
Test-Time Risk Adaptation with Mixture of Agents

Anonymous Author(s)
Affiliation
Address
email

Abstract

In real-world reinforcement learning (RL) applications, agents often encounter1

unforeseen risks during deployment, necessitating robust decision-making without2

the luxury of further fine-tuning. While recent risk-aware RL methods incorporate3

return variance as a surrogate for safety, this captures only a narrow subset of real-4

world risks. Addressing this gap, we introduce TRAM, Test-time Risk Alignment5

with a Mixture of agents, a novel framework designed to enhance risk-aware6

decision-making during inference. TRAM operates by optimizing a weighted com-7

bination of predicted returns and a risk metric derived from state-action occupancy8

measures, enabling the agent to adaptively balance performance and safety in real9

time. Our approach allows for a nuanced representation of diverse risk factors10

without necessitating additional training, which does not exist in the literature.11

We provide theoretical sub-optimality bounds to substantiate the efficacy of our12

method. Empirical evaluations demonstrate that TRAM consistently outperforms13

existing baselines, delivering safer policies across varying risk conditions in test14

environments.15

1 Introduction16

Reinforcement learning (RL) has achieved remarkable performance in controlled settings, but its17

application in real-world environments remains limited by brittleness. Policies trained in simulation18

or narrow settings often fail when exposed to unexpected conditions at deployment. Consider an19

autonomous vehicle trained under typical driving scenarios but deployed in rare edge cases, such as20

erratic pedestrian behavior, sensor malfunctions, or newly enforced traffic regulations. These are not21

just performance issues—they are risks, and today’s RL systems are ill-equipped to adapt to them (1).22

The key challenge is that test-time (or deployment time) risks are rarely the same as those modeled23

during training. Environment dynamics may shift, new constraints may emerge, and task priorities24

may change. For example, a warehouse robot trained to maximize throughput may later operate under25

newly imposed spatial or speed restrictions due to safety policy updates. These risks are dynamic,26

diverse, and often unknown ahead of time—yet traditional RL approaches assume a fixed reward and27

risk structure, rendering them fragile in the face of real-world uncertainty.28

Why Training-Time Risk Modeling Falls Short. Risk-sensitive RL attempts to address uncertainty29

by optimizing for risk-aware objectives like variance or CVaR during training (2). But this assumes30

the deployment-time risks are both known and static. In reality, risks evolve—whether from new31

regulations, hardware wear-and-tear, or environmental hazards. Worse, retraining to accommodate32

every possible risk variant is computationally expensive, unsafe, or infeasible in many domains (e.g.,33

robotics, finance, healthcare). Thus, fixed training-time risk modeling is fundamentally insufficient34

for reliable deployment.35

What Is Needed: Risk Adaptation at Test-Time. To operate safely under unpredictable and36

shifting risk profiles, agents must adapt their behavior dynamically at test time. Rather than hard-37

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Figure 1: A high-level comparison between RaSF (2) (top) and TRAM (bottom). Unlike RaSF,
TRAM (1) does not require source agents to be risk-aware, (2) supports arbitrary risk metrics beyond
variance, and (3) synthesizes policies in a zero-shot fashion without additional training.

coding a single notion of risk into training, agents should be able to evaluate or synthesize behavior38

in real time, using deployment-specific caution signals. Such test-time risk adaptation enables safer39

decision-making without retraining, supporting robustness in environments where the true risks may40

only become apparent after deployment.41

Our Proposal: TRAM. We introduce TRAM (Test-time Risk Alignment with a Mixture of agents),42

a framework that enables risk-aware behavior at test-time by composing risk-neutral source policies.43

TRAM does not require retraining and makes no assumptions about the risk profile beforehand.44

Instead, it optimizes the test-time policy via direct alignment with a specified risk measure, allowing45

flexible and safe adaptation under deployment-time uncertainty (see Figure 1).46

We summarize our contributions as follows.47

1. Test-Time Risk-Aware Policy Framework: We introduce TRAM, a novel test-time frame-48

work that constructs cautious policies by evaluating and composing risk-neutral source49

agents. Unlike prior methods, TRAM requires no retraining and makes no assumptions50

about the deployment-time risk profile.51

2. Generalization to Arbitrary Risk Metrics: Our formulation accommodates a wide range of52

risk measures—including variance, expert divergence and occupying danger sets—enabling53

flexible and interpretable adaptation across safety-critical tasks.54

3. Theoretical Guarantees: We provide sub-optimality bounds for TRAM’s test-time opti-55

mization, showing that performance depends on reward mismatch and the expressivity of56

the deployment-time risk signal.57

4. Empirical Validation: We evaluate TRAM across diverse RL benchmarks, demonstrating58

consistent improvements in safety and reliability over state-of-the-art risk-aware and test-59

time adaptation baselines,.60

2 Related Works61

Reinforcement learning agents deployed in the real world must often operate under conditions of62

uncertainty and unforeseen risk, particularly during the test phase. While zero-shot RL methods63

(3; 4; 5; 6; 7) offer impressive generalization across diverse tasks by learning unified representations,64

they generally lack mechanisms to incorporate risk sensitivity during test time.65

Efforts to enable risk-sensitive behavior under uncertainty fall into several categories. Classical66

risk-aware RL methods (8; 9; 10; 11; 12; 13; 14; 15; 16) incorporate risk objectives—typically67

variance—into training-from-scratch, but they do not address the adaptation problem and lack68

mechanisms for reusing knowledge across tasks. Dual RL (17), in contrast, provides a more general69

framework for modeling diverse forms of risk. However, it still requires solving an optimization70

problem at test time, limiting its practicality in scenarios with strict inference-time constraints.71

A large body of risk-aware adaptation methods aims to generalize across tasks while modeling72

risk. These include teacher-guided and critic-based architectures (18; 19), robotics-specific safety73

2

Table 1: Comparison of TRAM with prior work. Risk-aware indicates support for risk-sensitive
behavior; general risk refers to support for risk types beyond variance; and test-time means minimal
or no computation is required for new tasks.

Method Risk-aware General Risk Test-time
Standard RL (8; 9; 10; 11; 12; 13; 14; 15; 16) ✓ ✗ ✗

Zero-shot RL (3; 4; 5; 6; 7) ✗ ✗ ✓
Dual RL (17) ✓ ✓ ✗

Risk-aware Adaptation
(2; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27)

✓ ✗ ✗

TRAM (our work) ✓ ✓ ✓

strategies (20), probabilistic risk-based action selection (21), hierarchical or option-based controllers74

(22; 23; 24), and successor feature approaches (25; 26; 27). Risk-aware successor features (RaSF)75

(2) extend this last class by optimizing a mean-variance trade-off, enabling risk-sensitive behavior76

across tasks that share dynamics. However, these methods often address limited notions of risk (e.g.,77

variance) and typically require access to risk-aware training policies or incur additional computation78

at test time.79

In contrast, our approach—TRAM—requires no risk-aware policies during training, supports general80

forms of risk beyond variance, and performs all computation in a single forward pass at test time.81

TRAM does not require labeled risk profiles at training and is fully agnostic during training to the82

specific forms of risk that may manifest at test time. A comprehensive comparison with prior methods83

is presented in Table 1.84

3 Problem Formulation85

3.1 Preliminaries86

Figure 2: Illustration of a transfer setting with
two source policies (left) and a single target task
(right). Visual symbol: the gift icon represents a
mysterious reward—it yields either a bomb (cost)
or cash (high reward) with equal probability. Thus,
even for the same policy, different runs may re-
sult in different returns due to stochasticity. Top:
Risk-aware training (as in (2)) leads both source
policies to avoid the upper path due to its high risk
or lower expected return. As a result, the synthe-
sized target policy also avoids the now-optimal up-
per path, inheriting the conservative tendencies of
the source agents. Bottom: Risk-agnostic training
yields more diverse source agents, each optimiz-
ing only expected return. This diversity improves
coverage of the state-action space and allows the
target policy to adaptively identify the safer but
higher-reward upper path.

Markov Decision Process. We model the inter-87

action between an RL agent and its environment88

as a Markov Decision Process (MDP) (28), de-89

fined by the tuple (S,A, p, R, γ). Here, S and90

A denote the state and action spaces, respec-91

tively. For a given state-action pair (s, a), the92

transition dynamics are governed by the prob-93

ability distribution p(· | s, a) over next states94

s′ ∈ S.95

Upon transition s
a−→ s′, the agent receives96

a scalar reward drawn from the random vari-97

able R(s, a, s′). We denote the expected re-98

ward as r(s, a, s′) = E[R(s, a, s′)]. The ex-99

pected reward function is often summarized100

as r(s, a) = Es′∼p(·|s,a)[r(s, a, s
′)], and rep-101

resented in matrix form as r ∈ R|S|×|A|. The102

discount factor γ ∈ [0, 1) down-weights future103

rewards.104

The agent’s behavior is described by a policy105

π : S ×A → [0, 1], where π(a | s) is the prob-106

ability of selecting action a in state s. The per-107

formance of π is evaluated through the return108

Gt =
∑∞

i=0 γ
iRt+i+1, the discounted cumula-109

tive reward starting at time t.110

The action-value function (or Q-function) of a111

policy π is defined as:112

Qπ(s, a) ≡ Eπ [Gt | St = s,At = a] , (1)

3

where the expectation is taken over trajectories induced by following policy π after taking action a in113

state s at time t.114

The Q-function satisfies the Bellman equation:115

Qπ(s, a) = Es′∼p(·|s,a)
a′∼π(·|s′)

[r(s, a, s′) + γ ·Qπ(s′, a′)] . (2)

An optimal policy π∗ maximizes expected return for all state-action pairs, satisfying Qπ∗
(s, a) =116

maxπ Q
π(s, a) for all (s, a).117

3.2 Test-Time Adaptation Problem118

Figure 3: Failure of return variance as a gen-
eral risk metric. Visual symbols: bomb = low or
negative reward (cost), cash = high reward. Left:
Source agents trained in a deterministic setting fol-
low identical trajectories, resulting in zero return
variance—even if step-level rewards vary signif-
icantly. Middle: In a target task with high per-
step reward variability, the adapted policy chooses
the higher-variance (but seemingly high-reward)
path. Since return variance is zero, the agent can-
not perceive the underlying risk. Right: In another
target task, the adapted policy favors a low-return-
variance path that crosses a danger zone (yellow),
avoiding a safer but higher-variance path. In both
cases, return variance misrepresents the true risk,
leading to undesirable behavior.

