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ABSTRACT

Three-dimensional (3D) shape classification plays a central role in computer vi-
sion and computer-aided design (CAD), underpinning applications in intelligent
manufacturing, automated inspection, and digital engineering. Despite recent
progress with 3D CNNs and graph-based approaches, existing methods often over-
look the geometric-topological regularities and symmetry principles intrinsic to
CAD boundary representations (B-reps). To address this challenge, we intro-
duce EquiCAD, a symmetry-aware learning framework that integrates equivari-
ant representations with graph-based reasoning. By leveraging group-theoretic
decomposition of curve and surface descriptors, EquiCAD enforces consistent
SO(3)/O(3)-equivariance while preserving rich geometric details. The model
further exploits hierarchical message passing to capture interactions between lo-
cal features and global structure. Experimental results across multiple datasets,
including SolidLetters, Parts, and a newly constructed benchmark, demonstrate
substantial improvements over prior state-of-the-art approaches, particularly on
industrially relevant shapes with fine-grained attributes. These findings highlight
the value of symmetry-aware modeling for robust and generalizable 3D shape
analysis.

1 INTRODUCTION

Three-dimensional shape classification is a cornerstone problem in computer vision and geometric
deep learning, with critical applications ranging from autonomous driving and robotic manipula-
tion to industrial design and digital content creation (Park et al., 2019; Wu et al., 2015; Xu et al.,
2023). Among various 3D representations, Boundary Representation (B-rep) CAD models (Jayara-
man et al., 2021b; Zhou et al., 2021; Zhang et al., 2024) are particularly significant in manufacturing
and engineering, as they offer a precise, compact, and feature-rich description of solid objects. How-
ever, the complex, structured nature of B-rep data—comprising vertices, edges, and faces along with
their intricate topological relationships—presents a formidable challenge for automated recognition
systems. The task becomes especially difficult when aiming for fine-grained geometric perception
that is not only accurate but also robust to rigid transformations such as rotations and reflections, a
fundamental requirement for real-world deployment (Thomas et al., 2018; Fuchs et al., 2020; Geiger
et al., 2022).

Early attempts at CAD shape analysis often relied on handcrafted, rule-based methods that leverage
domain-specific geometric heuristics. While interpretable, these approaches are inherently limited in
scalability and generalization, as they require extensive manual feature engineering and struggle to
adapt to complex or unseen shape variations. The advent of data-driven techniques initially favored
point-based or voxelized representations due to their compatibility with standard neural architectures
(Park et al., 2019; Mildenhall et al., 2020). However, such methods discard the rich topological
structure and parametric geometry of B-reps, leading to suboptimal performance on fine-grained,
feature-aware tasks. Moreover, they are often sensitive to sampling density and fail to preserve
continuity and symmetry properties, limiting their applicability to high-precision CAD analysis.

More recent graph-based methods (Jayaraman et al., 2021b; Wu et al., 2024; Li et al., 2025) have
sought to model B-reps by representing topological entities as nodes and their adjacencies as edges.
Although these approaches better preserve structural information, they typically overlook the fun-
damental role of symmetry. Standard graph neural networks (GNNs) applied to B-rep graphs are

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

not inherently equivariant to 3D rotations and reflections, causing them to learn pose-dependent fea-
tures that hamper robustness and generalization (Bronstein et al., 2017; Cohen & Welling, 2017).
Furthermore, many GNN-based models do not explicitly account for the heterogeneous nature of
B-rep entities (e.g., faces, edges, loops) or the multi-level interactions between local geometric de-
scriptors and global shape characteristics. This often results in limited expressiveness for capturing
hierarchical part-whole relationships and symmetry-aware shape semantics.

To overcome these limitations, we introduce EquiCAD, a symmetry-aware learning framework that
integrates group-theoretic equivariance with hierarchical graph-based reasoning for B-rep classifi-
cation. Our method is the first to systematically unify SO(3)/O(3)-equivariant neural networks
with graph representation learning on CAD data (Cohen & Welling, 2017; Thomas et al., 2018).
EquiCAD introduces a symmetry-preserving encoding scheme that decomposes geometric entities
from B-reps into irreducible representations based on physical parity, thereby guaranteeing rigorous
SO(3)/O(3)-equivariance throughout the model. Additionally, the framework employs hierarchi-
cal message passing to capture multi-scale interactions between local features and global symme-
try constraints. Extensive experiments on three benchmarking datasets demonstrate that EquiCAD
achieves state-of-the-art performance, underscoring the critical role of symmetry-aware modeling in
advancing 3D shape understanding.

