaining better efficiency gains through
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Figure 3: Empirical test risk (top) and efficiency gains (bottom) for different early-exit models, risks (§ 3.2) and risk levels ϵ
on ImageNet (for calibration set size n = 100). In line with theoretical results, the test risk is controlled across models,
risk types, and levels. Despite guaranteeing control in expectation (CRC, Prop. 1) or with high probability (UCB, Prop. 2),
obtained gains are substantial.

careful selection of our risk control framework (§ 3.3), and
(iii) extending early-exit risk control to novel tasks (§ 5).

5. Experiments
We evaluate early-exiting via risk control on a suite of dif-
ferent tasks: image classification (§ 5.1), semantic segmen-
tation (§ 5.2), language modelling (§ 5.3), and image gen-
eration with diffusion (§ 5.4). We begin by outlining our
general risk control design and evaluation metrics.

Risk control design. We target control of the performance
gap and consistency risks defined in § 3.2. For predictions
ŷl we employ target-specific losses, and, when applicable,
for predictive distributions p̂l(y|x) our Brier score formula-
tion. We denote these four risks in short as RG(ŷ), RG(p̂),
RC(ŷ) and RC(p̂). Risk control requirements of different
strength are assessed by varying the risk level ϵ. For risk
control with high probability, we set δ = 0.1. Reported
numbers are averaged across multiple trials of calibration
and test splitting (S = 100) to account for sampling effects.
Additional results can be found in Appendix D.

Evaluation metrics. We evaluate our results based on ob-
tained test risks and efficiency gains. We assess whether
the guarantees stated in § 3.3 are satisfied by checking if
the empirical test risk for a given risk-controlling thresh-
old is controlled, i.e., R̂(λ̂;Dtest) ≤ ϵ holds. Ideally, the
measured test risk should also approach ϵ from below, as to
prevent overly conservative early-exiting. We measure effi-
ciency gains by reporting the average exit layer across test
samples, or its relative improvement over last-layer exiting
(in %). Similar gains in terms of FLOPS can be found in Ap-
pendix D. We favour approaches which, while controlling
the test risk, exit as early as possible.

5.1. Image Classification

For image classification, we focus on the ImageNet dataset
(Deng et al., 2009). We employ four state-of-the-art EENNs
to demonstrate that our findings generalize across different
models and architectures: MSDNet (Huang et al., 2018),
DViT (Wang et al., 2021), L2W-DEN (Han et al., 2022),
and Dyn-Perc (Han et al., 2023) (see § C.1 for details).
We employ the standard 0-1 loss for predictions, and the
Brier loss formulation from Eq. 7 for predictive distribu-
tions. Fig. 3 displays results for the small-sample calibra-
tion regime (n = 100). In line with our theoretical guar-
antees, the test risk remains controlled across all models,
risk types, and risk levels ϵ (top row). The steeply decreas-
ing efficiency curves affirm that even under strict control
requirements, substantial efficiency gains can be obtained
(bottom row). For example, controlling the prediction gap
risk at a strict 5% (RG(ŷ) for ϵ = 0.05) results in a model
average of ∼ 61% less layers evaluated for control in ex-
pectation (CRC, Prop. 1), and ∼ 46% for control with high
probability (UCB, Prop. 2), see Table 2. Naturally, UCB
produces more cautious early-exiting due to its stronger
safety assurance, but these differences decrease for larger
calibration sets (see § D.1 for n = 1000). This highlights
the practical benefit of collecting more calibration samples:
a larger sample size can help mitigate the price paid by a
high-probability guarantee in terms of speed-up.

5.2. Semantic Segmentation

For this task, we explore the effect of different confidence
measures used in Eq. 1 on obtainable speed-ups. We use the
EENN with four exits proposed by Liu et al. (2021b) (ADP-
C, see § C.2). ADP-C permits pixel-level early-exiting with
per-pixel confidence scores. Since we desire to early-exit the
entire image instead, we explore image-level aggregations
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Table 1: Efficiency gains for semantic segmentation with risk control via UCB (Prop. 2) on Cityscapes. We evaluate for
different risks (§ 3.2), confidence measures (§ 5.2) and risk levels ϵ. Displayed values denote relative improvement over
last-layer exiting in terms of mean exit layer (in %).

Risk RG(ŷ) (mIoU) RG(p̂) (Brier) RC(ŷ) (Miscov.) RC(p̂) (Brier)

Level ϵ 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

M
ea

n Top-1 6.3 33.7 53.5 0.0 13.6 43.4 6.3 39.2 61.8 0.0 39.3 58.4
Top-Diff 9.3 35.5 54.4 0.0 17.5 44.3 6.3 39.9 62.4 0.0 38.6 57.9
Entropy 5.2 36.0 54.3 0.0 17.9 41.0 5.1 40.4 61.3 0.0 40.1 58.3

Pa
tc

h Top-1 10.0 35.7 53.3 0.0 18.4 45.3 8.8 39.1 61.5 0.0 38.0 58.3
Top-Diff 10.0 35.2 53.4 0.0 19.4 45.9 8.8 40.5 62.2 0.0 38.4 58.8
Entropy 9.1 34.8 53.5 0.0 18.0 45.8 8.1 38.9 61.5 0.0 37.3 57.1

Figure 4: Right: Example of our method’s early-exiting on Cityscapes (Cordts et al., 2016). For two samples that exit early
(l = 1) and exit late (l = 4), we display ground truth segmentation masks and confidence maps at the first and last model
layer. Left: For every sample, we compute the Brier loss difference ∆ℓB = |ℓB(p̂1(y|x),y)− ℓB(p̂4(y|x),y)| between
first and last model layer (Eq. 7), and stratify values across respective exit layers; the red dot denotes the mean. For both
figures, we consider the simplest combination of Top-1 confidence score and mean image-level aggregation (for ϵ = 0.08).

alongside different confidence scores, which are briefly out-
lined below. As task-specific prediction losses, we consider
the commonly used mean intersection-over-union (mIoU)
and miscoverage for the labelled and unlabelled cases, re-
spectively. For predictive distribution control, we employ
pixel-averaged versions of the Brier loss in Eq. 7 (see § A.3).
We evaluate our approaches on Cityscapes validation data
(80% Dcal, 20% Dtest); in addition, we finetune and evalu-
ate ADP-C on GTA5 data (Richter et al., 2016) in § D.2.

