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Abstract

Injecting structure into neural networks enables learning functions that satisfy
invariances with respect to subsets of inputs. For instance, when learning gener-
ative models using neural networks, it is advantageous to encode the conditional
independence structure of observed variables, often in the form of Bayesian net-
works. We propose the Structured Neural Network (StrNN), which injects structure
through masking pathways in a neural network. The masks are designed via a novel
relationship we explore between neural network architectures and binary matrix
factorization, to ensure that the desired independencies are respected. We devise
and study practical algorithms for this otherwise NP-hard design problem based
on novel objectives that control the model architecture. We demonstrate the utility
of StrNN in three applications: (1) binary and Gaussian density estimation with
StrNN, (2) real-valued density estimation with Structured Autoregressive Flows
(StrAFs), autoregressive normalizing flows that leverage StrNN as a conditioner,
and (3) interventional and counterfactual analysis with StrAFs. Our work opens
up new avenues for learning neural networks that enable data-efficient generative
modeling and the use of normalizing flows for causal effect estimation.

1 Introduction
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Figure 1: StrNN injects structure by masking
the weights of a neural network. Top: StrNN
connections (green) compared to a fully con-
nected network (gray). Bottom: Binary factor-
ization of an adjacency matrix yields weight
masks. Masked weights shown in gray.

The incorporation of structure into machine learning
models has been shown to provide benefits for model
generalization, learning efficiency, and interpretability.
The improvements are particularly salient when learning
from small amounts of data. This idea has found use in
reinforcement learning [Ok et al., 2018], computational
healthcare [Hussain et al., 2021, Cui et al., 2020], sur-
vival analysis [Gharari et al., 2023], time series analysis
[Curi et al., 2020], and causal inference [Balazadeh et al.,
2022].

This work focuses on the problem of density estimation
from high-dimensional data which has been approached
through a variety of lenses. For example, normalizing
flows [Tabak and Turner, 2013, Rezende and Mohamed,
2015] model data by transforming a base distribution
through a series of invertible transformations. Masked
autoencoders (MADE) [Germain et al., 2015] model the
joint distribution via an autoregressive factorization of

∗Equal Contribution †Equal Senior Authorship

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



the random variables. The factorization is enforced by integrating structure in the neural network
of the autoencoder. The MADE architecture zeros out weights in a neural network to ensure each
output dimension has an autoregressive dependence on the input dimensions. When data is scarce,
this may lead to over-fitting and harm generalization. When knowledge of a Bayesian network [Pearl,
2011] and the associated conditional independencies exist, it is desirable to inject this knowledge
directly into the network to improve density estimation. In this work, we extend the concept of weight
masking, as in MADEs, to go beyond autoregressive dependencies of the output on the input.

This work proposes the Structured Neural Network (StrNN), a network architecture that enforces
functional independence relationships between inputs and outputs via weight masking. In other words,
the output can remain unaffected by changes to (subsets of) the input. We focus on instantiating
this idea to model conditional independence between inputs when neural networks are deployed to
model the density of random variables, as illustrated in Figure 1. Any set of conditional independence
statements (e.g. in a Bayesian network) may be represented via a binary adjacency matrix. StrNN
performs binary matrix factorization to generate a set of weight masks that follow the adjacency matrix.
There are two key challenges we overcome. First, the general problem of binary matrix factorization
in this context is under-specified, as there exist many valid masks whose matrix product realizes a
given adjacency matrix. To this end, we propose the idea of neural network path maximization as a
strategy to guide the generation of optimal masks. Secondly, binary matrix factorization is NP-hard
in general. We study practical solutions that generate valid mask matrices efficiently.

StrNN can then be applied to NN-based density estimation in various contexts. Where conditional
independence properties are known a priori, we show that StrNN can be used to estimate parameters
of data distributions while keeping specified variables conditionally independent. We further integrate
StrNNs into various discrete and continuous flow architectures, including the autoregressive normal-
izing flow [Papamakarios et al., 2017, Huang et al., 2018] to form the Structured Autoregressive
Flow (StrAF). The StrAF model uses the StrNN as a normalizing flow conditioner network, thus
enforcing a given adjacency structure within each flow layer. The StrAF preserves variable orderings
between chained layers, allowing the adjacency structure to be respected throughout the entire flow.

Finally, we study a natural application of StrAF in causal effect estimation, a domain that often
requires flexible methods for density estimation that enforce conditional independence relationships
within causal graphs [Pearl, 2009]. We show how StrAFs can be used to perform interventional and
counterfactual queries better than existing flow-based causal models that do not incorporate graphical
structures. Across the board, we highlight how incorporating conditional independence structure
improves generalization error when learning from a small number of samples.

