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Abstract

As model sizes in deep learning continue to expand, memory-efficient optimizers1

are increasingly critical to manage the substantial memory demands of popular2

algorithms like Adam and AdamW. Among these, Adafactor has emerged as one3

of the widely adopted choices for training deep learning tasks, particularly large4

language models. However, despite its practical success, there is limited theoretical5

analysis on Adafactor’s convergence. This paper presents a comprehensive analysis6

on Adafactor in a non-convex smooth setting, demonstrating its convergence to find7

a stationary point at a rate of Õ(1/
√
T ). We find that the default hyper-parameter8

setting results in a sub-optimal rate in our framework, and propose an alternative9

setting that could theoretically achieve optimal convergence rate. This finding10

is further supported by some experimental results. We also prove that Adafactor11

with a suitable time-varying clipping threshold could also converge, achieving12

performance in experiments comparable to that of the standard constant setting.13

1 Introduction14

The adaptive gradient-based methods, such as the well-known AdaGrad [9, 29], RMSProp [30],15

Adadelta [35], Adam [15] and AdamW [22], have become the preferred approaches in solving the16

following unconstrained stochastic optimization problem in deep learning fields:17

min
X∈Rn×m

f(X) = EZ∈P [l(X;Z)], (1)

where the object function f is non-convex and P denotes a probability distribution. During the18

training process, these adaptive methods require to store the historical gradients’ information so as19

to adaptively tune their step-sizes. For example, both Adam and AdamW maintain the exponential20

average of gradients and squared gradients, and AdaGrad stores the cumulative of squared gradients.21

Despite their effectiveness, these algorithms pose substantial memory challenges for GPUs to save22

these additional gradients’ information, especially when training large language models (LLMs),23

such as GPT-3 [5], which contains over 175 billion parameters.24

To address memory constraints, several memory-efficient optimization algorithms have been devel-25

oped, e.g., [26, 1, 23, 17]. One of the most popular optimizers is Adafactor [26] which employs26

a rank-1 matrix factorization to approximate the second moment matrix in Adam. For an n × m27

weight matrices, this technique reduces memory usage from O(mn) to O(m+ n) by only tracking28

the moving averages of the row and column sums of the squared gradients matrix. Additionally,29

Adafactor eliminates the first-order momentum used in Adam and incorporates update clipping to30

enhance training stability.31

The empirical results reveal that Adafactor achieves comparable performance to Adam in training32

Transformer models [26] . In real applications, several LLMs including PaLM [6] and T5 [24] have33
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applied Adafactor as their main optimizers [38]. In spite of Adafactor’s widely usage, there is still34

limited understanding on its convergence in theory, especially the effect of the matrix approximation35

and update clipping, and the explanation for its hyper-parameter setting in experiments.36

In this paper, we take a closer look on Adafactor’s convergence under non-convex smooth optimization37

problems, considering the typical bounded gradient setting as those for AdaGrad [19, 32] and Adam38

[34]. We aim to provide a convergence rate for Adafactor and explain the influence of the hyper-39

parameters for the convergence speed. We also prove in theory why the default parameter setting is40

effective in practical scenarios. The analysis to Adafactor is non-trivial compared to other adaptive41

methods such as AdaGrad and Adam due to the unique matrix factorization and update clipping42

mechanisms. Based on a new proxy step-size construction and some new compositions as well as43

estimations, we analyze the additional error terms in the Descent Lemma introduced by the matrix44

approximation and update clipping. Our main contributions are summarized as follows.45

Contributions46

• We provide a convergence analysis for the full-batch Adafactor considering bounded gradients47

and a broader range of parameter setting which covers the default one in [26]. The result shows48

that Adafactor could converge to find a stationary point with a rate of Õ(1/
√
T ) where T49

denotes the total iteration number.50

• We further investigate the more realistic stochastic Adafactor. It’s found that a simple variant of51

Adafactor, which drops the update clipping, could attain the best convergence rate of Õ(1/
√
T )52

when the second moment decay rate is 1 − 1/k. We also verify that the default decay rate53

1 − 1/k0.8 could lead to a sub-optimal convergence rate in our framework. To illustrate this54

finding, we provide some empirical results, showing that the potential best hyper-parameter55

setting in theory could perform better than the default one used in experiments.56

• We extend our study to include a time-varying clipping threshold. Our analysis implies that57

with proper selections of clipping threshold and hyper-parameters, Adafactor could also achieve58

the best convergence rate of Õ(1/
√
T ). We also do some experiments to show that the new59

clipping threshold scheme achieves comparable performance and training stability to the original60

constant threshold setting.61

The rest of the paper is organized as follows. The next section provides some most relevant works.62

Section 3 presents some necessary notations definitions and problem setup. Section 4 reviews63

Adafactor and introduces its essential mechanism. In Section 5 and Section 6, we separately provide64

convergence bounds for full-batch Adafactor and stochastic Adafactor without update clipping. We65

further discuss the hyper-parameters’ dependency. In Section 7, we investigate Adafactor using a66

time-increasing update clipping threshold. Section 8 provides experimental results to support our67

theory. All the detailed proof could be found in the appendix.68

2 Related work69

In this paper, we mainly investigate the theoretical convergence of Adafactor. Although there is70

limited works on Adafactor in theory, it’s necessary to briefly discuss related works on the convergence71

of other adaptive methods, particularly on non-convex smooth optimization. Here, we briefly list72

some of the most related works.73

Convergence of adaptive methods Several studies address the convergence of AdaGrad in non-74

convex settings. For example, [19] considered a simple variant with delayed step-size, while [32]75

and [39] assumed bounded stochastic gradients. Other works [14, 10, 21, 3, 31, 27, 33] derived76

convergence bounds under more relaxed assumptions. Another line of research has investigated the77

convergence of Adam. For instance, [34, 7, 39, 11, 8] assumed bounded gradients. [28, 36, 31]78

considered more relaxed noise assumptions without relying on bounded gradients. Additionally, [18]79

derived convergence bounds for Adam under generalized smooth conditions.80

Overall, the convergence analysis of optimizers typically starts with standard assumptions, such as81

bounded gradients and smooth objective functions. In subsequent studies, these assumptions are82

gradually relaxed to investigate the convergence properties of the optimizers under less stringent83

conditions.84
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Memory efficient algorithms As large models are increasingly used in deep learning, memory85

constraints have become a central issue during training. Consequently, several memory-efficient86

optimizers have been developed to address this challenge.87

One approach to save memory involves applying matrix factorization to oeptimization algorithms.88

For instance, [25] used matrix factorization in the second moment estimator of gradients in Adam,89

similar to the concept behind Adafactor. [23] introduced CAME, a variant of Adafactor, which90

incorporates a confidence-guided strategy to mitigate instability caused by erroneous updates. [37]91

proposed Adapprox, leveraging randomized low-rank matrix approximation for Adam’s second92

moment estimator, demonstrating superior performance and reduced memory usage compared to93

AdamW.94

There are some other techniques to save the memory. For example, [12] relied on a “Shampoo"95

technique to reduce the storage requirement of full-matrix preconditioning methods. Notably, their96

method could be further extended to the more realistic tensor case. [1] presented a memory-saved97

version of AdaGrad, called SM3, by maintaining k sets gradient accumulator. They proved the98

convergence guarantee of SM3 on online convex optimization and the effectiveness in experiments.99

Recently, [17] built a 4-bit Adam using quantization techniques to compress the first and second100

moment estimators in Adam, also reducing memory usage.101

In summary, many existing optimizers, particularly adaptive methods like AdaGrad and Adam, face102

memory overhead. In response, the discussed works have designed memory-efficient optimizers that103

aim to achieve comparable performance to these existing methods while achieving memory benefits.104

3 Problem setup105

To start with, we introduce some necessary notations.106

Notations For any two matrices X = (xij)ij ,Y = (yij)ij ∈ Rn×m, we define ⟨X,Y ⟩ =107 ∑n
i=1

∑m
j=1 xijyij . X ⊙ Y , X/Y and

√
X denote the coordinate-wise product, quotient and108

squared root respectively. 0n and 1n denote the zero and one n-dimensional vector respectively,109

and 1n×m denotes the one n × m-dimensional matrix. The index set [n] denotes {1, 2, · · · , n}.110

∥ · ∥F denotes the Frobenius norm. For a positive sequence {αi}i≥1, we define
∑b

i=a αi = 0 and111 ∏b
i=a αi = 1 if a > b. The operator RMS(·) denotes112

RMS(X) =

√√√√ 1

mn

n∑
i=1

m∑
j=1

x2
ij .

We consider unconstrained stochastic optimization (1) over Rn×m with the Frobenius norm. The113

objective function f : Rn×m → R is differentiable. Given an n×m matrix X , we assume a gradient114

oracle that returns a random matrix g(X,Z) ∈ Rn×m dependent by the random sample Z. The115

deterministic gradient of f at X is denoted by ∇f(X) ∈ Rn×m.116

Assumptions We make the following standard assumptions throughout the paper.117

• (A1) L-smoothness: For any X,Y ∈ Rn×m, ∥∇f(Y )−∇f(X)∥F ≤ L∥Y −X∥F ;118

• (A2) Bounded below: There exists f∗ > −∞ such that f(X) ≥ f∗,∀X ∈ Rn×m;119

• (A3) Unbiased estimator: The gradient oracle provides an unbiased estimator of ∇f(X), i.e.,120

EZ [g(X,Z)] = ∇f(X),∀X ∈ Rn×m;121

• (A4) Almost surely bounded stochastic gradient: for any X ∈ Rn×m, ∥g(X,Z)∥F ≤ G, a.s..122

Combining (A3) and (A4), it’s easy to verify that ∥∇f(X)∥ ≤ G,∀X ∈ Rn×m. Assumptions123

(A1)-(A3) are standard in the non-convex smooth convergence analysis. Although Assumption (A4)124

is a bit strong since it requires an almost surely bounded stochastic gradients instead of an expected125

one, it’s still commonly used to derive the high probability convergence bound, see e.g., [32, 14],126

which is a stronger result than an expected convergence. In coordinate-wise algorithm, another127

standard assumption is l∞-bounded gradient where ∥g(X,Z)∥∞ ≤ G∞, see e.g., [8]. These two128

types of assumption are equivalent up to dimension factors.129
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4 Review of Adafactor130

In this section, we briefly discuss Adafactor based on the reference [26]. The pseudocode for131

Adafactor is presented in Algorithm 1.132

Algorithm 1 Adafactor

Input: Initialization point X1 ∈ Rn×m, R0 = 0m, C0 = 0⊤
n , relative step-sizes {ρk}k≥1, decay

rate {β2,k}k≥1 ∈ [0, 1), regularization constants ϵ1, ϵ2 > 0, clipping threshold d.
for k = 1, · · · , T do
Gk = g(Xk,Zk);
Rk = β2,kRk−1 + (1− β2,k)(Gk ⊙Gk + ϵ11n1

⊤
m)1m;

Ck = β2,kCk−1 + (1− β2,k)1
⊤
n (Gk ⊙Gk + ϵ11n1

⊤
m);

Wk = (RkCk)/1
⊤
nRk;

Uk = Gk/
√
Wk;

ηk = max{ϵ2,RMS(Xk)}ρk/max{1,RMS(Uk)/d};
Xk+1 = Xk − ηk ·Gk/

√
Wk;

end for

Matrix factorization Adafactor could be severed as a saved-memory version of Adam. Throughout133

the training process, Adam maintain two n × m matrices Mk and Vk using exponential moving134

average update,135

Mk = β1,kMk−1 + (1− β1,k)Gk, Vk = β2,kVk−1 + (1− β2,k)Gk ⊙Gk, (2)
where β1,k, β2,k ∈ (0, 1), thereby tripling the memory usage. The innovation in Adafactor lies136

in its method of approximating Vk by factoring it into two rank-1 matrices, specifically the row137

sums and column sums of Vk. This approximation is guided by maintaining a minimal general138

Kullback-Leibler (KL) divergence as follows,139

min
X∈Rn,Y ∈R1×m

n∑
i=1

m∑
j=1

d
(
(Vk)ij , (XY )ij

)
, s.t. (X)i ≥ 0, (Y )j ≥ 0,∀i ∈ [n], j ∈ [m],

where d(p, q) = p log(p/q)− p+ q. The choice of KL-divergence over the more typical Frobenius140

norm allows for an analytical solution to be derived, specifically given by141

X = Vk1m, Y = 1⊤
nVk/

(
1⊤
nVk1m

)
.