Our main contributions are summarized as follows:

• We introduce EquiCAD, the first framework that systematically unifies SO(3)/O(3)-
equivariant neural networks with graph neural networks for 3D solid model classification.

• We propose a symmetry-preserving encoding scheme that rigorously decomposes B-rep
entities into irreducible representations based on their physical parity, thereby guaranteeing
end-to-end SO(3)/O(3)-equivariance.

• We curate and release a new benchmarking dataset, featuring 16 challenging sub-tasks
for fine-grained feature recognition in CAD models, to facilitate rigorous evaluation of
equivariance-based methods.

• Through extensive experiments on three benchmarks, we demonstrate that EquiCAD sig-
nificantly outperforms state-of-the-art baselines, validating the importance of symmetry
priors for robust and generalizable 3D shape classification.

2 RELATED WORK

3D Shape Classification with Deep Learning. The advent of deep learning has spurred diverse
approaches to 3D shape understanding. Early methods based on voxelized grids or multi-view im-
ages (Wu et al., 2015; Park et al., 2019; Mildenhall et al., 2020) often struggled with computational
inefficiency or loss of 3D geometric information. Point-based architectures, such as PointNet(Qi
et al., 2017a) and its successors (Qi et al., 2017b; Wang et al., 2019), revolutionized the field by
directly consuming unordered point clouds. While these methods achieve permutation invariance,
they are inherently designed for unstructured data and do not capitalize on the rich, structured geo-
metric and topological information inherent to CAD boundary representations (B-reps) (Guo et al.,
2020; Bronstein et al., 2017), which is critical for industrial applications.

Neural Networks for CAD Data. To better exploit the structure of CAD models, recent research has
focused on representations that natively encode B-rep data. UV-Net (Jayaraman et al., 2021a) pio-
neered a hybrid architecture that processes individual B-rep faces using 2D CNNs on their parameter
space (UV patches) and models their topological connectivity via a graph neural network (GNN).
This approach demonstrated superior performance on CAD-specific tasks compared to point- or
voxel-based methods. Subsequent works (Wu et al., 2021; Zhou et al., 2021; Zhang et al., 2024)
have explored hierarchical GNNs and attention mechanisms to capture multi-scale relationships in
the B-rep graph.

SO(3)/O(3)-Equivariant Deep Learning. Equivariant neural networks provide a principled
framework for building invariance or equivariance to specific symmetry groups (e.g., E(3), SO(3),
O(3)) directly into the model architecture (Fuchs et al., 2020; Schütt et al., 2017; Weiler et al., 2018).
By leveraging steerable features and irreducible representations (irreps), models such as those built
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Figure 1: Overview of the proposed EquiCAD framework. Our approach extracts meaningful fea-
tures of B-rep models through three synergistic steps: (1) an SO(3)/O(3)-equivariant encoder that
preserves geometric symmetries, (2) a conventional CNN branch that captures local UV-space pat-
terns, and (3) a graph neural network that aggregates topological relationships. Feature fusion com-
bines the strengths of both encoding strategies before message passing produces the final graph-level
embedding for classification.

with the e3nn framework (Geiger et al., 2022) have shown remarkable data efficiency and general-
ization in physical and geometric domains. However, the application of these powerful principles
has been largely confined to relatively simple 3D data types like point clouds, spherical signals, or
voxels.

Hybrid and Multi-Modal Architectures. Bridging different neural network paradigms has proven
effective for tackling complex data. Hybrid models that combine CNNs with GNNs (Wu et al.,
2024; Li et al., 2025; Hanocka et al., 2019) can capture both local patterns and relational struc-
ture. Similarly, recent efforts have begun to integrate equivariant layers with standard architectures
(Geiger et al., 2022; Thomas et al., 2018; Fuchs et al., 2020) to balance symmetry-awareness with
high-dimensional feature learning. While these multi-branch designs are promising, a systematic
integration that guarantees end-to-end equivariance for structured CAD data is missing.

Summary and Positioning. In summary, while existing methods have made significant strides in
3D shape analysis and CAD processing (Guo et al., 2020; Jayaraman et al., 2021a;b), they operate in
distinct lanes: CAD-specific GNNs often overlook foundational 3D symmetries, while equivariant
networks have not been adapted to the structured complexity of B-reps. We introduce the first frame-
work that provides a rigorous group-theoretic formulation for achieving SO(3)/O(3)-equivariance
on B-rep graphs, thereby unifying the topological expressivity of GNNs with the robustness guaran-
tees of equivariant deep learning.