We consider three pixel-level confidence scores: the top
class softmax probability (Top-1), the difference between
top two class probabilities (Top-Diff), and the normalized
entropy over a pixel’s predictive distribution (Entropy). In
addition, we consider three image-level aggregation strate-
gies: the image’s average pixel confidence (Mean), its 0.25-
th quantile (Quantile), and a patch-based approach (Patch),
wherein a sliding window of fixed size (e.g., 50× 50 pixels)
computes the mean confidence over pixels per patch, and
the min over such patch scores is retrieved. These aggre-
gations consider both varying levels of prudence (Mean vs.
Quantile) and granularity (Mean vs. Patch).

Table 1 displays obtained efficiency gains for risk con-
trol via UCB (Prop. 2) across different risk levels ϵ ∈
{0.01, 0.05, 0.1}. In line with Fig. 3, increased speed-ups
are observed as the risk requirements are relaxed (i.e., ϵ

increases). Notably, for a given ϵ the gains for Brier-based
risks tend to be smaller than for prediction risks, affirm-
ing more challenging risk control. The differences between
combinations of per-pixel confidence and image-level aggre-
gation are most pronounced for small ϵ, where Patch records
highest gains while Quantile is more conservative (see § D.2
for full results). In Fig. 4, we display a qualitative example
of the model’s exiting behaviour. For a sample which exits
at the first layer (top row), the EENN’s confidence map
remains fairly stable across subsequent layers, suggesting
an accurate model assessment has been reached early on.
In contrast, a sample which exits at the final layer (bottom
row) will see a substantial improvement in model certainty,
justifying additional computations. Such behaviour is also
visible when stratifying all samples across their respective
model exits (Fig. 4, left). For samples which exit later, the
difference between distributional losses at the first and final
layer increases, confirming meaningful computations.

5.3. Language Modeling

For this task, we replicate the main experiments from Schus-
ter et al. (2022) (CALM), using their early-exit version of
the T5 model (Raffel et al., 2020) for text summarization on
CNN/DM (Hermann et al., 2015) and question answering on
SQuAD (Rajpurkar et al., 2016). Recall that CALM makes
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Figure 5: Results for early-exit diffusion with DeeDiff (Tang et al., 2023) on CelebA (Liu et al., 2015). Left: The quality of
generated images is directly related to the target risk control level ϵ. Right: Empirical test risks are controlled for both CRC
(Prop. 1) and UCB (Prop. 2) (for calibration set size n = 500).

use of the Learn-then-Test (Angelopoulos et al., 2021) (LTT)
framework for early-exit prediction control, whereas we
suggest the Upper Confidence Bound (Bates et al., 2021)
(UCB). In contrast to their experiments which involve ex-
cessively large calibration sets (n ≈ 8000), we explore
more practical settings of low calibration sample counts
with n ∈ {100, 1000}. Our results for the performance gap
risk (Eq. 6) based on task-specific losses (ROUGE-L for
CNN/DM and Token-F1 for SQuAD) are displayed in Fig. 2
and § D.3. In all cases, UCB exit thresholds provide larger
computational savings over LTT, while ensuring the same
risk control with high probability (Eq. 5). Since particularly
pronounced for n = 100, these results highlight the need
for careful framework selection in order to minimize the
cost of providing guarantees. Once more, risk control in
expectation (CRC, Prop. 1) permits faster exiting due to
its weaker safety assurance. Encouragingly, even with as
few as n = 100 calibration samples, CRC exit thresholds
reach near-optimal exiting, as indicated by their closeness
to the ideal (diagonal) risk line. This suggests that even
for modern language tasks, equipping an EENN with a no-
tion of safety must not necessarily imply making a (large)
compromise on efficiency.

5.4. Image Generation with Early-Exit Diffusion

To demonstrate the wide-ranging applicability of our pro-
posal, we lastly consider early-exiting for image generation
with diffusion. We employ the DeeDiff model (Tang et al.,
2023), which performs early-exiting on the denoising net-
work at each sampling step during the reverse diffusion
process3. We target control of the perceptual difference
between images generated by the accelerated and full dif-
fusion processes, which we measure with the LPIPS score
(Zhang et al., 2018), and where lower values indicate per-
ceptually closer images. Our results on the CelebA dataset

3Since the code for DeeDiff is not publicly available, we im-
plement it ourselves (see § C.4).

(Liu et al., 2015) are shown in Fig. 5 for both risk control
via CRC (Prop. 1) and UCB (Prop. 2), asserting that the
risk is controlled at all levels ϵ. The impact of the risk
level on image generation is additionally visualized for two
examples. For strict control requirements the early-exit
generations perceptually resemble the full model, whereas
generated image quality visibly deteriorates for larger ϵ (but
remains controlled). For smaller ϵ, the speed-ups within
each sampling step are relatively modest (e.g., ∼15% for
ϵ = 0.05). However, due to the large number of sampling
steps in the diffusion generation process (∼500) this still
results in overall meaningful savings. Similar observations
on CIFAR (Krizhevsky et al., 2009) are reported in § D.4.

6. Conclusion, Limitations and Future Work
Our work addresses how to select a ‘safe’ exiting mechanism
for early-exit neural networks (EENNs). We propose bal-
ancing the EENN’s efficiency vs. performance trade-off via
risk control (RC). We empirically validate our light-weight,
post-hoc solution on a variety of tasks and improve upon
previous work on language modeling with early-exiting
(Schuster et al., 2022). The main limitation of our work is
the assumption of a shared exit threshold (Eq. 1). Relax-
ing this assumption by adopting RC techniques for high-
dimensional thresholds (Ringel et al., 2024; Teneggi et al.,
2023) could lead to further efficiency gains. Additionally,
multiple RC extensions provide natural avenues for future
work. Firstly, risk control as used in our work is achieved
only marginally across observations (Eq. 3), and one could
aspire for more granular exit-conditional control (Ringel
et al., 2024). Secondly, the employed RC methods define
risk in terms of the expected loss. One could instead control
the tails of the loss, e.g., via specific quantiles (Snell et al.,
2022). Lastly, relaxing the i.i.d assumption on calibration
and test data could help extend risk-controlling EENNs to
settings with test-time distribution shift (Zollo et al., 2023).
Our work presents a foundation for such extensions, and is
thus an important step towards models that are fast yet safe.
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Appendix
The appendix is organized as follows:

• Appendix A contains mathematical details, namely proofs for our propositions (§ A.1), elaboration on bounding
conditions of the loss function (§ A.2), and further details on our Brier score formulation (§ A.3).