Therefore, Adafactor only requires to maintain two vectors Rk = Vk1m, Ck = 1⊤
nVk, sufficiently142

reducing the memory from 2mn to m+ n. Although this factorization sacrifices some information143

of the squared gradients, Adafactor still delivers performance comparable to Adam in many real144

application tasks, making it a practical choice where memory is a constraint.145

Increasing decay rate In Adam, corrective terms are introduced into Mk and Vk, resulting in two146

increasing-to-one decay rates. Theoretically, it has been demonstrated that a value closed to one for147

β2,k would ensure the convergence, e.g., [8, 39, 36]. Inspired by this observation, Adafactor used an148

increasing second moment decay rate β2,k = 1− 1/kc, c ≥ 0, and the empirical default setting is149

c = 0.8. As pointed out by [26], this setting allows for enjoying the stability of a low β2,k at the early150

stage of training and the insurance of convergence from a high β2,k as the run progresses. Moreover,151

it also leverages the bias correction.152

Update clipping Adafactor modifies the update process by discarding the first-order moment Mk153

and instead applies an update clipping technique inside the step-size ηk. This involves dividing154

the root-mean-square of the update Uk, denoted as RMS(Uk), when it exceeds a threshold d.155

This mechanism helps to calibrate the second moment estimator Wk when it’s larger-than-desired156

Gk ⊙Gk. Empirical findings in [26] indicated that implementing update clipping leads to significant157

performance improvements when the warm-up technique is not used.158

Relative step-sizes Adafactor incorporates a step-size proportional to scale of Xk, denoted by159

RMS(Xk), which is shown in experiments more resilient to the more naive parameter initialization160

and scaling schemes [26].161
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5 Convergence result for full-batch Adafactor162

We first provide the convergence bound for full-batch Adafactor. At each iteration, full-batch163

Adafactor obtains the deterministic gradient ∇f(Xk) and then updates Rk,Ck using ∇f(Xk)164

instead of Gk in Algorithm 1.165

Theorem 5.1. Let {Xk}k≥1 be generated by Algorithm 1 with g(Xk,Zk) = ∇f(Xk),∀k ≥ 1. If166

Assumptions (A1) and (A2) hold, ∥∇f(Xk)∥F ≤ G,∀k ≥ 1, β2,1 = 1
2 and167

ρk = ρ0/
√
k, 0 < β2,k < 1, ∀k ≥ 1, (3)

for some positive constant ρ0, then for any T ≥ 1,168

min
k∈[T ]

∥∇f(Xk)∥2F ≤ O
(
log T√

T

)
. (4)

The result indicates that full-batch Adafactor could find a stationary point at a rate of O(log T/
√
T )169

under the non-convex smooth case, which is similar to gradient descent but with a sub-optimal rate170

compared to O(1/T ) [4]. The hyper-parameter setting in (3) only requires β2,k ∈ (0, 1), denoting171

a much wider range including the default one which requires β2,k to increase to one. The detailed172

version for the above result can be found in Theorem A.1 from the appendix.173

6 Stochastic Adafactor without update clipping174

In the stochastic case, we start from the simple scenario of175

ηk = max{ϵ2,RMS(Xk)}ρk (5)

without considering the update clipping 1/max{1,RMS(Uk)/d)} in Algorithm 1, where the main176

reasons are as follows.177

• As pointed out in the experiments from [26], Adafactor’s performance shows little difference178

with and without update clipping when implementing learning rate warm-up. Since the warm-up179

technique is a popular method in deep learning [38], it’s reasonable to drop the update clipping.180

• In stochastic Adafactor, the correlation between Gk and ηk would be more complex if the update181

clipping is involved. The proof would be simpler when dropping the update clipping, which182

could help to better understand the analysis for Adafactor.183

We now present the probabilistic convergence bound for Adafactor without update clipping as follows,184

where we summarize different convergence rate with respect to the factor c from β2,k = 1−1/kc, c ∈185

[1/2, 1].186

Theorem 6.1. Let {Xk}k≥1 be generated by Algorithm 1 without update clipping where ηk is given187

by (5) for each k ≥ 1. If Assumptions (A1)-(A4) hold, and188

β2,1 = 1/2, ρ1 = ρ0,

β2,k = 1− 1/kc, ρk = ρ0/
√
k, ∀k ≥ 2,

(6)

for some constants 1/2 ≤ c ≤ 1, ρ0 > 0, then for any T ≥ 1, δ ∈ (0, 1), with probability at least189

1− δ,190

191

min
k∈[T ]

∥∇f(Xk)∥2F ≤ O
(

1

T c−1/2
log

(
T

δ

))
.

The above result indicates that with appropriate hyper-parameters, Adafactor without update clipping192

could approximately find a stationary point. When the decay rate β2,k is 1− 1/k, the convergence193

rate could attain to O(log T/
√
T ), matching the rate of stochastic gradient descent [4] and the lower194

rate in [2] up to only a logarithm factor. The hyper-parameter setting in (6) covers the experimental195

default setting where c = 0.8. The result shows a sub-optimal rate of O(log T/T 0.3) under the196

default setting. This finding is further complemented by the coming numerical experiments in Section197

8. The detailed version of the above results can be found in Theorem B.1 from the appendix.198
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6.1 Discussion of the hyper-parameter dependency199

In this section, we discuss the dependency of several important hyper-parameters in Theorem 6.1200

and the detailed version in Theorem B.1 in the appendix. It’s worthy to mention that the dominated201

order in our convergence bound is determined by the total iteration number T , whereas other hyper-202

parameters could be regarded as constants. However, we hope to improve the dependency of these203

hyper-parameters as much as possible to make the convergence bound tight.204

Discussion of c and the optimal rate The convergence bound in Theorem 6.1 reveals that when205

c = 1, β2,k = 1 − 1/k and ρk = ρ0/
√
k, the convergence rate attains the optimal rate matching206

the lower bound. In addition, when c is closed to 1/2, the convergence rate deteriorates. This207

phenomenon somehow explains that a small decay rate β2,k (c is low) may harm the convergence208

speed, as β2,k should be closed enough to 1 to ensure the convergence, which has been pointed out209

similarly for Adam in [8, 39, 36].210

The theoretical best parameter setting remains a small gap to the default one of c = 0.8. To verify our211

theoretical finding, we provide some empirical evidence in Section 8, showing that β2,k = 1− 1/k212

performs even better than the default one and the performance would be better when c increases from213

1/2 to 1.214

Dependency to mn It’s clear to see that the convergence bounds in Theorem A.1 and Theorem215

B.1 are free of the curse of the dimension factor mn as mn only appears on the denominator in each216

coefficient. We think that solving the curse of dimension is vital since the applied range for Adafactor217

includes many deep learning tasks where mn are comparable large to T .218

Dependency to ϵ1, ϵ2 The convergence bounds in (37) and (39) from Theorem B.1 has a dependency219

of O(ϵ−1
1 log(1/ϵ1)) on ϵ1.1 Although the polynomial dependency to ϵ1 is a bit worse since ϵ1220

ususally takes a small value in experiments, e.g., the default setting is 10−30, it’s still common in221

some theoretical convergence results, e.g., [34, 18]. We also perform some experiments to show222

that a relatively large ϵ1, roughly 10−3, makes no observable effect on the performance. Thereby,223

ϵ1 could be regarded as a constant in comparison to T and the influence brought by 1/ϵ1 could be224

somehow acceptable.225

Since the default value of ϵ2 is 10−3 in experiments, it could also be regarded as a constant compared226

to T . Therefore, the dependency O(1/ϵ2) on ϵ2 shows little effect on convergence bounds given the227

sufficiently large T .228

Dependency to the scale of parameters. The convergence bounds in Theorem B.1 contain a229

O(Θmax) factor where Θmax denotes the maximum values of ∥Xk∥∞ along the training process.230

It’s reasonable to assume that Θmax ≤ G0 for a comparable large constant G0 in practice.231

7 Convergence of Adafactor with update clipping232

In this section, we take a closer look on the comprehensive Adafactor with both matrix factorization233

and update clipping. We slightly change the update clipping threshold d in Algorithm 1 to a time-234

varying threshold dk. The step-size ηk then becomes235

ηk =
max{ϵ2,RMS(Xk)}ρk
max{1,RMS(Uk)/dk}

. (7)

Then, we present the following convergence bound.236

Theorem 7.1. Let {Xk}k≥1 be generated by Algorithm 1 with ηk given by (7) for each k ≥ 1. If237

Assumptions (A1)-(A4) hold, and238

d1 = 1, β2,1 = 1/2, ρ1 = ρ0,

dk = k
c

2(α−1) , β2,k = 1− 1/kc, ρk = ρ0/
√
k, ∀k ≥ 2,

(8)

1The detailed calculation could be found in (45) and (46) in the appendix.
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for some constants α > 1, 1/2 ≤ c ≤ 1, ρ0 > 0, then for any T ≥ 1, δ ∈ (0, 1), with probability at239

least 1− δ,240

241

min
k∈[T ]

∥∇f(Xk)∥2F ≤ O
(

1

T c−1/2
log

(
T

δ

))
.

Discussion of Theorem 7.1 The convergence result indicates that with a proper selection of the242

clipping threshold, along with the commonly used step-size ρk and decay rate β2,k, Adafactor can243

find a stationary point when T is sufficiently large. The dependency of convergence bound on c244

remains consistent with Theorem 6.1, achieving the optimal order when c = 1. In addition, the245

convergence bound can still avoid the curse of dimension, which is shown in the detailed version246

Theorem C.1 from the appendix.247

The additional hyper-parameter α primarily influences the dependency on ϵ1, specifically as248

O
(
ϵ−α
1 log(1/ϵ1)

)
. Thus, our convergence bound may deteriorate as α increases, possibly due249

to the limitation of our proof framework. This dependency could be potentially improved to250

O
(
ϵ−1
1 log(1/ϵ1)

)
when mn is comparable to 1/ϵ1, which is practical when implementing a large-251

size model.2 In our experiments, we tested different values of α and found that suitably small values,252

such as α = 4, 6, 7, 8 can lead to performance and training stability comparable to the default setting,253

even without implementing the warm-up technique. This finding suggests that our new threshold254

setting plays a similar role in enhancing training stability as the default one, which is also the main255

motivation of update clipping. Since ϵ1 can be set to a relatively large value, e.g., 10−3, a dependency256

like O(ϵ−4
1 log(1/ϵ1)) is somewhat acceptable for sufficiently large T .257

The time-increasing dk provides the following intuition: As shown in [26, Figure 1], during the258

early stages of training, a high decay rate β2,k can cause larger-than-desired updates and training259

instability. Therefore, we set a low threshold dk to ensure that the update clipping mechanism260

effectively calibrates these larger-than-desired updates. As training progresses, the sequences and261

updates become more stable, and the second moment estimator Wk becomes more accurate in262

estimating the squared gradients, which is also shown in [26, Figure 1]. Consequently, there is263

less need for update clipping, corresponding to a relatively large dk. We have also verified through264

experiments that our setting can achieve performance comparable to the default setting of d = 1.265

8 Experiments266

In this section, we will report our experimental results based on the insights obtained in our theory.267

We will mainly provide the following three experiments:268

• We test Adafactor without update clipping under different decay rate parameters c, aiming to269

demonstrate performance improvement as c increases from 0.5 to 1 with optimal performance at270

c = 1, as indicated in Theorem 6.1 and Theorem 7.1.271

• We evaluate the sensitivity of Adafactor to different values of ϵ1, particularly showing that a272

relatively large ϵ1 does not significantly impact performance.273

• We assess the performance of Adafactor with a time-increasing dk setting, as described in274

Theorem 7.1, and compare it to the default constant setting.275

8.1 Experiment setup276

In all experiments, the initialization is R0 = 0m and C0 = 0⊤
n . We use a learning rate with the277

warm-up technique as described in [26], specifically ρk = min{10−6 · k, 1/
√
k} for all experiments278

unless otherwise specified. The batch size is set to 256, and the total number of epochs is 400 by279

default. Our models are ResNet-20 and ResNet-110 [13], and we use the CIFAR-10 and CIFAR-100280

datasets [16] without any data augmentation. The experiments are conducted using the PyTorch281

implementation of Adafactor on a single NVIDIA GeForce RTX 4090 GPU.282
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(c) ResNet-110 on CIFAR-100

Figure 1: Average test accuracy and standard deviation (shallow blue region) under different decay
rate parameters c.
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(c) ResNet-110 on CIFAR-100

Figure 2: Training loss vs. steps using Adafactor without update clipping under different ϵ1. The
step-size ηt, decay rate β2,k, and learning rate warm-up are set by default.

8.2 Report on Experiment 1283

We test Adafactor without update clipping using decay rate parameter c ranging from 0.5 to 1.0 in284

increments of 0.05, while keeping other hyper-parameters at their default values. Each experiment is285

run 10 times with 100 epochs, and we plot the average test accuracy and standard deviation (shallow286

blue region) in Figure 1. The results indicate that c = 1.0 yields better performance and stability287

compared to c < 1.0 on different models and datasets, corresponding to the highest test accuracy and288

thinner shallow blue band. These performances show a noticeable improving trend as c increases289

from 0.5 to 1.0, aligning roughly with the results in Theorem 6.1.290

8.3 Report on Experiment 2291

In the second experiment, we test Adafactor without update clipping under different ϵ1 values. We292

plot the training loss against the step t on different models and datasets in Figure 2. The performance293

for ϵ1 = 10−8 and ϵ1 = 10−5 is nearly identical to that for ϵ1 = 10−30. Moreover, even a larger294

value of 10−3 achieves comparable training performance, though with a slower decrease in loss.295

Notably, ϵ1 = 10−3 requires approximately the same number of steps (t ≈ 20000) as ϵ1 = 10−30 to296

achieve near-zero training loss. We conclude that Adafactor is not sensitive to the choice of ϵ1, and a297

relatively large ϵ1 can still lead to convergence, making the polynomial dependency O(1/ϵ1) in our298

convergence bounds acceptable.299

8.4 Report on Experiment 3300

In this experiment, we explore the appropriate values of α in Theorem 7.1 to achieve performance301

comparable to the default setting of d = 1. As indicated by Theorem 7.1, a relatively small α is302

desirable for better dependency on ϵ1. We train models with α set to 4, 6, 7, 8, and 9, keeping other303

hyper-parameters at their default values. We also train models with the default d = 1 setting as the304

baseline. We plot the training loss against the steps in Figures 3 without step-size warm-up and 4305

with step-size warm-up.306

2The detailed calculation could be found in (95) from the appendix.