3 METHODOLOGY

3.1 OVERALL FRAMEWORK

We present EquiCAD, a novel framework that systematically integrates SO(3)/O(3)-equivariant
learning with graph-based reasoning (Gilmer et al., 2017; Wang et al., 2019) for robust 3D solid
classification. Our key insight is that CAD models exhibit inherent geometric symmetries that
should be preserved throughout the learning process, while simultaneously leveraging the structured
topological information embedded in boundary representations (Wu et al., 2021; Jayaraman et al.,
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2021b). As illustrated in Figure 1, EquiCAD comprises three core components: data representation,
symmetry-aware feature fusion, and topology-aware graph aggregation.

Data Preprocessing and Representation. Each 3D solid is represented as a face-adjacency graph
G = (V, E), where nodes V correspond to parametric surfaces and edges E represent shared bound-
ary curves. This representation naturally captures both geometric properties—through surface and
curve attributes—and topological relationships via graph connectivity. Each surface s ∈ V is uni-
formly sampled on a regular UV grid, producing a tensor of shape (Bnode, 7, H,W ) containing 3D
coordinates, normal vectors, and trimming masks. Similarly, curves c ∈ E are sampled to yield
(Bedge, 6, L) tensors encoding coordinates and tangents. All geometric data are normalized via
bounding box normalization to ensure invariance to translation and scale.

Symmetry-Aware Feature Encoding The core innovation of EquiCAD lies in its dual-path encod-
ing strategy. The equivariant branch processes geometric features using SO(3)/O(3)-equivariant
layers that explicitly preserve transformation properties under 3D rotations and reflections. In paral-
lel, the CNN branch employs conventional convolutional networks to capture intricate local patterns
in the UV parameter space. This complementary design enables the model to benefit from both
symmetry-aware feature extraction and high-capacity local representation learning.

Topology-aware Graph Aggregation. Encoded surface and curve features from both branches are
fused via element-wise summation and then propagated through a message-passing graph neural
network. This graph aggregation module models interactions between adjacent faces and curves,
effectively capturing the complex topological relationships that characterize solid models. The final
graph-level embedding is obtained through a multiscale readout mechanism that integrates informa-
tion across all message-passing layers.

3.2 SYMMETRY-AWARE FEATURE ENCODING

The equivariant branch forms the mathematical foundation of our approach, ensuring that learned
representations transform consistently with the input geometry under 3D rotations and reflections.
We adopt similar pathway to extract features of the surface and the curves. Below, we take the
surface s ∈ V as an example to show the feature encoding method.

Physical Parity and Irrep Typing. A fundamental contribution of EquiCAD is our principal group-
theoretic formulation for the encoding of B-rep features. Unlike previous works that treat geometric
attributes as generic feature vectors, we rigorously assign each attribute type to its corresponding
irreducible representation based on transformation properties in the SO(3)/O(3) group.

The mathematical justification comes from the transformation behavior of differential geometric
entities under orthogonal transformations. For a rotation/reflection g ∈ SO(3)/O(3), the transfor-
mation rules follow the physical parity of each geometric entity:

• Curve Encoding (“2 × 1o”): Both coordinates and tangents transform as polar vectors
(l = 1, p = o), since for any g ∈ SO(3)/O(3):

g · x = ρo1(g)x, g · t = ρo1(g)t (1)

where x denotes the position, t the tangent vector, and ρpl (g) is the group representation
acting on type (l, p) features.

• Surface Encoding (“1×1o+1×1e+1×0e”): We carefully distinguish between different
transformation behaviors:

Coordinates: g · x = ρo1(g)x (polar vector) (2)
Normals: g · n = det(g)ρe1(g)n (axial vector) (3)

Trimming mask: g ·m = ρe0(g)m (true scalar) (4)

where ρe1(g) is the representation on axial vectors, ρe0(g) is the trivial representation on
scalars (identity action), and m is a binary trimming mask.

This careful typing is crucial to maintain physical consistency. The determinant factor det(g) in the
normal transformation explains why normals must be assigned even parity (p = e)—they behave as
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pseudo-vectors that do not change sign under reflections. Incorrectly assigning normals as polar vec-
tors would violate this fundamental geometric property. More the detailed theoretical foundations
of SO(3)/O(3)-equivariant deep learning are elaborated in Appendix A.

