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Abstract
CLIP is one of the most important foundational multimodal models today. It
aligns image and text modalities into a shared feature space by leveraging a simple
contrastive learning loss on massive image-text pairs. As a retriever, CLIP supports
tasks such as zero-shot classification, detection, segmentation, and image-text
retrieval. Furthermore, as a cross-modal feature extractor, it enables tasks like
image understanding, video understanding, and text-to-image generation. However,
as expectations around model generalization and the complexity of tasks increase,
the original learning paradigm of CLIP shows limitations in feature extraction
capabilities. Specifically, the bag-of-words nature of CLIP’s text encoder is often
criticized for its inability to extract fine-grained or complex features. We believe
these limitations stem from two core issues: the simplicity of the training captions
and the fact that CLIP’s self-supervised task does not require logical reasoning
to succeed. Additionally, the small-scale text encoder used in CLIP cannot fully
understand high-quality caption data. In this work, we propose a post-finetuning
approach for CLIP by introducing large language models (LLMs) into the training
process to leverage more sophisticated textual data. Our experiments demonstrate
that even with minimal additional training, LLMs can be aligned with the pretrained
CLIP visual encoder, providing higher-dimensional and effective supervision to
overcome CLIP’s original limitations.

1 Introduction
Contrastive Language-Image Pretraining (CLIP) [9] is one of the most critical foundational models in
the multimodal domain today. It aligns image and text modalities into a common feature space through
a simple contrastive learning loss on large-scale image-text pair datasets. As a powerful retriever,
CLIP supports tasks like zero-shot classification, detection, segmentation, and image-text retrieval.
Furthermore, as a cross-modal feature extractor, it enables applications in image understanding, video
understanding, and text-image generation.

In the era of generative AI, models like LLaVA have started to utilize CLIP as a visual feature
extractor, passing visual features to text-based models. Models such as Stable Diffusion and DALL-E
2 use the CLIP text encoder to extract textual features for visual models. However, as expectations
around model generalization and task complexity increase, the original CLIP learning paradigm
begins to show limitations in its feature extraction capabilities, unable to fully meet the growing
demands of complex tasks. In the following, we will highlight some of these limitations.

The limitations of CLIP today are mainly rooted in three aspects: Simple, Small, and Short. The
training data used by models like CLIP, ALIGN, and EVA, such as the LAION dataset, consists
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Figure 1: LLM2CLIP Overview. After applying caption contrastive fine-tuning to the LLM, the
increased textual discriminability enables more effective CLIP training. We leverage the open-world
knowledge and general capabilities of the LLM to better process dense captions, addressing the
previous limitations of the pretrained CLIP visual encoder and providing richer, higher-dimensional
textual supervision. Experimental results demonstrate that LLM2CLIP can make any SOTA CLIP
model even more SOTA ever.

primarily of web-scraped simple image captions that often lack fine-grained details and knowledge-
level information about the images. Additionally, the CLIP text encoder is relatively small, typically
only one-tenth the size of its visual counterpart. It is trained from scratch alongside the visual encoder
on image-caption datasets, limiting its expressiveness. Moreover, the pretraining corpus for CLIP’s
text encoder is notably short. Any text exceeding 77 tokens is truncated, which forces CLIP to align
features in a simplistic text space, hindering its ability to extract complex features. Furthermore, as a
retriever, CLIP loses its ability to perform retrieval tasks on long or intricate text.

To address these limitations, we propose LLM2CLIP, a method that enhances pretrained CLIP by
post-finetuning on higher-quality textual data. After training on datasets like LAION, CLIP’s visual
encoder already demonstrates strong alignment between image and text features. Therefore, we
replace CLIP’s original text encoder with a large language model (LLM), such as LLaMA-3 or Phi-
3.5. This approach directly addresses the aforementioned limitations by using more complicated and
fine-grained textual data for post-training, mitigating the shortcomings introduced by simple training
data. Additionally, LLMs offer long context windows, eliminating the truncation issue and enabling
CLIP to extract features from extended texts, thus supporting long-text retrieval tasks. Finally, by
replacing CLIP’s text encoder with an LLM, we exploit the large knowledge base of LLMs, allowing
the system to handle more complex text-image data and process sophisticated cross-modal features.