8



0K 2K 4K 6K 8K 10K
Step t

0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

= 9.0
= 8.0
= 7.0
= 6.0
= 4.0

Baseline

(a) ResNet-20 on CIFAR-10

0K 5K 10K 15K 20K
Step t

0

1

2

3

4

5

Tr
ai

ni
ng

 L
os

s

= 9.0
= 8.0
= 7.0
= 6.0
= 4.0

Baseline

(b) ResNet-20 on CIFAR-100

0K 2K 4K 6K 8K 10K
Step t

0

2

4

6

Tr
ai

ni
ng

 L
os

s

= 9.0
= 8.0
= 7.0
= 6.0
= 4.0

Baseline

(c) ResNet-110 on CIFAR-100

Figure 3: Training loss vs. steps on different models and datasets. We use step-size without warm-up
technique and test under different α.
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(c) ResNet-110 on CIFAR-100

Figure 4: Training loss vs. steps on different models and datasets. We use step-size with warm-up
technique by default and test under different α.

The results indicate that, for these values of α, Adafactor achieves comparable or even better307

convergence speed compared to the default threshold (represented by "Baseline"). The comparable308

results to the "Baseline" in Figure 3 further suggest that the time-increasing dk in Theorem 7.1 plays a309

role similar to that of the default setting, enhancing training stability even when the step-size warm-up310

is turned off.311

9 Conclusions312

In this paper, we investigate the convergence behavior of Adafactor on non-convex smooth landscapes,313

considering bounded stochastic gradients. We introduce a new proxy step-size to decouple the314

stochastic gradients from the unique adaptive step-size. Additionally, we use new estimations to315

control the errors introduced by matrix factorization and update clipping in Adafactor.316

Our findings reveal that full-batch Adafactor is capable of finding a stationary point, requiring317

only a step-size ηk ∼ O(1/
√
k) and a second moment decay rate β2,k ∈ (0, 1), denoting a wide318

range including the default setup. In the case of stochastic Adafactor without update clipping, the319

convergence rate can achieve the optimal order Õ(1/
√
T ) when β2,k = 1− 1/kc, c = 1. However,320

performance deteriorates as c decreases. This finding is supported by experimental results. We also321

explore Adafactor with a time-increasing clipping threshold and derive similar convergence results.322

The empirical results demonstrate that the new clipping threshold provides performance comparable323

to the default constant setting.324

Limitations There are several limitations in our work that warrant further investigation. First,325

the polynomial dependency on ϵ1 in our convergence bounds may be further improved to a better326

dependency, such as log(1/ϵ1). Second, although we provide convergence results for several variants327

of Adafactor and demonstrate comparable performance to the original one in experiments, the328

convergence bound for stochastic vanilla Adafactor remains unknown. Finally, our experimental329

results primarily focus on traditional deep learning tasks due to our GPU limitations. It would be330

beneficial to test the scalability of our theoretical results, e.g., on large language models.331
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A Proof detail for full-batch case434

We first provide the full-batch Adafactor as follows. The only difference to Algorithm (1) is the435

replacement of stochastic gradient by deterministic gradient ∇f(Xk) at each iteration.436

Algorithm 2 Full-batch Adafactor

Input: Initialization point X1 ∈ Rn×m, R0 = 0n,C0 = 0⊤
m, relative step-sizes {ρk}k≥1, decay

rate {β2,k}k≥1 ∈ [0, 1), regularization constants ϵ1, ϵ2 > 0, clipping threshold d.
for k = 1, · · · , T do
Ḡk = ∇f(Xk);
R̄k = β2,kR̄k−1 + (1− β2,k)(Ḡk ⊙ Ḡk + ϵ11n1

⊤
m)1m;

C̄k = β2,kC̄k−1 + (1− β2,k)1
⊤
n (Ḡk ⊙ Ḡk + ϵ11n1

⊤
m);

W̄k = (R̄kC̄k)/1
⊤
n R̄k;

Ūk = Ḡk/
√

W̄k;
η̂k = max{ϵ2,RMS(Xk)}ρk/max{1,RMS(Ūk)/d};
Xk+1 = Xk − η̂k · Ḡk/

√
W̄k;

end for

Then, we provide the detailed version of Theorem 5.1 as follows.437

Theorem A.1. Let {Xk}k≥1 be generated by Algorithm 2. If Assumptions (A1), (A2) hold,438

∥∇f(Xk)∥F ≤ G,∀k ≥ 1 and439

ρk = ρ0/
√
k, 0 < β2,k < 1, ∀k ≥ 1,

for some positive constant ρ0, then for any T ≥ 1,440

min
k∈[T ]

∥∇f(Xk)∥2F ≤ A0A1(f(X1)− f∗ +∆2
0 log T +∆2

0)√
T

,

min
k∈[T ]

∥∇f(Xk)∥2F ≤ A0A
′
1(f(X1)− f∗ + ∆̃2

0 log T +∆2
0)√

T
,

(9)

where we define441

Θmin = min
k∈[T ]

∥Xk∥∞, Θmax = max
k∈[T ]

∥Xk∥∞, G = G2 +mnϵ1, (10)

and the other constant parameters are given by442

∆2
0 =

Ld2mn(ϵ2 +Θmax)
2ρ20

2
, ∆̃2

0 =
LG2G(ϵ2 +Θmax)

2ρ20
2mnϵ21(1− β2,1)2

,

A0 =
max

{
1, G

√
G

dϵ1mn(1−β2,1)

}
ρ0 max{ϵ2,Θmin}

, A1 =
√

G4 +G2(m+ n)ϵ1 +mnϵ21,

A′
1 =

√
2

(
G4

mnϵ1
+G2 + ϵ1

)
.

(11)

A.1 Preliminary443

We first denote the auxiliary matrix Ḡ2
k,ϵ1

= Ḡk ⊙ Ḡk + ϵ11n1
⊤
m. In addition, we define V̄k =444 (

v̄
(k)
ij

)
ij

as follows,445

V̄0 = 0n×m, V̄k = β2,kV̄k−1 + (1− β2,k)Ḡ
2
k,ϵ1 , k ≥ 1. (12)

To simplify the notation, we let Ḡk =
(
ḡ
(k)
ij

)
ij

, R(i)

V̄k
, C(j)

V̄k
and SV̄k

be the i-th row sum, j-th column446

sum and the coordinate sum of V̄k respectively. The same definition principal is applied to the447

notation R
(i)

Ḡ2
k,ϵ1

and C
(j)

Ḡ2
k,ϵ1

. We also use w̄
(k)
ij , v̄

(k)
ij , ū

(k)
ij to denote the coordinates of W̄k, V̄k, Ūk448

in Algorithm 2 respectively. We also define values G1,G2,G as follows:449

G1 = G2 +mϵ1, G2 = G2 + nϵ1, G = G2 +mnϵ1. (13)
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A.2 Technical lemmas450

Following the descent lemma for a L-smooth objective function f , we derive that451

f(Y ) ≤ f(X) + ⟨∇f(X),Y −X⟩+ L

2
∥Y −X∥2F , ∀X,Y ∈ Rn×m. (14)

In the following, we will provide some necessary technical lemmas.452

Lemma A.1. Let β2,k ∈ (0, 1) and Γk be defined by453

Γ0 = 0, Γk = β2,kΓk−1 + (1− β2,k), ∀k ≥ 1.

Then, (1− β2,1) ≤ Γk ≤ 1,∀k ≥ 1.454

Proof. We could prove the result by induction. Since Γ0 = 0, it’s easy to derive that (1− β2,1) =455

Γ1 ≤ 1. Suppose that for any j ∈ [k − 1], (1− β2,1) ≤ Γj ≤ 1. Then456

Γk ≥ β2,k(1− β2,1) + (1− β2,k) ≥ 1− β2,1, Γk ≤ β2,k + (1− β2,k) ≤ 1.

The induction is then complete.457

Lemma A.2. Let V̄k be defined in (12). For any k ≥ 0, it holds that458

R̄k = V̄k1m, C̄k = 1⊤
n V̄k, SV̄k

= 1⊤
n R̄k = 1⊤

n V̄k1m.

As a consequence,459

R
(i)

V̄k
= β2,kR

(i)

V̄k−1
+ (1− β2,k)R

(i)

Ḡ2
k,ϵ1

, C
(j)

V̄k
= β2,kC

(j)

V̄k−1
+ (1− β2,k)C

(j)

Ḡ2
k,ϵ1

. (15)

Proof. Note that R̄0 = V̄01m = 0n and C̄0 = 1⊤
n V̄0 = 0⊤

m. Suppose that for any j ≤ k − 1,460

R̄j = V̄j1m, C̄j = 1⊤
n V̄j . Then using the updated rule in Algorithm 2 and (12),461

R̄k = β2,kR̄k−1 + (1− β2,k)Ḡ
2
k,ϵ11m =

(
β2,kV̄k−1 + (1− β2,k)Ḡ

2
k,ϵ1

)
1m = V̄k1m,

C̄k = β2,kC̄k−1 + (1− β2,k)1
⊤
n Ḡ

2
k,ϵ1 = 1⊤

n

(
β2,kV̄k−1 + (1− β2,k)Ḡ

2
k,ϵ1

)
= 1⊤

n V̄k.
(16)

Since SV̄k
represents the coordinate sum of V̄k, we could derive that462

SV̄k
=

n∑
i=1

m∑
j=1

v̄
(k)
ij = 1⊤

n R̄k = 1⊤
n V̄k1m. (17)

Since R(i)

V̄k
denotes the i-th row sum of V̄k, it’s the i-th coordinate of R̄k. Hence, for each coordinate463

of R̄k, using (16),464

R
(i)

V̄k
= β2,kR

(i)

V̄k−1
+ (1− β2,k)R

(i)

Ḡ2
k,ϵ1

.

Similarly, we could derive the results related to C
(j)

V̄k
.465

Lemma A.3. Following the parameter setting in (3), for any i ∈ [n], j ∈ [m], k ≥ 1, it holds that466

R
(i)

V̄k
∈ [mϵ1(1− β2,1),G1], C

(j)

V̄k
∈ [nϵ1(1− β2,1),G2], SV̄k

∈ [mnϵ1(1− β2,1),G].

Proof. Recalling the definition of V̄k in (12) and ∥∇f(Xk)∥F ≤ G,∀k ≥ 1, we derive that467

SV̄k
=

n∑
i=1

m∑
j=1

v̄
(k)
ij =

n∑
i=1

m∑
j=1

k∑
p=1

(1− β2,p)

((
ḡ
(p)
ij

)2
+ ϵ1

) k∏
l=p+1

β2,l


≤

k∑
p=1

(1− β2,p)

 k∏
l=p+1

β2,l

 ∥Ḡp∥2F + Γkmnϵ1 ≤ G2Γk +mnϵ1 ≤ G, (18)
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where the last inequality comes from Lemma A.1. Following (18) and Lemma A.1, we also derive468

that469

SV̄k
≥ mnϵ1Γk ≥ mnϵ1(1− β2,1).

We also derive the upper bounds for R(i)

V̄k
and C

(j)

V̄k
as follows,470

R
(i)

V̄k
=

m∑
j=1

v̄
(k)
ij ≤

k∑
p=1

(1− β2,p)

 k∏
l=p+1

β2,l

 ∥Ḡp∥2F + Γkmϵ1 ≤ G2Γk +mϵ1 ≤ G1,

C
(j)

V̄k
=

n∑
i=1

v̄
(k)
ij ≤

k∑
p=1

(1− β2,p)

 k∏
l=p+1

β2,l

 ∥Ḡp∥2F + Γknϵ1 ≤ G2Γk + nϵ1 ≤ G2. (19)

Similarly, the lower bound could be derived by471

R
(i)

V̄k
≥ mϵ1Γk ≥ mϵ1(1− β2,1), C

(j)

V̄k
≥ nϵ1Γk ≥ nϵ1(1− β2,1).