Mathematical Foundation. The mapping from Cartesian coordinates to irreducible representations
follows the spherical harmonic expansion. For an input vector field v(r), we compute its projection
onto spherical harmonics:

ali =

∫
v(r)Y il (θ, φ)dΩ, (5)

where v(r) is the input vector field, Y il are real spherical harmonics, and dΩ is the surface element
on the unit sphere. The tensor product operation, fundamental to our equivariant layers, follows the
Clebsch-Gordan decomposition.

(l1, p1)⊗ (l2, p2) =

l1+l2⊕
L=|l1−l2|

(L, p1 · p2). (6)

where p1 · p2 denotes the parity product (o · o = e, o · e = o, e · e = e). For our curve encoding, the
tensor product of two polar vectors yields the following.

(1, o)⊗ (1, o) = (0, e)⊕ (1, e)⊕ (2, e). (7)

The above equation describes how vector inputs naturally produce scalar and higher-order tensor
components. This mathematical foundation ensures that all feature transformations respect the
SO(3)/O(3) symmetry group.

Equivariant Network Architecture. Our architecture guarantees SO(3)/O(3)-equivariance
through tensor product operations that respect the Clebsch-Gordan decomposition. The fundamental
operation is the equivariant linear layer between the input type τin and the output type τout:

y = Linearτin→τout(s) =
⊕
j

Wjs
(j) (8)

where s ∈ V is the surface features and s(j) is the component of input features in the j-th irrep sub-
space. The tensor product layers further enrich feature interactions while preserving equivariance.

ρ(L,p)(g)(s⊗ y) = (ρ(l1,p1)(g)x)⊗ (ρ(l2,p2)(g)y) (9)

where ρ(L,p)(g) is the action of g on the (L, p) irrep space.

A critical design choice is that the final equivariant layer produces only scalar (0e) output, enabling
spatial pooling to obtain SO(3)/O(3)-invariant embeddings:

henn,s =
1

N

N∑
i=1

yi, (10)

where yi is the scalar output at spatial location i, and N is the number of sampling points. henn,s
is the SO(3)/O(3)-invariant embeddings for the surface. Similarly, we can follow the above way
using different neural weights to obtain the corresponding SO(3)/O(3)-invariant embeddings for
the curves, i.e., henn,c.

3.3 MULTI-BRANCH FEATURE FUSION

While the equivariant branch provides mathematical guarantees about symmetry preservation, we
complement it with conventional CNNs to capture potentially useful patterns that may not fit neatly
into the irrep formalism.

Complementary Encoding Strategies. The CNN branch processes the same input data through
standard convolutional layers, capturing local correlations and patterns that may be difficult to repre-
sent in the constrained parameter space of equivariant layers. This branch serves as a high-capacity
feature extractor that can learn data-driven representations without explicit symmetry constraints.
Finally, we obtain the spatial encodings hs,cnn and hc,cnn for the surface s ∈ V and curve c ∈ E ,
respectively.

5
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Feature Fusion Strategy. We employ a simple yet effective summation-based fusion:

Hs = {hs‖s ∈ V} = hs,cnn + hs,enn, (11)
E = {euv‖u, v ∈ V} = hc,cnn + hc,enn, (12)

where Hc and Hs represent the final curve and surface embeddings, respectively. The two surfaces
connected to curve c are u and v. This approach allows the model to leverage the strengths of both
encoding strategies: the mathematical rigor of equivariant learning and the representational capacity
of conventional CNNs.

The fusion occurs before graph aggregation, ensuring that both symmetry-aware and data-driven fea-
tures participate in the topological reasoning process. This design enables rich interactions between
geometric priors and learned patterns throughout the network.

3.4 TOPOLOGY-AWARE GRAPH AGGREGATION

The graph aggregation module models the complex relationships between geometric entities in B-
rep models while maintaining the learned symmetry properties.

Message Passing Formulation. We initialize node features with surface embeddings Hs and edge
features with curve embeddings Hc. The message passing follows a multi-layer architecture with
residual connections. The edge update is given by:

e(l+1)
uv = ME

(
(1 + εE)e(l)uv +MP (h(l)u ) +MP (h(l)v )

)
, (13)

where ME and MP are MLPs, εE is a learnable scalar, and h(l)u , h
(l)
v are the features of nodes u, v

at layer l.