We use the adaptation formulation presented in119

prior works (2; 25; 26; 29). Specifically, we120

consider a collection of N source agents, where121

each agent π∗
i is the optimal policy for a corre-122

sponding source task defined by the MDP:123

{(S,A, p, R1, γ), . . . , (S,A, p, RN , γ)} .

All tasks share the same dynamics and ac-124

tion/state spaces, but differ in their reward func-125

tions. Each source agent is trained indepen-126

dently and is optimal with respect to its own127

reward function, possibly under risk-neutral (25)128

or risk-sensitive (2) criteria.129

At test time, a new target task (S,A, p, RT, γ)130

is presented. No new training is allowed, and131

the optimal policy π∗
T for this task is unknown.1132

The best chance is to adapt the behavior of the133

source agents to produce a target policy πT:134

πT = f(π∗
1 , . . . , π

∗
N), (3)

where f is any mechanism that synthesizes a135

target policy from the available source agents.136

Risk-Aware Adaptation. The adaptation is said to be risk-aware if the function f explicitly accounts137

for risk in the target task. A representative example is the approach proposed in (2), which augments138

value estimates with a penalty on return variance:139

πT(s) = argmax
a∈A

max
i

(
Qπ∗

i (s, a)− β

2
Varπ

∗
i (s, a)

)
, (4)

where Varπ(s, a) = Var[Gt | St = s,At = a], and β controls the sensitivity to risk. Since this140

formulation adjusts agent selection based on both return and uncertainty, it qualifies as risk-aware.141

3.3 Limitations of Risk-Aware Test-Time Adaptation142

We identify three key limitations in the current state-of-the-art risk-aware test-time adaptation143

method (2). These limitations arise when test-time policies are synthesized by selecting among source144

agents that were trained using a variance-regularized objective. Visual illustrations are provided in145

Figures 2 and 3.146

L1: Risk-aware source agents reduce behavioral diversity. As shown in Figure 2, training source147

agents with return-variance objectives leads to overly conservative behavior across the board. This148

collapse in diversity limits the effectiveness of test-time agent selection, as the synthesized policy149

is constrained by a narrow behavioral repertoire. In contrast, risk-neutral agents—trained purely150

1The target task typically appears during test time, when computational budgets limit training from
scratch (30).

4

to maximize expected return—tend to exhibit more diverse trajectories, improving downstream151

adaptability.152

L2: Return variance fails in deterministic environments. Figure 3 (left and middle) illustrates153

how, in deterministic settings, return variance becomes identically zero—even when rewards fluctuate154

at each step or when risk is structurally embedded. As a result, variance minimization fails to guide155

the agent toward safer or more robust behavior.156

L3: Variance captures only a narrow class of risk factors. Figure 3 (right) demonstrates that157

return variance misses broader notions of risk, such as barrier avoidance or worst-case transitions.158

In this example, the agent avoids a high-variance but safe path, and instead selects a low-variance159

trajectory that passes through a danger zone—highlighting a critical mismatch between formal160

variance minimization and intuitive safety.161

Summary: Risk-aware test-time adaptation methods that rely solely on variance-regularized source162

agents and return variance as a risk metric suffer from: (i) conservative behavior, (ii) failure in163

deterministic settings, and (iii) an overly narrow view of risk. Our framework, TRAM, addresses164

all three by adapting over risk-neutral agents using flexible, occupancy-based risk factors. See165

Appendix D for full results and examples.166

4 Proposed Approach: Test-time Risk Adaption167

Based on the observations made earlier, we conclude that a risk-aware adaptation framework should168

satisfy two key requirements: (i) the source policies π∗
i must be optimal under a risk-agnostic169

criterion, i.e., π∗
i (s) = argmaxπ Q

π(s, a); and (ii) the framework must support a broad class of risk170

models at test time, beyond the standard variance of return.171

To address the second requirement, we adopt a general risk specification based on risk factors172

defined over the state-action occupancy measure dπ , where dπ(s, a) denotes the long-term visitation173

frequency of state-action pair (s, a) under policy π. This formulation has been previously explored in174

the context of constrained or risk-sensitive RL (17), where such occupancy-based risk factors are175

used to shape the training objective. In contrast, TRAM leverages these risk models only at test time,176

without modifying the training process or requiring risk-aware source policies.177

The occupancy-based formulation enables a wide spectrum of risk models beyond trajectory-level178

return variance. Examples include:179

• Barrier risk, where the agent is penalized for visiting a danger set S ⊂ S:180

ρ(d) = − log
(
−d(S) + δ

)
, where d(S) =

∑
s,a

d(s, a)1s∈S . (5)

• Per-step reward variance, which captures local fluctuations in rewards:181

ρ(d) = Var(r(s, a, s′); d) = Ed
[(
r(s, a, s′)− Ed[r(s, a, s′)]

)2]
, (6)

where Ed := E(s,a,s′)∼d×p(·|s,a).182

• Divergence-based risks, such as KL divergence from a known expert policy with occupancy183

d̄:184

ρ(d) = KL(d ∥ d̄). (7)

The expressiveness of these risk factors allows TRAM to support a broad range of safety, robustness,185

and preference constraints during test-time decision-making—while remaining fully agnostic to the186

objective used to train the source agents.187

4.1 TRAM: Test-time Risk Alignment with a Mixture of Agents188

We now introduce our proposed method, TRAM, which operationalizes the framework developed in189

the previous sections. Recall that our goal is to adapt at test time using a collection of pre-trained,190

risk-neutral source agents—without retraining them—and to do so in a way that aligns with a191

user-specified notion of risk.192

5

Algorithm 1 TRAM: Test-time Risk Adaptation with a Mixture of Agents
Require: Risk-neutral source agents {π∗

j }nj=1; test-time risk coefficient c; risk function ρ
1: for each state s ∈ S and action a ∈ A do
2: for each source agent π∗

j do

3: Compute Q
π∗
j

T (s, a) in the target task
4: Compute ρT(d

π∗
j) in the target task

5: end for
6: Compute:

πT(a|s) =

{
1 if a = argmax

b
max

j=1,...,n

(
Q

πj

T (s, b)− c · ρT(d
πj)

)
,

0 otherwise

7: end for
Ensure: πT is returned as the risk-aware test-time policy

Let {π∗
j }nj=1 be the set of optimal source agents, each trained independently under a different reward193

function. At test time, TRAM constructs a policy that selects the action with the highest adjusted194

value—where each agent’s Q-value is penalized by a task-specific risk factor ρ(dπj). This leads to195

the following policy:196

πT(a|s) =

{
1 if a = argmax

b
max

j=1,2,...,n

(
Q

πj

T (s, b)− c · ρT(d
πj)

)
0 otherwise,

(8)

Here, c ≥ 0 is a risk-weighting coefficient that balances expected return (via Q) with test-time risk197

(via ρ). Crucially, ρ can be instantiated using any of the general risk factors defined earlier—such as198

barrier risks, reward variance, or divergence from expert behavior (see Equations 5, 6, and 7).199

This formulation ensures that TRAM makes a risk-aware decision by aggregating across a set of200

agents trained without any risk signal, while still respecting the user-defined safety or robustness201

constraints of the target task. The pseudocode for computing the TRAM policy is provided in202

Algorithm 1 below.203

4.2 Theoretical Insights204

We now analyze the performance guarantees of TRAM by quantifying how far its test-time policy205

can deviate from the optimal risk-aware policy in the target task. This deviation arises from two key206

sources:207

• Reward mismatch: The difference between the reward function of the target task rT and208

that of the closest source task ri.209

• Risk misalignment: The cost of introducing a test-time risk penalty that was not present210

during source agent training.211

To capture this formally, we define the error between the risk-adjusted value of the TRAM policy and212

the optimal risk-aware policy as:213 ∣∣∣Q̃π∗
T

T (s, a)− Q̃πT
T (s, a)

∣∣∣ ,
where Q̃ denotes a Q-value adjusted by a test-time risk factor:214

Q̃
π∗
i

T (s, a) = Q
π∗
i

T (s, a)− c · ρT(d
π∗
i).