472

A.3 Proof of Theorem A.1473

Now we move to prove the main result. Using (14) and the updated rule in Algorithm 2,474

f(Xk+1) ≤ f(Xk) + ⟨Ḡk,Xk+1 −Xk⟩+
L

2
∥Xk+1 −Xk∥2F

= f(Xk)− η̂k

〈
Ḡk,

Ḡk√
W̄k

〉
+

Lη̂2k
2

∥∥∥∥∥ Ḡk√
W̄k

∥∥∥∥∥
2

F

.

We then re-arrange the order, sum up both sides over k ∈ [t] and apply f(Xt+1) ≥ f∗ from475

Assumption (A2) to get,476

t∑
k=1

η̂k

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F︸ ︷︷ ︸
(a)

≤ f(X1)− f∗ +
L

2

t∑
k=1

η̂2k

∥∥∥∥∥ Ḡk√
W̄k

∥∥∥∥∥
2

F︸ ︷︷ ︸
(b)

. (20)

Since Θmin ≤ ∥Xk∥∞ ≤ Θmax, we have Θmin ≤ RMS(Xk) ≤ Θmax for any k ≥ 1. Hence, using477

η̂k defined in Algorithm 2,478

η̂k =
max{ϵ2,RMS(Xk)}ρk

max
{
1, ∥Ūk∥F /(d

√
mn)

} ≤ (ϵ2 +Θmax)ρk min

{
1,

d
√
mn

∥Ūk∥F

}
. (21)

Using (21), Ūk = Ḡk/
√

W̄k, ∆0 in (11) and ρk = ρ0/
√
k, we thus derive that479

(b) ≤ Ld2mn(ϵ2 +Θmax)
2

2

t∑
k=1

ρ2k · ∥Ūk∥2F
∥Ūk∥2F

= ∆2
0

t∑
k=1

1

k
. (22)

To lower bound (a), we first discuss the maximum operator inside η̂k. Let480

E1 =
{
k ∈ [t] | ∥Ūk∥F ≥ d

√
mn
}
, E2 =

{
k ∈ [t] | ∥Ūk∥F ≤ d

√
mn
}
.

When k ∈ E1, since ∥Xk∥∞ ≥ Θmin, it derives that481

η̂k ≥ d
√
mnmax{ϵ2,Θmin}ρk

∥Ūk∥F
. (23)

Using Lemma A.2, we first derive that w̄(k)
ij = (R

(i)

V̄k
C

(j)

V̄k
)/SV̄k

. Then, applying Lemma A.3 and482

∥∇f(Xk)∥F ≤ G, we could upper bound ∥Ūk∥2F as follows,483

∥Ūk∥2F =

n∑
i=1

m∑
j=1

(
ḡ
(k)
ij

)2
SV̄k

R
(i)

V̄k
C

(j)

V̄k

≤ ∥Ḡk∥2FG
mnϵ21(1− β2,1)2

≤ G2G
mnϵ21(1− β2,1)2

. (24)
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Hence, combining with (23) and (24), we have484 ∑
k∈E1

η̂k

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F

≥ d
√
mnmax{ϵ2,Θmin}

∑
k∈E1

ρk
∥Ūk∥F

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F

≥ dϵ1mn(1− β2,1)max{ϵ2,Θmin}
G
√
G

∑
k∈E1

ρk

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F

. (25)

When k ∈ E2, we obtain that η̂k = max{ϵ2,RMS(Xk)}ρk ≥ max{ϵ2,Θmin}ρk and thus485 ∑
k∈E2

η̂k

∥∥∥∥∥ Ḡk

4
√

W̄k

∥∥∥∥∥
2

F

≥ max{ϵ2,Θmin}
∑
k∈E2

ρk

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F

. (26)

Combining with (25) and (26), we derive that486

(a) ≥ max{ϵ2,Θmin}min

{
1,

dϵ1mn(1− β2,1)

G
√
G

} t∑
k=1

ρk

∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F

. (27)

We also derive from Lemma A.2 and Lemma A.3 that for any i ∈ [n], j ∈ [m],487

w̄
(k)
ij =

R
(i)

V̄k
C

(j)

V̄k

SV̄k

≤
R

(i)

V̄k
C

(j)

V̄k√
R

(i)

V̄k
C

(j)

V̄k

≤
√
R

(i)

V̄k
C

(j)

V̄k
≤
√
G1G2. (28)

Using (28), we have488 ∥∥∥∥∥ Ḡk

4
√

W̄k

∥∥∥∥∥
2

F

=

n∑
i=1

m∑
j=1

(
ḡ
(k)
ij

)2
√
w̄

(k)
ij

≥ ∥Ḡk∥2F√
G1G2

=
∥Ḡk∥2F
A1

, (29)

where A1 has been defined in (11). Plugging (29) into (27), we derive that489

(a) ≥ max{ϵ2,Θmin}
A1

min

{
1,

dϵ1mn(1− β2,1)

G
√
G

} t∑
k=1

ρk∥Ḡk∥2F . (30)

Plugging (22) and (30) into (20), and using ρk = ρ0/
√
k, we thus derive that490

min
k∈[t]

∥Ḡk∥2F
t∑

k=1

1√
k
≤

t∑
k=1

ρk∥Ḡk∥2F
ρ0

≤ A0A1

(
f(X1)− f∗ +∆2

0

t∑
k=1

1

k

)
,

where A0 is given in (11). Moreover, we have the following results,491

t∑
k=1

1

k
≤ 1 +

∫ t

1

1

x
dx = 1 + log t,

t∑
k=1

1√
k
≥

√
t. (31)

We thus derive the first desired result in (9) as follows,492

min
k∈[t]

∥Ḡk∥2F ≤ A0A1√
t

(
f(X1)− f∗ +∆2

0 +∆2
0 log t

)
. (32)

Avoiding the curse of dimension To derive a free-dimension numerator bound, we first derive493

from (21) and (24) with ρk = ρ0/
√
k that494

(b) ≤ L(ϵ2 +Θmax)
2

2

t∑
k=1

ρ2k∥Ūk∥2F ≤ LG2G(ϵ2 +Θmax)
2

2mnϵ21(1− β2,1)2

t∑
k=1

ρ2k = ∆̃2
0

t∑
k=1

1

k
, (33)

where ∆̃0 has been defined in (11). In addition, we derive from Lemma A.2, Lemma A.3 and (13)495

that496

w̄
(k)
ij =

R
(i)

V̄k
C

(j)

V̄k

SV̄k

≤ 2G1G2

mnϵ1
≤ 2

(
G4

mnϵ1
+G2 + ϵ1

)
= (A′

1)
2, (34)

16



where we use m+ n ≤ mn and A′
1 in (11). Thereby, we have497 ∥∥∥∥∥ Ḡk

4
√
W̄k

∥∥∥∥∥
2

F

=

n∑
i=1

m∑
j=1

(
ḡ
(k)
ij

)2
√
w̄

(k)
ij

≥ ∥Ḡk∥2F
A′

1

.

Combining with (27), we thus derive that498

(a) ≥ max{ϵ2,Θmin}
A′

1

min

{
1,

dϵ1mn(1− β2,1)

G
√
G

} t∑
k=1

ρk∥Ḡk∥2F (35)

Plugging (33) and (35) into (20), and using ρk = ρ0/
√
k, we derive that499

min
k∈[t]

∥Ḡk∥2F
t∑

k=1

1√
k
≤

t∑
k=1

ρk∥Ḡk∥2F
ρ0

≤ A0A
′
1

(
f(X1)− f∗ + ∆̃2

0

t∑
k=1

1

k

)
,

where A0 has been defined in (11). Using (31), we derive the second desired result in (9).500

min
k∈[t]

∥Ḡk∥2F ≤ A0A
′
1√

t

(
f(X1)− f∗ + ∆̃2

0 + ∆̃2
0 log t

)
. (36)

B Proof detail for stochastic Adafactor without update clipping501

We first provide the detailed version of Theorem 6.1.502

Theorem B.1 (Formal statement of Theorem 6.1). Let {Xk}k≥1 be generated by Algorithm 1 without503

update clipping where ηk is given by (5) for each k ≥ 1. If Assumptions (A1)-(A4) hold, and504

β2,1 = 1/2, ρ1 = ρ0,

β2,k = 1− 1/kc, ρk = ρ0/
√
k, ∀k ≥ 2,

for some constants 1/2 ≤ c ≤ 1, ρ0 > 0, then for any T ≥ 1, δ ∈ (0, 1), we have the following505

results.506

When c = 1, with probability at least 1− δ,507

min
k∈[T ]

∥Ḡk∥2F ≤ C0√
T

(
C1 log

(
T

δ

)
+ C2 log T + C2 + C3

)
, (37)

min
k∈[T ]

∥Ḡk∥2F ≤ C ′
0√
T

(
C1 log

(
T

δ

)
+ (C ′

2 + C ′
3) log T + C ′

2 + C ′
3

)
. (38)

When 1/2 ≤ c < 1, with probability at least 1− δ,508

min
k∈[T ]

∥Ḡk∥2F ≤ C0√
T

(
C1 log

(
T

δ

)
+

C2

1− c
· T 1−c + C2 + C3

)
, (39)

min
k∈[T ]

∥Ḡk∥2F ≤ C0√
T

(
C1 log

(
T

δ

)
+

2C ′
2

1− c
· T 1−c + C ′

3 log T + C ′
2 + C ′

3

)
. (40)

Here, Θmin,Θmax and G are as in (10), and509

C1 = f(X1)− f∗ +
24G2(ϵ2 +Θmax)ρ0√

ϵ1
. (41)

The C0, C2, C3 are constants defined as510

C0 =
2
√
2G

ρ0 max{ϵ2,Θmin}
, C3 =

C2

4
log

(
2 +

2G2

ϵ1

)
,

C2 =
32mnG 3

2 (ϵ2 +Θmax)ρ0
max{m,n}ϵ1

+
4LmnG(ϵ2 +Θmax)

2ρ20
max{m,n}ϵ1

. (42)
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The C ′
0, C

′
2, C

′
3 are positive constants (that could be further upper bounded by constants independent511

from m,n), defined by512

C ′
0 =

2

√
2
(

G2

mnϵ1
+G+ ϵ1

)
ρ0 max{ϵ2,Θmin}

, C ′
2 = 4G3(G1 +G2)(ϵ2 +Θmax)ρ0, C

′
3 =

LG3(ϵ2 +Θmax)
2ρ20

2
,

(43)

and G1, G2, G3 are given by513

G1 =

√
6

(
G4

mnϵ1
+G2 + ϵ1

)
, G3 =

4(G4 +G2mnϵ1)

mnϵ21
,

G2 = 2

(
G3

mnϵ1
+

2G2

√
mnϵ1

+
G√
mn

+G+
√
ϵ1

)
. (44)

Calculation of hyper-parameter dependency To derive a free dimension bound, we shall use the514

convergence bounds in (38) and (40). From (43), it’s easy to show that m,n could only exist in the515

denominator of C ′
0, C

′
2, C

′
3, which could avoid the curse of dimension.516

To calculate the dependency of ϵ1, we first show that its dependency in coefficients C0, C1, C2, C3 as517

follows, based on the assumption that 0 < ϵ1 < 1,518

C0 ∼ O (1) , C1 ∼ O (1/
√
ϵ1) , C2 ∼ O (1/ϵ1) , C3 ∼ O (C2 log(1/ϵ1)) . (45)

Thereby, with the convergence bounds in (37) and (39), it’s easy to show that519

min
k∈[T ]

∥Ḡk∥2F ≤ O
(
ϵ−1
1 log(1/ϵ1)

)
. (46)

Proposition B.1. Following the same assumptions and settings in Theorem 6.1, then with probability520

at least 1− δ,521

min
k∈[T ]

∥Ḡk∥2F ≤ C0√
T

(
C1 log

(
T

δ

)
+ C2

T∑
k=1

1

kc
+ C3

)
,

and with probability at least 1− δ,522

min
k∈[T ]

∥Ḡk∥2F ≤ C ′
0√
T

(
C1 log

(
T

δ

)
+ C ′

2

T∑
k=1

1

kc/2+1/2
+ C ′

3

T∑
k=1

1

k

)
,

where all constants are given as in Theorem B.1.523

B.1 Preliminary524

We first follow the notations of Ḡk =
(
ḡ
(k)
ij

)
ij

and G,G1,G2 in (13). Let Gk =
(
g
(k)
ij

)
ij

and525

ξk = Gk − Ḡk. We also define G2
k,ϵ1

= Gk ⊙Gk + ϵ11n1
⊤
m and Vk =

(
v
(k)
ij

)
ij

as follows,526

V0 = 0n×m, Vk = β2,kVk−1 + (1− β2,k)G
2
k,ϵ1 , k ≥ 1. (47)

We also define R
(i)
Vk

, C
(j)
Vk

and SVk
as the i-th row sum, j-th column sum and coordinate sum of Vk527

respectively. R(i)

G2
k,ϵ1

and C
(j)

G2
k,ϵ1

represent the same definitions with respect to G2
k,ϵ1

. Then, using a528

similar deduction in Lemma A.2, we also obtain that for all k ≥ 1,529

R
(i)
Vk

= β2,kR
(i)
Vk−1

+ (1− β2,k)G
2
k,ϵ11m, C

(j)
Vk

= β2,kC
(j)
Vk−1

+ (1− β2,k)1
⊤
nG

2
k,ϵ1 . (48)

As a consequence of (48), each coordinate of Wk satisfies that530

w
(k)
ij =

R
(i)
Vk

C
(j)
Vk

SVk

=

(
β2,kR

(i)
Vk−1

+ (1− β2,k)R
(i)

G2
k,ϵ1

)(
β2,kC

(j)
Vk−1

+ (1− β2,k)C
(j)

G2
k,ϵ1

)
β2,kSVk−1

+ (1− β2,k)SG2
k,ϵ1

.

