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Abstract

We present Rectified Point Flow, a unified parameterization that formulates pair-
wise point cloud registration and multi-part shape assembly as a single conditional
generative problem. Given unposed point clouds, our method learns a continuous
point-wise velocity field that transports noisy points toward their target positions,
from which part poses are recovered. In contrast to prior work that regresses part-
wise poses with ad-hoc symmetry handling, our method intrinsically learns assem-
bly symmetries without symmetry labels. Together with an overlap-aware encoder
focused on inter-part contacts, Rectified Point Flow achieves a new state-of-the-art
performance on six benchmarks spanning pairwise registration and shape assembly.
Notably, our unified formulation enables effective joint training on diverse datasets,
facilitating the learning of shared geometric priors and consequently boosting accu-
racy. Our code and models are available at hitps://rectified-pointflow.github.io/\

1 Introduction

Estimating the relative poses of rigid parts from 3D point clouds for alignment is a core task in
computer vision and robotics, with applications spanning pairwise registration [1]] and complex
multi-part shape assembly [2]. In many settings, the input consists of an unordered set of part-
level point clouds—without known correspondences, categories, or semantic labels—and the goal
is to infer a globally consistent configuration of poses, essentially solving a multi-part (two or
more) point cloud pose estimation problem. While conceptually simple, this problem is technically
challenging due to the combinatorial space of valid assemblies and the prevalence of symmetry and
part interchangeability in real-world shapes [3| 4, |5].

Despite sharing the goal of recovering 6-DoF transformations, different 3D reasoning tasks—such as
object pose estimation, part registration, and shape assembly—have historically evolved in silos, treat-
ing each part independently and relying on task-specific assumptions and architectures. For instance,
object pose estimators often assume known categories or textured markers [6, [7]], while part assembly
algorithms may require access to a canonical target shape or manual part correspondences [8]]. This
fragmentation has yielded solutions that perform well in narrow domains but fail to generalize across
tasks, object categories, or real-world ambiguities.

Among these tasks, multi-part shape assembly presents especially unique challenges. The problem is
inherently under constrained: parts are often symmetric [9]], interchangeable [10], or geometrically
ambiguous, leading to multiple plausible local configurations. As a result, conventional part-wise
registration can produce flipped or misaligned configurations that are locally valid but globally
inconsistent with the intended assembly. Overcoming such ambiguities requires a model that can
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reason jointly about part identity, relative placement, and overall shape coherence—without relying
on strong supervision or hand-engineered heuristics.

In this work, we revisit 3D pose regression and propose a generative approach for generic point cloud
pose estimation that casts the problem as learning a continuous point-wise flow field over the input
geometry, effectively capturing priors over assembled shapes. Our method, Rectified Point Flow,
models the motion of points from random Gaussian noise in Euclidean space toward the point clouds
of assembled objects. This learned flow implicitly encodes part-level transformations, enabling both
discriminative pose estimation and generative shape assembly within a single framework. Rectified
Point Flow consists of an encoder that extracts point-wise features, and a flow model that, given the
features, predicts the final assembled positions.

To instill geometric awareness of inter-part relationships, we pretrain the encoder on large-scale
3D shape datasets: predicting point-wise overlap across parts, formulated as a binary classification
task. While GARF [11] also highlights the value of encoder pretraining for a flow model, it relies
on mesh-based physical simulation [[12]] to generate fracture-based supervision signals. In contrast,
we introduce a lightweight and scalable alternative that constructs pretraining data by computing
geometric overlap between parts. Our data generation is agnostic to data sources tailored for different
tasks—including part segmentation [13} 14, [15], shape assembly [12} 16} [17], and registration [[18,
19]—without requiring watertight mesh or simulation, an important step towards scalable pretraining
for pose estimation.

Our flow-based pose estimation departs from traditional pose-vector regression in three ways: (i)
Joint shape-pose reasoning: We cast the registration and assembly tasks as one unified task that
reconstructs the complete shape while simultaneously enabling the estimation of part poses; (ii)
Scalable shape prior learning: By training to predict the final assembled point cloud, our model
learns from heterogeneous datasets and part definitions, yielding scalable training and transferable
geometric knowledge across standard pairwise registration, fracture reassembly, and complex furniture
assembly tasks; and (iii) Intrinsic symmetry handling: Rather than regressing pose vectors directly
in SE(3) space, we operate in Euclidean space over dense point clouds. This makes the model
inherently robust to symmetries, part interchangeability, and spatial ambiguities that often challenge
conventional methods. Our main contributions are summarized as follows:

* We propose Rectified Point Flow, a generative approach for generic point cloud pose estimation
that addresses both pairwise registration and multi-part assembly tasks and achieves state-of-the-
art performances on all the tasks.

* We propose a generalizable pretraining strategy with geometric awareness of inter-part relation-
ships across several 3D shape datasets, and formulate it as point-wise overlap prediction.

* We show that our parameterization supports joint training across different registration tasks,
boosting the performance on each individual task.

2 Related Work

Parametrization for Pose Estimation. Euler angles and quaternions are the predominant
parametrization of rotation in various pose regression tasks [20} 21, 22, 23| 24| 25 [11} 26] due
to their simplicity and usability. As Euler angles and quaternions are discontinuous representations,
Zhou et al. [27] proposed to represent 3D rotation with a continuous representation for neural net-
works using 6D and 7D vectors. In contrast to directly regressing pose vectors, other methods train
networks to find sparse correspondences between image pairs or point cloud pairs and extract pose
vectors using Singular Value Decomposition (SVD) [28] 129} 8} 130, 1311 132]]. More recently, RayDif-
fusion [33]] proposed to represent camera poses as ray bundles, naturally suited for coupling image
features and transformer architectures. Huang et al. [34] adopted a point cloud generative model for
policy learning in robot pick-and-place tasks, then recovered relative poses between the object and
gripper via SVD. DUSt3R [35] directly regresses the pointmap of each camera in a global reference
frame and then extracts the camera pose using RANSAC-PnP [36}37]]. Our proposed Rectified Point
Flow, extends the dense point cloud or point map representation for learning generalizable pose
estimation on point cloud registration and shape assembly tasks.

Learning-based 3D Registration. 3D registration aims to align point cloud pairs in the same
reference frame by solving the relative transformation from source to target. The first line of work
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Figure 1: Rectified Point Flow’s Pose-from-Shape Pipeline. Our formulation supports shape
assembly (first row) and pairwise registration (second row) tasks in a single framework. Given a set
of unposed part point clouds { X };cq, Rectified Point Flow predicts each part’s point cloud at the

target assembled state {XZ(O)}IG o. Subsequently, we solve Procrustes problem via SVD between
the condition point cloud X; and the estimated point cloud X;(0) to recover the rigid transformation
T; for each non-anchored part.

focuses on correspondence-based methods 1 that first extract correspondences between
point clouds, followed by robust estimators to recover the transformation. Subsequent works [29]
411142 advance the performance by learning more powerful features with improved architecture
and loss design. The second line of work comprises direct registration methods [30, 22]] that
directly compute a score matrix and apply differentiable weighted SVD to solve for the transformation.
Correspondence-based methods can fail in extremely low-overlap scenarios in shape assembly and
direct methods fall short in terms of pose accuracy. Our method, which directly regresses the
coordinates of each point in the source point cloud, is agnostic and more generalizable to varying
overlap ratios compared to direct methods.