• Appendix B contains algorithmic descriptions of risk control via the Upper Confidence Bound (Bates et al., 2021) (UCB,
Prop. 2) with the Waudby-Smith-Ramdas bound (Waudby-Smith & Ramdas, 2024) (WSR, Prop. 3) in Algorithm 1 and
Algorithm 2.

• Appendix C contains various implementation details of our four experiments: image classification (§ C.1), semantic
segmentation (§ C.2), language modeling (§ C.3), and image generation (§ C.4).

• Appendix D contains additional results across our suite of experiments (in the same order as above), including risk
control and efficiency curves for varying risk levels ϵ (§ D.1, § D.2, § D.3, § D.4), as well as additional efficiency gain
tables (§ D.1, § D.2).

A. Mathematical Details
A.1. Proofs for Risk Control

We begin by formalizing the connection between marginal monotonicity requirements on the EENN (Eq. 2) and the
monotonicity of risks (Eq. 3) in Lemma 1 below.

Lemma 1. A marginally monotone EENN satisfying Eq. 2 for some arbitrary loss function ℓ implies monotone decreasing
risks of the form in § 3.2, i.e., we have that R(λ1) ≥ R(λ2) for λ1 ≤ λ2.

Proof. For a given test sample x, denote the exit layers corresponding to exit thresholds λ1 and λ2 as l1 and l2. From the
EENN’s confidence-based exiting mechanism in Eq. 1 it follows that l1 ≤ l2, i.e., a smaller exit threshold λ1 will result in
exits that are earlier or equal to the larger threshold λ2. From our risk formulation in terms of relative exit performances in
§ 3.2 and marginal monotonicity according to Eq. 2 it then follows that

R(λ1) = E(x,y)∼P [ℓ(ôl1(x),y)− ℓ(ôL(x),y)]

(Eq. 2)
≥ E(x,y)∼P [ℓ(ôl2(x),y)− ℓ(ôL(x),y)] = R(λ2).

Next, we prove Prop. 1, our adaptation of the Conformal Risk Control (Angelopoulos et al., 2024) (CRC) guarantee on risk
control in expectation for the early-exit setting. Our proof closely follows the proof for Thm. 1 in Angelopoulos et al. (2024),
but we relax the condition on monotone losses to that on monotone risks, which implies assuming marginal monotonicity on
the EENN according to Lemma 1. We restate our proposition from the main paper for completeness first.

Proposition 1. Let ℓ : Λ → (−∞, B] be a right-continuous bounded loss, and assume a marginally monotone EENN
(Eq. 2). Then the exit threshold λ̂CRC ensures risk control in expectation, i.e., it holds that EDcal∼Pn

[
R(λ̂CRC)

]
≤ ϵ for

any ϵ ∈ (0, 1).

Proof. Consider the calibration set Dcal = {(xi,yi)}ni=1 ∼ Pn and some test sample (x,y) ∼ P drawn i.i.d from P ,
and denote their union set as D̃ := Dcal ∪ (x,y). Additionally, define ℓi(λ) := ℓ(ôλ(xi),yi) as the loss of the EENN’s
early-exit output for the i-th sample. In particular, ℓn+1(λ) now denotes the test sample’s loss. Let us first recall the
definition of λ̂CRC (Eq. 10):

λ̂CRC := min{λ ∈ Λ :
n

n+ 1
R̂(λ;Dcal) +

B

n+ 1
≤ ϵ}.

Note that Λ is a discrete grid of values over [0, 1], e.g., equidistant values {0.01, 0.02, . . . , 1}, and ff Λ̂ = ∅ and the risk
control condition is never met, we default to λ̂ = 1 for all threshold selection procedures. Thus, the min is well-defined.

1
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Next, consider the empirical risk R̂n+1(λ; D̃) computed over D̃ using the n+ 1 available samples, and define the following
threshold choice:

λ̂n+1 := min{λ ∈ Λ : R̂n+1(λ; D̃) ≤ ϵ}. (13)

λ̂n+1 is always well-defined, since R̂n+1(λ = 1) is zero for the risks introduced in § 3.2. As we assume a bounded loss
function ℓ ≤ B, we observe that for any λ ∈ Λ we have

R̂n+1(λ; D̃) =
n

n+ 1
R̂(λ;Dcal) +

ℓn+1(λ)

n+ 1
≤ n

n+ 1
R̂(λ;Dcal) +

B

n+ 1
,

which implies that λ̂n+1 ≤ λ̂CRC. Since we assume a marginally monotone EENN, by Lemma 1 it follows that the risk is
monotone decreasing and by R(λ̂n+1) ≥ R(λ̂CRC) we also have that

EDcal∼Pn [R(λ̂n+1)] ≥ EDcal∼Pn [R(λ̂CRC)]. (14)

By Eq. 3 and our loss definition above, we can rewrite for a general λ the expression

EDcal∼Pn [R(λ)] = EDcal∼Pn [E(x,y)∼P [ℓn+1(λ)]]
i.i.d
= ED̃∼Pn+1 [ℓn+1(λ)],

in short E[ℓn+1(λ)]. The remainder of the proof follows Thm. 1 in Angelopoulos et al. (2024). Assume a particular
set D̃ is given. Then the threshold λ̂n+1 is void of randomness and a constant, and by the i.i.d condition we also have
that ℓn+1(λ)|D̃ ∼ Unif({ℓ1, . . . , ℓn+1}) is uniformly distributed. Combining these observations with the law of total
expectation (l.o.t.e.) and right-continuity (r.c.) of the loss, the final result follows:

E[ℓn+1(λ̂CRC)]
(Eq. 14)
≤ E[ℓn+1(λ̂n+1)]

l.o.t.e.
= E

[
E[ℓn+1(λ̂n+1) | D̃ ]

]
Unif
= E

[
1

n+ 1

n+1∑
i=1

ℓi(λ̂n+1)

]
(Eq. 13) & r.c.

≤ E[ϵ] = ϵ.

Next, we sketch a proof for Prop. 2, our adaptation of the Upper Confidence Bound (Bates et al., 2021) (UCB) guarantee on
risk control with high probability for the early-exit setting. Our main change includes modifying the Waudby-Smith-Ramdas
bound (Waudby-Smith & Ramdas, 2024) (WSR) to relax the bounding condition on the loss from ℓ ∈ [0, 1] to ℓ ∈ [−B,B]
(Prop. 3). We first restate our proposition from the main paper.