In summary, the main contributions of this work are as follows:

1. We introduce StrNN, a weight-masked neural network that can efficiently learn functions with
specific variable dependence structures. In particular, it can inject prior domain knowledge in the
form of Bayesian networks to probability distributions. We formalize the weight masking as an
optimization problem, where we can pick the objective based on desired neural architectures. We
propose an efficient binary matrix factorization algorithm to mask arbitrary neural networks.

2. We integrate StrNN into autoregressive and continuous normalizing flows for best-in-class perfor-
mance in density estimation and sample generation tasks.

3. We apply StrAF for causal effect estimation and showcase its ability to outperform existing causal
flow models in accurately addressing interventional and counterfactual queries.

2 Background

Masked Autoencoders for Density Estimation (MADE): Masked neural networks were introduced
for density estimation on binary-valued data [Germain et al., 2015]. Given x = (x1, ..., xd), MADE
factorizes p(x) as the product of the outputs of a neural network. Writing the j-th output as the
conditional probability x̂j := p(xj = 1|x<j), the joint distribution can be rewritten exactly as the
binary cross-entropy loss. As long as the neural network outputs are autoregressive in relation to its
inputs, we can minimize the cross-entropy loss for density estimation. To enforce the autoregressive
property for a neural network y = f(x) with a single hidden layer and d inputs and outputs, MADE
element-wise multiplies the weight matrices W and V with binary masks MW and MV :

h(x) = g((W ⊙MW )x+ b), y = f((V ⊙MV )h(x) + c). (1)
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The autoregressive property is satisfied as long as the product of the masks, MV MW ∈ Rd×d, is
lower triangular. The MADE masking algorithm (2) can be extended to neural networks with an
arbitrary number of hidden layers and hidden sizes. For Gaussian data, the MADE model can be
extended as Rd → R2d, (x1, ...xd) → (µ̂1, ..., µ̂d, log(σ̂1), ..., log(σ̂d)). The last mask must be
duplicated to ensure µj and σj only depend on x<j . MADE can also be used as the conditioner in an
autoregressive flow to model general data, as seen in Papamakarios et al. [2017].

Normalizing Flows: Normalizing flows [Rezende and Mohamed, 2015] model complex data distri-
butions and have been applied in many scenarios [Papamakarios et al., 2021]. Given data x ∈ Rd,
a normalizing flow T : Rd → Rd takes x to latent variables z ∈ Rd that are distributed according
to a simple base distribution pz, such as the standard normal. The transformation T must be a
diffeomorphism (i.e., differentiable and invertible) so that we can compute the density of x via the
change-of-variables formula: px(x) = pz(T(x))|det JT(x)|. We can compose multiple diffeomor-
phic transformations Tk to form the flow T = T1 ◦ · · · ◦TK since diffeomorphisms are closed under
composition. The flows are trained by maximizing the log-likelihood of the observed data under
the density px(x). The log-likelihood can be evaluated efficiently when it is tractable to compute
the Jacobian determinant of T; for example when Tk is a lower triangular function [Marzouk et al.,
2016]. Given the map, we can easily generate i.i.d. samples from the learned distribution by sampling
from the base distribution zi ∼ pz and evaluating the flow T−1(zi).

Density Estimation with Autoregressive Flows: When the Jacobian matrix of each flow layer is
lower triangular, its determinant is simply the product of its diagonal entries [Huang et al., 2018]. This
gives rise to the autoregressive flow formulation: given an ordering π of the d variables in the data
vector x, the jth component of the flow T has the form: xj = τj(zj ; cj(x<π(j))) where each τj is an
invertible transformer and each cj is a conditioner that only depends on the variables that come before
xj in the ordering π. As a result, the map components define an autoregressive model that factors
the density over a random variable x as: p(x) =

∏d
j=1 p(xj |x<j) where x<j = (x1, . . . , xj−1).

autoregressive. Under mild conditions, any arbitrary distribution px can be transformed into a base
distribution with a lower triangular Jacobian [Rezende and Mohamed, 2015]. That is, autoregressive
flows are arbitrarily expressive given the target distribution. One common choice of invertible
functions for the transformer are monotonic neural networks [Wehenkel and Louppe, 2019].