(49)
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Next, we introduce a proxy step-size matrix Ak =
(
a
(k)
ij

)
ij

such that531

a
(k)
ij =

(
β2,kR

(i)
Vk−1

+ (1− β2,k)G1

)(
β2,kC

(j)
Vk−1

+ (1− β2,k)G2

)
β2,kSVk−1

+ (1− β2,k)G
. (50)

The proxy step-size technique is a standard way in the convergence analysis of adaptive methods,532

e.g., [32, 8]. We provide a new proxy step-size in (50) to handle the matrix factorization in Adafactor.533

This construction satisfies two properties. First, it’s independent from Zk in order to disrupt the534

correlation of stochastic gradients and adaptive step-sizes. Second, it needs to remain sufficiently535

close to the original adaptive step-size w
(k)
ij to avoid generating divergent terms.536

B.2 Technical lemmas537

In the following, we first provide some more necessary technical lemmas. We introduce a concentra-538

tion inequality for the martingale difference sequence, see [20] for a proof.539

Lemma B.1. Suppose that {Zs}s∈[T ] is a martingale difference sequence with respect to ζ1, · · · , ζT .540

Assume that for each s ∈ [T ], σs is a random variable dependent on ζ1, · · · , ζs−1 and satisfies that541

E
[
exp

(
Z2
s

σ2
s

)
| ζ1, · · · , ζs−1

]
≤ e.

Then for any λ > 0, and for any δ ∈ (0, 1), it holds that542

P

(
T∑

s=1

Zs >
1

λ
log

(
1

δ

)
+

3

4
λ

T∑
s=1

σ2
s

)
≤ δ.

Lemma B.2. Following the parameter setting in (6), for any i ∈ [n], j ∈ [m], k ≥ 1, it holds that543

R
(i)

G2
k,ϵ1

, R
(i)
Vk

∈ [mϵ1/2,G1], C
(j)

G2
k,ϵ1

, C
(j)
Vk

∈ [nϵ1/2,G2], SG2
k,ϵ1

, SVk
∈ [mnϵ1/2,G].

Proof. First, using Assumption (A4), we derive that544

mnϵ1/2 ≤ SG2
k,ϵ1

=

n∑
i=1

m∑
j=1

((
g
(k)
ij

)2
+ ϵ1

)
= ∥Gk∥2F +mnϵ1 ≤ G,

mϵ1/2 ≤ R
(i)

G2
k,ϵ1

=

m∑
j=1

((
g
(k)
ij

)2
+ ϵ1

)
≤ ∥Gk∥2F +mϵ1 ≤ G1,

nϵ1/2 ≤ C
(j)

G2
k,ϵ1

=
n∑

i=1

((
g
(k)
ij

)2
+ ϵ1

)
≤ ∥Gk∥2F + nϵ1 ≤ G2.

Using the similar deduction for Lemma A.3, we could show that mϵ1(1− β2,1) ≤ R
(i)
Vk

≤ G1. Since545

β2,1 = 1/2 from (6), we then obtain the desired result. The bounds for C(j)
Vk

, SVk
could be also546

derived by using similar arguments.547

We have the following lemma to upper bound each coordinate of the proxy step-size matrix Ak548

defined in (50) .549

Lemma B.3. For any k ≥ 1, it holds that550

β2,k(1− β2,k)ϵ1 ≤ a
(k)
ij ≤ 2min

{
G, G2

mnϵ1
+G+ ϵ1

}
, ∀i ∈ [n], j ∈ [m].

Proof. We first have551

β2,kR
(i)
Vk−1

+ (1− β2,k)G1

β2,kSVk−1
+ (1− β2,k)G

≤
β2,kR

(i)
Vk−1

β2,kSVk−1

+
(1− β2,k)G1

(1− β2,k)G
≤ 2. (51)
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Then, recalling the definition of a(k)ij in (50) and Lemma B.2, it derives that C(j)
Vk−1

≤ G2 and thereby552

β2,kC
(j)
Vk−1

+ (1 − β2,k)G2 ≤ G2 ≤ G. Then combining with (51), we derive a
(k)
ij ≤ 2G. We also553

derive a free dimension bound from Lemma B.2 for a(k)ij as follows,554

a
(k)
ij ≤ 2G1G2

mnϵ1
=

2(G2 +G(m+ n)ϵ1 +mnϵ21)

mnϵ1
≤ 2

(
G2

mnϵ1
+G+ ϵ1

)
,

where we use m + n ≤ mn when m,n ≥ 2 and β2,kSVk−1
+ (1 − β2,k)G ≥ mnϵ1/2. To lower555

bound a
(k)
ij , we derive from Lemma B.2 that β2,kSVk−1

+ (1− β2,k)G ≤ G. Thereby,556

a
(k)
ij ≥

β2,k(1− β2,k)
(
R

(i)
Vk−1

G2 + C
(j)
Vk−1

G1

)
G

≥ β2,k(1− β2,k) ·
(mG2 + nG1)ϵ1

2G

= β2,k(1− β2,k) ·
[(m+ n)G2 + 2mnϵ1]ϵ1

2(G2 +mnϵ1)
≥ β2,k(1− β2,k)ϵ1.

557

Lemma B.4. Let Wk and Vk be defined in Algorithm 1 without update clipping where ηk is given by558

(5) and (47) respectively. For any k ≥ 1, it holds that559 ∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ 2G
max{m,n}ϵ1

∥∥∥∥ Gk√
Vk

∥∥∥∥2
F

.

Proof. Recalling (49), v(k)ij ≤ R
(i)
Vk

,v(k)ij ≤ C
(j)
Vk

and Lemma B.2, one could verify that560 (
g
(k)
ij

)2
w

(k)
ij

=

(
g
(k)
ij

)2
SVk

R
(i)
Vk

C
(j)
Vk

≤
2
(
g
(k)
ij

)2
G

nϵ1v
(k)
ij

,

(
g
(k)
ij

)2
w

(k)
ij

=

(
g
(k)
ij

)2
SVk

R
(i)
Vk

C
(j)
Vk

≤
2
(
g
(k)
ij

)2
G

mϵ1v
(k)
ij

,

which leads to the desired result that561

∥Uk∥2F =

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ 2G
max{m,n}ϵ1

∥∥∥∥ Gk√
Vk

∥∥∥∥2
F

.

562

The following lemma is inspired by [8, Lemma 5.2] where they considered a constant β2,k. Here, we563

generalize the result to the case of time-varying β2,k and provide the proof detail.564

Lemma B.5. For any t ≥ 1, if β2,k are as in (6), then it holds that565

t∑
k=1

(1− β2,k)

∥∥∥∥ Gk√
Vk

∥∥∥∥2
F

≤ mn log

(
2(G2 + ϵ1)

ϵ1

)
+ 4mn

t∑
k=1

(1− β2,k).

Proof. Recalling the definition of Vk and since V0 = 0n×m, we have that for any k ≥ 1,566

v
(k)
ij = β2,kv

(k−1)
ij + (1− β2,k)

[(
g
(k)
ij

)2
+ ϵ1

]

=

k∑
p=1

(1− β2,p)

[(
g
(p)
ij

)2
+ ϵ1

] k∏
l=p+1

β2,l

 .

Then, we have567

(1− β2,k) ·

(
g
(k)
ij

)2
v
(k)
ij

=
xk

yk + θk
, (52)
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where we set y0 = 0, θ0 = 0 and568

xk = (1− β2,k)
(
g
(k)
ij

)2
, yk =

k∑
p=1

(1− β2,p)
(
g
(p)
ij

)2 k∏
l=p+1

β2,l

 ,

θk = ϵ1

k∑
p=1

(1− β2,p)

 k∏
l=p+1

β2,l

 , ∀k ≥ 1.

Then we have yk − xk = β2,kyk−1,∀k ≥ 1. Moreover, since yk ≥ xk, we could use log x ≥569

1− 1/x,∀x ≥ 1 to derive that570

xk

yk + θk
≤ log(yk + θk)− log(yk + θk − xk) = log(yk + θk)− log(β2,kyk−1 + θk)

= log

(
yk + θk

yk−1 + θk−1

)
+ log

(
yk−1 + θk−1

β2,kyk−1 + θk

)
.

Noting that θk = β2,kθk−1 + (1− β2,k)ϵ1, which leads to β2,kθk−1 ≤ θk. Hence, we further have571

xk

yk + θk
≤ log

(
yk + θk

yk−1 + θk−1

)
+ log

(
yk−1 + θk−1

β2,k(yk−1 + θk−1)

)
= log

(
yk + θk

yk−1 + θk−1

)
− log β2,k.

(53)

Hence, summing up on both sides of (52) and (53) over k ∈ [t], and noting that x1 = y1, we obtain572

that573

t∑
k=1

(1− β2,k) ·

(
g
(k)
ij

)2
v
(k)
ij

=
x1

y1 + θ1
+

t∑
k=2

xk

yk + ϵk

≤1 + log

(
yt + θt
y1 + θ1

)
−

t∑
k=2

log β2,k. (54)

Note that y1 + θ1 ≥ (1− β2,1)ϵ1 = ϵ1/2. Moreover, using Lemma A.1 and Assumption (A4), we574

have θt = Γtϵ1 ≤ ϵ1 and yt ≤ ΓtG
2 ≤ G2. We then derive that575

yt + θt
y1 + θ1

≤ 2(G2 + ϵ1)

ϵ1
. (55)

Noting that for k ≥ 2, c ∈ [1/2, 1], β2,k ≥ β2,2 = 1− 1/2c ≥ 1− 1/
√
2, we then derive that576

− log β2,k ≤ 1− β2,k

β2,k
≤

√
2(1− β2,k)√

2− 1
≤ 4(1− β2,k). (56)

Finally, plugging (55), (56) into (54), and then summing (54) up over i ∈ [n], j ∈ [m], we obtain the577

desired result.578

Next, we have the following probabilistic result relying on the property of the martingale difference579

sequence which is commonly used in the analysis of adaptive methods.580

Lemma B.6. Following the parameter setting in (6), for any T ≥ 1 and λ > 0, with probability at581

least 1− δ, ∀t ∈ [T ],582

−
t∑

k=1

ηk

〈
Ḡk,

ξk√
Ak

〉
≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
24G2(ϵ2 +Θmax)ρ0√

ϵ1
log

(
T

δ

)
.

Proof. Let ζk = −ηk

〈
Ḡk,

ξk√
Ak

〉
and the filtration Fk = σ (Z1, · · · ,Zk) where σ(·) denotes the583

σ-algebra. Note that ηk, Ḡk and Ak are dependent by {X1, · · · ,Xk−1} and thereby Fk−1. Since584

ξk is dependent by Fk, we could prove that {ζk}k≥1 is a martingale difference sequence since585

E [ζk | Fk−1] = −ηk

〈
Ḡk,

E [ξk | Fk−1]√
Ak

〉
= 0,
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where we apply that E [ξk | Fk−1] = EZk
[ξk] = 0 from Assumption (A3). Then, using Assumption586

(A3) and Assumption (A4), we have587

∥Ḡk∥F = ∥EZk
[Gk]∥F ≤ EZk

∥Gk∥F ≤ G, ∥ξk∥F = ∥Gk − Ḡk∥F ≤ 2G.

Let ωk = 2Gηk

∥∥∥ Ḡk√
Ak

∥∥∥
F

. We thus derive from the Cauchy-Schwarz inequality that588

E
[
exp

(
ζ2k
ω2
k

)
| Fk−1

]
≤ E

exp

∥∥∥ Ḡk√

Ak

∥∥∥2
F
∥ξk∥2F

4G2
∥∥∥ Ḡk√

Ak

∥∥∥2
F

 | Fk−1

 ≤ exp(1).