The TRAM policy selects actions using:215

πT(a|s) =

1 if a = argmax
b

max
i=1,...,n

Q̃
π∗
i

T (s, b)

0 otherwise.

6

The following theorem bounds the performance gap between the TRAM policy and the optimal216

risk-aware policy in the target task:217

Theorem 4.1. Let Qπ∗
i

T denote the value function of source agent π∗
i evaluated in target task MT ,218

and let ρT(d
π∗
i) be an L-Lipschitz risk factor bounded by K. Then the TRAM policy πT satisfies:219 ∣∣∣Q̃π∗

T
T (s, a)− Q̃πT

T (s, a)
∣∣∣ ≤ min

i

(
2

1− γ
∥rT − ri∥∞ + (4L+K) · c

)
. (9)

Proof. See Appendix C for the full derivation.220

Theoretical insights. This bound separates the impact of reward mismatch from the influence of221

the test-time risk factor. When c = 0, TRAM reduces to reward-only adaptation as in (25). When222

rT = ri and c = 0, the bound is zero. However, if c > 0, the risk-aware optimum may differ—even223

if the task is known exactly—highlighting the importance of aligning with risk during adaptation.224

Implication: TRAM supports risk-sensitive test-time decision-making using only risk-agnostic agents,225

with error that scales smoothly in both the reward and risk discrepancy.226

4.3 A Practical Implementation at Test Time: Successor Features (SFs) ψ227

A practical instantiation of TRAM requires fast computation of action-values across source agents.228

Traditional value evaluation methods typically involve iterative rollouts or dynamic programming,229

with complexity O
(

1
ϵ(1−γ)

)
, where ϵ is the desired approximation error in the value function. A230

more scalable alternative leverages successor features (SFs), which exploit shared dynamics and231

reward structure across tasks (25; 26).232

Suppose the reward function factorizes as r(s, a, s′) = ϕ(s, a, s′)⊤w, where ϕ is a shared feature233

map and w is a task-specific weight vector. Then, the successor feature vector of a policy π, denoted234

ψπ(s, a), is defined as:235

ψπ(s, a) = Eπ

[∞∑
i=t

γi−tϕ(Si, Ai, Si+1) | St = s,At = a

]
.

This enables efficient computation of the action-value function as a simple dot product:236

Qπ(s, a) = ψπ(s, a)⊤w. (10)

When TRAM is implemented using SF-based agents, we obtain the following bound:237

Corollary 4.2. Under the same assumptions as Theorem 4.1, and assuming that ∥ϕ(s, a, s′)∥ ≤ ϕmax238

for all (s, a, s′), we have:239

Q̃
π∗

T
T (s, a)− Q̃πT

T (s, a) ≤ min
i

(
2ϕmax

1− γ
∥wT −wi∥+ (4L+K) · c

)
, (11)

where Q̃ is defined using the dot product in Equation (10) with a test-time risk adjustment.240

Proof. See Appendix C for a detailed derivation.241

5 Experiments242

To evaluate TRAM, we first test it in a controlled gridworld environment similar to (2; 17; 25). This243

setting enables direct comparison against prior risk-aware adaptation methods and helps answer the244

following:245

Q1) Does TRAM support more general notions of risk compared to RaSF (2)?246

Q2) Can TRAM avoid the overly conservative behavior exhibited by RaSF?247

7

Figure 4: Visualization of Experiment 1. Left: Two source policies trained on distinct tasks. Middle:
Two target tasks. Top row: In the first task, the agent must avoid a danger region (yellow). TRAM,
using the barrier risk from Eq. (5), avoids the danger zone entirely. In contrast, RaSF—trained to
minimize return variance—fails to detect spatial risk and enters the danger zone in every episode. SF
also lacks risk awareness and behaves similarly. Bottom row: In the second task, risk arises from
per-step reward variance as defined in Eq. (6). RaSF, which uses return-level variance, is blind to this
finer granularity and selects a high-variance path. SF also fails due to the absence of risk modeling.
TRAM, by contrast, successfully avoids the high-variance trajectory. Right: Bar plots show expected
return and return variance, reflecting the qualitative differences in policy behavior.

Setup. The agent navigates from a start cell to a goal cell. Rewards and risks are distributed across248

different paths, visualized using symbols (e.g., gifts, bombs). The goal is to maximize expected return249

while avoiding high-risk regions. Risk arises either from danger zones or local reward variance.250

Baselines. We compare against two methods: (i) RaSF, where source policies are trained with a251

variance-based penalty, and (ii) the risk-agnostic SF method from (25), which uses only expected252

return. TRAM, by contrast, uses these risk-agnostic agents but aligns them at test time using general253

risk factors.254

Experiment 1: General risk representations. Figure 4 illustrates two target tasks. In the first (top),255

risk is defined via a danger zone. TRAM, using the barrier risk factor in Eq. (5), avoids this region256

while maintaining return. RaSF and SF frequently enter the danger zone. In the second task (bottom),257

risk stems from per-step reward variance. TRAM, using Eq. (6), selects the safer path, while RaSF258

and SF fail to detect this form of risk.259

Experiment 2: Robustness to risk shifts. Figure 5 shows two more test cases. In the first (top), no260

risk is present. TRAM and SF exploit the high-reward path, while RaSF—trained with built-in risk261

aversion—remains overly conservative. In the second case (bottom), risk is introduced via stochastic262

rewards on the high-return path. TRAM correctly shifts to the lower, safer path. RaSF does the same,263

but SF fails due to its lack of risk modeling.264

Conclusion. Unlike RaSF, which is restricted to a fixed form of risk and conservatively-trained agents,265

TRAM adapts to multiple risk types at test time and dynamically balances safety and performance266

using general risk factors.267

5.1 Generalization to Continuous Domains268

While our main experiments focus on discrete environments to highlight the limitations of prior risk-269

aware adaptation methods, we also demonstrate that TRAM extends naturally to high-dimensional con-270

tinuous control. Specifically, we evaluate TRAM on the Reacher domain, a widely used continuous-271

space benchmark in the adaptation literature (2; 25; 29). This setting introduces real-valued states272

8

Figure 5: Experiment 2 setup. Left: Source policies trained on distinct tasks using either risk-agnostic
or risk-aware objectives. Middle: Two target tasks. Top row: In the first target task, no risk is present.
TRAM and SF successfully choose the path with the highest expected return. RaSF, however, remains
overly conservative due to training with a fixed variance-based risk signal, and fails to exploit the
high-return option. Bottom row: In the second target task, risk is introduced via stochastic rewards
(gifts). TRAM and RaSF both avoid the high-variance path—since the return variability depends
on the gift’s sign—while SF, unaware of risk, continues to follow the high-reward but volatile route.
Right: Bar graphs quantify the trade-off between expected return and return variance across the three
methods.

and actions, nonlinear dynamics, and the need for deep function approximation—all of which are273

common in robotics applications.274

The Reacher environment consists of a two-joint torque-controlled robotic arm that must reach a275

specified target in the plane. The dynamics are simulated via MuJoCo (31), yielding a continuous276

4D state space and nontrivial transitions. We train source agents using Successor Feature Deep277

Q-Networks (SFDQNs) on multiple risk-agnostic tasks—without any form of risk modeling during278

training.279

At test time, we apply TRAM with a barrier risk function to adapt these agents to a new task280

that includes a danger region. No additional training or fine-tuning is performed. As detailed in281

Appendix F, TRAM significantly reduces the failure rate (i.e., entering the danger zone) relative to282

standard SF adaptation (25), while achieving comparable accuracy in reaching the goal.283

Takeaway: TRAM scales beyond tabular and gridworld domains. It supports expressive risk specifi-284

cations, operates in real-time via deep function approximators, and adapts effectively under nonlinear285

continuous dynamics.286

6 Conclusions287

We introduced TRAM, a novel test-time adaptation framework that derives risk-aware policies from288

risk-neutral source agents. Unlike prior methods requiring risk-aware training or limited to return289

variance, TRAM supports general, user-defined risk factors—such as barrier constraints, per-step290

reward variance, or divergence from expert behavior—evaluated solely at test time.291

By leveraging successor features, TRAM enables fast policy synthesis via dot-product computations,292

avoiding sampling or rollouts. Our theoretical analysis offers performance bounds that decouple293

reward mismatch from risk misalignment. Experiments across discrete and continuous domains294

demonstrate that TRAM captures richer risk signals and generalizes better than existing methods, with295

low computational cost. Future work includes extending TRAM to tasks with differing dynamics.296

9

References297

[1] Gong, T., J. Jeong, T. Kim, et al. Note: Robust continual test-time adaptation against temporal298

correlation. Advances in Neural Information Processing Systems, 35:27253–27266, 2022.299

[2] Gimelfarb, M., A. Barreto, S. Sanner, et al. Risk-aware transfer in reinforcement learning using300

successor features. Advances in Neural Information Processing Systems, 34:17298–17310,301

2021.302

[3] Marom, O., B. Rosman. Zero-shot transfer with deictic object-oriented representation in303

reinforcement learning. Advances in Neural Information Processing Systems, 31, 2018.304

[4] Oh, J., S. Singh, H. Lee, et al. Zero-shot task generalization with multi-task deep reinforcement305

learning. In International Conference on Machine Learning, pages 2661–2670. PMLR, 2017.306

[5] Higgins, I., A. Pal, A. Rusu, et al. Darla: Improving zero-shot transfer in reinforcement learning.307