Multi-Part Registration and Assembly. Multi-part registration and shape assembly generalize
pairwise relative pose estimation to multiple parts, with applications in furniture assembly [17]
and shape reassembly [12]. Methods 26, tackle the multi-part registration problem
by estimating the transformation for each rigid part in the scene (multi-source and multi-target).
Multi-part shape assembly differs as a task from registration because it has multi-source input and
a canonical target, and each part has almost ‘zero’ overlap w.r.t. each other. Chen et al. [48] adopt
an adversarial learning scheme to examine the plausibility for different shape configurations. Wu
et al. [49] leverage SE(3) equivariant representation to handle pose variations in shape assembly.
DiffAssembly [50] and PuzzleFusion [24, leverage diffusion models to predict the transformation
for each part. GARF combines fracture-aware pretraining with a flow matching model to predict
per-part transformation. These methods, however, do not handle interchangeability and symmetry as
well as ours does. Moreover, Rectified Point Flow is the first solution for furniture assembly of 3D
shapes on the PartNet-Assembly [15] and IKEA-Manual [17] datasets.

3 Pose Estimation via Rectified Point Flow

Rectified Point Flow addresses the multi-part point cloud pose estimation problem, defined in Sec.
The overall pipeline consists of two consecutive stages: overlap-aware point encoding (Sec.

and conditional Rectified Point Flow (Sec.[3.3). Finally, we explain how our formulation inherently
addresses the challenges posed by symmetric and interchangeable parts in Sec. [E]
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Figure 2: Encoder pre-training via overlap points prediction. Given unposed multi-part point
clouds, our encoder with a point-wise overlap prediction head performs a binary classification to
identify overlapping points. Predicted overlap points are shown in blue. For comparison, the ground-
truth overlap points are visualized on the assembled object for clarity (target overlap).

3.1 Problem Definition

Consider a set of unposed point clouds of multiple object parts, { X; € R**Ni}, ., where Q is the
part index set, H := |Q}] is the number of parts, and NV; is the number of points in part . The goal
is to solve for a set of rigid transformations {T; € SE(3)};cq that align each part in the unposed
multi-part point cloud X to form a single, assembled object Y in a global coordinate frame, where

X = UXi eRN, Y = UTX e R3*N, andN::ZNi. (1)
ieQ ieQ ieQ
To eliminate global translation and rotation ambiguity, we set the first part (z = 0) as the anchor and
define its coordinate frame as the global frame. All other parts are registered to this anchor.

3.2 Overlap-aware Point Encoding

Pose estimation relies on geometric cues from mutually overlapping regions among connected
parts [29, (32 [11]]. In our work, we address this challenge through a pretraining module that develops
a task-agnostic, overlap-aware encoder capable of producing pose-invariant point features. As
illustrated in Fig.[2| we train an encoder F' to identify overlapping points in different parts. Given
a set of unposed parts { X; },cq, we first apply random rigid transforms 7; € SE(3) and compose
transformed point clouds X; = T; X as input to the encoder. These data augmentations enable the
encoder to learn more robust pose-invariant features. The encoder then computes per-point features
Cij € R? for the j-th point on part 7, after which an MLP overlap prediction head estimates the
overlap probability p; ;. The binary ground-truth label p; ; is 1 if point X; ; falls within radius € of at
least one point in other parts.

We train both the encoder and the overlap head using binary cross-entropy loss. For objects without
predefined part segmentation, we employ off-the-shelf 3D part segmentation methods to generate the
necessary labels. The features extracted by our trained encoder subsequently serve as conditioning
input for our Rectified Point Flow model.

3.3 Generative Modeling for Pose Estimation

The overlap-aware encoder identifies potential overlap regions between parts but cannot determine
their final alignment, particularly in symmetric objects that allow multiple valid assembly configu-
rations. To address this limitation, we formulate the point cloud pose estimation as a conditional
generation task. With this approach, Rectified Point Flow leverages the extracted point features to
sample from the conditional distribution of all feasible assembled states across multi-part point clouds,
generating estimates that maximize the likelihood of the conditional input point cloud. By recasting
pose estimation as a generative problem, we naturally accommodate the inherent ambiguities arising
from symmetry and part interchangeability in the data.

Preliminaries. Rectified Flow (RF) [51}52] is a score-free generative modeling framework that
learns to transform a sample X (0) from a source distribution, into X (1) from a target distribution.
The forward process is defined as linear interpolation between them with a timestep ¢ as

X(t)=1-t)X(0)+tX(1), te][0,1]. 2)
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Figure 3: Learning Rectified Point Flow. The input to Rectified Point Flow are the condition point
clouds { X };cq and noised point clouds {X;(t)};cq at timestep ¢. They are first encoded by the
pre-trained encoder and the positional encoding, respectively. The encoded features are concatenated
and passed through the flow model, which predicts per-point velocity vectors {d X;(t)/dt};cq and
defines the flow used to predict the part point cloud in its assembled state.

The reverse process is modeled as a velocity field V; X (t), which is parameterized as a network
V(t, X (t) | X) conditioned on X and trained using conditional flow matching (CFM) loss [53],

Lora(V) =Eox ||V X (1) | X) - th(t)Hﬂ . 3)

Rectified Point Flow. In our method, we directly apply RF to the 3D Euclidean coordinates of the
multi-part point clouds. Let X;(t) € R3*M: denote the time-dependent point cloud for part i, where
M; is number of sampled points. Att = 0, {X;(0)};cq is uniformly sampled from the assembled
object Y, while at t = 1, points on each part are independently sampled from a Gaussian, i.e.,
X;(1) ~ N(0,I). Then, we define the continuous flow for each part as straight-line interpolation in
3D Euclidean space between the points in noised and assembled states. Specifically, for each part 4,

X;(t)=(1-1)X;(0) +tX;(1), telo,1]. “
The velocity field of Rectified Point Flow is therefore,
dX;(t
0 x,0) - x,00). ©

We fix the anchored part (i = 0) by setting X (t) = X(0) for all ¢ € [0, 1], implemented via a
mask that zeros out the velocity for its points. Once the model predicts the assembled point cloud of
each part X;(0), we recover its pose T; in a Procrustes problem,
T; = argmin ||T,X; — X;(0)] r. Q)
T;€SE(3)

Solving poses T; for all non-anchored parts via SVD completes the pose estimation task in Eq.

Learning Objective. We train a flow model V' to recover the velocity field in Eq. [} taking the
noised point clouds { X, (t) };eq and conditioning on unposed multi-part point cloud X, as shown
in Fig. 3] First, we encode X using the pre-trained encoder F. For each noised point cloud, we
apply a positional encoding to its 3D coordinates and part index, concatenate these embeddings with
the point features, and feed the result into the flow model. We denote its predicted velocity field by
the flow model for all points by V (¢, { X;(t) }icq; X ) € R3*M . We optimize the flow model V by
minimizing the conditional flow matching loss in Eq.[3]

3.4 Invariance Under Rotational Symmetry and Interchangeability

In our method, the straight-line point flow and point-cloud sampling, while simple, guarantee that
every flow realization and its loss in Eq. (3) remain invariant under an assembly symmetry group G:

Theorem 1 (G-invariance of the learning objective). For every element g € G, we have the learning
objective in Eq.[3|following Lcrv(V) = Lerm(9(V (8, {Xi(t) Yica; 9(X)))).

The formal definition of G and the proof of Theorem [I]appear in the supplementary material. As a
result, the flow model learns all the symmetries in G during training, without the need for additional
hand-made data augmentation or heuristics on symmetry and interchangeability.