Then, using Lemma B.1, it leads to that for any λ > 0, with probability at least 1− δ,589

−
t∑

k=1

ηk

〈
Ḡk,

ξk√
Ak

〉
≤ 3λG2

t∑
k=1

η2k

∥∥∥∥ Ḡk√
Ak

∥∥∥∥2
F

+
1

λ
log

(
1

δ

)

= 3λG2
t∑

k=1

n∑
i=1

m∑
j=1

ηk√
a
(k)
ij

· ηk

(
ḡ
(k)
ij

)2
√
a
(k)
ij

+
1

λ
log

(
1

δ

)
. (57)

Meanwhile, when Θmin ≤ ∥Xk∥∞ ≤ Θmax, ρk = ρ0/
√
k, we have590

Θmin ≤ RMS(Xk) ≤ Θmax,
max{ϵ2,Θmin}ρ0√

k
≤ ηk ≤ (ϵ2 +Θmax)ρ0√

k
. (58)

Combining with Lemma B.3, we derive that591

ηk√
a
(k)
ij

≤ ηk√
β2,k(1− β2,k)ϵ1

≤ (ϵ2 +Θmax)ρ0√
β2,kϵ1

· k
c/2

√
k

(59)

≤ (ϵ2 +Θmax)ρ0√
min{β2,1, β2,2}ϵ1

≤ 2(ϵ2 +Θmax)ρ0√
ϵ1

, (60)

where we use β2,1 = 1/2, β2,2 = 1− 1/2c ≥ 1− 1/
√
2, c ∈ [1/2, 1] from (6) in the last inequality.592

Hence, plugging (60) into (57) and then re-scaling the δ, we found that with probability at least 1− δ,593

for all t ∈ [T ],594

−
t∑

k=1

ηk

〈
Ḡk,

ξk√
Ak

〉
≤ 6λG2(ϵ2 +Θmax)ρ0√

ϵ1

t∑
k=1

ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
1

λ
log

(
T

δ

)
.

Setting λ =
√
ϵ1/(24G

2(ϵ2 +Θmax)ρ0), we derive the desired result.595

The following key lemma provides an upper bound for the error brought by the proxy step-size a
(k)
ij ,596

illustrating the error is controllable.597

Lemma B.7. For any k ≥ 1, i ∈ [n], j ∈ [m], it holds that598 ∣∣∣w(k)
ij − a

(k)
ij

∣∣∣√
a
(k)
ij

≤
√
1− β2,k min{4

√
G, G1 +G2}, (61)

where G is as in (13) and G1, G2 are as in (44).599

Proof. To simplify the notation, we let600

X = β2,kR
(i)
Vk−1

+ (1− β2,k)R
(i)

G2
k,ϵ1

, ∆X = (1− β2,k)(G1 −R
(i)

G2
k,ϵ1

),

Y = β2,kC
(j)
Vk−1

+ (1− β2,k)C
(j)

G2
k,ϵ1

, ∆Y = (1− β2,k)(G2 − C
(j)

G2
k,ϵ1

),

Z = β2,kSVk−1
+ (1− β2,k)SG2

k,ϵ1
, ∆Z = (1− β2,k)(G − SG2

k,ϵ1
). (62)
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Then we have601 ∣∣∣w(k)
ij − a

(k)
ij

∣∣∣ = ∣∣∣∣XY

Z
− (X +∆X)(Y +∆Y )

Z +∆Z

∣∣∣∣ = ∣∣∣∣XY∆Z −XZ∆Y − Y Z∆X − Z(∆X∆Y )

Z(Z +∆Z)

∣∣∣∣ .
Applying Lemma B.2, we could verify that X,Y, Z ≥ 0 and602

0 ≤ ∆X ≤ (1− β2,k)G1, 0 ≤ ∆Y ≤ (1− β2,k)G2, 0 ≤ ∆Z ≤ (1− β2,k)G. (63)

Hence, we derive that603 ∣∣∣w(k)
ij − a

(k)
ij

∣∣∣√
a
(k)
ij

=
|XY∆Z −XZ∆Y − Y Z∆X − Z(∆X∆Y )|

Z
√
(X +∆X)(Y +∆Y )(Z +∆Z)

≤ |X∆Y + Y∆X + (∆X∆Y )|√
(X +∆X)(Y +∆Y )(Z +∆Z)︸ ︷︷ ︸

(I)

+
XY∆Z

Z
√

(X +∆X)(Y +∆Y )(Z +∆Z)︸ ︷︷ ︸
(II)

.

(64)

Since XY ≥ 0 from (62), Term (I) could be bounded as604

(I) ≤ |X∆Y + Y∆X + (∆X∆Y )|√
(X∆Y + Y∆X + (∆X∆Y ))(Z +∆Z)

≤
√

X∆Y + Y∆X + (∆X∆Y )

Z +∆Z
. (65)

Recalling the definition, we have R(i)
Vk−1

≤ SVk−1
, C(j)

Vk−1
≤ SVk−1

for any i ∈ [n], j ∈ [m]. Further,605

applying Lemma B.2 and (63), we derive that606

X∆Y

Z +∆Z
≤

R
(i)
Vk−1

SVk−1

+
R

(i)

G2
k,ϵ1

G

∆Y ≤ 2(1− β2,k)G2.

Y∆X

Z +∆Z
≤

C
(j)
Vk−1

SVk−1

+
C

(j)

G2
k,ϵ1

G

∆X ≤ 2(1− β2,k)G1,

∆X∆Y

Z +∆Z
≤ ∆X(1− β2,k)G

(1− β2,k)G
≤ (1− β2,k)G1.

We then derive from (65), G1 ≤ G and G2 ≤ G that607

(I) ≤
√
5(1− β2,k)G. (66)

To derive a free dimension bound, we could obtain from Lemma B.2, (63) and G ≥ mnϵ1/2 that608

Z +∆Z ≥ mnϵ1/2. Hence,609

X∆Y

Z +∆Z
≤ 2(1− β2,k)G1G2

mnϵ1
,

Y∆X

Z +∆Z
≤ 2(1− β2,k)G1G2

mnϵ1
,

∆X∆Y

Z +∆Z
≤ 2(1− β2,k)G1G2

mnϵ1
.

We then derive that610

(I) ≤

√
6(1− β2,k)G1G2

mnϵ1
=

√
6(1− β2,k)(G4 +G2ϵ1(m+ n) +mnϵ21)

mnϵ1
≤ G1

√
1− β2,k,

(67)

where we used m + n ≤ mn, and G1 is defined in (44). Then, combining with (66) and (67), we611

have612

(I) ≤
√

1− β2,k min{
√
5G, G1}, (68)

where we applied that m + n ≤ mn when m,n ≥ 2. Then we move to bound (II). Recalling the613

definitions in (62), we have X ≤ Z, Y ≤ Z. Applying (63), we have614

(II) ≤ XY∆Z

Z
√
XY∆Z

≤
√
XY∆Z

Z
≤

√
∆Z ≤

√
(1− β2,k)G.
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Similarly, we derive from Lemma B.2 that Z ≥ mnϵ1/2, X ≤ G1, Y ≤ G2. Hence,615

(II) ≤
√
XY∆Z

Z
≤

2
√
(1− β2,k)G1G2G

mnϵ1

≤ 2
√

1− β2,k

(
G3

mnϵ1
+

2G2

√
mnϵ1

+G+
G√
mn

+
√
ϵ1

)
≤ G2

√
1− β2,k,

where G2 has been defined in (44). We thus derive that616

(II) ≤
√

1− β2,k min{
√
G, G2}. (69)

Combining (68) with (69), we then derive the desired result.617

B.3 Proof of Proposition B.1618

Using the inequality in (14), we have619

f(Xk+1) ≤ f(Xk) + ⟨Ḡk,Xk+1 −Xk⟩+
L

2
∥Xk+1 −Xk∥2F

≤ f(Xk)− ηk

〈
Ḡk,

Gk√
Wk

〉
+

Lη2k
2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

.

Introducing the proxy step-size matrix Ak in (50) and then summing up both sides over k ∈ [t], we620

derive that621

f(Xt+1) ≤ f(X1)−
t∑

k=1

ηk

〈
Ḡk,

Gk√
Ak

〉
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A

+
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F︸ ︷︷ ︸

C

. (70)

Estimation for A We first introduce ξk into A,622

A = −
t∑
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ηk

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

−
t∑
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ηk

〈
Ḡk,

ξk√
Ak

〉
. (71)

Then, using Lemma B.6, with probability at least 1− δ, for all t ∈ [T ],623

A = −3

4
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4
√
Ak

∥∥∥∥2
F

+
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log

(
T

δ

)
. (72)

Estimation for B Term B is essentially the error brought by the proxy step-size Ak. We will first624

calculate the gap of 1/
√
w

(k)
ij and 1/

√
a
(k)
ij as follows,625 ∣∣∣∣∣∣ 1√
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We then apply (73) and Young’s inequality,626
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Thus, plugging (61) in Lemma B.7 into (74), we derive that627

B ≤ 1
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ηk

∥∥∥∥ Ḡk
4
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F

+ 4
√
G

t∑
k=1

ηk
√
1− β2,k

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ 1

4

t∑
k=1

ηk

∥∥∥∥ Ḡk
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Wk
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F

, (75)

where we used (58) in the second inequality and 1/
√
k ≤ 1/kc/2, c ∈ [1/2, 1]. Furthermore, using628

Lemma B.4 and Lemma B.5, we derive that629

B ≤ 1

4

t∑
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ηk
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Ak
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[
log

(
2 +

2G2

ϵ1

)
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]
. (76)

Estimating C Using the similar deduction in (75) and (76), we derive that630

C ≤ LmnG(ϵ2 +Θmax)
2ρ20

max{m,n}ϵ1

[
log

(
2 +

2G2

ϵ1

)
+ 4

t∑
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(1− β2,k)

]
. (77)

Putting together We first re-arrange the order in (70) and use f(Xt+1) ≥ f∗ in Assumption (A2)631

to derive that632

0 ≤ f(X1)− f∗ +A+B+C. (78)

We then plug (72), (76), (77) into (78) and set t = T , which leads to that with probability at least633

1− δ,634
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where C1, C2, C3 are as in Theorem B.1. Moreover, using Lemma B.3 and (58), we have635
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k
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Combining with (80) and (79), and using
∑T

k=1 1/
√
k ≥

√
T , we derive that636
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C1 log
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)
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(1− β2,k) + C3

)
, (81)

where C0 has already been defined in (42). We then derive the first desired result that637
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.

Free dimension bound We follow the similar deduction in (75) and use Lemma B.7 to derive that638
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4
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Recalling the definition of w(k)
ij in (49) and Lemma B.2, we derive that639

w
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where G3 is as in (44). We thus derive from (82) and (83) that640
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Using (58) and (83), we derive that641
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Plugging the unchanged estimation for A in (72), (84) and (85) into (70), we have that with probability642

at least 1− δ, for all t ∈ [T ],643
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where C ′
2, C

′
3 are given as in (43) and C1 is as in (41). Further, using Lemma B.3 and the similar644

deduction for (80),645
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where C ′
0 is as in (43). Combining with (86) and (87), and setting t = T , we derive the second646

desired result in Proposition B.1 that647
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B.4 Proof of Theorem B.1648

Now based on the result in Proposition B.1, we could further derive the final convergence rate. Noting649

that when c = 1, we could bound that650
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Then, we obtain that651
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When 1/2 ≤ c < 1, we have652
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Then, we obtain that653

min
k∈[T ]
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C Proof detail for stochastic Adafactor with update clipping654

We first provide the detailed version of Theorem 7.1 as follows.655

Theorem C.1. Let {Xk}k≥1 be the sequence generated by Algorithm 1 with (7). If Assumptions656

(A1) -(A4) hold, and657

ρk = ρ0/
√
k, dk = k

c
2(α−1) , ∀k ≥ 1,

β2,1 = 1/2, β2,k = 1− 1/kc,∀k ≥ 2.

When c = 1, with probability at least 1− δ,658

min
k∈[T ]

∥Ḡk∥2F ≤ D0√
T

(
C1 log

(
T

δ

)
+ (C2 +D1(α)) log T + C2 +D1(α) + C3

)
, (90)

min
k∈[T ]

∥Ḡk∥2F ≤ D0√
T

(
C1 log

(
T

δ

)
+ (C ′

2 + C ′
3 +D1(α)) log T + C ′

2 + C ′
3 +D1(α)

)
. (91)

When 1/2 ≤ c < 1, with probability at least 1− δ,659

min
k∈[T ]

∥Ḡk∥2F ≤ D0√
T

(
C1 log

(
T

δ

)
+

C2 +D1(α)

1− c
· T 1−c + C2 +D1(α) + C3

)
, (92)

min
k∈[T ]

∥Ḡk∥2F ≤ D0√
T

(
C1 log

(
T

δ

)
+ C ′

3 log T +
2(C ′

2 +D1(α))

1− c
· T

1−c
2 + C ′

2 + C ′
3 +D1(α)

)
,

(93)

where C1, C2, C3, C
′
2, C

′
3 are as in Theorem B.1 and660

D0 = min{C0, C
′
0}, D1(α) =

G1+αG1−α
4

√
G(ϵ2 +Θmax)ρ0√
mnϵ1

, G4 =
mnϵ1

2
√
G
. (94)

Calculation of hyper-parameters’ dependency We first calculate the dependency on m,n, ϵ1, α661

in the additional coefficient D1(α) as follows,662

D1(α) ∼ O

((√
1 +mnϵ1
mnϵ1

)α−1
√

1

mnϵ21
+

1

ϵ1

)
, (95)

which is free of the curse of dimension since mn exists in the denominator. Recalling the definitions663

of C ′
0, C1, C

′
2, C

′
3 in (41) and (43), it’s easy to verify that these coefficients are also free of the664

curse of dimension factor m,n since m,n exist in the denominator. Thereby, we also derive a free665

dimension bound selecting (91) and (93).666

To calculate the dependency on ϵ1, we could combine with (45) and (95) to derive that667

C0D1(α) ∼ O
(
ϵ−α
1

)
, C0C1 ∼ O

(
1/ϵ

−1/2
1

)
, C0C3 ∼ O

(
ϵ−1
1 log(1/ϵ1)

)
.