In International Conference on Machine Learning, pages 1480–1490. PMLR, 2017.308

[6] Rezaei-Shoshtari, S., C. Morissette, F. R. Hogan, et al. Hypernetworks for zero-shot transfer309

in reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,310

vol. 37, pages 9579–9587. 2023.311

[7] Touati, A., J. Rapin, Y. Ollivier. Does zero-shot reinforcement learning exist? In The Eleventh312

International Conference on Learning Representations. 2022.313

[8] Bisi, L., L. Sabbioni, E. Vittori, et al. Risk-averse trust region optimization for reward-volatility314

reduction. arXiv preprint arXiv:1912.03193, 2019.315

[9] Fei, Y., Z. Yang, Y. Chen, et al. Risk-sensitive reinforcement learning: Near-optimal risk-sample316

tradeoff in regret. Advances in Neural Information Processing Systems, 33:22384–22395, 2020.317

[10] Jain, A., G. Patil, A. Jain, et al. Variance penalized on-policy and off-policy actor-critic. In318

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pages 7899–7907. 2021.319

[11] Mannor, S., J. N. Tsitsiklis. Algorithmic aspects of mean–variance optimization in markov320

decision processes. European Journal of Operational Research, 231(3):645–653, 2013.321

[12] Mao, H., S. B. Venkatakrishnan, M. Schwarzkopf, et al. Variance reduction for reinforcement322

learning in input-driven environments. arXiv preprint arXiv:1807.02264, 2018.323

[13] Nass, D., B. Belousov, J. Peters. Entropic risk measure in policy search. In 2019 IEEE/RSJ324

International Conference on Intelligent Robots and Systems (IROS), pages 1101–1106. IEEE,325

2019.326

[14] Shen, Y., M. J. Tobia, T. Sommer, et al. Risk-sensitive reinforcement learning. Neural327

computation, 26(7):1298–1328, 2014.328

[15] Tamar, A., D. Di Castro, S. Mannor. Learning the variance of the reward-to-go. Journal of329

Machine Learning Research, 17(13):1–36, 2016.330

[16] Whiteson, S. Mean- variance policy iteration for risk- averse reinforcement learning. 2021.331

[17] Zhang, J., A. S. Bedi, M. Wang, et al. Cautious reinforcement learning via distributional risk in332

the dual domain. IEEE Journal on Selected Areas in Information Theory, 2(2):611–626, 2021.333

[18] Turchetta, M., A. Kolobov, S. Shah, et al. Safe reinforcement learning via curriculum induction.334

Advances in Neural Information Processing Systems, 33:12151–12162, 2020.335

[19] Srinivasan, K., B. Eysenbach, S. Ha, et al. Learning to be safe: Deep rl with a safety critic.336

arXiv preprint arXiv:2010.14603, 2020.337

[20] Held, D., Z. McCarthy, M. Zhang, et al. Probabilistically safe policy transfer. In 2017 IEEE338

International Conference on Robotics and Automation (ICRA), pages 5798–5805. IEEE, 2017.339

[21] García, J., F. Fernández. Probabilistic policy reuse for safe reinforcement learning. ACM340

Transactions on Autonomous and Adaptive Systems (TAAS), 13(3):1–24, 2019.341

10

[22] Mankowitz, D. J., A. Tamar, S. Mannor. Situational awareness by risk-conscious skills. arXiv342

preprint arXiv:1610.02847, 2016.343

[23] Jain, A., K. Khetarpal, D. Precup. Safe option-critic: learning safety in the option-critic344

architecture. The Knowledge Engineering Review, 36:e4, 2021.345

[24] Mankowitz, D., T. Mann, P.-L. Bacon, et al. Learning robust options. In Proceedings of the346

AAAI Conference on Artificial Intelligence, vol. 32. 2018.347

[25] Barreto, A., W. Dabney, R. Munos, et al. Successor features for transfer in reinforcement348

learning. Advances in neural information processing systems, 30, 2017.349

[26] Barreto, A., D. Borsa, J. Quan, et al. Transfer in deep reinforcement learning using successor350

features and generalised policy improvement. In International Conference on Machine Learning,351

pages 501–510. PMLR, 2018.352

[27] Barreto, A., S. Hou, D. Borsa, et al. Fast reinforcement learning with generalized policy updates.353

Proceedings of the National Academy of Sciences, 117(48):30079–30087, 2020.354

[28] Puterman, M. L. Markov decision processes. Handbooks in operations research and manage-355

ment science, 2:331–434, 1990.356

[29] Zhang, S., H. D. Fernando, M. Liu, et al. Sf-dqn: Provable knowledge transfer using successor357

feature for deep reinforcement learning. arXiv preprint arXiv:2405.15920, 2024.358

[30] Chakraborty, S., S. S. Ghosal, M. Yin, et al. Transfer q star: Principled decoding for llm359

alignment. arXiv preprint arXiv:2405.20495, 2024.360

[31] Todorov, E., T. Erez, Y. Tassa. Mujoco: A physics engine for model-based control. In 2012361

IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE,362

2012.363

[32] Sutton, R. S., A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.364

[33] Bellman, R. Dynamic Programming. Dover Publications, 1957.365

[34] Nachum, O., B. Dai. Reinforcement learning via fenchel-rockafellar duality. arXiv preprint366

arXiv:2001.01866, 2020.367

[35] Nachum, O., B. Dai, I. Kostrikov, et al. Algaedice: Policy gradient from arbitrary experience.368

arXiv preprint arXiv:1912.02074, 2019.369

[36] Devroye, L., A. Mehrabian, T. Reddad. The total variation distance between high-dimensional370

gaussians with the same mean. arXiv preprint arXiv:1810.08693, 2018.371

[37] Wen, Z., B. Van Roy. Efficient reinforcement learning in deterministic systems with value372

function generalization. Mathematics of Operations Research, 42(3):762–782, 2017.373

[38] Nagarajan, P., G. Warnell, P. Stone. Deterministic implementations for reproducibility in deep374

reinforcement learning. arXiv preprint arXiv:1809.05676, 2018.375

11

Contents376

1 Introduction 1377

2 Related Works 2378

3 Problem Formulation 3379

3.1 Preliminaries . 3380

3.2 Test-Time Adaptation Problem . 4381

3.3 Limitations of Risk-Aware Test-Time Adaptation 4382

4 Proposed Approach: Test-time Risk Adaption 5383

4.1 TRAM: Test-time Risk Alignment with a Mixture of Agents 5384

4.2 Theoretical Insights . 6385

4.3 A Practical Implementation at Test Time: Successor Features (SFs) ψ 7386

5 Experiments 7387

5.1 Generalization to Continuous Domains . 8388

6 Conclusions 9389

NeurIPS Paper Checklist 13390

Appendix 16391

A Q-LP Formulation of RL 16392

B Dual V-LP Formulation of RL 16393

C Proof of the Theorem and its Corollary 16394

D Limitations of Risk-Aware Test-Time Adaptation 24395

E The effect of the hyperparameter c 25396

F Reacher 26397

G Base Code 26398

H CPU Resources 27399

Impact Statement 28400

12

NeurIPS Paper Checklist401

1. Claims402

Question: Do the main claims made in the abstract and introduction accurately reflect the403

paper’s contributions and scope?404

Answer: [Yes]405

Justification: The abstract and introduction clearly describe the core contributions of TRAM,406

namely risk-aware adaptation at test time using risk-neutral agents and general risk factor407

alignment without test-time optimization. These claims are substantiated by theory and408

experiments.409

2. Limitations410

Question: Does the paper discuss the limitations of the work performed by the authors?411

Answer: [Yes]412

Justification: Limitations are acknowledged in the conclusion, which discusses extending413

TRAM to tasks with different transition dynamics. This highlights a current assumption in414

our approach and outlines a direction for future work.415

3. Theory assumptions and proofs416

Question: For each theoretical result, does the paper provide the full set of assumptions and417

a complete (and correct) proof?418

Answer: [Yes]419

Justification: All theoretical results (Theorem 4.1, Corollary 4.2) are fully stated with420

assumptions, and complete proofs are provided in Appendix C.421

4. Experimental result reproducibility422

Question: Does the paper fully disclose all the information needed to reproduce the main ex-423

perimental results of the paper to the extent that it affects the main claims and/or conclusions424

of the paper (regardless of whether the code and data are provided or not)?425

Answer: [Yes]426

Justification: The paper provides all environment configurations, risk specifications, and427

algorithmic components for the gridworld experiments. For the Reacher experiment, we428

shall include the full setup and reference base implementations.429

5. Open access to data and code430

Question: Does the paper provide open access to the data and code, with sufficient instruc-431

tions to faithfully reproduce the main experimental results, as described in supplemental432

material?433

Answer: [Yes]434

Justification: The paper provides all environment configurations, risk specifications, and435

algorithmic components for the gridworld experiments. For the Reacher experiment, we436

shall include the full setup and reference base implementations.437

6. Experimental setting/details438

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-439

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the440

results?441

Answer: [Yes]442

Justification: The paper provides all environment configurations, risk specifications, and443

algorithmic components for the gridworld experiments. For the Reacher experiment, we444

shall include the full setup and reference base implementations.445

7. Experiment statistical significance446

Question: Does the paper report error bars suitably and correctly defined or other appropriate447

information about the statistical significance of the experiments?448

Answer: [Yes]449

13

Justification: All results are aggregated over multiple rollouts to capture stochasticity. Bar450

graphs in Figures 4, 5, and others reflect mean and variance across runs, supporting statistical451

robustness.452

8. Experiments compute resources453

Question: For each experiment, does the paper provide sufficient information on the com-454

puter resources (type of compute workers, memory, time of execution) needed to reproduce455

the experiments?456

Answer: [Yes]457

Justification: The appendix provides compute details, including number of CPUs/GPUs458

used, runtime for both tabular and continuous experiments, and environments needed to459

replicate the results.460

9. Code of ethics461

Question: Does the research conducted in the paper conform, in every respect, with the462