While this approach seems straightforward, directly integrating LLaMA-3 or other LLMs into CLIP
for contrastive learning is challenging. This challenge stems from the fact that LLMs, trained with an
autoregressive objective, do not necessarily yield linearly separable features. Simply replacing CLIP’s
text encoder with an LLM leads to a significant performance drop across nearly all CLIP benchmarks,
rendering the direct approach ineffective. To tackle this, we draw inspiration from LLM2Vec, and
perform fine-tuning on LLMs using image-caption data. After training, we observe that the LLM
exhibits strong linear alignment with image captions, generating more separable language features
that better complement CLIP’s visual encoder for organizing the cross-modal feature space.

Even when replacing CLIP’s text encoder with an LLM and performing lightweight alignment
training on the original CLIP training data, we can fully substitute the text encoder and further
boost the LLM’s capabilities. Like the Platonic hypothesis, replacing the language model is not
as challenging as it may seem—LLMs can easily integrate into the cross-modal space established
by CLIP. Moreover, the capabilities brought by the LLM directly benefit CLIP, as we observe a
significant performance improvement even when training on the original pretrained data distribution.
When training on more sophisticated, high-quality text, the LLM significantly enhances performance.
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2 Methods
2.1 Background
CLIP leverages contrastive learning on 400 million image-text pairs to learn a cross-modal represen-
tation space. The data sources for CLIP primarily come from web-scraped datasets such as LAION
and COYO, which are relatively noisy, with short and coarse-grained text descriptions. Recent efforts,
such as ShareGPT-4V [4], DreamLIP [1], LongCLIP [14], and Recap-DataComp-1B [7], aim to
reconstruct these datasets using state-of-the-art vision-language large models (VLLMs) to provide
longer and more fine-grained captions. However, these approaches often suffer from inefficiencies
due to the limitations of CLIP’s original architecture, particularly its simplistic text encoder, which
struggles to process the richer information contained in these refined captions.

2.2 LLM2CLIP
LLM2CLIP aims to enhance pretrained CLIP by leveraging the capabilities of state-of-the-art large
language models (LLMs), such as LLaMA-3 [5], enabling the model to process longer and more
complex captions, thereby improving CLIP’s performance and addressing its limitations. After the
initial CLIP pretraining, its visual encoder has already gained some alignment with the text space. Our
approach involves replacing the original CLIP text encoder with an LLM, followed by lightweight
finetuning, allowing the feature space of CLIP to benefit from the semantic understanding capabilities
of the LLM. Furthermore, we train CLIP using longer and more fine-grained captions to address the
short and simplistic captions used during CLIP’s pretraining phase. Specifically, we use the EOS
token from LLaMA-3 as the representation for a sentence.

During the training phase, we freeze the gradients of the LLM to maintain its preexisting capabilities,
preventing the finetuning process from altering the LLM’s inherent abilities. This also significantly
reduces the computational cost of finetuning, as CLIP training requires substantial memory to
maintain a large batch size. Inspired by approaches such as FuseMix [11], LiT [13], and APE [10],
we introduce several linear layers as adapters after the LLM to improve alignment, followed by a
projector layer to match the dimensionality of the visual encoder from CLIP.

Interestingly, our initial experiments showed that directly replacing the text encoder with LLaMA-3
and applying the described finetuning strategy resulted in catastrophic performance drops across
almost all tasks. Not only did the model fail to benefit from the LLM or the more complex training
captions, but the original feature space of CLIP was also disrupted. We hypothesize that this issue
arises not solely from the difficulty in reconstructing the feature space after replacing the text encoder,
but from the generative nature of the LLM. Although LLMs have strong generative abilities, their
autoregressive learning objective does not require them to produce text embeddings with sufficient
linear separability in feature space.

The LLM2Vec [2] work also highlights this issue, demonstrating that with minimal finetuning using
LoRA [6] on a small corpus, LLaMA can significantly improve its capability as a text embedding
model using its EOS token. We believe that a similar approach applies to image captions. Therefore,
we enhanced LLaMA-3’s text separability using LLM2Vec’s contrastive learning approach, which led
to substantial improvements in LLM2CLIP’s performance compared to the naive use of LLaMA-3,
while also significantly surpassing all previous CLIP benchmarks.