Density Estimation with Continuous Normalizing Flows: Continuous normalizing flows (CNFs)
[Chen et al., 2018, Grathwohl et al., 2018] represent the transformation T as the flow map solving
the differential equation ∂z(t)

∂t = f(z(t), t; θ). Given the initial condition x = z(t1) ∼ px, we can
integrate f backwards in time from t1 to t0 to obtain z = z(t0) ∼ pz, or vice versa. In order to
learn the CNF, Chen et al. [2018] computes the change in log-density under the transformation
using the instantaneous change of variables formula, which is defined by the differential equation
∂ log p(z(t))

∂t = −Tr( ∂f
∂z(t) ). This expression is used to compute the log-likelihood of a target sample

as log p(z(t1)) = log p(z(t0))−
∫ t1
t0

Tr( ∂f
∂z(t) )dt. We refer the reader to Chen et al. [2018] for the

process of back-propagating through the objective using the adjoint sensitivity method as well as a
discussion on the existence and uniqueness of a solution for the ODE flow map.

Causal Inference with Autoregressive Flows: Modelling causal relationships is crucial for en-
abling effective decision-making in various fields [Pearl, 2009]. A structural equation model (SEM)
parameterizes the process that generates observed data, allowing us to reason about interventions
and counterfactuals. Given random variables x = (x1, ..., xd) ∈ Rd with joint distribution Px, the
associated SEM consists of d structural equations of the form xj = fj(paj , uj), where u represents
mutually independent latent variables and paj denotes the direct causal parents of variable xj . Each
SEM also corresponds to a directed acyclic graph (DAG), with a causal ordering π defined by the
variables’ dependencies.

Khemakhem et al. [2021] showcased the intrinsic connection between SEMs and autoregressive flows.
The authors demonstrated that affine autoregressive flows with a fixed ordering of variables can be
used to parameterize SEMs under the framework of causal autoregressive flows (CAREFL). When
the causal ordering of variables is given, CAREFL outperforms other baselines in interventional tasks
and generates accurate counterfactual samples. However, one significant limitation of CAREFL is
that there is no guarantee that the autoregressive structure corresponds to the true dependencies in the
causal graph beyond pairwise examples. In Section 3.3, we leverage StrAF to incorporate additional
independence structure, enhancing its faithfulness to the causal DAG.
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3 Methodology

3.1 Structured Neural Networks

As neural networks are universal function approximators [Hornik et al., 1989], injecting structure into
multilayer perceptrons (MLPs) naturally allows us to approximate complex functions with certain
invariances. For a neural network that approximates an arbitrary function f : Rm → Rn, one type of
invariance we could consider is when a specific output x̂j is independent from a given input xi, i.e.:
x̂j ⊥ xi means ∂x̂j

∂xi
= 0. As a motivating example, we focus on the probabilistic density estimation

problem framed as learning maps from one probability distribution to another. In this setting, it
is imperative that we are able to learn structured functions between two high-dimensional spaces.
Therefore in this paper, we seek to efficiently encode such invariances via weight masking.

For data x = (x1, ..., xd), we use the lower-triangular adjacency matrix A ∈ {0, 1}d×d to represent
the underlying variable dependence structure. In other words, Aij = 0 for j < i if and only
if xi ⊥ xj |x{1,...,i}\j and Aij = 1 otherwise. This matrix encodes the same information as a
Bayesian network DAG of the variables. In the fully autoregressive case, matrix A is a dense lower
triangular matrix with all ones under the diagonal, which is the only case addressed in Germain
et al. [2015]. Their proposed MADE algorithm (Appendix A.1) only encodes the structure of dense
adjacency matrices, and cannot incorporate additional conditional independencies. Further, the
non-deterministic version of the algorithm can introduce unwanted independence statements by
chance, as discussed in Proposition 1.

We improve upon the idea of masked autoregressive neural networks to directly encode the inde-
pendence structure represented by an adjacency matrix A that is lower triangular but also has added
sparsity. We observe that a masked neural network satisfies the structural constraints prescribed in A
if the product of the masks for each hidden layer has the same locations of zero and non-zero entries
as A. Therefore, given the conditional independence structure of the underlying data generating
process, we can encode structure into an autoregressive neural network by factoring the adjacency
matrix into binary mask matrices for each hidden layer.

More specifically, given an adjacency matrix A ∈ {0, 1}d×d and a neural network with L hidden
layers, each with h1, h2, ..., hL hidden units (≥ d), we seek mask matrices M1 ∈ {0, 1}h1×d,M2 ∈
{0, 1}h2×h1 , . . . ,ML ∈ {0, 1}d×hL such that A′ ∼ A,where A′ := ML · · ·M2 ·M1. We use
A′ ∼ A to denote that matrices A′ and A share the same sparsity pattern, i.e.: exact same locations of
zeros and non-zeros. Note that here A is a binary matrix and A′ is an integer matrix. We then mask
the neural network’s hidden layers using M1,M2, ...,ML as per (1) to obtain a Structured Neural
Network (StrNN), which respects the prescribed independence constraints. The value of each entry
A′

ij thus corresponds to the number connections flowing from input xj to output x̂i in the StrNN.