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?463

Answer: [Yes]464

Justification: The work follows standard RL evaluation practices and conforms to NeurIPS465

ethical guidelines. No private or sensitive data is used, and there are no foreseeable risks to466

safety, privacy, or fairness.467

10. Broader impacts468

Question: Does the paper discuss both potential positive societal impacts and negative469

societal impacts of the work performed?470

Answer: [Yes]471

Justification: We discuss the broader impact in H.472

11. Safeguards473

Question: Does the paper describe safeguards that have been put in place for responsible474

release of data or models that have a high risk for misuse (e.g., pretrained language models,475

image generators, or scraped datasets)?476

Answer: [NA]477

Justification: The work does not release high-risk data or models. The paper focuses on478

MDP-based simulation environments.479

12. Licenses for existing assets480

Question: Are the creators or original owners of assets (e.g., code, data, models), used in481

the paper, properly credited and are the license and terms of use explicitly mentioned and482

properly respected?483

Answer: [Yes]484

Justification: All prior works and open-source codebases (e.g., MuJoCo, SF-DQN) are cited485

appropriately. We follow all licensing terms for code reuse.486

13. New assets487

Question: Are new assets introduced in the paper well documented and is the documentation488

provided alongside the assets?489

Answer: [Yes]490

Justification: The paper provides all environment configurations, risk specifications, and491

algorithmic components for the gridworld experiments. For the Reacher experiment, we492

shall include the full setup and reference base implementations.493

14. Crowdsourcing and research with human subjects494

Question: For crowdsourcing experiments and research with human subjects, does the paper495

include the full text of instructions given to participants and screenshots, if applicable, as496

well as details about compensation (if any)?497

Answer: [NA]498

14

https://neurips.cc/public/EthicsGuidelines

Justification: No human subjects or crowdsourced components are involved in this work.499

15. Institutional review board (IRB) approvals or equivalent for research with human500

subjects501

Question: Does the paper describe potential risks incurred by study participants, whether502

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)503

approvals (or an equivalent approval/review based on the requirements of your country or504

institution) were obtained?505

Answer: [NA]506

Justification: This research does not involve human subjects.507

16. Declaration of LLM usage508

Question: Does the paper describe the usage of LLMs if it is an important, original, or509

non-standard component of the core methods in this research?510

Answer: [NA]511

Justification: Large language models were not used in the research methodology or experi-512

mentation.513

15

Appendix514

A Q-LP Formulation of RL515

The problem of computing Qπ(s, a) is known as policy evaluation, or the prediction problem (32).516

While most works focus on dynamic programming (DP) methods for policy evaluation (33), we517

consider an alternative approach based on the linear programming (LP) formulation of the RL problem518

(34), as the dual variables of the LP problem facilitate risk-aware behavior.519

The primal LP problem, which we refer to as the Q-LP problem, is defined below:520

min
Q

(1− γ) · Ea0∼π(s0)
s0∼µ0

[Q(s0, a0)]

s.t. Q(s, a) ≥ Es′∼p(·|s,a)
a′∼π(a|s)

[r(s, a, s′) + γ ·Qπ(s′, a′)] ,

∀s ∈ S, a ∈ A.

(12)

where µ0 is the initial distribution over the states. The optimal Q of the problem satisfies Q∗(s, a) =521

Qπ(s, a). One can refer to the appendix of (35) for a full proof of the formulation.522

The dual problem of the Q-LP, with dual variable d ∈ R|S|×|A|, is shown below:523

max
d≥0

∑
s,a

d(s, a) · Es′∼p(·|s,a)
a′∼π(a|s)

[r(s, a, s′)] ,

s.t. d(s, a) = (1− γ)µ0(s)π(a|s) + γ · Es′∼p(·|s,a)
a′∼π(a|s)

[d(s′, a′)] ,

∀s ∈ S, a ∈ A.

(13)

The dual variable d is known as the state-action occupancy measure Given a policy π, d(s, a) repre-524

sents the joint probability of occupying a state s and taking an action a from that state. Furthermore,525

one can recover the policy π from the occupancy measure as follows:526

π(a|s) = d(s, a)∑
a′∈A d(s, a

′)
∀a ∈ A, s ∈ S, (14)

B Dual V-LP Formulation of RL527

As opposed to the dual Q-LP formulation(13), which finds the state-action occupancy measure dπ528

for a given π, the dual V-LP formulation shown below finds the state-action occupancy measure dπ
∗

529

corresponding to the optimal policy π∗:530

max
d≥0

∑
s,a

d(s, a) · Es′∼p(·|s,a)
a′∼π(a|s)

[r(s, a, s′)]− ci · ρ(d),

s.t.
∑
a∈A

d(s, a) = (1− γ)µ0(s) + γ ·
∑
a∈A

Es′∼p(·|s,a)
a′∼π(a|s)

[d(s′, a′)] ,

∀s ∈ S.

(15)

C Proof of the Theorem and its Corollary531

First, we need to define some variables to make the proofs clear:532

• Qπi,RN∗

i is the action-value function of the risk-neutral optimal policy of task i obtained533

using any standard RL method that maximizes expected return.534

• Qπi,RA∗

i is the action-value function of the risk-aware optimal policy of task i obtained by535

solving (15).536

16

• Qπj ,RN∗

i is the action-value function of the risk-neutral optimal policy of task j when537

evaluated in task i.538

Define Q̃π(s, a) = Q(s, a)− cρ(dπ), so:539

• Q̃πi,RA∗

i = Qπi,RA∗

i − cρ(dπi,RA∗
)540

• Q̃πj ,RN∗

i = Q
πj ,RN∗

i − cρ(dπj ,RN∗
)541

Lemma C.1. ∣∣∣Qπi,RN∗

i (s, a)−Q
πj ,RN∗

j (s, a)
∣∣∣ ≤ 1

1− γ
∥ri − rj∥∞.

Proof of Optimal-Optimal. Let ∆ij = maxs,a

∣∣∣Qπi,RN∗

i (s, a)−Q
πj ,RN∗

j (s, a)
∣∣∣.542

Step 1: Bellman Optimality This equation follows from Bellman optimality as each of πi,RN∗
543

and πj ,RN∗ is risk-neutral optimal in their own tasks.544 ∣∣∣Qπi,RN∗

i (s, a)−Q
πj ,RN∗

j (s, a)
∣∣∣ = ∣∣∣∣∣ri(s, a) + γ

∑
s′

p(s′|s, a)max
b
Qπi,RN∗

i (s′, b) (16)

−rj(s, a)− γ
∑
s′

p(s′|s, a)max
b
Q

πj ,RN∗

j (s′, b)

∣∣∣∣∣
(17)

Step 2: Simplification Simplifying the above expression:545

=

∣∣∣∣∣ri(s, a)− rj(s, a) + γ
∑
s′

p(s′|s, a)
(
max

b
Qπi,RN∗

i (s′, b)−max
b
Q

πj ,RN∗

j (s′, b)

)∣∣∣∣∣
(18)

Step 3: Triangle Inequality Applying the triangle inequality:546

≤ |ri(s, a)− rj(s, a)|+ γ
∑
s′

p(s′|s, a)
∣∣∣∣max

b
Qπi,RN∗

i (s′, b)−max
b
Q

πj ,RN∗

j (s′, b)

∣∣∣∣
(19)

Step 4: Maximum Difference The difference of maxima is less than the maximum of differences:547

≤ |ri(s, a)− rj(s, a)|+ γ
∑
s′

p(s′|s, a)max
b

∣∣∣Qπi,RN∗

i (s′, b)−Q
πj ,RN∗

j (s′, b)
∣∣∣ (20)

Step 5: Definition of ∆ By definition of ∆ij :548

≤ ∥ri − rj∥∞ + γ∆ij . (21)

Step 6: Substituting ∆ Since C applies ∀s ∈ S,∀a ∈ A, it applies particularly for ∆ij :549

∆ij ≤ ∥ri − rj∥∞ + γ∆ij (22)

550

Lemma C.2. ∣∣∣Qπj ,RN∗

j (s, a)−Q
πj ,RN∗

i (s, a)
∣∣∣ ≤ 1

1− γ
∥ri − rj∥∞. (23)

Proof. Let ∆ij = maxs,a

∣∣∣Qπj ,RN∗

i (s, a)−Q
πj ,RN∗

j (s, a)
∣∣∣.551

17

Step 1: Bellman Recurrence The Bellman recurrence is applied to the action-value functions under552

policy π∗
j :553 ∣∣∣Qπj ,RN∗

j (s, a)−Q
πj ,RN∗

i (s, a)
∣∣∣ = ∣∣∣∣∣rj(s, a) + γ

∑
s′

p(s′ | s, a)Qπj ,RN∗

j (s′, π∗
j (s

′)) (24)

