©® N o g b~ @ N =

- o ©

12

17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35

36
37

Test-Time Risk Adaptation with Mixture of Agents

Anonymous Author(s)
Affiliation
Address

email

Abstract

In real-world reinforcement learning (RL) applications, agents often encounter
unforeseen risks during deployment, necessitating robust decision-making without
the luxury of further fine-tuning. While recent risk-aware RL methods incorporate
return variance as a surrogate for safety, this captures only a narrow subset of real-
world risks. Addressing this gap, we introduce TRAM, Test-time Risk Alignment
with a Mixture of agents, a novel framework designed to enhance risk-aware
decision-making during inference. TRAM operates by optimizing a weighted com-
bination of predicted returns and a risk metric derived from state-action occupancy
measures, enabling the agent to adaptively balance performance and safety in real
time. Our approach allows for a nuanced representation of diverse risk factors
without necessitating additional training, which does not exist in the literature.
We provide theoretical sub-optimality bounds to substantiate the efficacy of our
method. Empirical evaluations demonstrate that TRAM consistently outperforms
existing baselines, delivering safer policies across varying risk conditions in test
environments.

1 Introduction

Reinforcement learning (RL) has achieved remarkable performance in controlled settings, but its
application in real-world environments remains limited by brittleness. Policies trained in simulation
or narrow settings often fail when exposed to unexpected conditions at deployment. Consider an
autonomous vehicle trained under typical driving scenarios but deployed in rare edge cases, such as
erratic pedestrian behavior, sensor malfunctions, or newly enforced traffic regulations. These are not
just performance issues—they are risks, and today’s RL systems are ill-equipped to adapt to them (1)).
The key challenge is that test-time (or deployment time) risks are rarely the same as those modeled
during training. Environment dynamics may shift, new constraints may emerge, and task priorities
may change. For example, a warehouse robot trained to maximize throughput may later operate under
newly imposed spatial or speed restrictions due to safety policy updates. These risks are dynamic,
diverse, and often unknown ahead of time—yet traditional RL approaches assume a fixed reward and
risk structure, rendering them fragile in the face of real-world uncertainty.

Why Training-Time Risk Modeling Falls Short. Risk-sensitive RL attempts to address uncertainty
by optimizing for risk-aware objectives like variance or CVaR during training (2)). But this assumes
the deployment-time risks are both known and static. In reality, risks evolve—whether from new
regulations, hardware wear-and-tear, or environmental hazards. Worse, retraining to accommodate
every possible risk variant is computationally expensive, unsafe, or infeasible in many domains (e.g.,
robotics, finance, healthcare). Thus, fixed training-time risk modeling is fundamentally insufficient
for reliable deployment.

What Is Needed: Risk Adaptation at Test-Time. To operate safely under unpredictable and
shifting risk profiles, agents must adapt their behavior dynamically at test time. Rather than hard-

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

38
39
40
41

42
43
44
45
46

47

49
50
51

52
53
54

55
56
57

58
59
60

61

62
63
64
65

66
67
68
69
70
71

72
73

ﬁ iterative refinement ﬁ
Agent 1 may be needed t —
‘\ Agent 1 variance-aware
| \

g =8 - =C=-8

{ .
Agent2 variance-aware Agent 2 barrier-aware
e — w
@ s 2
Ageht 3 divergence-aware

Agent3

. risk-agnostic
variance-aware

Figure 1: A high-level comparison between RaSF (2) (top) and TRAM (bottom). Unlike RaSF,
TRAM (1) does not require source agents to be risk-aware, (2) supports arbitrary risk metrics beyond
variance, and (3) synthesizes policies in a zero-shot fashion without additional training.

coding a single notion of risk into training, agents should be able to evaluate or synthesize behavior
in real time, using deployment-specific caution signals. Such test-time risk adaptation enables safer
decision-making without retraining, supporting robustness in environments where the true risks may
only become apparent after deployment.

Our Proposal: TRAM. We introduce TRAM (Test-time Risk Alignment with a Mixture of agents),
a framework that enables risk-aware behavior at test-time by composing risk-neutral source policies.
TRAM does not require retraining and makes no assumptions about the risk profile beforehand.
Instead, it optimizes the test-time policy via direct alignment with a specified risk measure, allowing
flexible and safe adaptation under deployment-time uncertainty (see Figure [I).

‘We summarize our contributions as follows.

1. Test-Time Risk-Aware Policy Framework: We introduce TRAM, a novel test-time frame-
work that constructs cautious policies by evaluating and composing risk-neutral source
agents. Unlike prior methods, TRAM requires no retraining and makes no assumptions
about the deployment-time risk profile.

2. Generalization to Arbitrary Risk Metrics: Our formulation accommodates a wide range of
risk measures—including variance, expert divergence and occupying danger sets—enabling
flexible and interpretable adaptation across safety-critical tasks.

3. Theoretical Guarantees: We provide sub-optimality bounds for TRAM’s test-time opti-
mization, showing that performance depends on reward mismatch and the expressivity of
the deployment-time risk signal.

4. Empirical Validation: We evaluate TRAM across diverse RL benchmarks, demonstrating
consistent improvements in safety and reliability over state-of-the-art risk-aware and test-
time adaptation baselines,.

2 Related Works

Reinforcement learning agents deployed in the real world must often operate under conditions of
uncertainty and unforeseen risk, particularly during the test phase. While zero-shot RL methods
(35 145 155 165 [7) offer impressive generalization across diverse tasks by learning unified representations,
they generally lack mechanisms to incorporate risk sensitivity during test time.

Efforts to enable risk-sensitive behavior under uncertainty fall into several categories. Classical
risk-aware RL methods (8 195 [105; [115 [125 [135 14} [155 [16) incorporate risk objectives—typically
variance—into training-from-scratch, but they do not address the adaptation problem and lack
mechanisms for reusing knowledge across tasks. Dual RL (17)), in contrast, provides a more general
framework for modeling diverse forms of risk. However, it still requires solving an optimization
problem at test time, limiting its practicality in scenarios with strict inference-time constraints.

A large body of risk-aware adaptation methods aims to generalize across tasks while modeling
risk. These include teacher-guided and critic-based architectures (18;19), robotics-specific safety

74
75
76
77
78
79

80
81
82
83
84

85

86

87
88
89
90
91
92
93
94
95

96
97
98
99
100
101

102
103
104

105
106
107
108
109
110

111
112

Table 1: Comparison of TRAM with prior work. Risk-aware indicates support for risk-sensitive
behavior; general risk refers to support for risk types beyond variance; and test-time means minimal
or no computation is required for new tasks.

Method Risk-aware General Risk Test-time
Standard RL (8;(9:110;111;112[13{[14{[15{/16) X X
Zero-shot RL (31415116 (7) X X
Dual RL (17) X
Risk-aware Adaptation X X
(211181119{1201121;122112311241125126;127)
TRAM (our work)

strategies (20), probabilistic risk-based action selection (21)), hierarchical or option-based controllers
(22123 124), and successor feature approaches (255 1265 127). Risk-aware successor features (RaSF)
(2) extend this last class by optimizing a mean-variance trade-off, enabling risk-sensitive behavior
across tasks that share dynamics. However, these methods often address limited notions of risk (e.g.,
variance) and typically require access to risk-aware training policies or incur additional computation
at test time.

In contrast, our approach—TRAM—requires no risk-aware policies during training, supports general
forms of risk beyond variance, and performs all computation in a single forward pass at test time.
TRAM does not require labeled risk profiles at training and is fully agnostic during training to the
specific forms of risk that may manifest at test time. A comprehensive comparison with prior methods

is presented in Table [T}

3 Problem Formulation

3.1 Preliminaries

Markov Decision Process. We model the inter-
action between an RL agent and its environment
as a Markov Decision Process (MDP) (28)), de-
fined by the tuple (S, A, p, R,). Here, S and
A denote the state and action spaces, respec-
tively. For a given state-action pair (s, a), the
transition dynamics are governed by the prob-
ability distribution p(- | s,a) over next states
s'es.

Upon transition s — s, the agent receives
a scalar reward drawn from the random vari-
able R(s,a,s’). We denote the expected re-

ward as r(s,a,s’) = E[R(s,a,s’)]. The ex-
pected reward function is often summarized
as r(s,a) = By p|s,a)r(s,a,)], and rep-

resented in matrix form as r € RISl The
discount factor y € [0, 1) down-weights future
rewards.