Thereby, selecting the bounds in (90) and (92) and noting that α > 1, we derive that the order on ϵ1 is668

O
(

1

ϵα1
log

(
1

ϵ1

))
. (96)

Moreover, it’s clear to reveal that there exist mn in denominator, which could improve the dependency669

on ϵ1. If we suppose that mn is comparable to ϵ1, then we derive that C0D1(α) ∼ O(ϵ
−1/2
1 ) and the670

order on ϵ1 is671

O
(

1

ϵ1
log

(
1

ϵ1

))
. (97)

C.1 Proof of Theorem C.1672

We define673

G̃k =
Gk

max{1, ∥Uk∥F /(dk
√
mn)}

, ρ̂k = max{ϵ2,RMS(Xk)}ρk. (98)
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Since RMS(Uk) = ∥Uk∥F /
√
mn, Θmin ≤ RMS(Xk) ≤ Θmax, we derive that674

Xk+1 = Xk − ρ̂k
G̃k√
Wk

,

max{ϵ2,Θmin}ρ0√
k

≤ ρ̂k ≤ (ϵ2 +Θmax)ρ0√
k

≤ (ϵ2 +Θmax)ρ0
√
1− β2,k, (99)

where we applied that 1/
√
k ≤ 1/kc/2, c ∈ [1/2, 1] and β2,k = 1−1/kc in the last inequality. Using675

the inequalities in (14) and (99), we have676

f(Xk+1) ≤ f(Xk) + ⟨Ḡk,Xk+1 −Xk⟩+
L

2
∥Xk+1 −Xk∥2F

≤ f(Xk)− ρ̂k

〈
Ḡk,

G̃k√
Wk

〉
+

Lρ̂2k
2

∥∥∥∥∥ G̃k√
Wk

∥∥∥∥∥
2

F

.

Summing up both sides over k ∈ [t] and using f(Xt+1) ≥ f∗ from Assumption (A2), we derive that677

0 ≤ f(X1)− f∗ +

t∑
k=1

−ρ̂k

〈
Ḡk,

G̃k√
Wk

〉
︸ ︷︷ ︸

D

+

t∑
k=1

Lρ̂2k
2

∥∥∥∥∥ G̃k√
Wk

∥∥∥∥∥
2

F︸ ︷︷ ︸
E

. (100)

Introducing Ak in (50), we further have the following decomposition,678

D = −
t∑

k=1

ρ̂k

〈
Ḡk,

G̃k√
Ak

〉
+

t∑
k=1

ρ̂k

〈
Ḡk,

(
1√
Ak

− 1√
Wk

)
⊙ G̃k

〉
︸ ︷︷ ︸

D.1

= −
t∑

k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+D.1

−
t∑

k=1

ρ̂k

〈
Ḡk,

G̃k√
Ak

− EZk

[
G̃k√
Ak

]〉
︸ ︷︷ ︸

D.2

+

t∑
k=1

ρ̂k

〈
Ḡk,

Ḡk√
Ak

− EZk

[
G̃k√
Ak

]〉
︸ ︷︷ ︸

D.3

. (101)

Estimating E Hence, using (98), (99), Lemma B.4 and Lemma B.5, we derive that679

E ≤ L

2

t∑
k=1

ρ̂2k

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ L(ϵ2 +Θmax)
2ρ20

2

t∑
k=1

(1− β2,k)

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ LmnG(ϵ2 +Θmax)
2ρ20

max{m,n}ϵ1

[
log

(
2 +

2G2

ϵ1

)
+ 4

t∑
k=1

(1− β2,k)

]
. (102)

To avoid the curse of dimension, we drive from (98) and (83) that680 ∥∥∥∥∥ G̃k√
Wk

∥∥∥∥∥
2

F

=
1

(max{1, ∥Uk∥F /(dk
√
mn)})2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤
∥∥∥∥ Gk√

Wk

∥∥∥∥2
F

≤ G3. (103)

Then, using (99) and (103), we derive that681

E ≤ LG3(ϵ2 +Θmax)
2ρ20

2

t∑
k=1

1

k
. (104)
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Estimating D.1 We could follow the similar deduction in (73) and (74) to derive that682

D.1 ≤
t∑

k=1

n∑
i=1

m∑
j=1

ρ̂k|ḡ(k)ij g̃
(k)
ij |

∣∣∣∣∣∣ 1√
w

(k)
ij

− 1√
a
(k)
ij

∣∣∣∣∣∣
≤

t∑
k=1

n∑
i=1
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j=1
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|ḡ(k)ij g̃

(k)
ij |√

w
(k)
ij

√
a
(k)
ij

√∣∣∣w(k)
ij − a

(k)
ij

∣∣∣
≤ 1

4

t∑
k=1

n∑
i=1

m∑
j=1

ρ̂k ·

(
ḡ
(k)
ij

)2
√
a
(k)
ij

+ 4

t∑
k=1

n∑
i=1

m∑
j=1

ρ̂k ·

∣∣∣w(k)
ij − a

(k)
ij

∣∣∣√
a
(k)
ij

·

 g̃
(k)
ij√
w

(k)
ij

2

. (105)

Using Lemma B.7 and (105), we further derive that683

D.1 ≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4
√
G

t∑
k=1

ρ̂k
√

1− β2,k

∥∥∥∥∥ G̃k√
Wk

∥∥∥∥∥
2

F

≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4
√
G

t∑
k=1

ρ̂k
√

1− β2,k

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

.

Using (99), Lemma B.4 and Lemma B.5, we further have684

D.1 ≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4
√
G(ϵ2 +Θmax)ρ0

t∑
k=1

(1− β2,k)

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+
8mnG 3

2 (ϵ2 +Θmax)ρ0
max{m,n}ϵ1

[
log

(
2 +

2G2

ϵ1

)
+ 4

t∑
k=1

(1− β2,k)

]
.

(106)

To avoid the curse of dimension, we apply Lemma B.7, (99) and (83) to derive that685

D.1 ≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4(G1 +G2)

t∑
k=1

ρ̂k
√
1− β2,k

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4(G1 +G2)(ϵ2 +Θmax)ρ0

t∑
k=1

1

kc/2+1/2

∥∥∥∥ Gk√
Wk

∥∥∥∥2
F

≤ 1

4

t∑
k=1

ρ̂k

∥∥∥∥ Ḡk
4
√
Ak

∥∥∥∥2
F

+ 4G3(G1 +G2)(ϵ2 +Θmax)ρ0

t∑
k=1

1

kc/2+1/2
. (107)

Estimating D.2 Since Ak is independent from Zk, it further leads to686

D.2 = −
t∑

k=1

ρ̂k

〈
Ḡk√
Ak

, G̃k − EZk

[
G̃k

]〉
.

Then, the deduction for estimating D.2 follows the similar idea as in Lemma B.6, relying on a687

martingale difference sequence.688

Let us set φk = −ρ̂k

〈
Ḡk√
Ak

, G̃k − EZk

[
G̃k

]〉
and the filtration Fk = σ (Z1, · · · ,Zk). Noting that689

ρ̂k, Ḡk and Ak are dependent by Fk−1. Since ξk is dependent by Fk, we could prove that {φk}k≥1690

is a martingale difference sequence by showing that691

E [φk | Fk−1] = −ρ̂k

〈
Ḡk√
Ak

,EZk

[
G̃k − EZk

[G̃k]
]〉

= 0.

In addition, using Assumptions (A3), (A4) and Jensen’s inequality, we have692

∥G̃k∥F =
∥Gk∥F

max{1, ∥Uk∥/(dk
√
mn)}

≤ ∥Gk∥F ≤ G, ∥EZk
[G̃k]∥F ≤ EZk

∥G̃k∥F ≤ G.
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Therefore, we derive that693

∥G̃k − EZk
[G̃k]∥F ≤ ∥G̃k∥F + ∥EZk

[G̃k]∥F ≤ 2G. (108)

Let ω′
k = 2Gρ̂k

∥∥∥ Ḡk√
Ak

∥∥∥
F

. We thus derive from the Cauchy-Schwarz inequality and (108) that694

E
[
exp

(
φ2
k

(ω′
k)

2

)
| Fk−1

]
≤ E

exp

∥∥∥ Ḡk√

Ak

∥∥∥2
F
∥G̃k − EZk

[G̃k]∥2F

4G2
∥∥∥ Ḡk√

Ak

∥∥∥2
F

 | Fk−1

 ≤ exp(1).

Then, using Lemma B.1, it leads to that for any λ > 0, with probability at least 1− δ,695

D.2 =

t∑
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φk ≤ 3λG2
t∑

k=1
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∥∥∥∥ Ḡk√
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+
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λ
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(k)
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· ρ̂k

(
ḡ
(k)
ij

)2
√
a
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ij

+
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λ
log

(
1

δ

)
.

Since {β2,k}k≥2 is non-decreasing, we could apply Lemma B.3 to derive that696

1√
a
(k)
ij

≤

√
1

β2,k(1− β2,k)ϵ1
≤

√
1

min{β2,1, β2,2}(1− β2,k)ϵ1
≤ 2√

(1− β2,k)ϵ1
.

Then, we apply (99), and re-scale δ to obtain that for any λ > 0, with probability at least 1− δ, for697

all t ∈ [T ],698

D.2 ≤ 6λG2ρ0(ϵ2 +Θmax)√
ϵ1
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ρ̂k

∥∥∥∥ Ḡk
4
√
Ak
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F

+
1

λ
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(
T

δ

)
.

Setting λ =
√
ϵ1/(24G

2ρ0(ϵ2 +Θmax)), we derive that699
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4
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Ak
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+
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log
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T

δ

)
. (109)

Estimating D.3 First, since Ak is independent from Zk and EZk
[Gk] = Ḡk, we have700

D.3 =

t∑
k=1

ρ̂k

〈
Ḡk,

EZk
[Gk]√
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− EZk
[G̃k]√
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〉
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∥∥∥∥ Ḡk√
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·
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√
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Ωk
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F

. (110)

We define the random variable S
(1)
k , S(2)

k and S̃
(1)
k using the indicator function χ and G4 in (94) as701

follows,702

S
(1)
k = χ{∥Uk∥F>dk

√
mn}, S

(2)
k = χ{∥Uk∥F≤dk

√
mn}, S̃

(1)
k = χ{∥Gk∥F≥dkG4}.

From (83), we derive that703

∥Uk∥F ≤ ∥Gk∥F · 2
√
G√

mnϵ1
.

Hence, S(1)
k ≤ S̃

(1)
k ,∀k ≥ 1. Note that when S

(2)
k = 1, it’s equivalent to Ωk = 0. Then, we derive704

that705
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Furthermore, we use Assumption (A4) and Lemma B.2 to derive a lower bound for a(k)ij where706

a
(k)
ij ≥ mnϵ21

4G
,

∥∥∥∥ Ḡk√
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F

≤ ∥Ḡk∥F
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√
a
(k)
ij

≤ 2G
√
G√

mnϵ1
. (112)

Combining with (99), (110), (111) and (112), we thus derive that707

D.3 ≤ 2G1+αG1−α
4

√
G(ϵ2 +Θmax)ρ0√
mnϵ1
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k=1

1

dα−1
k

√
k
. (113)

Putting together Both E and D.1 are bounded with two estimations, one of which owns a better708

dependency to 1/ϵ1 and the other avoids the curse of the dimension. We thereby derive two results.709

Plugging (106), (109) and (113) into (101) and then combining with (102) and (100), we then derive710

that with probability at least 1− δ, for all t ∈ [T ],711
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where C1, C2, C3 are as in Theorem B.1 and D1(α) is as in (94). Plugging (107), (109) and (113)712

into (101), then combining with (104) and (100), we then derive that with probability at least 1− δ,713

for all t ∈ [T ],714
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(115)

where C ′
2, C

′
3 are as in Theorem B.1. Moreover, using (99), we reveal that the lower bound for ρ̂k is715

the same the one for ηk in (58). Thereby, following the same deduction in (80) and (86), we derive716

that717
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where D0 = min{C0, C
′
0} that has been defined in (94). Setting t = T on (114) and (115), and then718

using (116), we then derive that719
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Then, using the results in (88) and (89), we could derive the desired result in Theorem C.1.720
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals763

are not attained by the paper.764

2. Limitations765

Question: Does the paper discuss the limitations of the work performed by the authors?766

Answer: [Yes]767

Justification: [NA]768
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Guidelines:769

• The answer NA means that the paper has no limitation while the answer No means that770

the paper has limitations, but those are not discussed in the paper.771

• The authors are encouraged to create a separate "Limitations" section in their paper.772