4 Experiments

Implementation Details. We use PointTransformerV3 (PTv3) [54] as the backbone for point cloud
encoder, and use Diffusion Transformer (DiT) [55] as our flow model. Each DiT layer applies two
self-attention stages: (i) part-wise attention to consolidate part-awareness, and (i) global attention
over all part tokens to fuse information. We stabilize the attention computation by applying RMS
Normalization [56, 57] to the query and key vectors per head before attention operations. We sample
the time steps from a U-shaped distribution following [58]. We pre-train the PTv3 encoder on all
datasets with an additional subset of Objaverse [14] meshes, where we apply PartField [[13] to obtain
annotations. After pretraining, we freeze the weights of the encoder. We train our flow model on
8 NVIDIA A100 80GB GPUs for 400k iterations with an effective batch size of 256. We use the
AdamW [59]] optimizer with an initial learning rate 5 x 10~* which is halved every 25k iterations
after the first 275k iterations.

Table 1: Dataset statistics. We train our flow model on six datasets with varying sizes, part definitions,
and complexities. The encoder is pre-trained on these datasets with an extra Objaverse dataset.

Dataset Task Part Definition Train & Val Test

# Samples  # Parts  # Samples  # Parts
IKEA-Manual [17] Assembly Reusability and packing 84 [2, 19] 18 [2,19]
TwoByTwo [16] Assembly Insertable parts 308 [2, 2] 144 2, 2]
PartNet-Assembly Assembly Semantics and functions 23755 [2, 64] 261 [2, 64]
BreakingBad [12] Assembly Fracture simulation 35114 [2,49] 265 [2,49]
TUD-L [18] Registration ~ RGB-D sensor scans 19138 [2,2] 300 [2,2]
ModelNet-40 [[19] Registration ~ Random partition 19680 [2,2] 260 [2,2]
Objaverse 1.0 [14] Pre-training  From PartField [13] 63199 [3, 12] 6794 [3,12]

4.1 Experimental Setting

Datasets. For the multi-part shape assembly task, we experiment on the BreakingBad [12],
TwoByTwo [16], PartNet [[15], and IKEA-Manual [[17]] datasets. The PartNet dataset has been
processed for the shape assembly task following the same procedure as [17] but includes all object
categories; we refer to this version as PartNet-Assembly. Evaluation of the pairwise registration is
performed on the TUD-L [18] and ModelNet-40 [19] datasets. We follow [22] for prepossessing
the TUD-L dataset. We split all datasets into train/val/test sets following existing literature for fair
comparisons. These datasets define parts at distinct levels, ranging from random partitions (e.g.,
ModelNet-40 and BreakingBad) to human-labeled (e.g., semantically meaningful parts in PartNet
and IKEA-Manual). The statistics and information of all datasets are summarized in Tab.

Evaluation Protocols. We evaluate the pose accuracy following the convention of each benchmark,
with Rotation Error (RE), Translation Error (TE), Rotation Recall at 5° (Recall @ 5°), and Translation
Recall at 1 cm (Recall @ 1 cm). For the shape assembly task, we measure Part Accuracy (Part Acc)
by computing per object the fraction of parts with Chamfer Distance under 1 cm, and then averaging
those per-object scores across the dataset, following [25} [11} 130} [17].

Following [[11]], we select the largest-volume part as the anchor and fix it during inference. However,
this effectively provides the model with anchor pose in the object’s CoM (center of mass) frame, an
unrealistic assumption for real-world assembly applications. Therefore, we also train our model in an
anchor-free setting (see Appendix [Bf Anchor-free Models), and argue that anchor-free evaluation
should be the standard protocol for shape assembly tasks.

Baseline Methods. We evaluated our method against state-of-the-art methods for pairwise registra-
tion and shape assembly. For pairwise registration, we compare against DCPNet [31]], RPMNet [30],
GeoTransformer [32]], and Diff-RPMNet [22]]. For shape assembly, we compare against MSN [48]],
SE(3)-Assembly [49], Jigsaw [60], PuzzleFussion++ [25], and GARF [11]. We report our per-
formances under two training configurations: dataset-specific training where models are trained
independently for each dataset (denoted Ours (Single)), and joint training where a single model is
trained across all datasets (denoted Ours (Joint)).
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Figure 4: Qualitative Results on PartNet-Assembly. Columns show objects with increasing number
of parts (left to right). Rows display (1) colored input point clouds of each part, (2) GARF outputs
(dashed boxes indicate samples limited to 20 by GARF’s design, selecting the top 20 parts by volume),
(3) Rectified Point Flow outputs, and (4) ground-truth assemblies. Compared to GARF, our method
produces more accurate pose estimation on most parts, especially as the number of parts increases.

Table 2: Multi-Part Assembly Results. Rectified Point Flow (Ours) achieves the best performance
across all metrics on BreakingBad-Everyday, TwoByTwo, and PartNet-Assembly datasets.

BreakingBad-Everyday [12] TwoByTwo [16] PartNet-Assembly
Methods RE| TE| PatAcct RE| TEJ RE] TEJ PartAcc?

[deg]  [cm] [%] [deg] [cm] [deg]  [cm] [%]
MSN 85.6 15.7 16.0 70.3 28.4 - - -
SE(3)-Assembly [49] 733 148 275 52.3 233 - - -
Jigsaw 42.3 10.7 68.9 53.3 36.0 - - -
PuzzleFusion++ [23] 38.1 8.0 76.2 58.2 34.2 - - -
GARF [11] 9.9 2.0 93.0 22.1 7.1 66.9 9 25.7
Ours (Single) 9.6 1.8 93.5 18.7 4.1 24.8 154 50.2
Ours (Joint) 7.4 2.0 91.1 13.2 3.0 21.8 14.8 53.9

4.2 Evaluation

We report pose accuracy for shape assembly and pairwise registration in Tab. EI and Tab. [3] re-
spectively. Our model outperforms all existing approaches by a substantial margin. For multi-part
assembly, the closest competitor is GARF [11]], which formulates per-part pose estimation as 6-DoF
pose regression; see Figs.[dand[5] We attribute our superior results to two key advantages of Rectified
Point Flow: (i) in contrast to our closest competitor GARF [[11]] which performs 6-DoF pose regres-
sion, our dense shape-and-pose parametrization helps the model learn better global shape prior and
fine-grained geometric details more effectively; and (ii) our generative formulation natively handles

*We found that the BreakingBad benchmark originally computed rotation error (RE) using
the RMSE of Euler angles, which is not a proper metric on SO(3). To ensure consistency, we re-evaluate all
baselines using the geodesic distance between rotation matrices via the Rodrigues formula [61} [32]. For
Ours (Single) on TwoByTwo, we used encoder pretrained in the Ours (Joint) setting but trained the flow model
only on TwoByTwo, due to its limited size.
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Figure 5: Qualitative Results Across Registration and Assembly Tasks. From left to right: pairwise
registration on ModelNet 40 and TUD-L, shape assembly on BreakingBad-Everyday. From top to
bottom: Colored input point clouds, GARF results, ours, and ground truth (GT). Our single model
performs the best across registration and assembly tasks.

Table 3: Pairwise Registration Results. Rectified Point Flow (Ours) outperforms all baselines on
both TUD-L and ModelNet 40, achieving the highest accuracy and lowest errors across all metrics.