The agent’s behavior is described by a policy
m: S x A —[0,1], where 7(a | s) is the prob-
ability of selecting action « in state s. The per-
formance of 7 is evaluated through the return
Gy =Y ;207 Ritit1, the discounted cumula-
tive reward starting at time .

The action-value function (or Q-function) of a
policy 7 is defined as:

C?Tr(S,a)EETr [Gt |St:s,At:a], (1)

Source Tasks Target Task

| training

see || ees

: W W W W D

| riskaware | R g T] [::_:} 2 i
i training | ' | E i]
‘ i i m P

i risk-agnostic | & = e A Eﬁ & w

Figure 2: Illustration of a transfer setting with
two source policies (left) and a single target task
(right). Visual symbol: the gift icon represents a
mysterious reward—it yields either a bomb (cost)
or cash (high reward) with equal probability. Thus,
even for the same policy, different runs may re-
sult in different returns due to stochasticity. Top:
Risk-aware training (as in (2))) leads both source
policies to avoid the upper path due to its high risk
or lower expected return. As a result, the synthe-
sized target policy also avoids the now-optimal up-
per path, inheriting the conservative tendencies of
the source agents. Bottom: Risk-agnostic training
yields more diverse source agents, each optimiz-
ing only expected return. This diversity improves
coverage of the state-action space and allows the
target policy to adaptively identify the safer but
higher-reward upper path.

113
114

115

116
117

118

119
120
121
122
123

124
125
126
127
128
129

130
131
132
133
134

135
136

137
138

140
141

142

143
144
145
146

147
148
149
150

where the expectation is taken over trajectories induced by following policy 7 after taking action a in
state s at time ¢.

The Q-function satisfies the Bellman equation:

Q" (s,a) =By p()s,0) [r(5,0,8") +7- Q7 (s, a")]. @)

o/ ~(]s))

An optimal policy 7* maximizes expected return for all state-action pairs, satisfying Q" (s,a) =
max, Q™ (s, a) for all (s, a).

3.2 Test-Time Adaptation Problem

We use the adaptation formulation presented in sourceTasks Tergo Tasks

prior works (25 25; 265 29). Specifically, we | ¢4
consider a collection of N source agents, where |

each agent 7} is the optimal policy for a corre- |]
sponding source task defined by the MDP: ‘

{(S; AP Bus)y (S Ap Bvs) Figure 3: Failure of return variance as a gen-
All tasks share the same dynamics and ac- eral risk metric. Visual symbols: bomb = low or
tion/state spaces, but differ in their reward func- negative reward (cost), cash = high reward. Left:
tions. Each source agent is trained indepen- Source agents trained in a deterministic setting fol-
dently and is optimal with respect to its own low identical trajectories, resulting in zero return
reward function, possibly under risk-neutral (23) variance—even if step-level rewards vary signif-
or risk-sensitive (2) criteria. icantly. Middle: In a target task with high per-
step reward variability, the adapted policy chooses
the higher-variance (but seemingly high-reward)
path. Since return variance is zero, the agent can-
not perceive the underlying risk. Right: In another
target task, the adapted policy favors a low-return-
variance path that crosses a danger zone (yellow),
3) avoiding a safer but higher-variance path. In both

cases, return variance misrepresents the true risk,
where f is any mechanism that synthesizes a leading to undesirable behavior.
target policy from the available source agents.

At test time, a new target task (S, A, p, Rr,7)
is presented. No new training is allowed, and
the optimal policy 77 for this task is unknown
The best chance is to adapt the behavior of the
source agents to produce a target policy mr:

mr = f(m], .. TN,

Risk-Aware Adaptation. The adaptation is said to be risk-aware if the function f explicitly accounts
for risk in the target task. A representative example is the approach proposed in (2), which augments
value estimates with a penalty on return variance:

mr(s) = arg gleajc max (Q”: (s,a) — g Var™ (s, a)) , 4)

where Var™ (s,a) = Var[G; | S; = s, Ay = a], and § controls the sensitivity to risk. Since this
formulation adjusts agent selection based on both return and uncertainty, it qualifies as risk-aware.

3.3 Limitations of Risk-Aware Test-Time Adaptation

We identify three key limitations in the current state-of-the-art risk-aware test-time adaptation
method (2). These limitations arise when test-time policies are synthesized by selecting among source
agents that were trained using a variance-regularized objective. Visual illustrations are provided in
Figures [2]and 3]

L1: Risk-aware source agents reduce behavioral diversity. As shown in Figure [2] training source
agents with return-variance objectives leads to overly conservative behavior across the board. This
collapse in diversity limits the effectiveness of test-time agent selection, as the synthesized policy
is constrained by a narrow behavioral repertoire. In contrast, risk-neutral agents—trained purely

'The target task typically appears during test time, when computational budgets limit training from
scratch (30).

151
152

153
154
155
156

157
158
159
160
161

162
163
164

166

167

168
169
170
171

172
173
174
175
176
177

178
179

180

181

182

183
184

185
186
187

189
190
191
192

to maximize expected return—tend to exhibit more diverse trajectories, improving downstream
adaptability.

L2: Return variance fails in deterministic environments. Figure [3| (left and middle) illustrates
how, in deterministic settings, return variance becomes identically zero—even when rewards fluctuate
at each step or when risk is structurally embedded. As a result, variance minimization fails to guide
the agent toward safer or more robust behavior.

L3: Variance captures only a narrow class of risk factors. Figure 3] (right) demonstrates that
return variance misses broader notions of risk, such as barrier avoidance or worst-case transitions.
In this example, the agent avoids a high-variance but safe path, and instead selects a low-variance
trajectory that passes through a danger zone—highlighting a critical mismatch between formal
variance minimization and intuitive safety.

Summary: Risk-aware test-time adaptation methods that rely solely on variance-regularized source
agents and return variance as a risk metric suffer from: (i) conservative behavior, (ii) failure in
deterministic settings, and (iii) an overly narrow view of risk. Our framework, TRAM, addresses
all three by adapting over risk-neutral agents using flexible, occupancy-based risk factors. See
Appendix |D| for full results and examples.

4 Proposed Approach: Test-time Risk Adaption

Based on the observations made earlier, we conclude that a risk-aware adaptation framework should
satisfy two key requirements: (i) the source policies 7 must be optimal under a risk-agnostic
criterion, i.e., 7} (s) = arg max, Q7 (s, a); and (ii) the framework must support a broad class of risk
models at test time, beyond the standard variance of return.

To address the second requirement, we adopt a general risk specification based on risk factors
defined over the state-action occupancy measure d”, where d” (s, a) denotes the long-term visitation
frequency of state-action pair (s, a) under policy 7. This formulation has been previously explored in
the context of constrained or risk-sensitive RL (17), where such occupancy-based risk factors are
used to shape the training objective. In contrast, TRAM leverages these risk models only at test time,
without modifying the training process or requiring risk-aware source policies.

The occupancy-based formulation enables a wide spectrum of risk models beyond trajectory-level
return variance. Examples include:

* Barrier risk, where the agent is penalized for visiting a danger set S C S:

) = —log (d(3) +0), where dS) = Y d. s O

* Per-step reward variance, which captures local fluctuations in rewards:
p(d) = Var(r(s,a, s'); d) = E? {(r(& a,s') —Er(s,a, s’)])Q} , 6)

where E¢ := E(s,a,5")~dxp(-|5,a)

* Divergence-based risks, such as KL divergence from a known expert policy with occupancy
d:

p(d) = KL(d || d). ™

The expressiveness of these risk factors allows TRAM to support a broad range of safety, robustness,
and preference constraints during test-time decision-making—while remaining fully agnostic to the
objective used to train the source agents.

4.1 TRAM: Test-time Risk Alignment with a Mixture of Agents

We now introduce our proposed method, TRAM, which operationalizes the framework developed in
the previous sections. Recall that our goal is to adapt at test time using a collection of pre-trained,
risk-neutral source agents—without retraining them—and to do so in a way that aligns with a
user-specified notion of risk.

