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Abstract
Recent theoretical work established the unsuper-
vised identifiability of quantized factors under any
diffeomorphism. The theory assumes that quanti-
zation thresholds correspond to axis-aligned dis-
continuities in the probability density of the la-
tent factors. By constraining a learned map to
have a density with axis-aligned discontinuities,
we can recover the quantization of the factors.
However, translating this high-level principle into
an effective practical criterion remains challeng-
ing, especially under nonlinear maps. Here, we
develop a criterion for unsupervised disentangle-
ment by encouraging axis-aligned discontinuities.
Discontinuities manifest as sharp changes in the
estimated density of factors and form what we call
cliffs. Following the definition of independent dis-
continuities from the theory, we encourage the
location of the cliffs along a factor to be indepen-
dent of the values of the other factors. We show
that our method, Cliff, outperforms the baselines
on disentanglement benchmarks, demonstrating
its effectiveness in unsupervised disentanglement.

1. Introduction
Representation learning aims to find useful inductive bi-
ases that reflect the nature and structure of the data. In
essence, the representation is desired to be disentangled,
having modular factors of variation that control or cause
the observed variables (Bengio et al., 2013; Eastwood et al.,
2023). This is more precisely defined through identifiability
theory, which provides mathematical conditions to deter-
mine when such factors can be uniquely recovered from
observations. However, this problem remains hard to solve
and difficult to apply to real-world data, be it because of
the underlying assumptions from identifiability theory or
because the methods were designed in small and controlled
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settings that do not scale well. As an alternative to complete
disentanglement, we use quantization as an inductive bias.
Quantized latent factors are often a natural representation for
humans, for example when thinking of colors (that are con-
tinuous in the sensorial reality, but discrete when thinking
of red or blue) and concepts. We incorporate this inductive
bias since it is a relaxed, yet useful form of disentanglement.

Disentanglement aims to find the axis where the ground
truth latent factors lie. In this work, we develop the idea of
axis alignment by leveraging discontinuities in the density
of the latent factors. Inspired by the theoretical results in the
literature concerning the identifiability of quantized latent
factors (Barin-Pacela et al., 2024), we design a learning
criterion to align with the axes the discontinuities in the
learned latent density.

The theory assumes that these discontinuities are aligned
with the axes in the joint probability density of the latent
factors (equivalently, these are defined as independent dis-
continuities). That allows the recovery of the axis alignment
even after the warping of the latent variables by a nonlinear
transformation. Hence, the theory uses these axis-aligned
discontinuities as quantization thresholds.

We address the main limitations found in the empirical im-
plementation of the criterion from Barin-Pacela et al. (2024),
which was based on estimating gradients in the joint of the
density of reconstructed factors and aligning them with the
axis. We leverage the definition of independent disconti-
nuities through conditionals, such that the location of the
cliffs along a factor is independent of the values of the other
factors. This criterion is combined with the encouragement
of cliffs in the marginals and a term that avoids degenerate
solutions. Our approach makes this criterion suitable for
nonlinear transformations and applies it to disentanglement
datasets, which were unexplored in previous research.

Therefore, the contributions of this body of work are:

• The proposal of a new criterion that encourages axis
alignment, and validation of its effectiveness on syn-
thetic datasets under nonlinear transformations. This
criterion is model-agnostic and can be applied as a
regularizer to any model encoding a representation.

• Benchmarking and evaluation of the criterion and base-
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lines on disentanglement datasets.

2. A new algorithm: Cliff Alignment (Cliff)
We learn from observed variables x = (x1, . . . , xD) ∈ X .
The generative process assumes unobserved latent factors
z = (z1, . . . , zd) ∈ Z that are transformed into observed
variables through a mixing function f : Z → X , such that
x = f(z). We learn a function (encoder) g : X → Z that
should approximate f−1.

The disentanglement principle suggested by the quantized
identifiability theory (Barin-Pacela et al., 2024) is simple to
state: “Learn a diffeomorphism that maps observations to
recovered factors such that the discontinuities in the joint pdf
of these factors form an axis-aligned grid”. But translating
this high-level principle into an effective practical algorithm
is far from straightforward. We wish to design a practical
criterion that encourages the model to learn discontinuities
in the latent space, and for them to be independent (aligned
with the axes).