3 EXPERIMENTS
Training Dataset. We collected the CC3M and CC12M [3] datasets from the DreamLip [1], which
feature captions rewritten using ShareGPT4v [4]. These datasets include both short and long captions.
Additionally, we gathered 15 million samples from the Recap-Datacomp-1B [7] dataset, which also
contains a mix of short and long captions.

Evalation Dataset. For the short text retrieval task, We utilized the COCO [8] and Flickr30k [12]
datasets, employing a 5k test set for COCO and a 1k test set for Flickr30k. For the long text retrieval
task, We followed the DreamLip framework, incorporating a 1k subset from ShareGPT4v [4] and the
Urban1k [1] dataset. Additionally, we included the DOCCI dataset, which contains high-resolution
images accompanied by human-annotated, detailed descriptive captions.

Training Setting. We utilized the CC3M, CC12M, and a 15M subset of recap-datacomp-1B as our
training datasets, which include triplets of long captions, short captions, and images. We finetuned
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for 4 epochs with a batch size of 4096 and an image size of 224 on both the OpenAI-CLIP ViT-B and
ViT-L models. Additionally, we also finetuned the EVA-CLIP ViT-L-336 model with 336 image size.

LLM2CLIP makes SOTA even more SOTA. As shown in Tables 1 and 2, our LLM2CLIP
achieves significant performance improvements across all benchmarks, enhancing the already SOTA
CLIP model. This includes short-text retrieval tasks on COCO and Flickr, as well as long-text
retrieval tasks on ShareGPT4V, Urban-1k, and DOCCI. We also outperform other methods that
attempt to improve CLIP, such as BLIP, JinaCLIP, and LongCLIP, demonstrating the importance and
effectiveness of replacing the text encoder with an LLM.

Ablation analysis In Table 3, we analyze the impact of using an LLM and incorporating high-
quality long-text data. First, using an LLM leads to significant performance gains even when trained
on the original short captions, proving the inherent value of the LLM. Second, longer textual data
allows the LLM to fully leverage its capabilities, further improving performance. Finally, the training
with LLM2Vec is crucial; without it, the model’s performance might even degrade due to the inability
to properly separate textual features.

Table 1: The R@1 of long-caption text-image retrieval on 1k ShareGPT4V validation set and Urban1k
dataset. Best result is in bold.

Method ShareGPT4V Urban-1k DOCCI
I2T T2I I2T T2I I2T T2I

B/16

CLIP 84.5 79.8 67.5 53.1 60.7 57.1
ALIGN 75.9 80.6 62.2 59.1 59.7 62.1
BLIP 65.8 74.3 45.5 48.5 50.5 53.5

Jina-CLIP - - 87.7 88.0 78.7 80.0
Long-CLIP 94.8 93.5 79.1 79.1 63.1 71.4
LLM2CLIP 97.5 97.8 89.7 91.2 81.6 84.1

L/14 CLIP 84.2 83.6 68.3 55.6 63.1 65.8
Long-CLIP 97.2 97.3 82.5 86.1 66.5 78.6
LLM2CLIP 97.4 98.0 93.0 92.1 85.0 88.0

eva-LLM2CLIP 98.7 98.3 93.6 95.1 88.1 90.9

Table 2: Results of short-caption text-image retrieval on the test splits of COCO and Flickr30K
dataset. Best result is in bold.

Method
COCO Flickr30k

I2T T2I I2T T2I
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

B/16

CLIP 52.4 76.8 33.1 58.4 82.3 96.7 62.2 85.7
ALIGN 52.0 76.4 43.2 67.8 80.6 96.0 74.1 92.4
BLIP 61.7 85.5 48.5 75.0 77.9 95.2 71.2 91.5

Jina-CLIP 55.6 79.1 41.1 66.4 80.6 96.6 67.4 89.0
Long-CLIP 56.9 80.4 40.9 66.4 85.8 98.5 70.6 90.6
LLM2CLIP 62.6 83.7 47.8 73.3 88.6 98.5 78.0 93.9

L/14
CLIP 56.3 79.3 36.5 61.1 85.2 97.4 65.0 87.2

Long-CLIP 62.8 85.1 46.3 70.8 90.0 98.9 76.2 93.5
LLM2CLIP 66.0 86.3 52.2 76.5 92.1 99.0 79.9 95.2

eva-LLM2CLIP 68.9 88.2 55.2 78.8 93.3 99.3 83.8 96.5
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Table 3: Comparison of model performance using different lengths of text as training data, and the
effect of LLM2Vec on text feature adjustment. The training data for the model consists of CC3M and
CC12M. Best result is in bold.