TUD-L ModelNet 40

Methods Recall @5° 1 Recall @1cm T RE | TE |

[%] [%] [deg] [unit]

DCPNet 23.0 4.0 11.98 0.171

RPMNet 73.0 89.0 1.71 0.018

GeoTransformer 88.0 97.5 1.58 0.018

GAREF [11] 53.1 52.5 42.5 0.063
Diff-RPMNet [22] 90.0 98.0 - -

Ours (Single) 97.0 98.7 1.37 0.003

Ours (Joint) 97.7 99.0 0.93 0.002

part symmetries and interchangeability. For pairwise registration, GARF-despite being retrained on
target datasets—fails to generalize beyond the original task. In contrast, our method achieves a new
state-of-the-art performance on registration benchmarks, outperforming methods designed solely for
registration (e.g., GeoTransformer [32] and Diff-RPMNet [22]) and demonstrating strong generaliza-
tion across different datasets (Fig[3). We also achieve the strongest shape assembly performance on
IKEA-Manual [17]]; for more details on evaluation and visualizations, see supplementary.

Joint Training. By recasting pairwise registration as a two-part assembly task, our unified for-
mulation enables joint training of the flow model on all six datasets—including very small sets like
TwoByTwo (308 samples) and IKEA-Manual (84 samples)—and the additional pretraining data from
Objaverse. Ours (Joint) consistently matches or outperforms the dataset-specific (Ours (Single))
models. For example, on TwoByTwo the rotation error drops from 18.7° to 13.2° (=30%), and on
BreakingBad from 9.6° to 7.4° (=23%), while on ModelNet40, the rotation error is reduced from
1.37° to 0.93°. These results demonstrate that joint training enables the model to learn shared geomet-
ric priors from datasets with diverse part segmentation, symmetries, and common pose distributions,
which substantially boosts performance, particularly on datasets with limited training samples.



Symmetry Handling. We demonstrate our model’s ability to handle symmetry (Sec.[E) on IKEA-
Manual [17], a dataset with symmetric assembly configurations. As shown in Fig.[f] while being only
trained on a single configuration (left), Rectified Point Flow samples various reasonable assembly
configurations (right), conditioned on the same input unposed point clouds. Note how our model
permutes the 12 repetitive vertical columns and swaps the 2 middle baskets, yet always retains the
non-interchangeable top and footed bottom baskets in their unique positions.
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Figure 6: Learning from a symmetric assembly. Left Figure 7: Two common failure types.
to right: (1) a single training sample from IKEA- First column: Assemblies that are geomet-
Manual [17], and (2-4) three independent samples gen- rically plausible but mechanically non-
erated, conditioned on the same inputs. Parts are color- functional. Second column: Objects with
coded consistently across plots. (Best viewed in color)  high geometric complexity.

Table 4: Ablation on Encoder Pre-training. We ablate the impact of different pre-training tasks on
the shape assembly performance. Our overlap detection pre-training yields the best results.

RE| TE| PartAcc?

Dataset Encoder Pre-training Task [deg] [cm] (%]
MLP No Pre-training 41.7 12.3 68.3

. PTv3 [54] No Pre-training 18.5 4.9 79.5
BreakingBad-Everyday PTVv3 Instance Segmentation 16.7 4.4 80.9
PTv3 Overlap Detection (ours) 9.6 1.8 93.5

Point-BERT Point Cloud Completion ~ 27.4  23.3 45.2

PartNet-Assembly [15] PTv3 [54] Overlap Detection (ours) 248 154 502

Ablation on Overlap-aware Pretraining. The first block of Tab. 4] compares four pretraining
strategies for our flow-based assembly model on BreakingBad-Everyday [[12]]. The first two encoders
(MLP and PTv3 without pre-training) are trained jointly with the flow model. The last two encoders
are PTv3 pretrained on instance segmentation and our overlap-aware prediction tasks, respectively.
Their pretrained weights are frozen during flow model training. We find that PTv3 is a more powerful
feature encoder compared to the MLP, and pretraining on instance segmentation can already extract
useful features for pose estimation, while our proposed overlap-aware pretraining leads to the best
accuracy. We hypothesize that, although the segmentation backbone provides strong semantic
features, only our overlap prediction task explicitly encourages the encoder to learn fine-grained part
interactions and pre-assembly cues, critical for precise assembly and registration.

To further compare against autoencoder-based pretraining, we substitute our encoder with Point-
BERT [62]’s encoder, which is pre-trained on ShapeNet [63]], a superset of PartNet. We then train
the flow model on PartNet under the same protocol. As reported in Tab. @ Point-BERT encoder
reduces the Part Accuracy from 50.2% to 45.2%, and worsens the accuracy in both TE and RE. We
attribute this performance drop to: (i) Point-BERT is pre-trained for masked point cloud completion,
which does not explicitly encourage the encoder to capture inter-part relations (e.g., contacts) that our
overlap-aware pretraining targets; and (ii) PointBERT’s default 64-group tokenization aggregates
points into relatively coarse groups, losing fine-grained geometric details for accurate pose estimation.



Shape Prior Learning. To probe whether our model learns  Table 5: Part Accuracy [%] on Test-
the shape priors of assembled objects better than pose-vector ing Part Schemes. Our model shows
methods, we construct a cylindrical toy dataset. We train using much less drop on OOD partitions.

a single part partition scheme and then evaluate on the same

cylinder shapes but with different partition schemes. Partition Scheme GARF Ours
. . . : Horizontal (ID) 99.5  100.0
Specifically, we generated 6,000 training cylinders with Axial (OOD) 295 97.0

heights and diameters uniformly sampled from [0.2, 1.0] m,
each cut into two parts by a horizontal plane at a random height.
For testing, 600 new cylinders were cut under three schemes: Al 92.1 983
(i) Horizontal (in-distribution, ID), (ii) Axial: through the cen-
tral axis at a random orientation (out-of-distribution, OOD), and (iii) Random: through random 3D
plane (OOD). As shown in Tab. [5] our method achieved part accuracies of 100.0%, 97.0%, and
97.8% on three partition schemes, respectively. While GARF has comparable performance on the ID
scheme, it degrades on two OOD schemes, verifying that our model learns a transferable shape prior
over the whole assembled object rather than overfitting to the part partition-specific patterns.

Random (OOD) 87.5 97.8

Table 6: Zero-shot Evaluation on the Unseen FRACTURA Testset. We report Part Accuracy (%)
for GARF and ours and include the supervised performance for reference.

Setting Method | Leg Hip Rib Vertebra Pig Bones | All
Supervised GARF ‘ 89.7 80.8 74.8 60.8 79.0 ‘ 77.3
Zero-shot GARF 70.5 72.8 62.9 37.7 53.4 57.7

Ours 79.9 63.4 76.2 42.0 63.2 64.4

Generalization to Unseen Dataset. We evaluated the out-of-domain generalization of our model
by performing zero-shot tests on unseen bone fracture on the test split of the FRACTURA dataset [11]],
covering human bones (Leg, Hip, Vertebra, Rib) and pig bones. We report Part Accuracy for our
method and GARF [11]] in Tab. [§] Our model achieves strong zero-shot performance, surpassing
GAREF in most categories, especially Leg and Rib, and higher overall accuracy. While there remains
a gap to fully supervised training, we expect that pretraining and/or fine-tuning on medical datasets
will further improve our model by instilling bone-specific shape priors and fracture geometry cues.

5 Conclusion

We introduce Rectified Point Flow, a unified flow-based framework for point cloud pose estimation
across registration and assembly tasks. By modeling part poses as velocity fields, it captures fine
geometry, handles symmetries and part interchangeability, and scales to varied part counts via
joint training on 100K shapes. Our two-stage pipeline—overlap-aware encoding and rectified flow
training—achieves state-of-the-art results on six benchmarks. Our work opens up new directions for
robotic manipulation and assembly by enabling precise, symmetry-aware motion planning.