193
194
195
196

197
198
199

200
201
202

204

205
206
207

208
209

210
211

212
213

214

215

Algorithm 1 TRAM: Test-time Risk Adaptation with a Mixture of Agents

Require: Risk-neutral source agents {77; ;?:1; test-time risk coefficient c; risk function p
1: for each state s € S and action a € A do
2: for each source agent 7 do

Compute Q7’ (s, a) in the target task

3:
4: Compute pr(d™) in the target task
5: end for
6: Compute:
1 ifa=argmax max (Qf (s,b)—c-pr(d™)),
mr(als) = b d=l,..n
0 otherwise
7: end for

Ensure: 7 is returned as the risk-aware test-time policy

Let {77; %1 be the set of optimal source agents, each trained independently under a different reward
function. At test time, TRAM constructs a policy that selects the action with the highest adjusted
value—where each agent’s Q-value is penalized by a task-specific risk factor p(d™). This leads to
the following policy:

1 ifa =argmax ma j 5,b) —c- dri
mr(als) :{ gb j=1,2,...,n (QT (s,b) pr()) ®

0 otherwise,

Here, ¢ > 0 is a risk-weighting coefficient that balances expected return (via Q) with test-time risk
(via p). Crucially, p can be instantiated using any of the general risk factors defined earlier—such as
barrier risks, reward variance, or divergence from expert behavior (see Equations 5 [6} and|[7).

This formulation ensures that TRAM makes a risk-aware decision by aggregating across a set of
agents trained without any risk signal, while still respecting the user-defined safety or robustness
constraints of the target task. The pseudocode for computing the TRAM policy is provided in
Algorithm[T| below.

4.2 Theoretical Insights

We now analyze the performance guarantees of TRAM by quantifying how far its test-time policy
can deviate from the optimal risk-aware policy in the target task. This deviation arises from two key
sources:

* Reward mismatch: The difference between the reward function of the target task r1 and
that of the closest source task r;.

* Risk misalignment: The cost of introducing a test-time risk penalty that was not present
during source agent training.

To capture this formally, we define the error between the risk-adjusted value of the TRAM policy and
the optimal risk-aware policy as:

T (s,a) — QF(s,a)|.
where Q denotes a Q-value adjusted by a test-time risk factor:

Q7 (s,a) = QF (s,0) = c- pr(d™).
The TRAM policy selects actions using:

1 ifa=argmax max Q' (s,b)
b 1=1,...,n

mr(als) =
0 otherwise.

216
217

218
219

220

221
222
223
224

225
226

227

228
229
230

231
232

234
235

236

237

238
239

240

241

242

243
244
245

246

247

The following theorem bounds the performance gap between the TRAM policy and the optimal
risk-aware policy in the target task:

Theorem 4.1. Let QTTF; denote the value function of source agent 7} evaluated in target task My,
and let pT(d7TZ) be an L-Lipschitz risk factor bounded by K. Then the TRAM policy wr satisfies:

- . ' 2
QF v - 7 (s.0)| < mim 5

_7||7"T7’11||oo+(4L+K)~c). 9)

Proof. See Appendix [C]for the full derivation. O

Theoretical insights. This bound separates the impact of reward mismatch from the influence of
the test-time risk factor. When ¢ = 0, TRAM reduces to reward-only adaptation as in (25). When
rp = r; and ¢ = 0, the bound is zero. However, if ¢ > 0, the risk-aware optimum may differ—even
if the task is known exactly—highlighting the importance of aligning with risk during adaptation.

Implication: TRAM supports risk-sensitive test-time decision-making using only risk-agnostic agents,
with error that scales smoothly in both the reward and risk discrepancy.

4.3 A Practical Implementation at Test Time: Successor Features (SFs)

A practical instantiation of TRAM requires fast computation of action-values across source agents.
Traditional value evaluation methods typically involve iterative rollouts or dynamic programming,

with complexity O (ﬁ) , where € is the desired approximation error in the value function. A

more scalable alternative leverages successor features (SFs), which exploit shared dynamics and
reward structure across tasks (255 26).

Suppose the reward function factorizes as (s, a, s') = ¢(s, a, s') " w, where ¢ is a shared feature
map and w is a task-specific weight vector. Then, the successor feature vector of a policy 7, denoted
Y™ (s, a), is defined as:

D> A TGS, Aiy Sipa) | S =5, 4 =a

1=t

wﬂ-(sa a) =E"

This enables efficient computation of the action-value function as a simple dot product:
Q™ (s,a) =" (s,a) "w. (10)

When TRAM is implemented using SF-based agents, we obtain the following bound:
Corollary 4.2. Under the same assumptions as Theorem[d.1| and assuming that ||¢(s, a, s")|| < dmax
forall (s,a,s"), we have:

2¢max
1—7

;;(s,a)— ~?T(smz)grrllin(||WT—wi—i-(4L—i—K)-c)7 (11)

where Q is defined using the dot product in Equation (10) with a test-time risk adjustment.

Proof. See Appendix [C]for a detailed derivation. O

5 Experiments

To evaluate TRAM, we first test it in a controlled gridworld environment similar to (2 [17; [25). This
setting enables direct comparison against prior risk-aware adaptation methods and helps answer the
following:

Q1) Does TRAM support more general notions of risk compared to RaSF (2)?
Q2) Can TRAM avoid the overly conservative behavior exhibited by RaSF?

254

268

269
270
271
272

Source Tasks Target Tasks

__

/ PP —re = RaSF o TRAM | N,
; |—m—m—ﬁ— | — — — o
1.89 395 3.95 3.95 100% \

Barrier Risk Expected Return Entrance to
Danger Set

‘—— 22.98 22.98 22.98 0.06 0.06

[

0.00
Return Variance /

Expected Return

Figure 4: Visualization of Experiment 1. Left: Two source policies trained on distinct tasks. Middle:
Two target tasks. Top row: In the first task, the agent must avoid a danger region (yellow). TRAM,
using the barrier risk from Eq. (3)), avoids the danger zone entirely. In contrast, RaSF—trained to
minimize return variance—fails to detect spatial risk and enters the danger zone in every episode. SF
also lacks risk awareness and behaves similarly. Bottom row: In the second task, risk arises from
per-step reward variance as defined in Eq. (6). RaSE, which uses return-level variance, is blind to this
finer granularity and selects a high-variance path. SF also fails due to the absence of risk modeling.
TRAM, by contrast, successfully avoids the high-variance trajectory. Right: Bar plots show expected
return and return variance, reflecting the qualitative differences in policy behavior.

Setup. The agent navigates from a start cell to a goal cell. Rewards and risks are distributed across
different paths, visualized using symbols (e.g., gifts, bombs). The goal is to maximize expected return
while avoiding high-risk regions. Risk arises either from danger zones or local reward variance.

Baselines. We compare against two methods: (i) RaSF, where source policies are trained with a
variance-based penalty, and (ii) the risk-agnostic SF method from (23), which uses only expected
return. TRAM, by contrast, uses these risk-agnostic agents but aligns them at test time using general
risk factors.

Experiment 1: General risk representations. Figure] illustrates two target tasks. In the first (top),
risk is defined via a danger zone. TRAM, using the barrier risk factor in Eq. (3)), avoids this region
while maintaining return. RaSF and SF frequently enter the danger zone. In the second task (bottom),
risk stems from per-step reward variance. TRAM, using Eq. (6)), selects the safer path, while RaSF
and SF fail to detect this form of risk.

Experiment 2: Robustness to risk shifts. Figure 5] shows two more test cases. In the first (top), no
risk is present. TRAM and SF exploit the high-reward path, while RaSF—trained with built-in risk
aversion—remains overly conservative. In the second case (bottom), risk is introduced via stochastic
rewards on the high-return path. TRAM correctly shifts to the lower, safer path. RaSF does the same,
but SF fails due to its lack of risk modeling.

Conclusion. Unlike RaSF, which is restricted to a fixed form of risk and conservatively-trained agents,
TRAM adapts to multiple risk types at test time and dynamically balances safety and performance
using general risk factors.

5.1 Generalization to Continuous Domains

While our main experiments focus on discrete environments to highlight the limitations of prior risk-
aware adaptation methods, we also demonstrate that TRAM extends naturally to high-dimensional con-
tinuous control. Specifically, we evaluate TRAM on the Reacher domain, a widely used continuous-
space benchmark in the adaptation literature [29). This setting introduces real-valued states

273
274

275
276
277
278
279

280
281
282
283

284
285
286

287

288
289
290
291

292
293
294
295
296

Target Task

Source Tasks ks .
eI <. 7 emmmSF e RSP TRAM N
’ \\ ll ! \\
see ‘ ’?ﬁjl 262 2249 ‘
e w v w

risk- 2 e Q e ?

aware

training | [

18.19 104.87

l 16.10 16.10 93.33 93.14
) &
risk- & e
Jagnostic : (00 S
| training
\ ‘\ Expected Return Variance of Return I'
Y, ’ \ 7
AY U ~ ’
N

1
1
1
I
1
1
1
1
I
1
1
:
I
Expected Return i
1
1
I
1
1
1
1
I
1
1
1
1
1

e
g3
P
=

Figure 5: Experiment 2 setup. Left: Source policies trained on distinct tasks using either risk-agnostic
or risk-aware objectives. Middle: Two target tasks. Top row: In the first target task, no risk is present.
TRAM and SF successfully choose the path with the highest expected return. RaSF, however, remains
overly conservative due to training with a fixed variance-based risk signal, and fails to exploit the
high-return option. Bottom row: In the second target task, risk is introduced via stochastic rewards
(gifts). TRAM and RaSF both avoid the high-variance path—since the return variability depends
on the gift’s sign—while SF, unaware of risk, continues to follow the high-reward but volatile route.
Right: Bar graphs quantify the trade-off between expected return and return variance across the three
methods.

and actions, nonlinear dynamics, and the need for deep function approximation—all of which are
common in robotics applications.