Finding the optimal solution to this problem is NP-hard since binary matrix factorization can be
reduced to the biclique covering problem [Miettinen and Neumann, 2020, Ravanbakhsh et al., 2016,
Orlin, 1977]. Furthermore, most existing works focus on deconstructing a given matrix A into
low-rank factors while minimizing (but not eliminating) reconstruction error [Dan et al., 2015, Fomin
et al., 2020]. In our application, any non-zero reconstruction error breaks the independence structure
we want to enforce in our masked neural network. This puts existing algorithms for low-rank binary
matrix factorization outside the scope of our paper. We instead consider the problem of finding factors
that reproduce the adjacency matrix exactly, which is always possible when hidden layer dimensions
are greater than the input and output dimension.

Optimization Objectives. Identifiability remains an issue even when we eliminate reconstruction
error. Given an adjacency matrix A, there can be multiple solutions for factoring A into per-layer
masks that satisfy the constraints, especially if the dimensions of the hidden layers are much larger
than d. Since the masks dictate which connections remain in the neural network, the chosen mask
factorization algorithm directly impacts the neural network architecture. Hence, it is natural to
explicitly specify a relevant objective to the neural network’s approximation error during the matrix
factorization step, such as the test log-likelihood.

Given that the approximation error is inaccessible when selecting the architecture, we were inspired
by the Lottery Ticket Hypothesis [Frankle and Carbin, 2018] and other pruning strategies [Srivastava
et al., 2014, Gal and Ghahramani, 2016] that identify a subset of valuable model connections. Our
hypothesis is that given the same data and prior knowledge on independence structure, the masked
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neural network with more connections is more expressive, and will thus be able to learn the data better
and/or more quickly. To find such models, we consider two objectives: Equation (2) that maximizes
the number of connections in the neural network while respecting the conditional independence
statements dictated by the adjacency matrix, and Equation (3) that maximizes connections while
penalizing any pair of variables from having too many connections at the cost of the others. That is,

max
A′∼A

d∑
i=1

d∑
j=1

A′
ij , (2) max

A′∼A

d∑
i=1

i∑
j=1

A′
ij − var(A′), (3)

where var(A′) is the variance across all entries in A′. While we focus on these two objectives, future
work will find optimal architectures by identifying other objectives to improve approximation error.

Factorization Algorithms. The maximization of the aforementioned mask factorization is an
intractable optimization problem. We therefore develop approximate algorithms to solve them. Our
strategy for optimization involves recursively factorizing the mask matrix layer by layer. Given
A ∈ {0, 1}d×d, we run Algorithm 1 once to find A1 ∈ {0, 1}d×h1 and M1 ∈ {0, 1}h1×d for a layer
of width h1 such that A1 ·M1 ∼ A, where ∼ denotes that the matrices share the same sparsity.
For the next layer with h2 hidden units, we use A1 in place of A to find A2 ∈ {0, 1}d×h2 and
M2 ∈ {0, 1}h2×h1 such that A2 ·M2 ∼ A1. We repeat until we have found all the masks.

For each objective, we can obtain per-layer exact solutions using integer programming. While the
Gurobi optimizer [Gurobi Optimization, LLC, 2023] can be used for small d, this approach was
found to be too computationally expensive for d greater than 20, which is a severe limitation for
real-world datasets and models. We hereby propose a greedy algorithm (shown in Algorithm 1) that
approximates the solution to the maximum connections objective in Equation (2). For each layer, the
algorithm first replicates the structure given in the adjacency matrix A by copying its rows into the
first mask. It then maximizes the number of neural network connections by filling in the second mask
with as many ones as possible while respecting the sparsity in A. See Appendix A.2 for a visual
explanation of the algorithm. For a network with d-dimensional inputs and outputs and one hidden
layer with h units, this algorithm runs in O(dh) time. Scaling up to L layers, where each hidden
layer commonly contains O(d) units, the overall runtime is O(d2L), which is much more efficient
than the integer programming solutions. From our experiments, the greedy algorithm executes nearly
instantaneously for dimensions in the thousands.