Limitations and Future Work. While our experiments focus on object-centric point clouds, real-
world scenarios often involve cluttered scenes and partial observations. Moreover, while our model
can generate multiple plausible assemblies, some of these may not be mechanically functional;
see Fig. 7| (first column). Also, our model cannot handle objects that exceed a certain geometric
complexity; see Fig.[/| (second column). Another limitation arises from the number of points our
model can handle, which may restrict its usage on large-scale objects. Future work will extend
Rectified Point Flow to robustly handle occlusion, support scene-level and multi-body registration,
incorporate object-function reasoning, and scale to objects with larger point clouds.

Broader Impact. Rectified Point Flow makes it easier to build reliable 3D alignment and assembly
systems straight from raw scans, benefiting robotics, digital manufacturing, AR, and heritage recon-
struction. Given its performance and speed, it reduces the barrier for applying 3D part reasoning
in resource-constrained settings. However, the model can still produce incorrect, hallucinated, or
nonfunctional assemblies. For safety, further work on assembly verification and assembly error
recovery will be essential.
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Rectified Point Flow: Generic Point Cloud Pose Estimation

Supplementary Material

In this supplementary material, we provide the following:

* Model Details (Sec. [A): Description of the DiT architecture and positional encoding scheme.
* Additional Evaluation (Sec. B):

— Runtime analysis.

Evaluation on the preservation of rigidity at the part level.

— Comparison against category-specific assembly models on PartNet and IKEA-Manual.

Analysis of different generative formulations,

Evaluation of the anchor-free version of our model.

+ Randomness in Assembly Generation (Sec.|C): Investigation of the assemblies generated through
noise sampling and linear interpolation in the noise space.

* Generalization Ability (Sec.[D): Qualitative results on unseen assemblies with same- or cross-
category parts to test the model’s generalization ability.

* Proof of Theorem 1 (Sec. [E): Formal definition of the assembly symmetry group G and complete
proof of the flow invariance under the group G.

* Generalization Bounds (Sec.[F): Derivation of the generalization risk guarantees and comparison
with that of existing 6-DoF methods.
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Figure 8: Details of the DiT Block. Our flow model consists of an Encoder and a position embedding
(Pos. Emb.), and sequential DiT blocks (N = 6). Each block comprises Part-wise Attention, Global
Attention, MLP, and AdaLayerNorm layers.

DiT Architecture. Our flow model consists of 6 sequential DiT [55] blocks, each with a hidden
dimension of 512. For the multi-head self-attention in the DiT block, we set the number of attention
heads to 8, resulting in a head dimension of 64. As illustrated in Figure[§] inspired by [73]], we apply
separated Part-wise Attention and Global Attention operations in each DiT block to capture both
intra-part and inter-part context:

« Part-wise Attention: Points within each part independently undergo a self-attention operation,
improving the model’s ability to capture local geometric structures.

* Global Attention: Subsequently, global self-attention operation is applied to all points across
parts, facilitating inter-part information exchange.

As discussed in Sec.[d] we apply RMS normalization individually to the query and key features in
each attention head before both attention operations to enhance numerical stability during training.
Additionally, every DiT block employs AdaLayerNorm, a layer normalization whose scaling and
shifting parameters are modulated by the time step ¢, following [55].

14



Positional Encoding. We adopt a multi-frequency Fourier feature mapping [70]], to encode spatial
information in both the condition and noised point clouds. For the j-th point in the i-th part in the
condition point cloud, x; ; € X, we construct a 10-dimensional vector, which comprises:

* The 3D absolute coordinates of x; ;.

* The 3D surface normal n2; ; at that point x; ; in the condition point cloud.

* The 3D absolute coordinates of the noised point cloud X (¢) at the index (¢, 7).
* The scalar part index .

Each of these vectors is mapped through sinusoidal embeddings at multiple frequencies and then
concatenated with the point-wise feature output of encoder F'.

Inference. At inference time, we recover the assembled point cloud of each part by numerically
integrating the predicted velocity fields V' (¢, { X;(¢) }icq | X) from ¢ = 1 to ¢t = 0. In practice, we
perform K uniform Euler steps as,

X(t—At) = X(t) — V(t,{Xi(t)}ica | X)At, where At =1/K.

After K iterations, the resulting X (0) approximates the point clouds of all parts in the assembled
state. For all evaluations, we set KX = 20.

B Additional Evaluation

Runtime Analysis. The number of sampling steps of the flow model is an important factor that
affects both accuracy and runtime. In Tab.[7] we vary the sampling steps and report the Part Accuracy,
Chamfer Distance, and the runtime per sample in PartNet-Assembly, measured on a single RTX 4090
GPU. Increasing steps consistently improves accuracy and geometric precision, with diminishing
returns beyond 20 steps. We use K = 20 sampling steps for all evaluations in the paper. In this
setting, our model achieves 4.3 samples per second, making it practical for robotic assembly and
localization tasks that require frequent online inference.

Table 7: Trade-offs of Sampling Steps between Accuracy and Runtime. Metrics and runtime
evaluated on PartNet-Assembly dataset with a single NVIDIA RTX 4090 GPU.

Sampling steps 1 2 5 10 20 50

Part Accuracy [%] 1 25.2 38.1 46.7 52.1 53.9 54.6
Chamfer Distance [cm] | 3.23 1.70 0.90 0.75 0.73 0.71
Runtime / sample [s] | 0.072 0.081 0.108 0.148 0.232 0.483

Part-level Rigidity Preservation. As a dense point map prediction framework, Rectified Point
Flow is not explicitly trained to preserve the rigidity of each part. To quantify how well it preserves
the rigidity of the parts, we first align each predicted part X +(0) with the part in assembled state
X;(0) using the Kabsch algorithm.

We then measure two rigidity preservation errors using (1) the Root Mean Square Error (RMSE)
over all points and (2) the Overlap Ratio (OR) over all points at varying thresholds 7 €
{0.1,0.2,0.5,1, 2} cm. Specifically, for part i with M, points, we compute

M.
1 - A
RMSE = i ;HTZ’X”(O) - Xi,j(O)HQ and

OR () = 5[ | 1T/%:50) = %0 O)] < 73]

Here, T] € SE(3) denotes the optimal rigid transform returned by Kabsch; x; ; and X; ; denote the

j-th point on X;(0) and on X;(0), respectively. Because each part is first rigidly aligned to the
ground-truth assembled state, these metrics intentionally ignore pose errors, and only measure the
shape difference between the predicted and ground truth point parts. To factor in the variations in
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Table 8: Part-level Rigidity Preservation Evaluation. Rectified Point Flow demonstrates low
shape discrepancy between condition and predicted part point clouds, measured by the Root Mean
Square Error (RMSE), Relative RMSE, and Overlap Ratios (ORs) across datasets. D represents the
average object scale of each dataset. (Abbr: BreakingBad-E = BreakingBad-Everyday; PartNet-A =
PartNet-Assembly; IKEA-M = IKEA-Manual.)