The Reacher environment consists of a two-joint torque-controlled robotic arm that must reach a
specified target in the plane. The dynamics are simulated via MuJoCo (31)), yielding a continuous
4D state space and nontrivial transitions. We train source agents using Successor Feature Deep
Q-Networks (SFDQNs) on multiple risk-agnostic tasks—without any form of risk modeling during
training.

At test time, we apply TRAM with a barrier risk function to adapt these agents to a new task
that includes a danger region. No additional training or fine-tuning is performed. As detailed in
Appendix [f; TRAM significantly reduces the failure rate (i.e., entering the danger zone) relative to
standard SF adaptation (23), while achieving comparable accuracy in reaching the goal.

Takeaway: TRAM scales beyond tabular and gridworld domains. It supports expressive risk specifi-
cations, operates in real-time via deep function approximators, and adapts effectively under nonlinear
continuous dynamics.

6 Conclusions

We introduced TRAM, a novel test-time adaptation framework that derives risk-aware policies from
risk-neutral source agents. Unlike prior methods requiring risk-aware training or limited to return
variance, TRAM supports general, user-defined risk factors—such as barrier constraints, per-step
reward variance, or divergence from expert behavior—evaluated solely at test time.

By leveraging successor features, TRAM enables fast policy synthesis via dot-product computations,
avoiding sampling or rollouts. Our theoretical analysis offers performance bounds that decouple
reward mismatch from risk misalignment. Experiments across discrete and continuous domains
demonstrate that TRAM captures richer risk signals and generalizes better than existing methods, with
low computational cost. Future work includes extending TRAM to tasks with differing dynamics.

297

298
299

300
301
302

303
304

305
306

307
308

309
310
311

312
313

314
315

316
317

318
319

320
321

322
323

324
325
326

327
328

329
330

331

332
333

334
335

336
337

338
339

340
341

References

[1] Gong, T., J.Jeong, T. Kim, et al. Note: Robust continual test-time adaptation against temporal
correlation. Advances in Neural Information Processing Systems, 35:27253-27266, 2022.

[2] Gimelfarb, M., A. Barreto, S. Sanner, et al. Risk-aware transfer in reinforcement learning using
successor features. Advances in Neural Information Processing Systems, 34:17298-17310,
2021.

[3] Marom, O., B. Rosman. Zero-shot transfer with deictic object-oriented representation in
reinforcement learning. Advances in Neural Information Processing Systems, 31, 2018.

[4] Oh,J., S. Singh, H. Lee, et al. Zero-shot task generalization with multi-task deep reinforcement
learning. In International Conference on Machine Learning, pages 2661-2670. PMLR, 2017.

[5] Higgins, I, A. Pal, A. Rusu, et al. Darla: Improving zero-shot transfer in reinforcement learning.
In International Conference on Machine Learning, pages 1480-1490. PMLR, 2017.

[6] Rezaei-Shoshtari, S., C. Morissette, F. R. Hogan, et al. Hypernetworks for zero-shot transfer
in reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 37, pages 9579-9587. 2023.

[7] Touati, A., J. Rapin, Y. Ollivier. Does zero-shot reinforcement learning exist? In The Eleventh
International Conference on Learning Representations. 2022.

[8] Bisi, L., L. Sabbioni, E. Vittori, et al. Risk-averse trust region optimization for reward-volatility
reduction. arXiv preprint arXiv:1912.03193, 2019.

[9] Fei, Y., Z. Yang, Y. Chen, et al. Risk-sensitive reinforcement learning: Near-optimal risk-sample
tradeoff in regret. Advances in Neural Information Processing Systems, 33:22384-22395, 2020.

[10] Jain, A., G. Patil, A. Jain, et al. Variance penalized on-policy and off-policy actor-critic. In
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pages 7899-7907. 2021.

[11] Mannor, S., J. N. Tsitsiklis. Algorithmic aspects of mean—variance optimization in markov
decision processes. European Journal of Operational Research, 231(3):645-653, 2013.

[12] Mao, H., S. B. Venkatakrishnan, M. Schwarzkopf, et al. Variance reduction for reinforcement
learning in input-driven environments. arXiv preprint arXiv:1807.02264, 2018.

[13] Nass, D., B. Belousov, J. Peters. Entropic risk measure in policy search. In 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1101-1106. IEEE,
2019.

[14] Shen, Y., M. J. Tobia, T. Sommer, et al. Risk-sensitive reinforcement learning. Neural
computation, 26(7):1298-1328, 2014.

[15] Tamar, A., D. Di Castro, S. Mannor. Learning the variance of the reward-to-go. Journal of
Machine Learning Research, 17(13):1-36, 2016.

[16] Whiteson, S. Mean- variance policy iteration for risk- averse reinforcement learning. 2021.

[17] Zhang, J., A. S. Bedi, M. Wang, et al. Cautious reinforcement learning via distributional risk in
the dual domain. IEEE Journal on Selected Areas in Information Theory, 2(2):611-626, 2021.

[18] Turchetta, M., A. Kolobov, S. Shah, et al. Safe reinforcement learning via curriculum induction.
Advances in Neural Information Processing Systems, 33:12151-12162, 2020.

[19] Srinivasan, K., B. Eysenbach, S. Ha, et al. Learning to be safe: Deep rl with a safety critic.
arXiv preprint arXiv:2010.14603, 2020.

[20] Held, D., Z. McCarthy, M. Zhang, et al. Probabilistically safe policy transfer. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pages 5798-5805. IEEE, 2017.

[21] Garcia, J., F. Fernandez. Probabilistic policy reuse for safe reinforcement learning. ACM
Transactions on Autonomous and Adaptive Systems (TAAS), 13(3):1-24, 2019.

10

342
343

344
345

346
347

348
349

350
351

353
354

355
356

357
358

359
360

361
362
363

364

365

366
367

368
369

370
371

372
373

374
375

[22] Mankowitz, D. J., A. Tamar, S. Mannor. Situational awareness by risk-conscious skills. arXiv
preprint arXiv:1610.02847, 2016.

[23] Jain, A., K. Khetarpal, D. Precup. Safe option-critic: learning safety in the option-critic
architecture. The Knowledge Engineering Review, 36:e4, 2021.

[24] Mankowitz, D., T. Mann, P.-L. Bacon, et al. Learning robust options. In Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32. 2018.

[25] Barreto, A., W. Dabney, R. Munos, et al. Successor features for transfer in reinforcement
learning. Advances in neural information processing systems, 30, 2017.

[26] Barreto, A., D. Borsa, J. Quan, et al. Transfer in deep reinforcement learning using successor
features and generalised policy improvement. In International Conference on Machine Learning,
pages 501-510. PMLR, 2018.

[27] Barreto, A., S. Hou, D. Borsa, et al. Fast reinforcement learning with generalized policy updates.
Proceedings of the National Academy of Sciences, 117(48):30079-30087, 2020.

[28] Puterman, M. L. Markov decision processes. Handbooks in operations research and manage-
ment science, 2:331-434, 1990.

[29] Zhang, S., H. D. Fernando, M. Liu, et al. Sf-dqn: Provable knowledge transfer using successor
feature for deep reinforcement learning. arXiv preprint arXiv:2405.15920, 2024.

[30] Chakraborty, S., S. S. Ghosal, M. Yin, et al. Transfer q star: Principled decoding for llm
alignment. arXiv preprint arXiv:2405.20495, 2024.

[31] Todorov, E., T. Erez, Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages 5026-5033. IEEE,
2012.

[32] Sutton, R. S., A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.
[33] Bellman, R. Dynamic Programming. Dover Publications, 1957.