Data ShareGPT4V Urban-1k Flickr30k
I2T T2I I2T T2I I2T T2I

EVA-VIT-L/14-336 91.6 76.6 89.4 70.0 89.2 77.9
50% short + 50% long caps

w/o LLM2Vec 92.0 92.3 59.8 63.0 87.7 76.7

50% short + 50% long caps
w/ LLM2Vec 98.7 98.8 92.7 94.5 92.8 83.6

100% short caps
w/ LLM2Vec 92.0 92.9 85.4 88.0 92.4 83.9

100% long caps
w/ LLM2Vec 98.3 98.8 92.2 94.7 89.5 75.6

References
[1] Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and

Siva Reddy. LLM2Vec: Large language models are secretly powerful text encoders. arXiv preprint, 2024.
URL https://arxiv.org/abs/2404.05961.

[2] Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and
Siva Reddy. LLM2Vec: Large language models are secretly powerful text encoders. arXiv preprint, 2024.
URL https://arxiv.org/abs/2404.05961.

[3] Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12m: Pushing web-scale
image-text pre-training to recognize long-tail visual concepts. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 3558–3568, 2021.

[4] Lin Chen, Jisong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua Lin.
Sharegpt4v: Improving large multi-modal models with better captions. arXiv preprint arXiv:2311.12793,
2023.

[5] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

[6] J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. ArXiv, abs/2106.09685, 2021. URL
https://api.semanticscholar.org/CorpusID:235458009.

[7] Xianhang Li, Haoqin Tu, Mude Hui, Zeyu Wang, Bingchen Zhao, Junfei Xiao, Sucheng Ren, Jieru Mei,
Qing Liu, Huangjie Zheng, et al. What if we recaption billions of web images with llama-3? arXiv preprint
arXiv:2406.08478, 2024.

[8] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–ECCV
2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pp.
740–755. Springer, 2014.

[9] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pp. 8748–8763. PMLR,
2021.

[10] Elan Rosenfeld, Preetum Nakkiran, Hadi Pouransari, Oncel Tuzel, and Fartash Faghri. Ape: Aligning
pretrained encoders to quickly learn aligned multimodal representations. ArXiv, abs/2210.03927, 2022.
URL https://api.semanticscholar.org/CorpusID:263792597.

[11] Noël Vouitsis, Zhaoyan Liu, Satya Krishna Gorti, Valentin Villecroze, Jesse C. Cresswell, Guangwei Yu,
Gabriel Loaiza-Ganem, and Maksims Volkovs. Data-efficient multimodal fusion on a single gpu. 2024
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 27229–27241, 2023.
URL https://api.semanticscholar.org/CorpusID:266348670.

[12] Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions. Transactions of the
Association for Computational Linguistics, 2:67–78, 2014.

5

https://arxiv.org/abs/2404.05961
https://arxiv.org/abs/2404.05961
https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:263792597
https://api.semanticscholar.org/CorpusID:266348670


[13] Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander Kolesnikov,
and Lucas Beyer. Lit: Zero-shot transfer with locked-image text tuning. 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 18102–18112, 2021. URL https://api.
semanticscholar.org/CorpusID:244117175.

[14] Beichen Zhang, Pan Zhang, Xiaoyi Dong, Yuhang Zang, and Jiaqi Wang. Long-clip: Unlocking the
long-text capability of clip. arXiv preprint arXiv:2403.15378, 2024.

6

https://api.semanticscholar.org/CorpusID:244117175
https://api.semanticscholar.org/CorpusID:244117175

	Introduction
	Methods
	Background
	LLM2CLIP

	EXPERIMENTS