The node update employs an edge-conditioned convolution:

h̃(l+1)
u =

∑
v∈N (u)

Wuvh
(l)
v , h(l+1)

u = MN

(
(1 + εN )h(l)u + h̃(l+1)

u

)
, (14)

where N (u) denotes the neighbor set of node u, Wuv ∈ Rdin⊗dout is generated from edge features,
and din, dout are the input/output dimensions.

Multi-Scale Graph Readout. After L message-passing layers, we compute the graph-level embed-
ding using jumping-knowledge aggregation:

HG =

L∑
k=0

Dropout
(

Lineark
(

POOL(h(k))
))

, (15)

where h(k) is the node feature at layer k, and POOL is a permutation-invariant pooling operation
(e.g., mean or max). The resulting graph embedding maintains SO(3)/O(3)-invariance through
our deliberate design of equivariant processing and invariant readout, while also being permutation-
invariant to handle arbitrary face orderings. Finally, we adopt cross-entropy loss to optimize the
whole neural network.

4 EXPERIMENTS

4.1 DATASETS

We evaluate EquiCAD on three benchmarks: SolidLetters, Parts, and Features. SolidLetters
contains 25,000 3D letter shapes with rotational symmetries, serving as a controlled testbed for
symmetry-aware methods. Parts comprises 10,834 industrial mechanical components with com-
plex topological structures, representing real-world CAD challenges. The Features dataset is newly
constructed focusing on fine-grained geometric feature recognition (Zhang et al., 2024).

Features Dataset Construction: We construct a novel benchmark from a segmentation-style B-
rep corpus by repurposing it into 24 binary classification tasks. Each sub-dataset targets a specific
geometric feature type (e.g., slots, pockets, chamfers). For each feature type c, we extract positive

6
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Figure 2: Representative examples from the Features dataset, showcasing diverse geometric features
including through slots, blind steps, pockets, and chamfers.

samples from shapes containing annotated regions of type c and select negative samples from shapes
completely lacking that feature. We then rank all shapes by geometric-topological complexity using
multiple metrics and select the 2,000 most complex positives and 2,000 most complex negatives for
the final dataset. This design emphasizes challenging instances and enables focused evaluation on
fine-grained geometric attributes. Figure 2 shows representative examples.

Data Preprocessing: All models undergo consistent preprocessing: we parse B-rep structures, re-
construct face-edge graphs, and apply bounding-box normalization. Faces are sampled on 16x16
UV grids (7 channels: coordinates, normals, trimming mask), while edges are uniformly sampled
into 64-point curves (6 channels: coordinates, tangents).

4.2 BASELINE METHODS

We benchmark against two families of methods to cover both unstructured and CAD-structured set-
tings. Point-based baselines include PointNet (Qi et al., 2017a), PointNet++ (Qi et al., 2017b), and
DGCNN (Wang et al., 2019): PointNet provides permutation-invariant set processing via symmetric
pooling; PointNet++ augments this with hierarchical set abstraction to better capture local neigh-
borhoods; DGCNN forms dynamic kNN graphs and applies edge convolutions with neighborhood
recomputation for stronger local geometry modeling. CAD-oriented baselines operate directly on B-
reps: UV-Net (Jayaraman et al., 2021a) combines UV-domain CNN encoders with a face–edge GNN
to jointly model parameterized surfaces and topological adjacencies; AAGNet (Wu et al., 2024)
leverages attributed adjacency to propagate geometric/topological cues on the B-rep graph; DTG-
BrepGen (Li et al., 2025) incorporates topology-aware constraints and geometric signals beyond
UV-only designs. This spectrum establishes a balanced comparison against our symmetry-aware
B-rep classifier.

For protocol and fairness, we use the train/val/test splits defined in Section 5.3 and adopt a shared
training setup (optimizer, budget, early stopping/model selection on validation accuracy) as de-
tailed therein. CAD methods (UV-Net, AAGNet, DTGBrepGen, ours) receive B-rep UV tensors
and face–edge graphs produced by the same preprocessing pipeline; point-based methods (Point-
Net/PointNet++/DGCNN) are fed uniformly sampled points from the same shapes with identical
normalization and, where applicable, shared augmentation. Results are reported as the mean over
three random seeds unless stated otherwise, and we use authors’ recommended hyperparameters
when they conflict with our defaults.