[34] Nachum, O., B. Dai. Reinforcement learning via fenchel-rockafellar duality. arXiv preprint
arXiv:2001.01866, 2020.

[35] Nachum, O., B. Dai, I. Kostrikov, et al. Algaedice: Policy gradient from arbitrary experience.
arXiv preprint arXiv:1912.02074, 2019.

[36] Devroye, L., A. Mehrabian, T. Reddad. The total variation distance between high-dimensional
gaussians with the same mean. arXiv preprint arXiv:1810.08693, 2018.

[37] Wen, Z., B. Van Roy. Efficient reinforcement learning in deterministic systems with value
function generalization. Mathematics of Operations Research, 42(3):762-782, 2017.

[38] Nagarajan, P.,, G. Warnell, P. Stone. Deterministic implementations for reproducibility in deep
reinforcement learning. arXiv preprint arXiv:1809.05676, 2018.

11

376

377

378

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

Contents

I Tntroduction|

3.2 Test-Time Adaptation Problem|
3.3 Limitations of Risk-Aware Test-Time Adaptation|

[4 Proposed Approach: Test-time Risk Adaption |
4.1 TRAM: Test-time Risk Alignment with a Mixture of Agents|
4.2 Theoretical Insights| L

4.3 A Practical Implementation at Test Time: Successor Features (SFs))|

xperiments

6 Conclusions!

[NeurIPS Paper ChecKlisf|

App

A Q-LP Formulation of RL)]

[B_Dual V-LP Formulation of RL

[C Proof of the Theorem and its Corollary|

[D Limitations of Risk-Aware Test-Time Adaptation|

[E The effect of the hyperparameter ¢

[Impact Statement|

12

~ LW W

~N O W»n W

|

13

16

16

16

16

24

25

26

26

27

28

401

402

403
404

405

406
407
408
409

410

411

412

413
414
415

416

417
418

419

420
421

422

423
424
425

426

427
428
429

430

431
432
433

434

438

439
440
441

442

443
444
445

446

447
448

449

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly describe the core contributions of TRAM,
namely risk-aware adaptation at test time using risk-neutral agents and general risk factor
alignment without test-time optimization. These claims are substantiated by theory and
experiments.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations are acknowledged in the conclusion, which discusses extending
TRAM to tasks with different transition dynamics. This highlights a current assumption in
our approach and outlines a direction for future work.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theoretical results (Theorem Corollary are fully stated with
assumptions, and complete proofs are provided in Appendix [C|

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides all environment configurations, risk specifications, and
algorithmic components for the gridworld experiments. For the Reacher experiment, we
shall include the full setup and reference base implementations.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides all environment configurations, risk specifications, and
algorithmic components for the gridworld experiments. For the Reacher experiment, we
shall include the full setup and reference base implementations.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides all environment configurations, risk specifications, and
algorithmic components for the gridworld experiments. For the Reacher experiment, we
shall include the full setup and reference base implementations.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

13

450
451
452

453

454
455
456

457

458

460

461

462
463

464

465
466
467

468

469
470

471

472

473

474
475
476

477

478
479

480

481
482

484

485
486

487

488
489

490

491
492
493

494

10.

11.

12.

13.

14.

Justification: All results are aggregated over multiple rollouts to capture stochasticity. Bar
graphs in Figures[d] [5] and others reflect mean and variance across runs, supporting statistical
robustness.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The appendix provides compute details, including number of CPUs/GPUs
used, runtime for both tabular and continuous experiments, and environments needed to
replicate the results.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work follows standard RL evaluation practices and conforms to NeurIPS
ethical guidelines. No private or sensitive data is used, and there are no foreseeable risks to
safety, privacy, or fairness.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impact in [H]
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work does not release high-risk data or models. The paper focuses on
MDP-based simulation environments.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All prior works and open-source codebases (e.g., MuJoCo, SF-DQN) are cited
appropriately. We follow all licensing terms for code reuse.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper provides all environment configurations, risk specifications, and
algorithmic components for the gridworld experiments. For the Reacher experiment, we
shall include the full setup and reference base implementations.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

14

https://neurips.cc/public/EthicsGuidelines

499

500

502
503
504
505

506

507

508

509
510

511

512
513

15.

16.

Justification: No human subjects or crowdsourced components are involved in this work.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This research does not involve human subjects.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research?

Answer: [NA]

Justification: Large language models were not used in the research methodology or experi-
mentation.

15

514

515

516
517
518
519

520

521
522

523

524
525

527

528
529
530

531

532

533
534

535
536

Appendix

A Q-LP Formulation of RL

The problem of computing Q7 (s, a) is known as policy evaluation, or the prediction problem (32)).
While most works focus on dynamic programming (DP) methods for policy evaluation (33)), we
consider an alternative approach based on the linear programming (LP) formulation of the RL problem
(34), as the dual variables of the LP problem facilitate risk-aware behavior.

The primal LP problem, which we refer to as the Q-LP problem, is defined below:

inn (I-7) 'Ea0~w(so)[Q(307a0)]

S0~ o

st Q(s,a) 2By yiisa [7(s,0,8") +v-Q7 (s, a")], (12)

a’~m(als)

VseS,a € A

where p1 is the initial distribution over the states. The optimal) of the problem satisfies Q*(s, a) =
Q7 (s,a). One can refer to the appendix of (35) for a full proof of the formulation.

The dual problem of the Q-LP, with dual variable d € RISIXIA] , is shown below:

/
I}}gé{ d(S, a) ’ Es'wp(-\s,a) [T(S, a,s)])

s,a a’~m(als)
s.t. d(sv CL) = (1 - 'y)uo(s)w(a\s) + v]Es/wp(-\s,a) [d(slv a,)} 3 (13)
a’~m(als)
Vs € S,a € A

The dual variable d is known as the state-action occupancy measure Given a policy 7, d(s, a) repre-
sents the joint probability of occupying a state s and taking an action a from that state. Furthermore,
one can recover the policy 7 from the occupancy measure as follows:

d(s,a)

7 _ VacAseS, (14)
Za/eA d(‘sval)

m(als) =

B Dual V-LP Formulation of RL

As opposed to the dual Q-LP formulation(I3), which finds the state-action occupancy measure d™

for a given 7, the dual V-LP formulation shown below finds the state-action occupancy measure d”
corresponding to the optimal policy 7*:

max » d(s,a) By p(sq) [7(s,a,8)] = ci - p(d),

20 s,a a’~m(als)
s.t. Z d(57 CL) = (1 - V)/’LO(S) +7- Z Es’~p(~|s,a) [d(S/, a/)] y (15)
acA ac A a' ~m(als)
Vs e S.

C Proof of the Theorem and its Corollary
First, we need to define some variables to make the proofs clear:

. Q;”’RN* is the action-value function of the risk-neutral optimal policy of task 7 obtained
using any standard RL method that maximizes expected return.

. Q?”RA is the action-value function of the risk-aware optimal policy of task ¢ obtained by

solving (T3).

16

537
538

539

540

541

542

543
544

545

546

547

548

549

550

551

. Q?”RN is the action-value function of the risk-neutral optimal policy of task ;7 when
evaluated in task 7.

Define Q7 (s,a) = Q(s,a) — cp(d™), so:
. Q;riﬁRA* _ Q;TiykA* o Cp(dm’RA*)

° Q?ijN :Q:—j7RN 7Cp(d7l']‘,RN*)

Lemma C.1.

. o 1
QY (s,a) — Q7™ (s,a)‘ <7 7||7“i = jlloo-

i,RN* ;i RN*
Q: RN (Saa) _Q;TJ (57(1) .

Proof of Optimal-Optimal. Let A;; = max, o

Step 1: Bellman Optimality This equation follows from Bellman optimality as each of 7;, RN*
and 7;, RN is risk-neutral optimal in their own tasks.

Qr (5,0) = Q7 (s,0)] = [ri(s,0) +9° Y pls')s,) max Q7N (s',b) - (16)

S

Tl'j,RN*
—rj(s,0) =7 3 p(s']s, a) max Q7 (!, b)

S

a7
Step 2: Simplification Simplifying the above expression:

i) = o) +9 3006 1v0) (g QP (5,0) = QN (51)) ’
S/

(13)

Step 3: Triangle Inequality Applying the triangle inequality:

ml?x Q;”’RN* (5/7 b) _ ml?x Q;rj,RN* (5/7 b)’

< |7"i(5;a) - Tj(57a)| + ’YZP(S,'Sv‘I)

19)
Step 4: Maximum Difference The difference of maxima is less than the maximum of differences:

< Irils, @) = rj(s.0)| +7 Y ('],) max |QF N (5',0) = Q7N (51,1)] 20)

Step 5: Definition of A By definition of A;:
< lri = 7jlloo + A5 @

Step 6: Substituting A Since[Clapplies Vs € S, Va € A, it applies particularly for A;:

Agj < ri = rjlloe + A (22)
O
Lemma C.2.
T * i ,RN* 1
Q5 (5,0) = QP (s,0)] < =i = rsll (23)

Proof. Let A;; = max, 4 Q;”’RN* (s,a) — Q;j’RN* (s, a)‘.