Algorithm 1: Greedy factorization
Data: A ∈ {0, 1}d1×d2 , hidden size h
Result: MV ∈ {0, 1}d1×h,

MW ∈ {0, 1}h×d2 , satisfying
MV MW ∼ A

1 nz ← non-zero rows in A

2 Fill MW with nz; repeat until full
3 Fill MV with ones
4 for i-th row in MV do:
5 C ← indices of 0’s in i-th row ofA
6 T ← cols. of MW whose index ∈ C
7 R← indices of non-zero rows of T
8 for r in R: set MV

i,r to zero
9 return (MV , MW )

In Appendix A, we include detailed results from in-
vestigating the link between the neural network’s gen-
eralization performance and the choice of mask fac-
torization algorithm. We observe that while the exact
solution to objective (2) achieves a higher objective
value than the greedy approach, it has no clear advan-
tage in density estimation performance. Moreover, we
found that models trained with the two objectives, (2)
and (3), provide similar performance. However, some
datasets might be more sensitive to the exact objec-
tive. For example, problems with anisotropic non-
Gaussian structure may require neural architectures
with more expressivity in some variables that may be
favored with certain objectives. While we adopted
objective (2) and the efficient greedy algorithm in the
remainder of our experiments, designing and compar-
ing different factorization objectives is an important direction for future work.

3.2 Structured Neural Networks for Normalizing Flows

For the general real-valued probabilistic density estimation task, we highlight the use of StrNN in
two popular normalizing flow frameworks, autoregressive flows and continuous-time flows. In the
autoregressive flows setting, recall that the jth component of each flow layer is parameterized as
xj = τj(zj ; cj(x<π(j))), where the conditioner cj dictates which inputs the latent variable can depend
on. We use the StrNN as the conditioner, combined with any valid invertible transformer τ , to form the
Structured Autoregressive Flow (StrAF). The StrNN conditioner ensures each transformed latent
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variable is only conditionally dependent on the subset of variables defined by a prescribed adjacency
matrix. A single step from StrAF can be represented as: z = StrAF(x) = τ(x,StrNN(x, A))
where x ∈ Rd and A ∈ {0, 1}d×d is an adjacency matrix. Normalizing flow steps are typically
composed to improve the expressiveness of the overall flow. To ensure that the prescribed adjacency
structure is respected throughout all flow steps, we simply avoid the common practice of variable
order permutation between flow steps. We visualize this in Figure 2. This choice does not hurt
performance as long as a sufficiently expressive transformer is used. In our experiments, we apply
the unconstrained monotonic neural network (UMNN) described in Wehenkel and Louppe [2019] as
a transformer.

NF Step

StrNN

UMNN

Connectivity
after 1 step

Final
Connectivity

True
Adjacency

Connectivity
after 2 steps

NF Step

StrNN

UMNN

Structured Autoregressive Flow (StrAF)

Figure 2: The StrAF injects a prescribed ad-
jacency into each flow step using a StrNN
conditioner. The StrAF does not permute la-
tent variables, allowing the adjacency matrix
to be respected throughout the entire flow.

We also integrate the StrNN into continuous nor-
malizing flows (CNFs), where the neural network
that parameterizes f in the differential equation
∂z(t)
∂t = f(z(t), t) is replaced by a StrNN to ob-

tain ∂z(t)
∂t = StrNN(z(t), t, A). This plug-in replace-

ment allows us to inject structure into the function
describing the continuous dynamics of the CNF with-
out modifying other aspects of the CNF. We refer to
this architecture as the Structured CNF (StrCNF).
The StrCNF uses the trace estimator described in
FFJORD [Grathwohl et al., 2018] to evaluate the ob-
jective function for learning the flow.

While injecting structure, both StrAF and StrCNF
inherit the efficiency of StrNN due to our choice
of weight masking. Specifically, the output of the
StrNN can be computed with a single forward pass
through the network. In comparison, input masking
approaches such as Wehenkel and Louppe [2021] must perform d forward passes to compute the
output for a single datum. This not only prevents efficient application of input masking to high
dimensional data, but also is a barrier to integrating the method with certain architectures. For
example, the CNF already requires many neural network evaluations to numerically solve the ODE
defining the flow map, so making d passes per evaluation is particularly inefficient.

3.3 Structured Causal Autoregressive Flow

Beyond density estimation, StrAF allows us to build autoregressive flows that faithfully represent
variable dependencies defined by a causal DAG. In contrast, CAREFL [Khemakhem et al., 2021]
only maintains the autoregressive order, which is insufficient for data with more than two variables
where the true structure must be characterized by a full adjacency matrix. Building on CAREFL, we
also assume that the flow T takes on the following affine functional forms for observed data x:

xj = esj(x<π(j))zj + tj(x<π(j)), j = 1, ..., d (4)

where the functions sj and tj are both conditioners that control the dependencies on the variables
preceding xj . It is crucial for the autoregressive or graphical structures to be maintained across all
sub-transformations T1, ...,TK for the flow T = T1 ◦ · · · ◦TK .