4.3 IMPLEMENTATION DETAILS

Experimental Setup: We employ fixed dataset splits: 16:4:5 for SolidLetters, 8:1:1 for Parts and
Features. For Features, splits are applied independently per sub-dataset. All experiments use Adam
optimizer with learning rate 0.001, batch size 32, and are conducted on NVIDIA RTX 3090 GPUs.

7
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Method SolidLetters Parts
UV-Net (Jayaraman et al., 2021a) 96.96% 86.70%
PointNet (Qi et al., 2017a) 97.01% 81.55%
PointNet++ (Qi et al., 2017b) 97.36% 88.51%
DGCNN (Wang et al., 2019) 94.76% 74.11%
AAGNet (Wu et al., 2024) 95.13% 90.54%
DTGBrepGen (Li et al., 2025) 95.34% 90.46%
EquiCAD 97.64% 91.66%

Table 1: Classification accuracy on SolidLetters and Parts datasets.

Feature Type PointNet PointNet++ DGCNN UV-Net AAGNet DTGBrepGen EquiCAD

Rectangular through slot 0.538 0.570 0.565 0.615 0.513 0.510 0.706
Triangular through slot 0.542 0.567 0.524 0.858 0.537 0.794 0.982
Circular through slot 0.569 0.580 0.503 0.510 0.522 0.470 0.594
Triangular passage 0.537 0.535 0.483 0.859 0.591 0.515 0.998
Rectangular through step 0.589 0.571 0.524 0.536 0.556 0.506 0.583
2-Sided through step 0.541 0.572 0.548 0.512 0.546 0.513 0.594
Slanted through step 0.553 0.570 0.588 0.518 0.546 0.479 0.579
Rectangular blind step 0.544 0.583 0.599 0.570 0.494 0.512 0.843
Triangular blind step 0.561 0.570 0.547 0.823 0.521 0.537 0.979
Circular blind step 0.543 0.593 0.525 0.557 0.501 0.510 0.604
Rectangular blind slot 0.541 0.514 0.525 0.495 0.520 0.527 0.572
Horizontal circular end blind slot 0.517 0.570 0.554 0.509 0.531 0.509 0.570
Vertical circular end blind slot 0.561 0.581 0.529 0.549 0.503 0.517 0.590
Rectangular pocket 0.562 0.573 0.544 0.839 0.525 0.510 1.000
Chamfer 0.518 0.519 0.559 0.575 0.518 0.511 0.615
Illet 0.568 0.598 0.582 0.476 0.551 0.511 0.550

Average 0.549 0.567 0.544 0.613 0.530 0.527 0.710

Table 2: AUROC performance on 16 challenging feature recognition tasks (mean over 3 runs). Best
results in bold.

EquiCAD Architecture: Our framework combines SO(3)/O(3)-equivariant and conventional
CNN branches with follwoing settings. Equivariant Branch: Curve encoder: “2 × 1o →
8×0e+8×2e→ 64×0e”; Surface encoder: “1×1o+1×1e+1×0e→ 8×0e+8×1o+8×1e+4×2e
→ 64 × 0e”. CNN Branch: 1D CNN for curves (6 → 64 → 128 → 256), 2D CNN for surfaces
(7 → 64 → 128 → 256). Graph Aggregation: 3-layer GNN with 64-dimensional hidden states.
Models are trained for exactly 100 epochs without early stopping. For SolidLetters and Parts, we
report single-run accuracy. For Features dataset, we report mean AUROC over 3 random seeds to
ensure statistical reliability.

4.4 MAIN RESULTS

SolidLetters and Parts Datasets: Table 1 shows classification accuracy across methods. On Soli-
dLetters, most baselines achieve strong performance, yet EquiCAD provides a consistent improve-
ment (97.64%). The Parts dataset reveals more substantial differences: while the best baseline
reaches 90.54%, EquiCAD achieves 91.66%—demonstrating superior performance on complex in-
dustrial components.

Features Dataset Analysis: Table 2 presents AUROC scores for 16 challenging feature recognition
tasks (mean over 3 runs). EquiCAD achieves the highest performance in the majority of tasks, with
particularly strong gains on geometrically complex features like triangular passages (0.998 vs 0.859)
and rectangular pockets (1.000 vs 0.839). This demonstrates a superior fine-grained geometric un-
derstanding.
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Configuration SolidLetters Parts
CNN-only 96.96% 86.70%
Ours-Curve ENN 95.57% 90.52%
Ours-Surface ENN 95.40% 90.26%
EquiCAD (full) 97.64% 91.66%

Table 3: Ablation study.