Metric Shape Assembly Pairwise Registration
BreakingBad-E TwoByTwo PartNet-A IKEA-M TUD-L ModelNet-40
Object Scale D [cm] — 52.1 107.7 89.0 61.4 40.8 70.0
RMSE [cm] | 0.76 2.46 1.04 0.66 0.16 0.30
Relative RMSE  [%] | 1.5 23 1.2 1.1 0.4 0.4
OR(t =0.1cm) [%]7T 523 63.8 33.1 46.7 96.9 95.0
OR(t=0.2cm) [%]1T 61.7 70.8 48.6 57.7 97.1 96.0
OR(t=0.5cm) [%] T 74.9 76.8 66.8 69.8 97.4 96.3
OR(t=1cm) [%]7T 814 78.7 77.9 81.0 97.7 96.6
OR(t=2cm) [%]7T 89.5 81.9 87.4 92.0 98.2 97.1

object size across datasets, we compute the average scale of an object, denoted by D, as twice the
average distance from the object’s center of gravity to all its points. Then, we define the Relative
RMSE as RMSE / D, i.e., the RMSE normalized by the average object scale. We report these metrics
averaged for all parts in each dataset in Tab. [§]

For the pairwise registration task, Rectified Point Flow demonstrates strong rigidity preservation. On
TUD-L, we obtain a Relative RMSE of 0.4% and ORs above 96.9% even at the strictest 7 = 0.1 cm
threshold; on ModelNet-40, we achieve the same Relative RMSE of 0.4% with similar high ORs above
95.0%. Specifically, on TUD-L we record ORs of 96.9% (7 = 0.1 cm), 97.1% (T = 0.2 cm), 97.4%
(r = 0.5cm), 97.7% (t = 1 cm) and 98.2% (7 = 2 cm); on ModelNet-40 the corresponding ORs
are 95.0%, 96.0%, 96.3%, 96.6% and 97.1%, demonstrating consistently strong rigidity preservation.

In the more challenging shape assembly task, rigidity errors remain low. Across the four datasets, the
Relative RMSE ranges from 1.1% to 2.3%. At a strict threshold of 7 = 0.1 cm, overlap ratios (ORs)
span 33.1 % (PartNet-Assembly) up to 63.8 % (TwoByTwo); By 7 = 1 cm, the ORs exceed 77.9% in
the four datasets (77.9%-81.4%), increasing further to 81.9%-92.0% in the more relaxed 7 = 2 cm.
The highest Relative RMSE and lower averaged ORs are observed in TwoByTwo, probably due to its
limited training samples and lower shape similarity to other datasets, and the fact that TwoByTwo
has the largest overall object scale of 107.7 cm among all datasets. In contrast, IKEA-Manual,
despite having fewer training samples, benefits from shared priors in furniture objects in joint training,
delivering the lowest RMSE and high ORs at all thresholds. These results demonstrate robust rigidity
preservation of Rectified Point Flow even in complex shape assembly scenarios.

Furthermore, please note that the subsequent pose recovery stage in Rectified Point Flow further
refines part poses via an SVD-based global optimization, which fits optimal poses under noises.
Overall, we empirically confirm that Rectified Point Flow generates point clouds that reliably respect
the rigid structure of the conditioning parts.

Comparison with Category-specific Models. We compare against category-specific point-cloud
assembly methods in Tab. [0] All baselines are trained separately for each category, and the category
labels are assumed to be known at inference time. RGL-Net [66] additionally assumes a top-to-bottom
ordering of the input parts. In contrast, Rectified Point Flow is class-agnostic and performs inference
without any class label or part ordering. We evaluated both shape Chamfer Distance (CD) and Part
Accuracy (PA) in PartNet-Assembly and IKEA-Manual, following the protocol of Huang et al. [47]].

Without category or ordering assumptions like the baseline methods, our joint model still achieves the
lowest CD and matches or exceeds the PA of category-specific baselines optimized for each category
(chair, table, lamp). In particular, we observe a relative improvement of 110.2% on Lamps PA over
the strongest baseline. In IKEA-Manual, we observe that all category-specific models collapse to PA
< 6.9% for the Chair category. We hypothesize that the baselines’ architecture and hyperparameter
are largely tailored to PartNet. In contrast, our joint model achieves 29.9% PA for the Chair category
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Table 9: Comparison with Category-specific Models. We report Shape Chamfer Distance (CD)
and Part Accuracy (PA) on the PartNet-Assembly and IKEA-Manual. All baselines are trained per
category, whereas Rectified Point Flow is trained over all categories. (*RGL-Net additionally requires
a top-to-bottom part ordering.)

PartNet-Assembly IKEA-Manual [17]
Method Cliile()gv(!;;ly Chair Table Lamp All Chair All
CD] PAt CDJ PAt CD| PA+ CD| PAt CD] PAT CDJ PA?
[em] [%] [em] [%] [cm] [%] [em] [%] [em] [%] [em] [%]
B-LSTM [65] v .31 21.8 125 286 0.77 20.8 - - 1.81 3.5 - -
B-Global [65] v 146 157 112 154 0.79 226 - - 1.95 0.9 - -
RGL-Net* [66] v 087 49.2 048 542 0.72 376 - - 5.08 4.0 - -
Huang et al. [65] v 091 390 050 495 093 333 - - 1.51 6.9 - -
Ours (Joint) X 071 441 036 494 049 700 048 539 149 299 048 33.2

Table 10: Generative Formulation Comparison. We compare Rectified Flow (RF) with Denoising
Diffusion Probabilistic Model (DDPM) in our method, with both using the same DiT architecture and
pretrained encoder. RF achieves superior performance on Rotation Error (RE) and Translation Error
(TE) across all datasets. (Abbr: BreakingBad-E = BreakingBad-Everyday; PartNet-A = PartNet-
Assembly; IKEA-M = IKEA-Manual.)

Metri Generative Shape Assembly Pairwise Registration
etric Formulation -
BreakingBad-E TwoByTwo PartNet-A IKEA-M TUD-L ModelNet-40
DDPM 13.0 17.2 29.5 21.4 2.6 34
RE [deg] | RF 7.4 132 28 108 14 0.9
TE [em] | DDPM 35 10.1 21.3 19.2 0.5 0.7
RF 2.0 3.0 14.8 17.2 0.3 0.2

and 33.2% PA for all categories, over 4 times higher than any baselines. Those observations confirm
that our category-agnostic cross-dataset training improves the learning of shared geometric priors far
beyond any single category or dataset.

Ablation on Generative Formulation. As an alternative to the generative formulation of Rectified
Flow (RF) in our method, we also evaluate a Denoising Diffusion Probabilistic Model (DDPM) [68]]
using an identical DiT architecture and the pre-trained encoder. In this setup, the forward noising
process employs constant variances (3) that increase linearly from 10~* to 0.02 over 7" = 1000
timesteps. As shown in Tab. the RF-based model consistently outperforms the DDPM variant
on both shape assembly and pairwise registration tasks, with 35.3% lower rotation error (RE) and
11.63% lower translation error (TE). This result is in line with the findings of GARF [L1]. We
hypothesize that the straight-line flow in RF reduces the learning difficulty in our tasks. DDPM’s
frequency-based generation—which works well for images—may not be as effective as RF for 3D
point cloud synthesis in Euclidean space.

Anchor-free Models. In the anchor-free setting, we do not fix the anchor’s pose. Instead, during
training, we treat the anchor exactly like any other part in the conditioning: its point cloud is centered
to its own CoM frame and then randomly rotated. The model, therefore, never receives the true
anchor pose from condition. The flow target is defined in the anchor frame: we put the completed
assembly point cloud in the anchor’s frame and then re-center the whole assembled point cloud. At
inference, we first estimate the rigid transform between the predicted anchor and the ground-truth
anchor point cloud via ICP, and then apply this transform to all predicted parts. Metrics (RE, TE, and
Part Acc.) are computed after this anchor alignment.