17

s52 Step 1: Bellman Recurrence The Bellman recurrence is applied to the action-value functions under
553 policy 3

ri(s,a) +7 > p(s' | 5,0)Q7 N (5,7 (s') (24)

S

RN* i RN*
Q7™ (5,0) - QP (5,0)| =

o _ ! 7 RN o
ri(s,a) ’yZp(s s, a) IH;%XQl (s',0)] (25)

ss4 Step 2: Simplification Simplifying the expression:

ry(s.0) = ri(s.@) + 0 D p(s' | s.a) (@7 (w5 () - QP (1w (1)

s/

(26)
ss55 Step 3: Triangle Inequality Applying the triangle inequality to further simplify:
< Irifs.a) = ri(s,a)| +9 Y p(| 5,0) | QN (S m() - QP (S ()]
’ @7)
ss6 Step 4: Definition of A’ By the definition of A};:
< lri = rjlloe +7AY; (28)

ss7 Step 5: Substituting A" Since the inequality holds Vs € S, Va € A, it applies particularly for Aj,
558 allowing the substitution:

A;j < |lri = 7lloo + ’YA;‘J‘ (29)

559]

se0 Lemma C.3. Let d™ and d™ be two discrete probability distributions. Then,

[ld™ —d™||; < 2. (30)

s61 Proof. Step 1: Define the L1-norm. The L1-norm of d™* — d™ is defined as:

ld™ —d"™2]|y =Y |d" (z) — d™ ()| €29)
s62 Step 2: Define the total variation norm (TV) for distance between probability distributions.
563 The total variation distance between d™ and d”? is given by:
1
TV(d™,d™) = g: |d™ (z) — d™ ()] (32)
s64 Step 3: Bounded total variation norm. According to (36)), the total variation distance between two
565 probability distributions is always bounded by 1:

TV(d™,d™) <1 (33)
s66 Step 4: L1-norm for distributions is bounded. From the definition of the total variation norm, the
567 L1-norm can be expressed as twice the total variation distance:

[|[d™ —d™||; =2-TV(d™,d™) <2 (34)

ses Thus, the L1-norm of the difference between the two probability distributions is bounded by 2. [J

18

569

570

571

572
573

574

575

576

577

578

579

580
581

582

583
584

585
586

Lemma C4. If p is L-Lipschitz, then:

p(d™) = pld™)| <2 L G

Proof. Step 1:
Lipschitz Continuity. Since p is L-Lipschitz, we have:

(A7) = p(d RN < LY N = dmo RN (36)
where ||d™RN" — ¢mi-RN" ||} s the L1-norm of the difference between the probability
distributions d™ RN and 4™ RN".

Step 2:
Bounding the L1-norm. From Lemma [C.3| we know that:
™ RN — gmeRN) < 2 (37)
Step 3:
Combining the Equations By combining the two equations above, we obtain:
|p(d™RA) — p(d™ RN < 2L (38)
O

Lemma C.5. If p is L-Lipschitz. Then,
Q7 (s,0) = Q7 (s,a)| <27 L-c. (39)

3

Proof. Step 1: Defining the action-value functions We begin by expressing the action-value func-
tions in terms of the dual variable d, which represents the policy-specific adjustments:

QTN (s,0) = ri(s,a) +4 Y p(s'|s, a)(d™ RN), (40)

S

QT (s,a) = ri(s.a) +7 Y p(s' s a) (@). (1)

s/
Step 2: Calculating the difference The difference in the action-value functions is then given by:

QTR (5,0) = Q7™ (s,)] = 7 3 pls' s,) (A A) — (@) (42)

s’/

Step 3: Bounding difference in return in the dual form Given (T3], d™**" maximizes (d, r;) —
¢p(d), across feasible occupancy measures d, then:

dTr,;,RA*’T,i —c d?‘l’,;,RA,K Z dTri,RN*,ri —c dﬂ'i,RN* , (43)
P p

PN <d7r7;,RN*7Ti> _ <d7r,;,RA*’Ti> < C(p(dm”RA*) _ p(dﬂ'i,RN*))7 (44)

o (@™ RN 1y — (@™ R)| < clp(d™RA) — p(dm RN (45)

Step 4: Using Lipschitz continuity Assuming p is Lipschitz continuous with constant L and ana-
lyzing the optimization criteria:

(™R) — (RN)| < elp(d™RA) — p(d oY), (46)
(™ RAT) = p(d™ RN)| < L|JdmRAT — g RN @)
(AT RN 1) — (@R)| < L AT RAT — amo RNy (%)

19

587 Step S: Bounding the L1-norm Following

| dmeRAT — @ RN < 2 (49)
sss Step 5: Final bound on the action-value function difference Integrating these observations into
589 @2):
Q7 (s,0) = QT (s,a) <29 L-c. (50)

K2

590]

Lemma C.6.

. < RN* 1
Q7 (5,0) = QP (s,0) < 2 (1

||ri—rj||oc—|—2-L~c). (51

591 Proof. We aim to establish the bound on the difference between the modified action-value functions
o RA®
Q"_rz)

AT ,RN* . .
52 ()] and Q; for state-action pairs (s, a).

ses Step 1: Applying definition of Q and triangle inequality We start by applying the definition of
594 the modified action-value functions and the triangle inequality:

Ami, RA™ A7, RN" m; RA” i, RA™ j RN" i RN™
QT RY (s,0) — Q™ (s5,a)] = |QT ™ (s,a) — cp(d™RA) — Q™Y (s,a) 4 cp(d™)|
<1QT™ (s,0) = Q7™ (s,a)| + clp(d™*A) — p(d™).

595 Step 2: Applying the triangle inequality to the first term Adding and subtracting QT”’RN* (s,a)

2

596 and Q;-rj RN (s, a) to decompose the term:

i, RA™ j RN™ i, RA™ i, RN™ i, RN™ i RN
QT (s,0) = Q™ (5,0)] <1QF™ (s,0) = Q7™ (5,a)| + Q"™ (s,a) — Q}" (s, 0)]

;,RN* ;i RN*
+ |Q;J (Saa) _Q?J (S,Cl)|.

507 Step 3: Bounding the terms using referenced lemmas From Lemmas|[C.1}[C.2}[C.5}

RA* 7 RN* 2
Q7 (s,0) = Q™ (s,0)] < 5

K3 K3 —

Ilti — rjlloc +2-7- L-c.

508 Step 4: Bounding the second term using Lemma[C.4] From the established bound on the differ-
599 ence in risk-aware and risk-neutral policies:

lp(d™ Ay = p(d™) < 2. L -c.
600 By summing up these inequalities, we derive the final result:

~ x ~ . RN* 2
QT (s5,0) = Q7 (s,0)] <

[ri = tjlloc +4-L-c,

601 thereby concluding the proof. O

602 Definition C.7 (Bellman Operator of Policy 7). Let () be a (possibly inaccurate) state-action value
603 function and 7 a policy. The Bellman operator applied to) under policy 7, denoted by 7™, is defined
604 as:

T7Q(s,a) = r(s,a) +7) pl(s']s,0)Q(s', w(s")). (52)

S
605 Properties:

606 s Given Q(s,a), (T™)?Q(s,a) = T™(T™(Q(s,a))).

20

607
608

609

610
611

612

614

615

616
617
618

619
620
621

622

624

o (T™)*®Q(s,a) = Q™(s,a), where Q™ (s, a) is the state-action value function under policy
.

* Q™ (s,a) is the fixed point under the Bellman operator of 7m: T™(Q™ (s, a)) = Q™ (s, a).

* Monotonicity of the Bellman operator: if Q1(s,a) > Qa(s,a), then T™Q1(s,a) >
T™Q2(s,a).

o It follows that if 7™ (Q™ (s, a)) > Q™ (s, a), then (T™)%(Q™(s,a)) > (T™)Q™ (s, a).