Assuming the true causal topology has been given either from domain experts or oracle discovery
algorithms, StrAF can directly impose the given topological constraints by adding an additional mask-
ing step based on the adjacency matrix, as shown in section 3.1. This ensures that the dependencies
of the flows match the known causal structure, which leads to more accurate inference predictions.

4 Related Works

Given a Bayesian network adjacency matrix, Wehenkel and Louppe [2021] introduced graphical
conditioners to the autoregressive flows architecture through input masking. They demonstrated that
unifying normalizing flows with Bayesian networks showed promise in injecting domain knowledge
while promoting interpretability, as even single-step graphical flows yielded competitive results in
density estimation. Our work follows the same idea of introducing prior domain knowledge into
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autoregressive flows, but we instead use a masking scheme similar to methods in Germain et al.
[2015]. We again note that input masking scales poorly with data dimension d, as d forward passes
are required to obtain the output for a single datum.

Silvestri et al. [2021] proposed embedded-model flows, which alternates between traditional nor-
malizing flows layers and gated structured layers that a) encode parent nodes based on the graphical
model, and b) include a trainable parameter that determines how strongly the current node depends
on its parent nodes, which alleviates error when the assumed graphical model is not entirely cor-
rect. In comparison, our work encodes conditional independence more directly in the masking step,
improving accuracy when the assumption in the probabilistic graphical structure is strong.

Mouton and Kroon [2022] applied a similar idea to residual flows by masking the residual blocks’
weight matrices prior to the spectral normalization step according to the assumed Bayesian network.
Similarly, Weilbach et al. [2020] introduced graphical structure to continuous normalizing flows by
masking the weight matrices in the neural network that is used to parameterize the time derivative
of the flow map. However, their method is difficult to apply to neural networks with more than
a single hidden layer. In comparison, our factorization algorithm more naturally permits the use
of multi-layered neural networks when representing CNF dynamics. The Zuko software package
[Rozet et al., 2023] implements various types of normalizing flows, including MAFs that also
rely on weight masking, but they only provide one possible algorithm to enforce autoregressive
structure given a specific variable order. In comparison, our approach permits explicit optimization of
different objectives during the adjacency matrix factorization step and we investigate the efficacy of
factorization schemes and resulting neural architectures in our work. For completeness, we include
pseudocode of their algorithm and comparisons to our own algorithms in Appendix A .

Flows have garnered increasing interest in the context of causal inference, with applications spanning
various problem domains. Ilse et al. [2021] parameterized causal model with normalizing flows in the
general continuous setting to learn from combined observational and interventional data. Melnychuk
et al. [2022] used flows as a parametric method for estimating the density of potential outcomes
from observational data. Flows have also been employed in causal discovery [Brouillard et al.,
2020, Khemakhem et al., 2021] as well as in various causal applications [Ding et al., 2023, Wang
et al., 2021]. In particular, Balgi et al. [2022a] also considered embedding the true causal DAG in
flows for interventional and counterfactual inference, but they do so via the framework of Graphical
Normalizing Flows [Wehenkel and Louppe, 2021]. Balgi et al. [2022b] used CAREFL on a real-world
social sciences dataset leveraging a theorized Bayesian network.

5 Experiments

To demonstrate the efficacy of encoding structure into the learning process, we show that using StrNN
its flow integrations to enforce a prescribed adjacency structure improves performance on density
estimation and sample generation tasks. We experiment on both synthetic data generated from known
structure equations and MNIST image data. Details on the data generation process for all synthetic
experiments can be found in Appendix C. We also apply StrAF in the context of causal inference
and demonstrate that the additional graphical structure introduced by StrAF leads to more accurate
interventional and counterfactual predictions. The code to reproduce these experiments is available at
https://github.com/rgklab/StructuredNNs.

5.1 Density Estimation on Binary Data

For binary density estimation, we compare StrNN against the fully autoregressive MADE baseline.

Synthetic Tabular Data We generate binary tabular data through structural equations from known
Bayesian networks. The results are shown in Figure 3 (left). We find that StrNN performs better than
MADE, especially in the low data regime, as demonstrated on the left hand side of each chart.

MNIST Image Data To study the effect of structure in image modeling, we use the binarized
MNIST dataset considered in Germain et al. [2015], Salakhutdinov and Murray [2008]. Germain et al.
[2015] treated each 28-by-28-pixel image as a 784-dimensional data vector with full autoregressive
dependence. Since we do not know the ground truth structure, we use StrNN to model a local
autoregressive dependence on a square of a pixels determined by the hyper-parameter nbr_size.
By changing the hyperparameter we can increase the context window used to model each pixel.
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Figure 3: Negative log likelihood of a test set (lower is better) for density estimation experiments on binary
synthetic data (left 2 images) and label-dependent binary MNIST data (right 2 images). Error ranges are reported
as standard error across the test set. StrNN performs better than MADE as the sample size decreases.