Curve Irreps Surface Irreps SolidLetters Parts
2x1o 1x1o+1x1e+1x0e (Ours) 97.64% 91.66%
2x1o 2x1o+1x0e 42.49% 59.37%
2x1o 1x1o+4x0e 96.16% 91.22%
2x1o 7x0e 94.96% 91.19%
1x1o+3x0e 2x1o+1x0e 95.53% 91.09%
1x1o+3x0e 1x1o+4x0e 95.67% 88.46%
1x1o+3x0e 7x0e 94.84% 91.19%
6x0e 2x1o+1x0e 96.89% 88.70%
6x0e 1x1o+4x0e 96.87% 90.48%
6x0e 7x0e 96.89% 90.98%

Table 4: Robustness analysis: performance under different irrep configurations.

4.5 ABLATION STUDY

We systematically evaluate the contribution of the components through a comprehensive ablation
design (Table 3) about four variants. CNN-only: Remove equivariant encoders from both branches
(only CNN components). Ours-Curve ENN: Curve branch uses only CNN; Surface branch uses
equivariant encoder + CNN auxiliary. Ours-Surface ENN: Surface branch uses only CNN; Curve
branch uses equivariant encoder + CNN auxiliary. EquiCAD (full): Both branches use equivariant
encoder + CNN auxiliary (our complete model). As shown in Table 3, the full model achieves
the best performance on both datasets. Removing equivariant encoding from either branch causes
performance degradation, while removing both yields the largest drop. This shows that symmetry-
aware features from both curves and surfaces provide complementary benefits.

4.6 ROBUSTNESS ANALYSIS

Table 4 evaluates sensitivity to irreducible representation choices. Our physically-motivated config-
uration (curve: 2x1o; surface: 1x1o+1x1e+1x0e) achieves optimal performance. Critically, mistyp-
ing surface normals as polar vectors (2x1o+1x0e) causes catastrophic performance degradation
(42.49% on SolidLetters), validating our physical parity assignment. Reducing angular capacity
also degrades performance, confirming the importance of directional information. More ablation
results are provided in Appendix A.3.

5 CONCLUSION

We presented EquiCAD, a novel framework that integrates SO(3)/O(3)-equivariant learning with
graph neural networks for 3D solid classification. Our key contribution is a symmetry-aware encod-
ing scheme that decomposes B-rep entities into irreducible representations based on physical parity,
ensuring rigorous equivariance while capturing geometric-topological relationships. Experiments
across SolidLetters, Parts, and our new Features benchmark demonstrate state-of-the-art perfor-
mance, particularly on complex industrial shapes and fine-grained feature recognition tasks. The
consistent superiority of EquiCAD validates the importance of incorporating geometric symmetries
for robust CAD analysis. Future work will explore applications to other CAD tasks and more com-
plex equivariant architectures.
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All authors have read and adhered to the ICLR Code of Ethics. This research is foundational and
methodological in nature, focusing on advancing geometric deep learning and 3D shape understand-
ing for computer-aided design (CAD) data. Our work exclusively utilizes publicly available CAD
benchmark datasets (e.g., SolidLetters, Parts, and the Features dataset), which do not contain per-
sonally identifiable information or sensitive data, and no human subjects were involved in this study.
Furthermore, our work does not present any other ethical violations.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have provided comprehensive details throughout the
paper and its appendix. All experiments are conducted on publicly available and cited CAD bench-
mark datasets, including SolidLetters, Parts, and Features. Our proposed EquiCAD framework and
its components are thoroughly described in Section 3. Specific implementation details, including
hyperparameters, model configurations, and training procedures, are provided in the Section 4.3.
Foundational theoretical analysis is also provided in the appendix. The source code, data prepro-
cessing scripts, and the newly constructed Features dataset for our experiments will be made publicly
available upon the paper’s acceptance to facilitate further research and verification.
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A APPENDIX

A.1 STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we used the Large Language Model (LLM) to polish the
language and correct grammatical errors to improve readability. The LLM was not involved in any
core research aspects of the paper, such as research ideation, experimental design, or analysis of
results.