Across shape assembly datasets (Tab. and pairwise registration (Tab.[I2), anchor-free (average)
underperforms anchor-fixed as expected due to (i) error propagation from anchor misalignment and
(i1) ambiguity induced by symmetric anchor parts. However, despite the lower absolute performance,
our anchor-free model preserves the same relative ordering among baselines on all shape-assembly
datasets; the only exception is GARF, which is evaluated in the anchor-fixed protocol. In particular,
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Table 11: Evaluation of the Anchor-free Model on Shape Assembly Datasets.

Anchor-fixed Anchor-free (Average)  Anchor-free (Best-of-3)
Dataset RE| TE| PAT RE|J TE| PA{T RE|/ TE| PA{
[deg] [em]  [%]  [deg] [cm] [%]  [deg]  [cm] [%]
BreakingBad-E [12]] 7.4 2.0 93.5 17.4 8.0 90.2 13.0 5.9 92.2
TwoByTwo [16] 13.2 3.0 - 15.2 24.2 - 9.0 16.7 -
PartNet-Assembly 21.8 14.8 53.9 47.3 40.5 453 38.2 32.9 54.3
IKEA-Manual [17] 20.7 24.7 332 54.7 51.5 19.5 39.0 40.5 28.6

Table 12: Evaluation of the Anchor-free Model on Pairwise Registration Datasets.

ModelNet-40 TUD-L [18]
Setting RE| TEJ  Recall@5°t Recall@ lem |
[deg] [unit] [%] [%]
Anchor-fixed 0.93 0.002 97.7 99.0
Anchor-free (Average) 2.05 0.012 96.6 96.3
Anchor-free (Best-of-3)  1.18 0.007 97.3 97.3

our model significantly improves anchor-free SOTA on BreakingBad-Everyday’s Part Accuracy from
76.2% (PuzzleFussion++ [25])) to 90.2%. For pairwise registration, our model is also achieving
the lowest TE on ModelNet and the highest Recall@5° on TUD-L among baselines, while remain
competitive on other metrics.

Furthermore, we observe that the anchor-free (best-of-3) evaluation, which selects the best prediction
out of 3 different random seeds per sample, largely narrows the gap to anchor-fixed. This indicates
that a small stochastic budget may find a more reliable anchor-free prediction. The effect is most
pronounced on datasets with higher part count and weaker geometric cues (e.g., PartNet-Assembly
and IKEA-Manual), where anchor ambiguity is stronger and small anchor errors propagate severely.

GT Generated Results by Different Z

o ! 3
-

Figure 9: Sampling in Noise Space. For each fixed condition input point clouds, we sample four
independent Gaussian noise vectors to generate distinct assembly outputs (shown in columns 2-5).
While all samples preserve the object’s structure, they show meaningful variation in part placement,
orientation, and overall geometry, particularly for symmetric parts (e.g., armrests and chair bases).
For comparison, the first column shows the ground-truth assemblies.
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C Randomness in Assembly Generation

Diversity via Noise Sampling. To evaluate the diversity of assembly configurations generated by
Rectified Point Flow, we sample the Gaussian noise vector Z multiple times for the same conditional
(unposed) point cloud inputs. At inference time, we set X (1) = Z and run the model to obtain
prediction X (0). In FigureEI, each row corresponds to a single final assembly: the first column
shows the ground-truth assembly, and the next four columns display outputs produced by four
different Gaussian noises. All generated assemblies preserve the part structure, yet exhibit meaningful
variations in the parts’ placement and orientation, and overall geometry of the object. As expected, the
model produces diverse configurations for symmetric or interchangeable parts, such as the armrests
and the chair base. This shows that Rectified Point Flow effectively captures a diverse conditional
distribution of valid assemblies.

Linear Interpolation in Noise Space. We illustrate Rectified Point Flow’s learned mapping from
random Gaussian noise to plausible assembly configurations. In Figure each row uses the
same condition (unposed) point cloud, with the left and right columns showing the outputs of two
randomly sampled noise vectors Zg and Z, respectively. The three columns in between display
results generated by Z(s) which linearly interpolates between Z, and Z; in noise space, i.e.,

Z(s):=(1—9)Zy+sZy, wheres e {0.25,0.5,0.75}. )

At each interpolation step s, we run inference with X (1) = Z(s). As s increases, the predicted
shapes smoothly morph from the configuration induced by Z; toward that of Z;. As shown in the first
2 rows in Figure[T0] we observe smooth transitions among interchangeable parts in both examples.
The 2 bottom rows in Figure [I0] visualize the transitions in the overall structure of objects. In the
table example, we observe a gradual reduction in overall height, a lowering of the horizontal beams,
and a more centralized positioning where the four legs meet. In the shelf example, the transformation

Noise Z, Interpolated Noise Z(s) = (1 - 8)Z, + sZ, Noise Z,

=

@(,

Part Interchanging

Structural Changing

Figure 10: Linear Interpolation in Noise Space. For different objects in each row, we fix the same
conditional input and decode two independently sampled Gaussian noise vectors, Z (leftmost) and
Z, (rightmost), into plausible part configurations. The three center columns show outputs from the
linearly interpolated noises between Z and Z;. We observe a continuous, semantically meaningful
mapping from Gaussian noise to valid assemblies.
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Object 1 Object 2 Generated Results

Figure 11: Generalization to Unseen Assemblies Within the Same Category: We select parts from
two objects of the same category in the PartNet-Assembly test set. Parts from Object 1 are shown in
blue, and parts from Object 2 in red; unselected parts are shown in gray. The results demonstrate that
the model comprehends the underlying geometric structure of the category and can re-target parts to
construct the final shape.

is more drastic: two vertical boards become horizontal and two diagonal cables are rearranged to a
new vertical configuration. The above transitions across various assemblies confirm that Rectified
Point Flow learns a continuous mapping from Gaussian noise to a semantically meaningful geometry
space. Note that most of the interpolated configurations are physically plausible assemblies, creating
functional objects that can stand in real-world.

D Generalization Ability

We test the generalization ability of our model for novel assemblies under two different settings:
between objects from the same (in-category) and different (cross-category) categories. Given two
objects in PartNet-Assembly, we select certain parts from each of them as the input to Rectified Point
Flow to test if the model can generate novel and plausible assemblies.

In-category Test. As shown in Fig. [T1] parts selected from Object 1 are rendered in blue and
those from Object 2 in red. Our model then synthesizes novel assemblies that blend and reconfigure
these parts in a coherent and category-consistent manner. For example, in the chair category (first
two rows), the model successfully retains a functional and plausible seat-back-leg structure while
creatively mixing parts. In the lamp category (third row), even though the base and shade style differ
significantly between objects, generated results exhibit sensible combinations that maintain structural
integrity. Similarly, in the table category (last row), our method combines parts from a flat-top table
and lattice-style base to produce hybrid yet coherent table designs.

Cross-category Test. Fig.[I2]highlights Rectified Point Flow’s ability to generalize to unseen part
combinations across categories. This is a particularly challenging test, since such part combination
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Object 1 Object 2 Generated Results

Figure 12: Generalization to Unseen Assemblies Across Categories: We select parts from two
objects of different categories in the PartNet-Assembly test set. Parts from Object 1 are shown in
blue, and parts from Object 2 in red; unselected parts are shown in gray. The results demonstrate that
the model can reason about part compositionality and re-target parts to construct a plausible final
shape even if some of them originate in completely different objects.

may not even be possible to be assembled into a meaningful object. Nevertheless, our method still
demonstrates a certain degree of generalization. We show two input objects from different categories,
for example, a monitor and a chair, a chair and a lamp, or a wall sconce and a spray bottle. The results
on the right demonstrate that our model can reconfigure these parts into plausible new assemblies,
preserving geometric coherence. This suggests that the model has learned a strong understanding of
part relationship, allowing it to reason about compositionality even across category boundaries.