StrNN is equivalent to MADE for this experiment when we set nbr_size=28. We first find the
best nbr_size for each label via grid search. For labels 0 and 2, the optimal nbr_size is 10, and
per-label density estimation results can be found in Figure 3 (right). StrNN outperforms MADE
for both labels, with the advantage more significant when sample size is very small. Samples of
handwritten digits generated from both StrNN and MADE can be found in Appendix B.

5.2 Density Estimation on Gaussian Data

Figure 4: Results from density estimation experiments
on Gaussian synthetic data generated from two different
sparsity patterns. Test loss is reported in negative log
likelihood with error ranges (standard error across test
set). StrNN performs significantly better than MADE in
the low data regime, and better on average.

We run experiments to compare the perfor-
mances of StrNN and MADE on synthetic Gaus-
sian data generated from known structure equa-
tion models where each xi is Gaussian. We plot
the results in Figure 4. StrNN achieves lower
test loss than MADE on average, although the
error bars are not necessarily disjoint. When the
sample size is low, however, StrNN significantly
outperforms MADE, similar to the binary case.
In conclusion, across all binary and Gaussian
experiments, encoding structure makes StrNN
significantly more accurate at density estimation
than the fully autoregressive MADE baseline.

5.3 Density Estimation with Structured Normalizing Flows

We evaluate StrAF on density estimation against several baselines. We draw 1000 samples from a 15
dimensional tri-modal and non-linear synthetic dataset for experimental evaluation. Data generation
is further described in Appendix C.4.

Experimental Setup We select the fully autoregressive flow (ARF) and the Graphical Normalizing
Flow (GNF) [Wehenkel and Louppe, 2021] as the most relevant discrete flow baselines for comparison.
We use the official GNF code repository during evaluation, but note that it contains design decisions
that harm sample quality (see Appendix E.3). We also evaluate against FFJORD [Grathwohl et al.,
2018] and Weilbach et al. [2020] as baselines for StrCNF. While other structured flows exist and have
been examined in Section 4, they do not represent variables using an autoregressive structure and
hence are less comparable. Where applicable, models were provided the true adjacency matrix in their
conditioners. All discrete flow models use a UMNN [Wehenkel and Louppe, 2019] transformer and
we grid-search other hyperparameters as described in Appendix E.2. We evaluate density estimation
performance using the negative log-likelihood (NLL). After fixing the hyperparameters, we perform
8 randomly initialized training runs, then report the mean and 95% CI of the test NLL for these runs.

StrNN improves flow-based models for density estimation

We report results in Table 1 and observe several trends. For both discrete and continuous flows, the abil-
ity to incorporate structure yields performance benefits compared to the ARF and FFJORD baselines.
In particular, the StrNN offers advantages in comparison to baseline approaches that can encode struc-
ture. For example, while the method proposed by Weilbach et al. [2020] allows a DAG structure to
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Figure 5: Model generated samples are shown in blue dots for randomly selected dimensions. The ground truth
density is visualized by the orange contours. See Appendix E.3 for an explanation on why GNF performs poorly.

Table 1: Evaluation of flow-
based models. Mean and 95% CI
of test NLL over 8 runs reported.

Test NLL (↓)
ARF -3.09 ± 0.43
GNF -3.63 ± 0.35
StrAF -3.55 ± 0.20

FFJORD -1.85 ± 0.64
Weilbach -2.59 ± 0.58
StrCNF -4.01 ± 0.12

be injected into the baseline CNF, its inability to easily use a multi-
layered neural network to represent dynamics hinders performance as
compared to the StrCNF. We observe that StrAF and GNF perform
comparably, and the StrCNF outperforms all other models. We
visualize the quality of samples generated by these flow models in
Figure 5, and find that both StrAF and StrCNF yields samples that
closely match the ground truth distribution.