−ri(s, a)− γ
∑
s′

p(s′|s, a)max
b
Q

πj ,RN∗

i (s′, b)

∣∣∣∣∣ (25)

Step 2: Simplification Simplifying the expression:554

=

∣∣∣∣∣rj(s, a)− ri(s, a) + γ
∑
s′

p(s′ | s, a)
(
Q

πj ,RN∗

j (s′, π∗
j (s

′))−Q
πj ,RN∗

i (s′, π∗
j (s

′))
)∣∣∣∣∣

(26)

Step 3: Triangle Inequality Applying the triangle inequality to further simplify:555

≤ |ri(s, a)− rj(s, a)|+ γ
∑
s′

p(s′ | s, a)
∣∣∣Qπj ,RN∗

j (s′, π∗
j (s

′))−Q
πj ,RN∗

i (s′, π∗
j (s

′))
∣∣∣

(27)

Step 4: Definition of ∆′ By the definition of ∆′
ij :556

≤ ∥ri − rj∥∞ + γ∆′
ij (28)

Step 5: Substituting ∆′ Since the inequality holds ∀s ∈ S,∀a ∈ A, it applies particularly for ∆′
ij ,557

allowing the substitution:558

∆′
ij ≤ ∥ri − rj∥∞ + γ∆′

ij (29)

559

Lemma C.3. Let dπ1 and dπ2 be two discrete probability distributions. Then,560

∥dπ1 − dπ2∥1 ≤ 2. (30)

Proof. Step 1: Define the L1-norm. The L1-norm of dπ1 − dπ2 is defined as:561

∥dπ1 − dπ2∥1 =
∑
x

|dπ1(x)− dπ2(x)| (31)

Step 2: Define the total variation norm (TV) for distance between probability distributions.562

The total variation distance between dπ1 and dπ2 is given by:563

TV(dπ1 , dπ2) =
1

2

∑
x

|dπ1(x)− dπ2(x)| (32)

Step 3: Bounded total variation norm. According to (36), the total variation distance between two564

probability distributions is always bounded by 1:565

TV(dπ1 , dπ2) ≤ 1 (33)

Step 4: L1-norm for distributions is bounded. From the definition of the total variation norm, the566

L1-norm can be expressed as twice the total variation distance:567

∥dπ1 − dπ2∥1 = 2 · TV(dπ1 , dπ2) ≤ 2 (34)

Thus, the L1-norm of the difference between the two probability distributions is bounded by 2.568

18

Lemma C.4. If ρ is L-Lipschitz, then:569

∣∣∣ρ(dπi,RA∗
)− ρ(dπj ,RN∗

)
∣∣∣ ≤ 2 · L (35)

Proof. Step 1:570

Lipschitz Continuity. Since ρ is L-Lipschitz, we have:571

|ρ(dπi,RA∗
)− ρ(dπj ,RN∗

)| ≤ L∥dπj ,RN∗
− dπi,RN∗

∥1, (36)

where ∥dπj ,RN∗ − dπi,RN∗∥1 is the L1-norm of the difference between the probability572

distributions dπj ,RN∗
and dπi,RN∗

.573

Step 2:574

Bounding the L1-norm. From Lemma C.3 we know that:575

∥dπj ,RN∗
− dπi,RN∗

∥1 ≤ 2 (37)

Step 3:576

Combining the Equations By combining the two equations above, we obtain:577

|ρ(dπi,RA∗
)− ρ(dπj ,RN∗

)| ≤ 2L (38)

578

Lemma C.5. If ρ is L-Lipschitz. Then,579

|Qπi,RA∗

i (s, a)−Qπ,RN∗

i (s, a)| ≤ 2 · γ · L · c. (39)

Proof. Step 1: Defining the action-value functions We begin by expressing the action-value func-580

tions in terms of the dual variable d, which represents the policy-specific adjustments:581

Qπi,RA∗

i (s, a) = ri(s, a) + γ
∑
s′

p(s′|s, a)⟨dπi,RA∗
, ri⟩, (40)

Qπi,RN∗

i (s, a) = ri(s, a) + γ
∑
s′

p(s′|s, a)⟨dπi,RN∗
, ri⟩. (41)

Step 2: Calculating the difference The difference in the action-value functions is then given by:582

|Qπi,RA∗

i (s, a)−Qπi,RN∗

i (s, a)| = γ
∑
s′

p(s′|s, a)|⟨dπi,RA∗
, ri⟩ − ⟨dπi,RN∗

, ri⟩|. (42)

Step 3: Bounding difference in return in the dual form Given (15), dπi,RA∗
maximizes ⟨d, ri⟩ −583

cρ(d), across feasible occupancy measures d, then:584

⟨dπi,RA∗
, ri⟩ − cρ(dπi,RA∗

) ≥ ⟨dπi,RN∗
, ri⟩ − cρ(dπi,RN∗

), (43)

⇔ ⟨dπi,RN∗
, ri⟩ − ⟨dπi,RA∗

, ri⟩ ≤ c(ρ(dπi,RA∗
)− ρ(dπi,RN∗

)), (44)

⇔ |⟨dπi,RA∗
, ri⟩ − ⟨dπi,RN∗

, ri⟩| ≤ c|ρ(dπi,RA∗
)− ρ(dπi,RN∗

)|. (45)

Step 4: Using Lipschitz continuity Assuming ρ is Lipschitz continuous with constant L and ana-585

lyzing the optimization criteria:586

|⟨dπi,RA∗
, ri⟩ − ⟨dπi,RN∗

, ri⟩| ≤ c|ρ(dπi,RA∗
)− ρ(dπi,RN∗

)|, (46)

|ρ(dπi,RA∗
)− ρ(dπi,RN∗

)| ≤ L∥dπi,RA∗
− dπi,RN∗

∥1, (47)

|⟨dπi,RN∗
, ri⟩ − ⟨dπi,RA∗

, ri⟩| ≤ L · c · ∥dπi,RA∗
− dπi,RN∗

∥1. (48)

19

Step 5: Bounding the L1-norm Following C.3587

∥dπi,RA∗
− dπi,RN∗

∥1 ≤ 2 (49)

Step 5: Final bound on the action-value function difference Integrating these observations into588

(42):589

|Qπi,RA∗

i (s, a)−Qπ,RN
i (s, a)| ≤ 2 · γ · L · c. (50)

590

Lemma C.6.

|Q̃πi,RA∗

i (s, a)− Q̃
πj ,RN∗

i (s, a)| ≤ 2

(
1

1− γ
∥ri − rj∥∞ + 2 · L · c

)
. (51)

Proof. We aim to establish the bound on the difference between the modified action-value functions591

Q̃πi,RA∗

i and Q̃πj ,RN∗

i for state-action pairs (s, a).592

Step 1: Applying definition of Q̃ and triangle inequality We start by applying the definition of593

the modified action-value functions and the triangle inequality:594

|Q̃πi,RA∗

i (s, a)− Q̃
πj ,RN∗

i (s, a)| = |Qπi,RA∗

i (s, a)− cρ(dπi,RA∗
)−Q

πj ,RN∗

i (s, a) + cρ(dπj ,RN∗
)|

≤ |Qπi,RA∗

i (s, a)−Q
πj ,RN∗

i (s, a)|+ c|ρ(dπi,RA∗
)− ρ(dπj ,RN∗

)|.

Step 2: Applying the triangle inequality to the first term Adding and subtracting Qπi,RN∗

i (s, a)595

and Qπj ,RN∗

j (s, a) to decompose the term:596

|Qπi,RA∗

i (s, a)−Q
πj ,RN∗

i (s, a)| ≤ |Qπi,RA∗

i (s, a)−Qπi,RN∗

i (s, a)|+ |Qπi,RN∗

i (s, a)−Q
πj ,RN
j (s, a)|

+ |Qπj ,RN∗

j (s, a)−Q
πj ,RN∗

i (s, a)|.

Step 3: Bounding the terms using referenced lemmas From Lemmas C.1, C.2, C.5:597

|Qπi,RA∗

i (s, a)−Q
πj ,RN∗

i (s, a)| ≤ 2

1− γ
∥ri − rj∥∞ + 2 · γ · L · c.

Step 4: Bounding the second term using Lemma C.4 From the established bound on the differ-598

ence in risk-aware and risk-neutral policies:599

c|ρ(dπi,RA∗
)− ρ(dπj ,RN∗

)| ≤ 2 · L · c.