Proposition 2. Let ℓ : Λ → [−B,B] be a bounded loss, and assume a marginally monotone EENN (Eq. 2). Then the exit
threshold λ̂UCB ensures risk control with high probability, i.e., it holds that PDcal∼Pn(R(λ̂UCB) ≤ ϵ) ≥ 1− δ for any
(ϵ, δ) ∈ (0, 1)2.

Proof. Our result follows almost directly from the proofs in Bates et al. (2021) (for their Thm. A.1), where we leverage
the required risk monotonicity by Lemma 1. We omit the technical requirement on risk continuity from the original proof,
since a relaxation to non-continuous risks is permitted ((Bates et al., 2021), Remark 3). A proof that the WSR bound can be
used to construct a valid upper confidence bound can be found in Bates et al. (2021), Sec. 3.1.3. However, an assumption
on losses bounded to ℓ ∈ [0, 1] is made, which is overly restrictive for the early-exit setting. We relax this assumption to
ℓ ∈ [−B,B] in Prop. 3 below, concluding the result.

Since our risk definitions in § 3.2 can naturally assume negative values, and we thus want to account for the occurrence of
earlier exits performing better, we relax the bounding condition on the loss function for the Waudby-Smith-Ramdas bound
(Waudby-Smith & Ramdas, 2024) (WSR) in the following proposition.

Proposition 3. A valid upper confidence bound (Eq. 11) based on the Waudby-Smith-Ramdas bound can be constructed for
losses ℓ ∈ [−B,B] with B > 0.

Proof. Observe the definitions of individual components (µi, σ
2
i , νi, κi) for the WSR bound in Algorithm 2. In particular,

define νi = min{1/2B,
√

2 log(1/δ)
nσ2

i−1
}. Since the second term is always non-negative, it follows that νi ∈ [0, 1/2B]. For

2
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the loss ℓi ∈ [−B,B], we then have that (ℓi − E[ℓi]) ∈ [−2B, 2B]. Hence, it follows that 1− νi(ℓi − E[ℓi]) ≥ 0, which
implies that κi =

∏i
j=1{1− νj(ℓj − E[ℓj ])} is a non-negative martingale. The rest of the proof follows Prop. 5 from Bates

et al. (2021), concluding the result.

Observe that the proof for Prop. 3 utilizes the fraction 1/2B in its definition of νi which can make the WSR bound less tight.
However, in the case of a marginally monotone EENN (Lemma 1) we can relax this fraction to 1/B instead, a comment we
formalize in the following remark.

Remark 1. Note that in the case of a marginally monotone EENN, the bound from Prop. 3 can be further optimized. For a
bounded loss ℓ ∈ [0, B], the relative early-exit loss ℓ(λ, L) := ℓ

(
ôλ(x),y

)
− ℓ

(
ôL(x),y

)
will fall in the [−B,B] range

(see also § 3.2 and § A.2). Additionally, due to the marginal monotonicity assumption (Eq. 2) the risk based on the relative
loss will be non-negative, i.e., R(λ, L) = E[ℓ(λ, L)] ∈ [0, B]. This implies that (ℓ(λ, L)−R(λ, L)) ∈ [−2B,B]. Hence,
κi will be a non-negative martingale even when the upper bound 1/B is used for νi instead of 1/2B.

A.2. On Bounding of the Loss Function

The risks outlined in § 3.2 rely on an early-exit loss definition in terms of relative exit performance. That is, our risks take
the general form

R(λ) = E(x,y)∼P
[
ℓ(λ, L)], ℓ(λ, L) := ℓ

(
ôλ(x),y

)
− ℓ

(
ôL(x),y

)
, (15)

with ℓ(λ, L) denoting the relative early-exit loss. Recall that ôλ and ôL are based on p̂λ and p̂L, respectively. For a bounded
loss ℓ ∈ [0, B], we then have that ℓ(λ, L) ∈ [−B,B]. In our early-exit setting, negative losses have an intuitive interpretation.
The associated test samples are cases where the EENN overthinks (Kaya et al., 2019; Jazbec et al., 2024), i.e., the early-exit
p̂λ performs better than the final exit p̂L.

Risk control via CRC (Prop. 1) or UCB (Prop. 2) with the relaxed WSR bound (Prop. 3) conveniently account for such
occurrences. In contrast, this presents a challenge for the Learn-then-Test (Angelopoulos et al., 2021) (LTT) framework
employed by Schuster et al. (2022), since the underlying Hoeffding-Bentkus (Bentkus, 2004) (HB) bound requires ℓ(λ, L) ∈
[0, 1]. As a workaround, Schuster et al. (2022) instead impose a lower loss limit of zero, i.e., they use

ℓ(λ, L) := max{0, ℓ
(
ôλ(x),y

)
− ℓ

(
ôL(x),y

)
}. (16)

While solving their technical requirement, it introduces a key drawback in that the risk control procedure cannot account for
samples where the risk requirement is satisfied ‘for free’. This introduces substantially more conservative early-exiting (see
Fig. 6), since an upper bound on the empirical calibration risk is used for threshold tuning.

In addition, observe that the Brier score is naturally bounded by [0, 2] for the multi-class setting (Brier, 1950). Thus, our
relative early-exit Brier losses assume values in the range of [−2, 2]. While acceptable for risk control via CRC and UCB
(by setting B = 2), it once again does not align with the LTT requirement on ℓ(λ, L) ∈ [0, 1]. Thus, applying LTT requires
additional restrictions such as scaling (e.g., with a 1/2 term) and Eq. 16 to satisfy the bounds. This highlights another
drawback where the intuitive risk interpretation as a Brier score difference is partially lost (see § A.3 below).

Note that while CRC and UCB are amenable to ℓ(λ, L) ∈ [−B,B], it can still be beneficial to ensure non-negative losses
(e.g., by Eq. 16) in order to improve the marginal monotonicity of the EENN (Eq. 2). Namely, it can happen that an EENN
is not marginally monotone for an unrestricted loss (Eq. 15), but is for its zero-bounded counterpart (Eq. 16). Hence, such
approaches might be useful when there is reason to believe that EENN violates its marginal monotonicity assumption,
though in such cases a practitioner might better opt for the pruning of unnecessary model layers instead.