5.4 Causal Inference with Structured Autoregressive Flows

We conduct synthetic experiments where we generate data according
to a linear additive SEM. Details on data generation can be found
in Appendix D.2. In our experiments involving 5- and 10-variable
SEMs, we compare StrAF against CAREFL, which only utilizes MADE as the conditioner and
maintains autoregressive ordering of the variables. This comparison highlights the additional benefits
of enforcing the generative model to be faithful to the causal graph, which is a feature unique to
StrAF. Furthermore, unlike the previous work conducted by Khemakhem et al. [2021] that evaluates
causal queries on individual variables alone, we propose a comprehensive evaluation metric called
total mean squared error (MSE) for these two causal tasks as outlined below. We report the mean
errors along with the standard deviations from multiple training runs with different datasets. The
formulations of the metrics can be found in Appendix D.3. In addition, Appendix D.1 provides
detailed algorithms and related discussions on generating interventional samples and computing
counterfactuals with flows.
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(a) Interventions
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(b) Counterfactuals

Figure 6: Evaluations of causal predictions (left: interventions; right: counterfactuals) on 5- and 10-variable
SEMs made by StrAF and CAREFL. Performance is measured by the corresponding total mean squared error
with standard deviation across ten runs. (a) measures the error of the expected value of one variable under
different interventions, while (b) computes the error by deriving counterfactual values under different observed
samples and queries.

Interventions. We perform interventions on each variable xj within the SEM and draw samples
from the intervened causal system. Interventions are performed by setting the intervened value α
using one of eight integers perturbed from the mean of the intervened variable. We compute the
expectations E[xi|do(xj = α)] for variable xi, excluding the intervened variable xj itself and its
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preceding variables as they remain unaffected. To estimate these expectations, we use 1000 samples
and calculate the squared error for the predictions. The resulting error is then averaged over the set of
intervened values, intervened variables, and the corresponding variables with computed expectations
under interventions. We present the plot of this aggregated metric, referred to as the total intervention
mean squared error (total I-MSE), for the two SEMs in Figure 6a. Notably, StrAF consistently
outperforms CAREFL across all training dataset sizes, highlighting the effectiveness of the additional
graph structure in improving StrAF’s inference of the interventional distribution.

Counterfactuals. In a similar setting as the intervention experiments, we evaluate StrAF and
CAREFL on their ability to compute accurate counterfactuals conditioned on observed data. Coun-
terfactual inference tackles what-if scenarios: determining the value of variable xi if variable xj

had taken a different value α. Unlike interventions, counterfactual queries involve deriving the
latent variables z given the observed data x = xobs, rather than sampling new z. We generate 1000
observations using the synthetic SEM and derive counterfactual values x by posing queries with
varying α values for each variable xj . Similar to interventions, we compute the squared error and
average over the 1000 observed samples and all possible combinations of counterfactual queries for
each observed sample, and we refer to this metric as the total counterfactual mean squared error (total
C-MSE). Figure 6b illustrates that, for both SEMs, StrAF outperforms CAREFL in making more
accurate counterfactual predictions. Moreover, StrAF demonstrates consistent performance even in
scenarios with limited available samples.

6 Conclusions and Limitations

We introduce the Structured Neural Network (StrNN), which enables us to encode functional
invariances in arbitrary neural networks via weight masking during learning. For density estimation
tasks where the true dependencies are expressed via Bayesian networks (or adjacency matrices), we
show that StrNN outperforms a fully autoregressive MADE model on synthetic and MNIST data. We
integrate StrNN in autoregressive and continuous flow models to improve both density estimation
and sample quality. Finally, we show that our structured autoregressive flow-based causal model
outperforms existing baselines on causal inference. We address some limitations and directions for
future work below.

Access to true adjacency structure. We assume access to the true conditional independence structure.
While this information is available in many contexts, such as from domain experts, there is also a
wide literature on learning the conditional independencies directly from data [Drton and Maathuis,
2017]. One prominent example is the NO-TEARS algorithm [Zheng et al., 2018]. Wehenkel and
Louppe [2021] shows that integrating NO-TEARS with an autoregressive flow can improve density
estimation when a ground truth adjacency is unknown. Any adjacency matrix learned from data
can also be integrated in StrAF. In our work, we have found two existing causal structure discovery
libraries that are relatively comprehensive and easy to use: Kalainathan et al. [2020] and Zheng et al.
[2023]. Future work will use StrNN to directly learn structure from data, providing a full pipeline
from structure discovery to density estimation and sample generation.

StrNN optimization objectives. The mask factorization algorithm used by StrNN can maximize
different objectives while ensuring the matrices satisfy a sparsity constraint. In Section 3.1, we
proposed two such objectives and in Appendix A we demonstrated that they can impact model
generalization. StrNN provides a framework with which it is possible to explore other objectives
to impose desirable properties on neural network architectures. Moreover, investigating the effect
of sparse structure on faster and easier training is a valuable direction [Frankle and Carbin, 2018].
For example, one approach would be to leverage connections between dropout and the lottery ticket
hypothesis to randomly introduce sparsity into a neural network using StrNN weight masking.
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