A.2 PRELIMINARIES: SO(3)/O(3)-EQUIVARIANT DEEP LEARNING

To ensure our framework is accessible to readers unfamiliar with geometric deep learning, we briefly
review the essential concepts of SO(3)/O(3)-equivariant neural networks. Our focus is on the
orthogonal group SO(3)/O(3)—the group of 3D rotations and reflections—which provides the
mathematical foundation for handling the symmetries inherent in CAD models.

SO(3)/O(3)-Equivariance Principle. A function f : X → Y is equivariant to a group G if
transforming the input by any group element g ∈ G results in a predictable transformation of the
output:

f(ρX(g) · x) = ρY (g) · f(x), ∀g ∈ G, (16)

where ρX and ρY are representations of G on the input and output spaces, respectively. In our
context, G = SO(3)/O(3), and equivariance ensures that rotating or reflecting a B-rep model
consistently transforms its learned features—a crucial property for robust CAD analysis.

Irreducible Representations of SO(3)/O(3). To build SO(3)/O(3)-equivariant networks, we
decompose features into irreducible representations (irreps)—the fundamental building blocks that
transform in a simple, predictable way under group actions. Each irrep is characterized by an integer
degree l ≥ 0 and a parity p ∈ {e, o}:

• Degree l determines the dimensionality (2l+1) and angular frequency of the transformation
behavior.

• Parity p specifies behavior under reflection: even (p = e) features remain unchanged, while
odd (p = o) features change sign.

For example, scalar values (l = 0, p = e) are invariant to rotations, while polar vectors (e.g.,
coordinates) transform as l = 1, p = o irreps.

Feature Encoding with Multiplicities. Practical SO(3)/O(3)-equivariant networks compose fea-
tures as direct sums of irreps. For each irrep type (l, p), we can include multiple independent copies
(multiplicity m). Thus, a feature vector containing K distinct irrep types has total dimension:

D =

K∑
i=1

mi · (2li + 1). (17)

Following conventions in libraries like e3nn (Geiger et al., 2022), we notationally express feature
types as concatenations like ”2 × 1o + 3 × 0e”, denoting two vector-valued (l = 1, odd) and three
scalar (l = 0, even) channels.

SO(3)/O(3)-Equivariant Linear Maps and Nonlinearities. SO(3)/O(3)-Equivariant linear
layers between input and output features of types ρin and ρout must satisfy the intertwining condition:

W · ρin(g) = ρout(g) ·W, ∀g ∈ SO(3)/O(3). (18)

Such constraints drastically reduce the number of free parameters in W , improving generalization.
For nonlinearities, standard activation functions (e.g., ReLU) generally break equivariance. Instead,
we use gate nonlinearities (Weiler et al., 2018) that combine tensor products of irreps with learned
gating scalars, preserving equivariance while enabling complex feature learning.

These foundations enable our key contribution: adapting SO(3)/O(3)-equivariance to the struc-
tured graph domain of CAD B-reps, building upon established graph neural network principles
(Gilmer et al., 2017; Kipf & Welling, 2017) while incorporating geometric symmetry constraints.
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A.3 COMPLETE ROBUSTNESS EXPERIMENTS

In this subsection, we present a comprehensive robustness analysis table that combines results shown
in the main paper with additional configurations not included due to space constraints. This extended
table provides a full view of the performance under various irreducible representation choices and
physical parity assignments.

Curve Irreps Surface Irreps SolidLetters Parts
2x1o 1x1o+1x1e+1x0e (Ours) 97.64% 91.66%
2x1o 2x1o+1x0e 42.49% 59.37%
2x1o 1x1o+4x0e 96.16% 91.22%
2x1o 7x0e 94.96% 91.19%
1x1o+3x0e 2x1o+1x0e 95.53% 91.09%
1x1o+3x0e 1x1o+4x0e 95.67% 88.46%
1x1o+3x0e 7x0e 94.84% 91.19%
6x0e 2x1o+1x0e 96.89% 88.70%
6x0e 1x1o+4x0e 96.87% 90.48%
6x0e 7x0e 96.89% 90.98%
1X1o+3x0e 1x1o+1x1e+1x0e 95.30% 90.63%
6x0e 1x1o+1x1e+1x0e 95.37% 90.89%
2x1o 2x1e+1x0e 95.43% 91.05%
1x1o+3x0e 2x1e+1x0e 95.48% 90.46%
6x0e 2x1e+1x0e 95.16% 90.59%

Table 5: Comprehensive robustness analysis: combining main paper results with additional config-
urations.
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