A.3. Brier score formulation

Brier score motivation. The Brier score is a strictly proper scoring rule (Gneiting & Raftery, 2007; Gneiting et al., 2007),
ensuring its suitability to assess probabilistic forecasts. This can be demonstrated by its decomposition structure, which
highlights that both calibration and sharpness properties of the forecaster are taken into account (Murphy, 1973; Dawid,
2004). Moreover, its mathematical formulation lends itself favorably to risk control when compared to other widely used
probabilistic metrics. These include the expected calibration error (ECE (Guo et al., 2017)), which requires binning and thus
cannot be defined at a per-sample level; the negative log-likelihood, which is less interpretable and unbounded; the ranked
probability score (RPS), which does not treat class distances equally; and the continuous ranked probability score (CRPS
(Hersbach, 2000)) or f−divergences like the Hellinger distance, which can be overly conservative by aiming to control
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Figure 6: We display risk curves based on relative early-exit losses ℓ(λ, L) for the CALM model (Schuster et al., 2022)
on CNN/DM (left). The risk based on the zero-bounded losses ( ; Eq. 16) naturally upper-bounds the one without ( ;
Eq. 15). Since LTT requires ℓ(λ, L) ∈ [0, 1], threshold tuning is performed based on the larger risk ( ), despite aiming to
control the actual risk ( ). This results in overly conservative early-exiting, as indicated by the LTT test risk ( ) deviating
furthest from the optimal (diagonal) risk line (middle), and its lowest empirical gains (right). Since CRC and UCB permit
negative losses, we display their results for both zero-bounded ( ; Eq. 16) and unrestricted ( ; Eq. 15) settings. Also here,
the unrestricted setting results in controlled risks with larger efficiency gains, highlighting its relevance.

the (potentially long) tail of the distribution, and require access to the full (ground truth) distribution. While amenable to
our overall risk control framework, such probabilistic metrics, or any derived top-k uncertainty measures, seem either less
practical or less principled.

Brier loss and Brier score. For convenience (but easily transferable), consider the supervised setting where we target risk
control of the performance gap risk (Eq. 6) for predictive distributions, which we denote in short as RG(p̂). This requires
computing the Brier loss ℓB(p̂l(y|x),y), which we define for the multi-class setting in Eq. 7. Now consider a dataset
D ∼ P of size N (e.g., the calibration set Dcal). The associated Brier score (Brier, 1950) denoted Brier(p̂l) for the l-th
exit layer is then defined as the mean Brier loss across samples, i.e., we have

Brier(p̂l) =
1

N

N∑
n=1

ℓB,n(p̂l) =
1

N

N∑
n=1

ℓB(p̂l(y|xn),yn)
(Eq. 7)
=

1

N

N∑
n=1

K∑
k=1

(
p̂l(k|xn)− 1[yn = k]

)2
,

where ℓB,n(p̂l) is an abbreviation for the n-th sample’s Brier loss. The risk RG(p̂) that we aim to control is approximated
by its empirical equivalent R̂G(p̂) on D, and can then be interpreted as the difference in Brier scores between our EENN
with threshold λ and the full (last-layer exit) model:

R̂G(p̂) =
1

N

N∑
n=1

[
ℓB(p̂λ(y|xn),yn)− ℓB(p̂L(y|xn),yn)

]
=

1

N

N∑
n=1

ℓB,n(p̂λ)−
1

N

N∑
n=1

ℓB,n(p̂L) = Brier(p̂λ)− Brier(p̂L).

Mean-pixel Brier score. Since our semantic segmentation experiment (§ 5.2) is a pixel-level classification task, we obtain
pixel-level predictive distributions, and thus compute per-pixel Brier losses. For an image of height H and width W , we
can denote by ℓB,n(p̂l,i,j) the n-th sample’s Brier loss at the pixel location (i, j) ∈ H ×W . Since we target image-level
early-exiting, these per-pixel Brier losses are averaged across pixels to compute a per-image Brier loss, which in turn is
averaged across samples to obtain the l-th exit layer’s Brier score. That is, the layer’s associated Brier score Brier(p̂l) is
defined as

Brier(p̂l) =
1

NHW

N∑
n=1

∑
(i,j)∈H×W

ℓB,n(p̂l,i,j) =
1

NHW

N∑
n=1

∑
(i,j)∈H×W

ℓB(p̂l(y|xn,i,j),yn,i,j),

and can be interpreted as the mean-pixel Brier score of the particular exit layer. Note that if we interpret every image pixel
as an individual sample (i.e., define Ñ := NHW ), the Brier score formulation as a sample-averaged Brier loss continues to
hold. Similar to above, the targeted risk is then interpreted as the mean-pixel Brier score difference.
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B. Algorithmic Details

Here, we sketch the algorithm for computing the risk-controlling threshold λ̂UCB (Eq. 12) via the Upper Confidence Bound
(Bates et al., 2021) (UCB, Prop. 2) with the Waudby-Smith-Ramdas bound (Waudby-Smith & Ramdas, 2024) (WSR,
Prop. 3). The algorithm is an adaptation of the approach presented in Bates et al. (2021) to the early-exit setting. Note that
our practical code implementation (see GITHUB REPO) differs slightly from the pseudo-code presented here, as we omit
here some code optimization steps such as vectorization to improve readability.

Algorithm 1 Risk control for EENNs via UCB (Prop. 2)
input : EENN p̂λ, Dcal, ϵ, δ, loss function ℓ, grid step ∆
output : λ̂UCB

grid = np.arange(1,0,-∆)
# Construct the UCB (Eq. 11) UCB = np.ones(len(grid))
for i,λ in grid do

L = ℓ(p̂λ,Dcal)− ℓ(p̂L,Dcal), 0 # (n,)
UCB[i] = WSR(L, δ) # Algorithm 2

# Find λ̂UCB (Eq. 12)
rcp = -1
for i, ucb in enumerate(UCB[1:]) do

if ucb >= ϵ then
rcp = i break

return grid[rcp]

Algorithm 2 WSR bound (Prop. 3) for UCB
(see also Section 3.1.3 in Bates et al. (2021))
input : losses L, δ, grid step ∆,

ν bound B (default B = 1)
output : UCB R̂+(λ)

n = len(L)

# init arrays
µ, σ2, ν, κ = np.ones(n), ...
for i in range(n) do

µ[i] = (1/2 +
∑i

j=0 L[j])/(i+ 1)

σ2[i] = (1/4 +
∑i

j=0(L[j]− µ[j])2)/(i+ 1)

ν[i] = min{1/B,
√

2 log(1/δ)
nσ2[i−1] }

# define κ function
κ[i] = lambda ϵ :

∏j
i=0{1− ν[j](L[j]− ϵ)}

grid = np.arange(0,1,∆)
for ϵ in grid do

if maxi κ[i](ϵ) > 1/δ then
return ϵ
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C. Implementation Details
All our experiments can be performed/replicated on a single A100 GPU.