E Proof of Theorem 1

A key advantage of Rectified Point Flow is that it learns both rotational symmetries of individual
parts and the interchangeability of a set of identical parts, without any labels of symmetry parts.
Below, we first formally define an assembly symmetry group G that characterizes the symmetry and
interchangeability of the parts in the multi-part point cloud.

Definition 1 (Assembly symmetry group). For each part i € ), let G; C SO(3) be the (finite)
stabilizer of its assembled shape, i.e., RX;(0) = X;(0) for all R € G;. Let S C &\q be the set of
permutations that only permute indices of identical parts. We define the assembly symmetry group as
the semidirect product

G= (G x--xG)q) xS (8)

A group element g = (Ry,...,Rjq,0) € G acts on every realization of the Rectified Point
Flow by g(X;(t)) = Ri Xs-1(;)(t), and on network outputs of the i-th part (denoted as V;)
by g(Vi(t,9(X))) := Ri Vo103 (t, 9(X)).

Now, we show the following result that a single point’s flow distribution is invariant under any g € G.

Lemma 1 (G-invariance of the flow distribution). For every element g € G and a given multi-part
point cloud X, we sample a flow realization:

x(t) = tx(1) + (1 — )x(0), where x(1) ~ N(0,I),x(0) ~ X.
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then, we have

p({g - x(t)}ieo.17) = p({x(t) }reo.1))-

Proof. Recall that, in Rectified Point Flow, a flow of a single point is x(¢) := (1 — ¢)x(0) + tx(1),
where x(0) ~ X is drawn uniformly from the assembled shape and x(1) ~ N (0,I). Because the
end—points of the linear interpolation are sampled independently, the PDF of the path distribution

factorizes as

p({x(®)}eejo,1)) = p(x(1))p(x(0)), ©)
which indicates the randomness resides by the states t = 0 and ¢ = 1 only. Because the perturbation
x(1) ~ N(0,1) is isotropic, p(x(1)) is invariant under every rotation R € SO(3). For p(x(0)) we
distinguish two cases:

* Rotational symmetry: If R € G, then RX;(0) = X;(0) point-wise, so p(x(0)) = p(Rx(0)).

e Interchangeability. If parts ¢ and j are identical, sampling first a part index with probability
p(i) = N;/N and then a point uniformly inside it implies p(x(0) € X;(0)) = p(x(0) € X,(0)).
Therefore exchanging the indices (o(i) = j, o(j) = 4) leaves p(x(0)) unchanged.

By composing the above two properties for all parts, we complete the proof. O

Lemma 1| can directly lift from single points to the full multi—part flow {X;(¢)};cq. This leads
us to the Theorem|[I} For every element g € G, we have the learning objective in Eq. [3|following
Lorm(V) = Lorm(g(V (¢, {Xi(t) }ica; 9(X)))).

F Generalization Bounds

While the Rectified Point Flow predicts a much higher-dimensional space (3M; coordinates per
part), we find that its Rademacher complexity scales exactly the same rate as the 6-DoF methods,
O(1/s/m), where m is the number of samples in the training set.

Below, we compute their Rademacher complexities and empirical risks, respectively. Without loss
of generality, we use the reconstruction error for the evaluation of poses, ie., {(R, t; R*, t) =

|| (Rf ROX* +t—t* ||F First, we define hypothesis classes for both methods:

¢ Our Rectified Point Flow:

Fi ={C; = X;(0;0) | € ©}, where X;(0;6) : / Vi(t; C,0)d

¢ Pose vector-based flow: o
Gi = {Ci — (Ri, ti)g | ¢ € O}

Rademacher Complexity of Rectified Point Flow. With m ii.d. training objects D =
{(C®), R*R) ¢=(R))}m  we write the population risk R(h) = E [¢(h(C), R*,t*)] and empri-

cial risk
Z i(h ), R () ¢+ k-))

Since our Rectified Point Flow method estimates the part pose by the Procrustes operator, i.e.,
(R,t) = Pr(X(0;0)), where Pr : R*N — SE(3) is the Procrustes operator, we have following
Lipschitz contracting property.

Property 1 (Lipschitz Contracting). Let X* € R3N be the centralized ground-truth point set of a
single part, and denote oy, = Omin(X*)TX*). If | X (0) — X*||F < &, the optimal Procrustes
solution (R, t) = P(X(0)) satisfies

I(R—R*§~t")| <

(10)

Omin
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This property directly follows from Davis—Kahan perturbation bounds [67]] for the Top-3 singular

vectors. Crucially, oymin = Q(N)P|for well-spread point clouds, so Pr is a \/%-Lipschitz map.

Let R,,(H) denote the empirical Rademacher complexity on S. Because composition with a
L-Lipschitz map contracts Rademacher complexity

1 LoV3N 1 O( Lo )

ﬁ%m(}-)SWﬁ m

Rademacher Complexity of 6DoF-based Methods. For the baseline we need only regress d = 6
numbers, hence

Rm(ProF) <

(1)

R (9) <

Lavd _ O(L—‘I’) (12)

Vm vm/

Comparison of Generalization Bounds. Applying Bartlett Theorem and using (I0), we obtain,
with probability at least 1 — ¢ over the samples from D,

log(2/6)

R(Pof) < Rp(Pof) +2R,,(PoF) +3 o
R(3) < Ro(@) +29(0) + 3/ B, (6DOF)

(FLOW)

where f € F and g € G are the empirical-risk minimizers on S.

In conclusion, while Rectified Point Flow predicts a much higher-dimensional space, the contraction
of the SVD stage cancels this apparent over-parameterization, producing a complexity term that

scales at the same rate of O(1/y/m) as the 6-DoF baseline; (FLOW)-({6DOF).

As a result, our method enjoys at least same generalization risk guarantees despite operating in an
over-parameterized prediction space, while retaining the G-invariance benefits proven in Sec. [E]
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We state our contributions in the abstract and particularly in the introduction
(Section [T)—including a summary of them. The rest of the Sections support the claims.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations and failures of our method in Section
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the full set of assumptions and a complete and correct proof in
Section [E|and the supplementary material.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We discuss the implementation details in Section ] and the supplementary
material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have open-sourced our codes, weights, and datasets used at /ttps://
rectified-pointflow.github.io/\

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We follow the data splits established in previous work and provide the training
details in Section 4] and the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We do not report error bars but extensively evaluate our method on six datasets.
The number of samples and reported metrics are statistically significant—we offer a summary
of the number of data points used in Table[l]

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the number of GPUs and GPU memory needed to reproduce the
experiments in Section[d] We also provide a runtime analysis in Appendix

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, our research is fully compliant with the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We address the broader impacts in Section 3]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper does not pose such risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite the creators and owners of all data, code, and models used in
our work. Our code repository enumerates the individual licenses of each dataset we used.
All usage has adhered to the corresponding terms.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have released our code, data, and model with detailed documentation.
Certain details are offered in Section 4] and Appendix [A} more details can be found at
https.//rectified-pointflow.github.io/\

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve any crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve any crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We do not use LLMs for the development of our method.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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