By summing up these inequalities, we derive the final result:600

|Q̃πi,RA∗

i (s, a)− Q̃
πj ,RN∗

i (s, a)| ≤ 2

1− γ
∥ri − rj∥∞ + 4 · L · c,

thereby concluding the proof.601

Definition C.7 (Bellman Operator of Policy π). Let Q be a (possibly inaccurate) state-action value602

function and π a policy. The Bellman operator applied to Q under policy π, denoted by Tπ , is defined603

as:604

TπQ(s, a) = r(s, a) + γ
∑
s′

p(s′|s, a)Q(s′, π(s′)). (52)

Properties:605

• Given Q(s, a), (Tπ)2Q(s, a) = Tπ(Tπ(Q(s, a))).606

20

• (Tπ)∞Q(s, a) = Qπ(s, a), where Qπ(s, a) is the state-action value function under policy607

π.608

• Qπ(s, a) is the fixed point under the Bellman operator of π: Tπ(Qπ(s, a)) = Qπ(s, a).609

• Monotonicity of the Bellman operator: if Q1(s, a) ≥ Q2(s, a), then TπQ1(s, a) ≥610

TπQ2(s, a).611

• It follows that if Tπ(Qπ(s, a)) ≥ Qπ(s, a), then (Tπ)2(Qπ(s, a)) ≥ (Tπ)Qπ(s, a).612

Policy definition The policy πi:613

πi(a|s) =

1 if a = argmax
b

max
j=1,2,...,n

Q̃
π∗
j

i (s, b)

0 otherwise
(53)

for simplicity,614

πi(s) ∈ undersetbargmax max
j=1,2,...,n

Q̃
π∗
j

i (s, b). (54)

Qmax definition let (Qmax(s, a) be defined as:615

Qmax(s, a) = max
j

(Qπj (s, a)− cρ(dπj)) , (55)

Proposition C.8. Let Qmax(s, a) be an initial estimate of the action-value function. Then, the616

application of the infinite Bellman operator (Tπi)∞ to Qmax(s, a) converges to Qπi(s, a), the true617

action-value function under policy πi.618

(Tπi)∞Qmax(s, a) = Qπi(s, a) (56)

Proof. This result follows from the definition of the Bellman operator (see Definition C.7), asserting619

that the iterative application of Tπi to any initial function eventually converges to the fixed point of620

Tπi , which is Qπi(s, a).621

Lemma C.9. Assuming |ρ(dπs)− ρ(dπs′)| ≈ 0 where s′ follows s in the trajectory, it holds that:622

TπiQmax(s, a) ≥ Qmax(s, a).

Proof. Step 1: Definition of the Bellman operator Refer to Equation (52):623

TπiQmax(s, a) = r(s, a) + γ
∑
s′

p(s′|s, a) [Qmax(s
′, πi(s

′))] . (57)

Step 2: Definition of πi From Equation (54):624

TπiQmax(s, a) = r(s, a) + γ
∑
s′

p(s′|s, a)
[
max

b
Qmax(s

′, b)

]
. (58)

Step 3: Property of max, for a particular case of π∗
j
∗:

TπiQmax(s, a) ≥ r(s, a) + γ
∑
s′

p(s′|s, a) [Qmax(s
′, πj ,RN∗(s′))] . (59)

Step 4: Definition of Qmax:

TπiQmax(s, a) ≥ r(s, a) + γ
∑
s′

p(s′|s, a)
[
max

k
Qπk,RN∗

(s′, πj ,RN∗(s′))− cρ(dπk,RN∗

s′)

]
.

(60)

21

Step 5: Property of max, for a particular case of π∗
j
∗:

TπiQmax(s, a) ≥ r(s, a) + γ
∑
s′

p(s′|s, a)
[
Qπ∗

j (s′, πj ,RN∗(s′))− cρ(d
πj ,RN∗

s′)
]
. (61)

Step 6: Expanding the expression:

TπiQmax(s, a) ≥ r(s, a) + γ
∑
s′

p(s′|s, a)
[
Qπj ,RN∗

(s′, πj ,RN∗(s′))
]
− γ

∑
s′

p(s′|s, a)cρ(dπj ,RN∗

s′).

(62)

Step 7: Applying the practical assumption that |ρ(dπs)− ρ(dπs′)| ≈ 0:

TπiQmax(s, a) ≥ r(s, a) + γ
∑
s′

p(s′|s, a)
[
Qπj ,RN∗

(s′, πj ,RN∗(s′))
]
− γcρ(dπj ,RN∗

s).

(63)

since
∑

s′ p(s
′|s, a) = 1625

Step 8: Bellman operator definition for πj ,RN∗:

r(s, a) + γ
∑
s′

p(s′|s, a)
[
Q

πj ,RN∗

RN (s′, πj ,RN∗(s′))
]
= Tπj ,RN∗

Qπj ,RN∗
(s, a). (64)

Step 9: Bellman operator property fixed point for πj ,RN∗:

Tπj ,RN∗
(Qπj ,RN∗

(s, a)) = Qπj ,RN∗
(s, a). (65)

Step 10: Substituting:

r(s, a) + γ
∑
s′

p(s′|s, a)
[
Q

πj ,RN∗

RN (s′, πj ,RN∗(s′))
]
= Qπj ,RN∗

(s, a). (66)

Step 11: Concluding:

TπiQmax(s, a) ≥ Qπj ,RN∗
(s, a)− γcρ(dπj ,RN∗

s). (67)

Step 12: Removing γ: Since γ ≤ 1626

TπiQmax(s, a) ≥ Qπj ,RN∗
(s, a)− cρ(dπj ,RN∗

s). (68)

Step 13: Applying the definition of Qmax: Since the above holds ∀j, then it holds for the maximum627

TπiQmax(s, a) ≥ Qmax(s, a). (69)

628

Lemma C.10. The true action-value function Qπi under policy πi satisfies the following inequality629

for all j:630

Qπi(s, a) ≥ Qπj ,RN∗
(s, a)− cρ(dπj ,RN∗

). (70)

Proof. Step 1: From Lemma C.9, we have that the Bellman operator applied to Qmax satisfies:631

TπiQmax(s, a) ≥ Qmax(s, a). (71)

Step 2: From the monotonicity property of the Bellman operator:632

(Tπi)2Qmax(s, a) ≥ (Tπi)Qmax(s, a) ≥ Qmax(s, a). (72)

Step 3: Applying the Bellman operator infinitely many times:633

(Tπi)∞Qmax(s, a) ≥ Qmax(s, a). (73)

22

Step 4: Applying Proposition C.8 that states the convergence to Qπi(s, a):634

Qπi(s, a) ≥ Qmax(s, a). (74)

Step 5: Applying the property of max in Qmax:635

Qπi(s, a) ≥ Qπj ,RN∗
(s, a)− cρ(dπj ,RN∗

). (75)

636

Theorem C.1. Let Mi ∈ M and let Q
π∗
j

i be the action-value function of an optimal (risk-aware637

or risk-neutral) policy π∗
j of Mj ∈ M when evaluated in Mi, and let ρi(dπ

∗
j) be an L-Lipschitz638

caution factor of π∗
j in Mi, bounded by a constant K, i.e, |ρi(d)| ≤ K. Further, let Q̃

π∗
j

i (s, a) =639

Q
π∗
j

i (s, a)− c · ρi(dπ
∗
j).640

Let πi(a|s) =

1 if a = argmax
b

max
j=1,2,...,n

Q̃
π∗
j

i (s, a)

0 otherwise.
(76)

Q̃
π∗
i

i (s, a)− Q̃πi
i (s, a) ≤ minj

(
2

1− γ
∥ri − rj∥∞ + (4 · L+K) · c

)
. (77)

Proof. Step 1: Notation. Define the modified action-value function for the optimal policy as:641

Q̃
π∗
i

i (s, a) = Q̃πi,RA∗

i (s, a),

and then, the difference between the optimal and another policy is:642

Q̃
π∗
i

i (s, a)− Q̃πi
i (s, a) = Q̃πi,RA∗

i (s, a)− Q̃πi
i (s, a).

Step 2: Appyling Lemma C.10.

Qπi(s, a) ≥ max
j

[
Q

πj ,RN∗

i (s, a)− cρ(dπj ,RN∗
)
]
,

which equivalently means:643

−Qπi
i (s, a) ≤ −min

j
Q̃

πj ,RN∗

i (s, a) ∀Mj .

Step 3: Substituting into inequality. From the definitions above, the difference can be rewritten644

and bounded as:645

Q̃πi,RA∗

i (s, a)− Q̃πi
i (s, a) ≤ min

j

(
Q̃πi,RA∗

i (s, a)− Q̃
πj ,RN∗

i (s, a)
)
+ c · ρ(dπi

∗
) ∀Mj .

Step 4: Using Lemma C.6.

Q̃πi,RA∗

i (s, a)− Q̃πi
i (s, a) ≤ 2 ·min

j

(
1

1− γ
∥ri − rj∥∞ + 2 · L · c

)
+ c · ρ(dπi

∗
) ∀Mj .

Step 5: Using the boundedness of ρ(d).

Q̃πi,RA∗

i (s, a)− Q̃πi
i (s, a) ≤ 2 ·min

j

(
1

1− γ
∥ri − rj∥∞ + 2 · L · c

)
+ c ·K ∀Mj .