C.1. Image Classification

Model details. The models we consider are: the multi-scale dense network (MSDNet; (Huang et al., 2018)), an adaptation
of traditional convolutional NNs for the early-exit setting; the dynamic vision transformer (DViT; (Wang et al., 2021)),
which comprises multiple transformers with an increasing number of input patches; an enhanced MSDNet model that
weights easy and hard examples differently during training (L2W-DEN; (Han et al., 2022)); and a recently proposed
dynamic perceiver (Dyn-Perc; (Han et al., 2023)), which decouples feature extraction and early prediction tasks via a novel
dual-branch architecture. For all models, we either work with the publicly available pretrained checkpoints or train the
models ourselves, closely following the original implementation details.

C.2. Semantic Segmentation

Model details. We consider the EENN proposed by Liu et al. (2021b) (ADP-C), which adds three intermediate exit heads to
the HRNet segmentation model (Wang et al., 2020) (for a total of four exits) and is trained end-to-end on Cityscapes (Cordts
et al., 2016). The model comes in two sizes, small (W18) and large (W48). We focus on the larger model (ADP-C-W48),
but find results hold equivalently for the smaller one (in fact, larger gains can be obtained). Across experiments we employ
the publicly available model checkpoints from the original implementation4.

Model finetuning. Since the model is trained on Cityscapes, we consider additional finetuning to evaluate ADP-C on
GTA5 (Richter et al., 2016). We take the available pre-trained model checkpoint (APD-C-W48) and finetune the model
for 50 epochs on the GTA5 training set (∼ 12000 images). For this purpose, we employ the original training script and
training parameters (e.g., learning rate, batch size, etc.). However, we find that our finetuned model does not perform on par
with the original, i.e., performance on GTA5 is substantially inferior to that on Cityscapes. In particular, the performance
improvement across subsequent exits on GTA5 is marginal, resulting in an EENN that is less suitable for early-exiting (see
also § D.2). Yet, we find that risk control frameworks still apply, highlighting their robust model-agnostic properties even in
light of an inferior underlying predictor.

Image-level aggregation. ADP-C provides an exiting mechanism following Eq. 1 on pixel-level, which is less useful for
down-stream applications and decision making. For details on the exact mechanism, we refer to Liu et al. (2021b). Rather
than exiting only for selected image pixels, we instead want to early-exit the entire image whilst ensuring risk control. Thus,
alongside different per-pixel confidence scores ĉl,i,j , (i, j) ∈ H ×W , we also consider confidence aggregations ϕ(·) which
produce a single image-level confidence measure ĉl to perform image-level risk control. Note that our prediction losses
mean intersection-over-union and miscoverage already aggregate from pixel- to image-level, whereas our distributional loss
(Eq. 7) is adapted to additionally average over pixels, resulting in a mean-pixel Brier score interpretation (see § A.3).

Risk control evaluation. We evaluate the original ADP-C-W48 on Cityscapes validation data, with a split of 80% Dcal

(i.e., 400 images) and 20% Dtest (i.e., 100 images). Similarly, we randomly select a subset of 1000 images from the GTA5
validation set and evaluate our finetuned model using 80% Dcal (i.e., 800 images) and 20% Dtest (i.e., 200 images). In both
cases, we average risk control results over 100 trials of random calibration and test splits.

C.3. Language Modeling

Model details. For our language modeling experiments, we employ the early-exit pretrained model based on T5-large
(770M parameters) from Bae et al. (2023)5. While this model closely follows the implementations in Schuster et al. (2022),
we found it easier to work with than the original code6. Note that Schuster et al. (2022) report results for T5-small (60M
parameters) and T5-base (220M parameters), whereas we use the larger T5-large. For risk control evaluation, we
follow their exact exiting mechanism. Specifically, we compute softmax-based confidences at every exit and deploy their
threshold decay mechanism, where early-exiting is more conservative for initial tokens and becomes progressively more

4See https://github.com/liuzhuang13/anytime
5See https://github.com/raymin0223/fast_robust_early_exit
6See https://github.com/google-research/t5x/tree/main/t5x/contrib/calm)
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permissive ((Schuster et al., 2022), Eq. 5).

C.4. Image Generation with Early-Exit Diffusion

Model details. For our image generation experiment, we re-implement the early-exit diffusion model proposed by Tang
et al. (2023) (DeeDiff), since the original code is not publicly available. We model our training procedure as closely as
possible to the original. As suggested in the paper, we use the U-ViT transformer (Bao et al., 2023) as a backbone denoising
network. Early-exiting in DeeDiff is performed on the denoising network at each sampling step. Specifically, for every
sampling step t and exit layer e = 1, . . . , L, a per-pixel confidence map ce,t is obtained. Then, ce,t is used to compute the
global (scalar) confidence score ce,t by averaging the confidence across all pixels. If the scalar confidence score satisfies the
exit condition ce,t ≥ λ, we proceed to the next denoising step t+ 1, employing the output (i.e., the predicted noise) of the
e-th exit layer at the t-th sampling step. The model is trained using a standard diffusion denoising loss (Ho et al., 2020) and
two uncertainty-aware losses, closely following the approach described in Tang et al. (2023).

LPIPS metric. Our task-specific prediction loss measures the perceptual difference between early-exit and full model
image generations. For this, we employ the LPIPS metric (Zhang et al., 2018), which computes the similarity between
activations of image patches for a selected pre-trained network. LPIPS values are in the range of [0, 1], with smaller values
indicating perceptually more similar images.