• The paper should point out any strong assumptions and how robust the results are to773

violations of these assumptions (e.g., independence assumptions, noiseless settings,774

model well-specification, asymptotic approximations only holding locally). The authors775

should reflect on how these assumptions might be violated in practice and what the776

implications would be.777

• The authors should reflect on the scope of the claims made, e.g., if the approach was778

only tested on a few datasets or with a few runs. In general, empirical results often779

depend on implicit assumptions, which should be articulated.780

• The authors should reflect on the factors that influence the performance of the approach.781

For example, a facial recognition algorithm may perform poorly when image resolution782

is low or images are taken in low lighting. Or a speech-to-text system might not be783

used reliably to provide closed captions for online lectures because it fails to handle784

technical jargon.785

• The authors should discuss the computational efficiency of the proposed algorithms786

and how they scale with dataset size.787

• If applicable, the authors should discuss possible limitations of their approach to788

address problems of privacy and fairness.789

• While the authors might fear that complete honesty about limitations might be used by790

reviewers as grounds for rejection, a worse outcome might be that reviewers discover791

limitations that aren’t acknowledged in the paper. The authors should use their best792

judgment and recognize that individual actions in favor of transparency play an impor-793

tant role in developing norms that preserve the integrity of the community. Reviewers794

will be specifically instructed to not penalize honesty concerning limitations.795

3. Theory Assumptions and Proofs796

Question: For each theoretical result, does the paper provide the full set of assumptions and797

a complete (and correct) proof?798

Answer: [Yes]799

Justification: [NA]800

Guidelines:801

• The answer NA means that the paper does not include theoretical results.802

• All the theorems, formulas, and proofs in the paper should be numbered and cross-803

referenced.804

• All assumptions should be clearly stated or referenced in the statement of any theorems.805

• The proofs can either appear in the main paper or the supplemental material, but if806

they appear in the supplemental material, the authors are encouraged to provide a short807

proof sketch to provide intuition.808

• Inversely, any informal proof provided in the core of the paper should be complemented809

by formal proofs provided in appendix or supplemental material.810

• Theorems and Lemmas that the proof relies upon should be properly referenced.811

4. Experimental Result Reproducibility812

Question: Does the paper fully disclose all the information needed to reproduce the main ex-813

perimental results of the paper to the extent that it affects the main claims and/or conclusions814

of the paper (regardless of whether the code and data are provided or not)?815

Answer: [Yes]816

Justification: [NA]817

Guidelines:818

• The answer NA means that the paper does not include experiments.819
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• If the paper includes experiments, a No answer to this question will not be perceived820

well by the reviewers: Making the paper reproducible is important, regardless of821

whether the code and data are provided or not.822

• If the contribution is a dataset and/or model, the authors should describe the steps taken823

to make their results reproducible or verifiable.824

• Depending on the contribution, reproducibility can be accomplished in various ways.825

For example, if the contribution is a novel architecture, describing the architecture fully826

might suffice, or if the contribution is a specific model and empirical evaluation, it may827

be necessary to either make it possible for others to replicate the model with the same828

dataset, or provide access to the model. In general. releasing code and data is often829

one good way to accomplish this, but reproducibility can also be provided via detailed830

instructions for how to replicate the results, access to a hosted model (e.g., in the case831

of a large language model), releasing of a model checkpoint, or other means that are832

appropriate to the research performed.833

• While NeurIPS does not require releasing code, the conference does require all submis-834

sions to provide some reasonable avenue for reproducibility, which may depend on the835

nature of the contribution. For example836

(a) If the contribution is primarily a new algorithm, the paper should make it clear how837

to reproduce that algorithm.838

(b) If the contribution is primarily a new model architecture, the paper should describe839

the architecture clearly and fully.840

(c) If the contribution is a new model (e.g., a large language model), then there should841

either be a way to access this model for reproducing the results or a way to reproduce842

the model (e.g., with an open-source dataset or instructions for how to construct843

the dataset).844

(d) We recognize that reproducibility may be tricky in some cases, in which case845

authors are welcome to describe the particular way they provide for reproducibility.846

In the case of closed-source models, it may be that access to the model is limited in847

some way (e.g., to registered users), but it should be possible for other researchers848

to have some path to reproducing or verifying the results.849

5. Open access to data and code850

Question: Does the paper provide open access to the data and code, with sufficient instruc-851

tions to faithfully reproduce the main experimental results, as described in supplemental852

material?853

Answer: [No]854

Justification: Our code is based on Pytorch package which is standard. In addition, we855

have clarified the detailed experimental setup in our paper and the experiments are easy to856

reproduce.857

Guidelines:858

• The answer NA means that paper does not include experiments requiring code.859

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/860

public/guides/CodeSubmissionPolicy) for more details.861

• While we encourage the release of code and data, we understand that this might not be862

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not863

including code, unless this is central to the contribution (e.g., for a new open-source864

benchmark).865

• The instructions should contain the exact command and environment needed to run to866

reproduce the results. See the NeurIPS code and data submission guidelines (https:867

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.868

• The authors should provide instructions on data access and preparation, including how869

to access the raw data, preprocessed data, intermediate data, and generated data, etc.870

• The authors should provide scripts to reproduce all experimental results for the new871

proposed method and baselines. If only a subset of experiments are reproducible, they872

should state which ones are omitted from the script and why.873

• At submission time, to preserve anonymity, the authors should release anonymized874

versions (if applicable).875
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• Providing as much information as possible in supplemental material (appended to the876

paper) is recommended, but including URLs to data and code is permitted.877

6. Experimental Setting/Details878

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-879

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the880

results?881

Answer: [Yes]882

Justification: [NA]883

Guidelines:884

• The answer NA means that the paper does not include experiments.885

• The experimental setting should be presented in the core of the paper to a level of detail886

that is necessary to appreciate the results and make sense of them.887

• The full details can be provided either with the code, in appendix, or as supplemental888

material.889

7. Experiment Statistical Significance890

Question: Does the paper report error bars suitably and correctly defined or other appropriate891

information about the statistical significance of the experiments?892

Answer: [Yes]893

Justification: [NA]894

Guidelines:895

• The answer NA means that the paper does not include experiments.896

• The authors should answer "Yes" if the results are accompanied by error bars, confi-897

dence intervals, or statistical significance tests, at least for the experiments that support898

the main claims of the paper.899

• The factors of variability that the error bars are capturing should be clearly stated (for900

example, train/test split, initialization, random drawing of some parameter, or overall901

run with given experimental conditions).902

• The method for calculating the error bars should be explained (closed form formula,903

call to a library function, bootstrap, etc.)904

• The assumptions made should be given (e.g., Normally distributed errors).905

• It should be clear whether the error bar is the standard deviation or the standard error906

of the mean.907

• It is OK to report 1-sigma error bars, but one should state it. The authors should908

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis909

of Normality of errors is not verified.910

• For asymmetric distributions, the authors should be careful not to show in tables or911

figures symmetric error bars that would yield results that are out of range (e.g. negative912

error rates).913

• If error bars are reported in tables or plots, The authors should explain in the text how914

they were calculated and reference the corresponding figures or tables in the text.915

8. Experiments Compute Resources916

Question: For each experiment, does the paper provide sufficient information on the com-917

puter resources (type of compute workers, memory, time of execution) needed to reproduce918

the experiments?919

Answer: [Yes]920

Justification: [NA]921

Guidelines:922

• The answer NA means that the paper does not include experiments.923

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,924

or cloud provider, including relevant memory and storage.925
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• The paper should provide the amount of compute required for each of the individual926

experimental runs as well as estimate the total compute.927

• The paper should disclose whether the full research project required more compute928

than the experiments reported in the paper (e.g., preliminary or failed experiments that929

didn’t make it into the paper).930

9. Code Of Ethics931

Question: Does the research conducted in the paper conform, in every respect, with the932

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?933

Answer: [Yes]934

Justification: [NA]935

Guidelines:936

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.937

• If the authors answer No, they should explain the special circumstances that require a938

deviation from the Code of Ethics.939

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-940

eration due to laws or regulations in their jurisdiction).941

10. Broader Impacts942

Question: Does the paper discuss both potential positive societal impacts and negative943

societal impacts of the work performed?944

Answer: [NA]945

Justification: [NA]946

Guidelines:947

• The answer NA means that there is no societal impact of the work performed.948

• If the authors answer NA or No, they should explain why their work has no societal949

impact or why the paper does not address societal impact.950

• Examples of negative societal impacts include potential malicious or unintended uses951

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations952

(e.g., deployment of technologies that could make decisions that unfairly impact specific953

groups), privacy considerations, and security considerations.954

• The conference expects that many papers will be foundational research and not tied955

to particular applications, let alone deployments. However, if there is a direct path to956

any negative applications, the authors should point it out. For example, it is legitimate957

to point out that an improvement in the quality of generative models could be used to958

generate deepfakes for disinformation. On the other hand, it is not needed to point out959

that a generic algorithm for optimizing neural networks could enable people to train960

models that generate Deepfakes faster.961

• The authors should consider possible harms that could arise when the technology is962

being used as intended and functioning correctly, harms that could arise when the963

technology is being used as intended but gives incorrect results, and harms following964

from (intentional or unintentional) misuse of the technology.965

• If there are negative societal impacts, the authors could also discuss possible mitigation966

strategies (e.g., gated release of models, providing defenses in addition to attacks,967

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from968

feedback over time, improving the efficiency and accessibility of ML).969

11. Safeguards970

Question: Does the paper describe safeguards that have been put in place for responsible971

release of data or models that have a high risk for misuse (e.g., pretrained language models,972

image generators, or scraped datasets)?973

Answer: [NA]974

Justification: [NA]975

Guidelines:976

• The answer NA means that the paper poses no such risks.977
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• Released models that have a high risk for misuse or dual-use should be released with978

necessary safeguards to allow for controlled use of the model, for example by requiring979

that users adhere to usage guidelines or restrictions to access the model or implementing980

safety filters.981

• Datasets that have been scraped from the Internet could pose safety risks. The authors982

should describe how they avoided releasing unsafe images.983

• We recognize that providing effective safeguards is challenging, and many papers do984

not require this, but we encourage authors to take this into account and make a best985

faith effort.986

12. Licenses for existing assets987

Question: Are the creators or original owners of assets (e.g., code, data, models), used in988

the paper, properly credited and are the license and terms of use explicitly mentioned and989

properly respected?990

Answer: [NA]991

Justification: [NA]992

Guidelines:993

• The answer NA means that the paper does not use existing assets.994

• The authors should cite the original paper that produced the code package or dataset.995

• The authors should state which version of the asset is used and, if possible, include a996

URL.997

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.998

• For scraped data from a particular source (e.g., website), the copyright and terms of999

service of that source should be provided.1000

• If assets are released, the license, copyright information, and terms of use in the1001

package should be provided. For popular datasets, paperswithcode.com/datasets1002

has curated licenses for some datasets. Their licensing guide can help determine the1003

license of a dataset.1004

• For existing datasets that are re-packaged, both the original license and the license of1005

the derived asset (if it has changed) should be provided.1006

• If this information is not available online, the authors are encouraged to reach out to1007

the asset’s creators.1008

13. New Assets1009

Question: Are new assets introduced in the paper well documented and is the documentation1010

provided alongside the assets?1011

Answer: [NA]1012

Justification: [NA]1013

Guidelines:1014

• The answer NA means that the paper does not release new assets.1015

• Researchers should communicate the details of the dataset/code/model as part of their1016

submissions via structured templates. This includes details about training, license,1017

limitations, etc.1018

• The paper should discuss whether and how consent was obtained from people whose1019

asset is used.1020

• At submission time, remember to anonymize your assets (if applicable). You can either1021

create an anonymized URL or include an anonymized zip file.1022

14. Crowdsourcing and Research with Human Subjects1023

Question: For crowdsourcing experiments and research with human subjects, does the paper1024

include the full text of instructions given to participants and screenshots, if applicable, as1025

well as details about compensation (if any)?1026

Answer: [NA]1027

Justification: [NA]1028
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Guidelines:1029

• The answer NA means that the paper does not involve crowdsourcing nor research with1030

human subjects.1031

• Including this information in the supplemental material is fine, but if the main contribu-1032

tion of the paper involves human subjects, then as much detail as possible should be1033

included in the main paper.1034

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1035

or other labor should be paid at least the minimum wage in the country of the data1036

collector.1037

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1038

Subjects1039

Question: Does the paper describe potential risks incurred by study participants, whether1040

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1041

approvals (or an equivalent approval/review based on the requirements of your country or1042

institution) were obtained?1043

Answer: [NA]1044

Justification: [NA]1045

Guidelines:1046

• The answer NA means that the paper does not involve crowdsourcing nor research with1047

human subjects.1048

• Depending on the country in which research is conducted, IRB approval (or equivalent)1049

may be required for any human subjects research. If you obtained IRB approval, you1050

should clearly state this in the paper.1051

• We recognize that the procedures for this may vary significantly between institutions1052

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1053

guidelines for their institution.1054

• For initial submissions, do not include any information that would break anonymity (if1055

applicable), such as the institution conducting the review.1056
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