Policy definition The policy 7;:

1 ifa =argmax max i s,b
mi(als) = gmax wmax Qi (s,0) (53)
0 otherwise

for simplicity,

mi(s) € undersetbarg max max Q7 (s,b). (54

J=1,2,..., n

Qumax definition let (Qax (s, a) be defined as:
Qmax (8, a) = max (Q™ (s,a) — cp(d™)), (55)
j

Proposition C.8. Let Q,4:(s,a) be an initial estimate of the action-value function. Then, the
application of the infinite Bellman operator (T™)* 10 Quax (s, a) converges to Q™ (s, a), the true
action-value function under policy ;.

(Tﬂ’i)oonax(& a) =Qm (87 CL) (56)

Proof. This result follows from the definition of the Bellman operator (see Definition [C.7), asserting
that the iterative application of 7™ to any initial function eventually converges to the fixed point of
T, which is Q™ (s, a). O

Lemma C.9. Assuming |p(dZ) — p(dZ)| = 0 where s’ follows s in the trajectory, it holds that:
T™ Qmax(s,) = Qmax(s, a).
Proof. Step 1: Definition of the Bellman operator Refer to Equation (52):
T Qmax(s,0) = r(s,a) +7 > p(s']5,0) [Qmax (', mi(s))] - (57)

Step 2: Definition of 7; From Equation (54):

T Qumax(8,a) = r(s,a) + vzp(s’\s, a) {méix Qmax (8, b)} . (58)

S/
Step 3: Property of max, for a particular case of ﬂj*:

T™ Qmax(s,a) > r(s,a) + Z:p(s'|s7 a) [Qmax(s', 7, RN*(s"))] . (59)

S

Step 4: Definition of Qyax:

T Quax(s,a) > 7(s,a) + ’YZp(s’LS, a) [m]?x QRN (' 1, RN*(s')) — cp(dg,’“RN*)

(60)

21

625

626

627

628

629
630

631

632

633

Step 5: Property of max, for a particular case of 71';*:

T Qumax(s,a) > r(s,a) + 72p(s’|s,a) [Q”;‘(s’,wj,RN* (s')) — cp(d?;”RN*)} . (61)

ry

Step 6: Expanding the expression:

T™ Quas(5.0) 2 1(s,0) +7 Y p(s']s.a) [Q7™ (s, RN(s) | = Y p(s'|s. a)en(d ™).

s’ s’

(62)
Step 7: Applying the practical assumption that |p(d]) — p(d7,)| =~ 0:
T Qs(520) > r(5,0) 7 Y () [Q (03 RN (4] 2l).
(©3)

since), p(s']s,a) =1

Step 8: Bellman operator definition for 7;, RN":

r(s,a) + vzp(s'\s,a) [EI{,’RN* (s’mj,RN*(s’))] =T RN QT RN (g 0). (64)
s/

Step 9: Bellman operator property fixed point for 7;, RN":
T R(QTIN (5,a)) = QY (s, a). (65)
Step 10: Substituting:

r(s,a) +7 Y p(s'ls.0) [QRS (7 RN = Q0™ (s,0). (66)

Step 11: Concluding:
T™ Qmax (5,a) > QN (5,a) — yep(d™ ’RN*). (67)
Step 12: Removing ~v: Since v < 1
T7 Qmax(5,a) > Q"N (5, a) — ep(dT ™). (68)
Step 13: Applying the definition of Q)y.x: Since the above holds V7, then it holds for the maximum
T™ Qmax (8, a) > Qmax (s, a). (69)
O

Lemma C.10. The true action-value function Q™ under policy T; satisfies the following inequality
forall j:

Q" (s,a) 2 QU™ (s,a) — cp(d™). (70)
Proof. Step 1: From Lemma|C.9] we have that the Bellman operator applied to Qmax satisfies:
Tﬂ-iQmaX(s?a) Z Qmax(sva)' (71)
Step 2: From the monotonicity property of the Bellman operator:
(T™)?Quax(5,a) > (T™)Qumax($, @) > Quax(s,). (72)

Step 3: Applying the Bellman operator infinitely many times:
(T™)> Qmax(s,a) > Qmax(s,a). (73)

22

634

635

636

637
638

639

640

641

642

643

644
645

646

647
648

649

650

Step 4: Applying Propositionthat states the convergence to Q™ (s, a):

Q™ (8,a) > Qmax(s, a). (74)

Step 5: Applying the property of max in Qpax:
Q" (s,a) = QW (s,a) — ep(d™*Y). (75)
O

Theorem C.1. Let M; € M and let Q:J be the action-value function of an optimal (risk-aware
or risk-neutral) policy 7} of M; € M when evaluated in M;, and let pi(d”;) be an L-Lipschitz

pi(d)| < K. Further, let Q) (s,a) =

caution factor of 3 in M;, bounded by a constant K, i.e,

QY (s,a) — ¢ ps(d™).

*
J

1 ifa=argmax max (s, a
Let 777;(04‘8) = f gb j=12,...,n Qz () (76)
0 otherwise.
= =) 2
Q;" (s,a) — Q7 (s,a) < min; <1—'yri —7jllo+ (4 L+ K) - c> . (77)

Proof. Step 1: Notation. Define the modified action-value function for the optimal policy as:

Q7 (s,a) = Q7™ (s,a),
and then, the difference between the optimal and another policy is:

QF (s,0) = QT (s,0) = Q7™ (s,0) = Q' (5. a).
Step 2: Appyling Lemma |C.10)
Q" (s,a) = max [QF™ (s,0) — ep(d™)],
which equivalently means: ’

T . A7, RN”
—QT(s,a) < _miji (s,a) VM;.

Step 3: Substituting into inequality. From the definitions above, the difference can be rewritten
and bounded as:

Q?’“RA*(S, a) — QT (s,a) < min <Q?“RA* (s,a) — Q?j’RN*(s, a)) +c-p(dm) VM.
j
Step 4: Using Lemma|C.6
T * s 1 *
QT ™ (s,a) — QT (s,a) < 2-min <1|ri —1jllec +2-L- c) +c-p(d™) YM;.
i \1-79
Step 5: Using the boundedness of p(d).
JUS ~ 1
Q™ (s.0) - Q7 (sva) < 2 5
J

||ri_rj|oo+2'L'C>+C-K VM.

O

Corollary C.2. Under the same assumptions as Theorem and letting @max
maxs q s [|P(s,a,s’)|, we have that:

~ ~
i

n .) 2
Qi (Sva) - Qz l(sza) S mln <M¢max|wi - WJH + (4 . L + K) . C) (78)
j _
Proof. Using the reward decomposition and the Cauchy-Schwarz inequality, we establish that:
I7i = 5]l < Pmaxlwi — W] (79)

O

23

651

652
653

654
655
656
657

658
659
660

661
662
663

664
665
666

667
668

669

670
671
672
673

674
675
676
677

678

680
681

D Limitations of Risk-Aware Test-Time Adaptation

We argue that the current state-of-the-art on risk-aware test-time adaptation (2) is limited in three
different aspects. We focus on a Gridworld to highlight the limitations as follows.

L1: Risk-aware source policies are conservative. A critical assumption in (2)) is that the source
policies are trained with a variance term in the objective, i.e., the objective is a weighted sum of
return and variance. We claim that adding the variance term limits the space of possible test-time
policies realizable from the source policies. We illustrate this with two scenarios:

Scenario 1: The source policies are variance-aware, as in (2). In Fig.[6] the states in the upper path
provide stochastic rewards (shown as gifts) that could be positive or negative. Both variance-aware
policies avoid the upper path, resulting in two identical source policies.

Scenario 2: The source policies are risk-agnostic, i.e., trained to maximize expected return only. In
the lower part of Fig. [6] each source task prefers a different path—one upper, one lower—based
solely on return, thus yielding diverse policies.

Results: In the target task, the optimal path has high return and low variance. Scenario 2 leads to a
better test-time policy because the diversity among risk-agnostic sources enables identifying this path.
By contrast, the identical, conservative source policies in Scenario 1 fail to exploit it.

Takeaway: Training source policies in a risk-agnostic fashion, as in standard RL (32)), enables better
coverage and flexibility at test time.

risk-agnostic [3 e = [Fed
S e w | EEE | E

training N
! 1
! 1
! 1
\ .
\ . \ 1
.

Source Tasks o 'I':;\Ige_t_'l'asli_)
! eew || | ®ee |
| o W L . |
| risk-aware e] : '::> = E
E t:(aining T | [b] E
| i i I L 5

Figure 6: Illustration of adaptation where two source policies (left) are adapted to a single target
task (right). Top: *Risk-aware training* (as in (2)) leads to identical conservative behaviors avoiding
high-variance regions, resulting in poor target adaptation. Bottom: *Risk-agnostic training* produces
diverse source policies. The adapted target policy successfully identifies the optimal upper path.