D. Further Experimental Results
D.1. Image Classification

Additional test risk and efficiency curves for calibration set size n = 1000 on ImageNet are displayed in Fig. 7, while tables
with efficiency gain values on ImageNet are given in Table 2.
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Figure 7: Empirical test risk (top) and efficiency gains (bottom) for different early-exit models, risks (§ 3.2) and risk levels ϵ
on ImageNet (for calibration set size n = 100). In line with theoretical results, the test risk is controlled across models,
risk types, and levels. Despite guaranteeing control in expectation (CRC, Prop. 1) or with high probability (UCB, Prop. 2),
obtained gains are substantial (see also Table 2).
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Table 2: Efficiency gains for various EENNs on ImageNet, for risk control via CRC (Prop. 1) or UCB (Prop. 2) and
calibration set size n ∈ {100, 1000}. Displayed values denote relative improvement over last-layer exiting in terms of mean
exit layer (in %). The test risk is successfully controlled in all cases. Results focus on small risk levels ϵ ∈ {0.01, 0.05},
which are of highest practical interest.

(a) UCB and n = 100

Risk RG(ŷ)(0−1) RG(p̂) (Brier) RC(ŷ)(0−1) RC(p̂) (Brier)

Level ϵ 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

MSDNet 0.0 42.51 0.0 30.62 0.0 34.21 0.0 30.47
DViT 0.0 46.5 0.0 35.4 0.0 45.14 0.0 39.74
L2W-DEN 0.0 49.47 0.0 33.09 0.0 41.77 0.0 35.77
Dyn-Perc 0.0 45.42 0.0 35.67 0.0 31.71 0.0 34.85

(b) CRC and n = 100

Risk RG(ŷ)(0−1) RG(p̂) (Brier) RC(ŷ)(0−1) RC(p̂) (Brier)

Level ϵ 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

MSDNet 41.64 58.6 10.99 43.58 30.71 43.68 4.46 40.54
DViT 49.32 58.6 5.02 51.09 40.36 51.83 4.58 46.89
L2W-DEN 50.82 64.38 8.09 50.4 35.09 50.57 0.0 44.66
Dyn-Perc 44.39 63.9 36.86 59.42 30.09 57.99 31.19 58.05

(c) UCB and n = 1000

Risk RG(ŷ)(0−1) RG(p̂) (Brier) RC(ŷ)(0−1) RC(p̂) (Brier)

Level ϵ 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

MSDNet 33.23 56.0 27.94 46.11 27.05 44.0 28.05 43.65
DViT 38.24 58.12 34.93 52.31 34.61 50.02 34.5 48.31
L2W-DEN 38.11 60.87 28.96 47.97 32.04 49.71 26.46 43.6
Dyn-Perc 42.24 63.77 49.9 62.51 30.48 56.01 50.34 60.28

(d) CRC and n = 1000

Risk RG(ŷ)(0−1) RG(p̂) (Brier) RC(ŷ)(0−1) RC(p̂) (Brier)

Level ϵ 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

MSDNet 46.56 62.55 33.11 50.56 33.01 46.12 34.09 46.26
DViT 48.68 61.6 39.05 54.89 40.75 52.21 38.48 49.86
L2W-DEN 47.73 65.04 35.09 53.81 37.08 51.7 33.76 48.48
Dyn-Perc 55.16 66.73 54.28 65.25 43.35 58.62 53.67 62.04
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D.2. Semantic Segmentation

We report full tables with efficiency gains across risks and confidence measure combinations for Cityscapes (Table 3) and
GTA5 (Table 4) in terms of mean exit layer and GFLOPS. In addition, we display test risk and efficiency curves on both
Cityscapes (Fig. 8) and GTA5 (Fig. 9) for risk control via CRC (Prop. 1) and UCB (Prop. 2). The figures are for the simplest
combination of Top-1 pixel-level confidence and mean image-level aggregation. Note that the figures for other confidence
combinations are similar and thus omitted, with the test risk being controlled in all cases.

GTA5 results. We observe that for GTA5 the performance gap risk for prediction control RG(ŷ) (mIoU) seems par-
ticularly easy to control, with high gains reached even for very strict ϵ = 0.01. This relates to the underlying predictor’s
generally inferior performance due to finetuning (see § C.2). The obtained model records lower performance and marginal
improvements across exit layers, resulting in a small risk that is easy to control. Intuitively, the price paid by exiting early is
marginal, since the early-exit layer performs almost on par with the final layer. Thus, the scale of the risk deviates from that
of other risks, and more meaningful risk control should consider both improving the underlying predictor, and selecting a
different scale of risk levels ϵ.

Figure 8: Empirical test risk (top) and efficiency gains (bottom) for different risks (§ 3.2) and risk levels ϵ on Cityscapes.
In line with theoretical results, the test risk is controlled across risk types and levels. Despite guaranteeing control in
expectation (CRC, Prop. 1) or with high probability (UCB, Prop. 2), obtained gains are meaningful. For both figures, we
consider the simplest combination of Top-1 confidence score and mean image-level aggregation.

Figure 9: Empirical test risk (top) and efficiency gains (bottom) for different risks (§ 3.2) and risk levels ϵ on GTA5. In line
with theoretical results, the test risk is controlled across risk types and levels. Despite guaranteeing control in expectation
(CRC, Prop. 1) or with high probability (UCB, Prop. 2), obtained gains are meaningful. For both figures, we consider the
simplest combination of Top-1 confidence score and mean image-level aggregation.
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Table 3: Efficiency gains for semantic segmentation with risk control via UCB (Prop. 2) on Cityscapes. We evaluate for
different risks (§ 3.2), confidence measures (§ 5.2) and risk levels ϵ. Displayed values denote relative improvement over
last-layer exiting (in %) in terms of mean exit layer or floating point operations (GFLOPS). The test risk is successfully
controlled in all cases.

(a) Efficiency gains in terms of mean exit layer improvement.

Risk RG(ŷ) (mIoU) RG(p̂) (Brier) RC(ŷ) (Miscov.) RC(p̂) (Brier)

Level ϵ 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

M
ea

n Top-1 6.3 33.7 53.5 0.0 13.6 43.4 6.3 39.2 61.8 0.0 39.3 58.4
Top-Diff 9.3 35.5 54.4 0.0 17.5 44.3 6.3 39.9 62.4 0.0 38.6 57.9
Entropy 5.2 36.0 54.3 0.0 17.9 41.0 5.1 40.4 61.3 0.0 40.1 58.3

Q
ua

nt
. Top-1 0.0 36.7 54.6 0.0 14.9 45.0 0.0 41.2 63.4 0.0 39.1 59.4

Top-Diff 0.1 37.1 55.2 0.0 17.2 45.2 0.0 41.2 63.7 0.0 40.4 59.6
Entropy 6.1 37.0 54.0 0.0 17.9 44.7 6.1 41.0 63.1 0.0 39.1 58.7

Pa
tc

h Top-1 10.0 35.7 53.3 0.0 18.4 45.3 8.8 39.1 61.5 0.0 38.0 58.3
Top-Diff 10.0 35.2 53.4 0.0 19.4 45.9 8.8 40.5 62.2 0.0 38.4 58.8
Entropy 9.1 34.8 53.5 0.0 18.0 45.8 8.1 38.9 61.5 0.0 37.3 57.1

(b) Efficiency gains in terms of GFLOPS improvement.