646

Corollary C.2. Under the same assumptions as Theorem C.1, and letting ϕmax =647

maxs,a,s′ ∥ϕ(s, a, s′)∥, we have that:648

Q̃
π∗
i

i (s, a)− Q̃πi
i (s, a) ≤ min

j

(
2

1− γ
ϕmax∥wi −wj∥+ (4 · L+K) · c

)
(78)

Proof. Using the reward decomposition and the Cauchy-Schwarz inequality, we establish that:649

∥ri − rj∥ ≤ ϕmax∥wi −wj∥ (79)
650

23

D Limitations of Risk-Aware Test-Time Adaptation651

We argue that the current state-of-the-art on risk-aware test-time adaptation (2) is limited in three652

different aspects. We focus on a Gridworld to highlight the limitations as follows.653

L1: Risk-aware source policies are conservative. A critical assumption in (2) is that the source654

policies are trained with a variance term in the objective, i.e., the objective is a weighted sum of655

return and variance. We claim that adding the variance term limits the space of possible test-time656

policies realizable from the source policies. We illustrate this with two scenarios:657

Scenario 1: The source policies are variance-aware, as in (2). In Fig. 6, the states in the upper path658

provide stochastic rewards (shown as gifts) that could be positive or negative. Both variance-aware659

policies avoid the upper path, resulting in two identical source policies.660

Scenario 2: The source policies are risk-agnostic, i.e., trained to maximize expected return only. In661

the lower part of Fig. 6, each source task prefers a different path—one upper, one lower—based662

solely on return, thus yielding diverse policies.663

Results: In the target task, the optimal path has high return and low variance. Scenario 2 leads to a664

better test-time policy because the diversity among risk-agnostic sources enables identifying this path.665

By contrast, the identical, conservative source policies in Scenario 1 fail to exploit it.666

Takeaway: Training source policies in a risk-agnostic fashion, as in standard RL (32), enables better667

coverage and flexibility at test time.668

Figure 6: Illustration of adaptation where two source policies (left) are adapted to a single target
task (right). Top: *Risk-aware training* (as in (2)) leads to identical conservative behaviors avoiding
high-variance regions, resulting in poor target adaptation. Bottom: *Risk-agnostic training* produces
diverse source policies. The adapted target policy successfully identifies the optimal upper path.

L2: The variance of the return fails in deterministic settings. Return variance is defined as:669

Q̃π(s, a) = Var[Gt | St = s,At = a] = E
[
(Gt − E[Gt])

2 | St = s,At = a
]

This quantity measures variability across full-trajectory rollouts. But if both the transition dynamics670

and policy are deterministic (37; 38), then all rollouts are identical, making return variance zero. In671

this case, the method in (2) behaves as if it were risk-agnostic and collapses to earlier adaptation672

frameworks like (25; 26; 29).673

However, risk may still be present in other forms—e.g., **per-step reward variance**. Consider two674

deterministic rollouts: - (1, 3, -4, 2, -3) → High per-step variability - (2, 3, 2, 3, 2) → Low per-step675

variability Even though both are fixed trajectories, the first is intuitively riskier. Return variance fails676

to capture this.677

A practical example is shown in Fig. 7. The source policies (left) are deterministic. In the target678

task (middle and right), the lower path either (i) has high per-step reward variance (middle) or (ii)679

minimizes return variance but passes through a hazardous barrier (right). In both cases, the adaptation680

from (2) fails to account for real risk.681

24

Figure 7: Unified illustration of the limitations of using return variance as a risk measure. Left:
Source policies are deterministic and follow fixed reward sequences. Middle: Target task with high
per-step reward variance in the lower path—ignored by return-based risk. Right: Target task with
a hazardous barrier (yellow) on the low-variance path—again selected by the agent in (2), despite
higher real-world risk.

Figure 8: The performance of CAT as a function of the parameter c. As c increases, the transferred
policy becomes safer. However, the discounted cumulative reward decreases, as the agent takes more
steps to reach the goal.

L3: Variance is not representative of all forms of risk. Beyond per-step variability, other types of682

risk exist—e.g., barrier risk, where specific states must be avoided altogether (17). In Fig. 7 (right),683

the agent must choose between: - Lower path: low return variance, but passes through a danger zone684

(yellow) - Upper path: avoids the barrier, but has higher return variance685

The method of (2) chooses the lower path, due to its narrow focus on return variance. In this case,686

return variance is misaligned with the true risk objective: avoiding danger.687

Summary: The state of the art in risk-aware test-time adaptation is limited in three ways: (i) it assumes688

risk-aware source policies, which reduces diversity, (ii) it only accommodates return variance as a689

risk signal, and (iii) even this variance formulation fails in deterministic or structured environments.690

Our proposed framework, TRAM, addresses all three challenges, as we describe next.691

E The effect of the hyperparameter c692

Figure 8 shows the policy obtained for the different values of the coefficient c. The larger the c, the693

lower the risk, but the larger the amount of steps to reach the goal.694

25

Figure 9: The Reacher domain (adapted from (25), also used in (2; 29)). (a) Setup: The two-joint
robotic arm must reach one of the circled goals. Four source policies exist (blue, green, red and
purple). During training, an optimal risk-neutral policy is found for each of the training tasks, by
maximizing the expected return. One test task (yellow) is considered. A danger region is introduced
at this test task (light blue rectangle). A failure is considered once the tip of the joint enters the danger
region. The testing experiment was repeated 100 times. (b) A bar graph of the results. The failure for
CAT is substantially less than risk-neutral transfer (25) On the other hand, the mean distance to the
goal is slightly higher, as the CAT agent must balance between return and caution.

F Reacher695

In this section, we test our algorithm on a continuous state-space transfer RL benchmark. In this696

process, we attempt to answer the following questions697

(EQ3) Can CAT scale up to complex continuous domains?698

(EQ4) Can CAT be used in conjunction with function approximation?699

The Reacher domain, shown in Figure 9 (a), is a set of control tasks defined in the MuJoCo physics700

engine (31). Each task requires moving a two-joint torque-controlled simulated robot arm to a given701

target location. The Reacher domain experiment is the standard experiment in transfer reinforcement702

learning via successor features (25; 2; 29).703

MDP modeling The experiment involves a 4-dimensional continuous state-space and 9 possible704

values for the action (corresponding to maximum, minimum and zero value of torque for each of the705

3 dimensions). The reward is a function of the distance to the goal, and the dynamics are governed by706

the simulator.707

Tasks Description Four source tasks have been considered, and instead of training Deep Q-Networks708

(DQNs) to choose the optimal action, to allow for instantaneous evaluation in the test tasks, we709

train Successor Feature Deep Q-Networks (SFDQNs). Therefore, each of the 4 source tasks has an710

associated SFDQN that carries its optimal policy. The SFDQN returns the successor feature vector711

for a given state and action, and if we wish to evaluate this policy in a new task, we simply perform712

the dot product of this SF vector with the weight vector of that task.713

Training and Testing details Since the source policies are risk-neutral and have no knowledge of714

caution, we use the same parameters for training as in the original SF paper (25). We consider one of715

the test tasks in the Reacher domain and a barrier risk function with a parameter c = 5. Failure is716

defined as entering the particular barrier region in space.717

Results The bar graph of Figure 9 shows the performance of CAT based on 100 samples, as opposed718

to the standard risk-neutral transfer scheme used in (25). The percentage of failure is substantially719

less with CAT. On the other hand, the mean distance to the goal is larger, which is expected, as CAT720

sacrifices the cumulative reward in exchange for a much higher level of safety.721

G Base Code722

The base code for the continuous example is taken from https://github.com/mike-gimelfarb/deep-723

successor-features-for-transfer/tree/main.724

26

H CPU Resources725

The specifications of the machine used are shown in Table 2.726

Table 2: CPU Information Summary

Attribute Details
Processor Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz
Base Speed 1.99 GHz
Current Speed 1.57 GHz (can vary)
Cores 4
Logical Processors 8
L1 Cache 256 KB
L2 Cache 1.0 MB
L3 Cache 8.0 MB
Virtualization Disabled
Hyper-V Support Yes

We used large language models to write more efficient code and construct tables and some LaTeX727

commands, but not to write the paper.728

27

Broader Impact729

This work focuses on risk-aware inference-time transfer in reinforcement learning (RL), with the730

goal of improving the adaptability and safety of RL models in real-world scenarios. By incorporating731

a generalized notion of caution into the transfer process, this research contributes to the development732

of safer policies for deployment tasks, particularly in settings where direct fine-tuning is not feasible.733

Potential societal benefits include improved safety and robustness in autonomous systems, such as734

robotics and decision-making agents, where ensuring risk-aware behavior is crucial. This work may735

also enhance the efficiency of RL applications in domains where unexpected risks can arise, such as736

healthcare, finance, and transportation.737

However, as with any machine learning framework, there are potential ethical considerations. The738

reliance on predefined risk measures could introduce biases or limitations in identifying all possible739

risks in dynamic environments. Additionally, deploying RL models in safety-critical applications740

requires careful validation to ensure that the policies do not produce unintended harmful behaviors.741

In summary, this work advances the field of reinforcement learning by enabling safer policy transfer,742

with broad applicability in various industries. While the societal implications are largely beneficial,743

careful deployment and validation remain essential to mitigating any unintended consequences.744

28

	Introduction
	Related Works
	Problem Formulation
	Preliminaries
	Test-Time Adaptation Problem
	Limitations of Risk-Aware Test-Time Adaptation

	Proposed Approach: Test-time Risk Adaption
	TRAM: Test-time Risk Alignment with a Mixture of Agents
	Theoretical Insights
	A Practical Implementation at Test Time: Successor Features (SFs)

	Experiments
	Generalization to Continuous Domains

	Conclusions
	NeurIPS Paper Checklist
	Appendix
	Q-LP Formulation of RL
	Dual V-LP Formulation of RL
	Proof of the Theorem and its Corollary
	Limitations of Risk-Aware Test-Time Adaptation
	The effect of the hyperparameter c
	Reacher
	Base Code
	CPU Resources
	Impact Statement