L2: The variance of the return fails in deterministic settings. Return variance is defined as:
Q”(s,a) = Var[Gt ‘ St = S,At = a] =E [(Gt — E[Gt])2 | St = S,At = a]

This quantity measures variability across full-trajectory rollouts. But if both the transition dynamics

and policy are deterministic (37; 38)), then all rollouts are identical, making return variance zero. In

this case, the method in (2)) behaves as if it were risk-agnostic and collapses to earlier adaptation
frameworks like (25} 265 29).

However, risk may still be present in other forms—e.g., **per-step reward variance**. Consider two
deterministic rollouts: - (1, 3, -4, 2, -3) — High per-step variability - (2, 3, 2, 3, 2) — Low per-step
variability Even though both are fixed trajectories, the first is intuitively riskier. Return variance fails
to capture this.

A practical example is shown in Fig. [/l The source policies (left) are deterministic. In the target
task (middle and right), the lower path either (i) has high per-step reward variance (middle) or (ii)
minimizes return variance but passes through a hazardous barrier (right). In both cases, the adaptation
from (2)) fails to account for real risk.

24

682
683

685

686
687

688
689
690
691

692

693
694

Source Tasks Target Tasks

~
-
~

0
=

0
E

0
E
0
E

Figure 7: Unified illustration of the limitations of using return variance as a risk measure. Left:
Source policies are deterministic and follow fixed reward sequences. Middle: Target task with high
per-step reward variance in the lower path—ignored by return-based risk. Right: Target task with
a hazardous barrier (yellow) on the low-variance path—again selected by the agent in (2)), despite
higher real-world risk.

8 8 8
6 6 6
> > > l

Figure 8: The performance of CAT as a function of the parameter c. As c increases, the transferred
policy becomes safer. However, the discounted cumulative reward decreases, as the agent takes more
steps to reach the goal.

L3: Variance is not representative of all forms of risk. Beyond per-step variability, other types of
risk exist—e.g., barrier risk, where specific states must be avoided altogether (17). In Fig. [7] (right),
the agent must choose between: - Lower path: low return variance, but passes through a danger zone
(yellow) - Upper path: avoids the barrier, but has higher return variance

The method of (2)) chooses the lower path, due to its narrow focus on return variance. In this case,
return variance is misaligned with the true risk objective: avoiding danger.

Summary: The state of the art in risk-aware test-time adaptation is limited in three ways: (i) it assumes
risk-aware source policies, which reduces diversity, (ii) it only accommodates return variance as a
risk signal, and (iii) even this variance formulation fails in deterministic or structured environments.
Our proposed framework, TRAM, addresses all three challenges, as we describe next.

E The effect of the hyperparameter c

Figure 8] shows the policy obtained for the different values of the coefficient c. The larger the ¢, the
lower the risk, but the larger the amount of steps to reach the goal.

25

695

696

698

699

700
701
702
703

704
705
706
707

708
709
710
71
712
713

714
715
716
717

718
719
720
721

722

723
724

. SF

Distance to Goal Percentage of Failures

(a) (b)

Figure 9: The Reacher domain (adapted from (23)), also used in (2 29)). (a) Setup: The two-joint
robotic arm must reach one of the circled goals. Four source policies exist (blue, green, red and
purple). During training, an optimal risk-neutral policy is found for each of the training tasks, by
maximizing the expected return. One test task (yellow) is considered. A danger region is introduced
at this test task (light blue rectangle). A failure is considered once the tip of the joint enters the danger
region. The testing experiment was repeated 100 times. (b) A bar graph of the results. The failure for
CAT is substantially less than risk-neutral transfer (25)) On the other hand, the mean distance to the
goal is slightly higher, as the CAT agent must balance between return and caution.

F Reacher

In this section, we test our algorithm on a continuous state-space transfer RL benchmark. In this
process, we attempt to answer the following questions

(EQ3) Can CAT scale up to complex continuous domains?
(EQ4) Can CAT be used in conjunction with function approximation?

The Reacher domain, shown in Figure[9](a), is a set of control tasks defined in the MuJoCo physics
engine (31). Each task requires moving a two-joint torque-controlled simulated robot arm to a given
target location. The Reacher domain experiment is the standard experiment in transfer reinforcement
learning via successor features (25} 2} 29).

MDP modeling The experiment involves a 4-dimensional continuous state-space and 9 possible
values for the action (corresponding to maximum, minimum and zero value of torque for each of the
3 dimensions). The reward is a function of the distance to the goal, and the dynamics are governed by
the simulator.

Tasks Description Four source tasks have been considered, and instead of training Deep Q-Networks
(DQNs) to choose the optimal action, to allow for instantaneous evaluation in the test tasks, we
train Successor Feature Deep Q-Networks (SFDQNs). Therefore, each of the 4 source tasks has an
associated SFDQN that carries its optimal policy. The SFDQN returns the successor feature vector
for a given state and action, and if we wish to evaluate this policy in a new task, we simply perform
the dot product of this SF vector with the weight vector of that task.

Training and Testing details Since the source policies are risk-neutral and have no knowledge of
caution, we use the same parameters for training as in the original SF paper (25). We consider one of
the test tasks in the Reacher domain and a barrier risk function with a parameter ¢ = 5. Failure is
defined as entering the particular barrier region in space.

Results The bar graph of Figure[9shows the performance of CAT based on 100 samples, as opposed
to the standard risk-neutral transfer scheme used in (23). The percentage of failure is substantially
less with CAT. On the other hand, the mean distance to the goal is larger, which is expected, as CAT
sacrifices the cumulative reward in exchange for a much higher level of safety.

G Base Code

The base code for the continuous example is taken from https://github.com/mike-gimelfarb/deep-
successor-features-for-transfer/tree/main.

26

75 H CPU Resources

726 The specifications of the machine used are shown in Table[2]

Table 2: CPU Information Summary

Attribute Details

Processor Intel(R) Core(TM) 17-8550U CPU @ 1.80GHz
Base Speed 1.99 GHz

Current Speed 1.57 GHz (can vary)
Cores 4

Logical Processors | 8

L1 Cache 256 KB

L2 Cache 1.0 MB

L3 Cache 8.0 MB
Virtualization Disabled

Hyper-V Support Yes

727 We used large language models to write more efficient code and construct tables and some LaTeX
726 commands, but not to write the paper.

27

729

730
731
732
733

734
735
736
737

738
739
740
741

742
743
744

Broader Impact

This work focuses on risk-aware inference-time transfer in reinforcement learning (RL), with the
goal of improving the adaptability and safety of RL models in real-world scenarios. By incorporating
a generalized notion of caution into the transfer process, this research contributes to the development
of safer policies for deployment tasks, particularly in settings where direct fine-tuning is not feasible.

Potential societal benefits include improved safety and robustness in autonomous systems, such as
robotics and decision-making agents, where ensuring risk-aware behavior is crucial. This work may
also enhance the efficiency of RL applications in domains where unexpected risks can arise, such as
healthcare, finance, and transportation.

However, as with any machine learning framework, there are potential ethical considerations. The
reliance on predefined risk measures could introduce biases or limitations in identifying all possible
risks in dynamic environments. Additionally, deploying RL models in safety-critical applications
requires careful validation to ensure that the policies do not produce unintended harmful behaviors.

In summary, this work advances the field of reinforcement learning by enabling safer policy transfer,
with broad applicability in various industries. While the societal implications are largely beneficial,
careful deployment and validation remain essential to mitigating any unintended consequences.

28

	Introduction
	Related Works
	Problem Formulation
	Preliminaries
	Test-Time Adaptation Problem
	Limitations of Risk-Aware Test-Time Adaptation

	Proposed Approach: Test-time Risk Adaption
	TRAM: Test-time Risk Alignment with a Mixture of Agents
	Theoretical Insights
	A Practical Implementation at Test Time: Successor Features (SFs)

	Experiments
	Generalization to Continuous Domains

	Conclusions
	NeurIPS Paper Checklist
	Appendix
	Q-LP Formulation of RL
	Dual V-LP Formulation of RL
	Proof of the Theorem and its Corollary
	Limitations of Risk-Aware Test-Time Adaptation
	The effect of the hyperparameter c
	Reacher
	Base Code
	CPU Resources
	Impact Statement