Risk RG(ŷ) (mIoU) RG(p̂) (Brier) RC(ŷ) (Miscov.) RC(p̂) (Brier)

Level ϵ 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

M
ea

n Top-1 6.2 33.4 53.2 0.0 13.5 43.1 6.2 38.9 61.4 0.0 39.0 58.0
Top-Diff 9.2 35.3 54.0 0.0 17.4 44.0 6.3 39.6 62.0 0.0 38.3 57.5
Entropy 5.1 35.7 53.9 0.0 17.7 40.7 5.1 40.1 60.9 0.0 39.8 57.9

Q
ua

nt
. Top-1 0.0 36.4 54.2 0.0 14.8 44.6 0.0 40.9 62.9 0.0 38.8 58.9

Top-Diff 0.1 36.8 54.8 0.0 17.1 44.8 0.0 40.9 63.3 0.0 40.1 59.1
Entropy 6.0 36.7 53.6 0.0 17.8 44.4 6.0 40.7 62.7 0.0 38.8 58.2

Pa
tc

h Top-1 9.9 35.4 52.9 0.0 18.2 44.9 8.7 38.8 61.0 0.0 37.7 57.8
Top-Diff 9.9 34.9 53.0 0.0 19.2 45.6 8.7 40.2 61.7 0.0 38.1 58.4
Entropy 9.1 34.6 53.1 0.0 17.8 45.5 8.0 38.6 61.1 0.0 37.0 56.7
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Table 4: Efficiency gains for semantic segmentation with risk control via UCB (Prop. 2) on GTA5. We evaluate for different
risks (§ 3.2), confidence measures (§ 5.2) and risk levels ϵ. Displayed values denote relative improvement over last-layer
exiting (in %) in terms of mean exit layer or floating point operations (GFLOPS). The test risk is successfully controlled in
all cases.

(a) Efficiency gains in terms of mean exit layer improvement.

Risk RG(ŷ) (mIoU) RG(p̂) (Brier) RC(ŷ) (Miscov.) RC(p̂) (Brier)

Level ϵ 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

M
ea

n Top-1 63.3 75.0 75.0 0.2 4.0 10.3 3.9 21.2 37.4 3.7 21.5 37.6
Top-Diff 62.9 75.0 75.0 0.3 4.6 12.0 4.4 21.8 39.2 3.0 23.6 43.0
Entropy 62.5 75.0 75.0 0.2 2.9 12.5 2.8 18.5 39.9 2.8 18.7 42.9

Q
ua

nt
. Top-1 63.4 75.0 75.0 0.0 4.6 12.4 2.5 23.1 42.3 2.4 23.4 42.6

Top-Diff 63.8 75.0 75.0 0.0 4.5 12.6 4.2 22.8 42.1 3.0 24.1 43.4
Entropy 61.1 75.0 75.0 0.1 4.9 14.0 3.7 23.6 41.8 3.6 23.9 43.6

Pa
tc

h Top-1 60.1 75.0 75.0 2.9 18.3 35.6 3.9 18.9 35.5 2.9 18.3 35.6
Top-Diff 60.2 75.0 75.0 3.5 19.7 37.2 4.7 19.5 37.1 3.5 19.7 37.2
Entropy 58.9 75.0 75.0 2.2 19.0 36.7 3.8 19.0 36.5 2.2 19.0 36.7

(b) Efficiency gains in terms of GFLOPS improvement.

Risk RG(ŷ) (mIoU) RG(p̂) (Brier) RC(ŷ) (Miscov.) RC(p̂) (Brier)

Level ϵ 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

M
ea

n Top-1 62.8 75.0 75.0 0.2 3.9 10.2 3.9 21.1 37.2 3.7 21.3 37.3
Top-Diff 62.5 75.0 75.0 0.3 4.6 11.9 4.4 21.6 38.9 3.0 23.5 42.7
Entropy 62.0 75.0 75.0 0.2 2.9 12.4 2.8 18.3 39.6 2.8 18.6 42.6

Q
ua

nt
. Top-1 63.0 75.0 75.0 0.0 4.5 12.4 2.5 22.9 42.0 2.4 23.2 42.3

Top-Diff 63.4 75.0 75.0 0.0 4.5 12.5 4.2 22.7 41.7 3.0 24.0 43.1
Entropy 60.6 75.0 75.0 0.1 4.9 13.9 3.7 23.4 41.5 3.5 23.7 43.2

Pa
tc

h Top-1 59.7 75.0 75.0 2.9 18.2 35.4 3.9 18.7 35.2 2.9 18.2 35.4
Top-Diff 59.8 75.0 75.0 3.4 19.5 36.9 4.7 19.4 36.8 3.4 19.5 36.9
Entropy 58.4 75.0 75.0 2.2 18.8 36.4 3.7 18.8 36.2 2.2 18.8 36.4
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D.3. Language Modeling
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Figure 10: Empirical test risk (top) and efficiency gains (bottom) for the CALM model (Schuster et al., 2022) for text
summarization on CNN/DM and question answering on SQuAD. Our adaptation of UCB (Bates et al., 2021) (Prop. 2)
outperforms the LTT (Angelopoulos et al., 2021) approach in CALM by yielding larger efficiency gains under the same risk
control assurances. Shading denotes the standard deviation across S = 100 calibration/test splits.

D.4. Image Generation with Early-Exit Diffusion
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Figure 11: Results for early-exit diffusion with DeeDiff (Tang et al., 2023) on CIFAR (Krizhevsky et al., 2009). Right:
Empirical test risks are controlled for both CRC (Prop. 1) and UCB (Prop. 2) (for calibration set size n = 500). Left: The
quality of generated images is directly related to the targeted risk control level ϵ.
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