We consider a finite sample of n observed data points
D = {x(1), . . . , x(n)} that are mapped to their recovered
representations {z(1), . . . , z(n)} via a learned parameterized
function (such as a neural network) ϕθ, i.e. z(k) = ϕθ(x

(k))
where z(k) denotes the vector of all factors of the k-th train-
ing point. We use kernel density estimation to approximate
the true probability density of recovered factors p(z) in the
finite-sample setting. We employ a Gaussian kernel of fixed
bandwidth σ (Parzen Windows estimator).

2.1. Univariate criterion – Encouraging cliffs in the
marginals

This term of the criterion aims to encourage the curve corre-
sponding to the magnitude of the gradients of the marginal∣∣∣∣dp(zi)dzi

∣∣∣∣ to be very peaky, to have a few steep spikes. When

this magnitude is high enough, we call it a cliff. From the
perspective of information theory, we would like the distri-
bution to be as far as possible from a uniform distribution,
which is the distribution with finite support that maximizes
the entropy. This is a similar approach taken by independent
component analysis (ICA), which attempts to move away
from Gaussian distributions by maximizing the negentropy,
since for infinite support, the Gaussian distribution maxi-
mizes the entropy. However, here we are focusing not on

the density, but on its derivative
dp(zi)

dzi
. Therefore, we for-

mulate the following term for the criterion. We define si to
be the magnitude of the derivative of the marginal density
of a factor

si(zi) =
1

c

∣∣∣∣dp(zi)dzi

∣∣∣∣ , (1)

where c is the normalization constant that ensures s inte-
grates to 1.

We can interpret si as a pdf which is high wherever the
derivative of p(zi) has a high magnitude. Then, we compute
its differential entropy:

H(si) = −
∫

si(zi) log(si(zi)) dzi (2)

The entropy is a measure of “peakiness”: it is the lowest
when high magnitude derivatives are concentrated around
one or a few points, which is what we want to encourage
with this term.

Therefore, the univariate criterion hereby proposed simply
adds the entropy for the density derivative of each factor:
luni =

∑d
i=1 H(si).

Since the goal is to minimize the entropy, luni should be
minimized.

Intuitively, this criterion not only encourages a spiky land-
scape but also aligns the spikes with the axes. That is,
if there is a discontinuity in the joint p(zi, zj) that is not
axis-aligned, it will not be steep enough in the marginal in
comparison with the cliffs that occur in the marginal and
not in the joint.

Note that the Dirac delta distribution could be a solution for
this, and this solution will be avoided by counterbalancing it
with another term in the loss function, as will be explained
in section 2.3.

2.2. Bivariate criterion – Encouraging independent cliffs

To encourage the discontinuities to be independent, we look

at different assignments of zj in
∂p(zi|zj)

∂zi
, and expect all

of these different functions to be similar or “close to each
other”. In particular, we look at the location of the peaks of
these functions, which are the zi that lead to high-magnitude∣∣∣∣∂p(zi|zj)∂zi

∣∣∣∣, and the location of these peaks should be the

same across all the different assignments of zj .

First, we deduce the derivative of the conditional
∂p(zi|zj)

∂zi
from the kernel density estimates in Eq. 11 and Eq. 14 as
follows:

∂p(zi|zj)
∂zi

=
1

p(zj)

∂p(zi, zj)

∂zi
. (3)

Then, we define “density derivative magnitudes” as

uij(zi|zj) =
∣∣∣∣∂p(zi|zj)∂zi

∣∣∣∣ , (4)
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and the corresponding normalized density as

p̃ij(zi|zj) =
uij(zi|zj)∫
uij(z′i|zj)dz′i

. (5)

Here, p̃ij(·|zj) can be interpreted as a new probability den-
sity function, which is concentrated wherever the derivative
of p(zi|zj) has a high magnitude.

We will use these to encourage pij(zi|zj) to have high
derivative magnitude (cliffs) at the same locations, inde-
pendent of the values taken by zj . This is done as follows.
Let {ζ1, . . . , ζM} be M values of zj , picked randomly from
the training batch. We encourage the p̃ij(·|zj = ζk) to be
close to each other across the different ζk by minimizing
their generalized Jensen-Shannon divergence (JSD) 1:

lJSD(i|j) = JSD [p̃ij(·|zj = ζ1), . . . , p̃ij(·|zj = ζM )]

=
1

M

m∑
k=1

DKL(p̃ij(·|zj = ζk)∥m̃)

= H(m̃)− 1

M

M∑
k=1

H(p̃ij(·|zj))

(6)

where m̃(zi) =
1
M

∑M
k=1 p̃ij(zi|zj = ζk) and DKL denotes

the Kullback-Leibler divergence. The differential entropy
H is defined as previously in Eq. 2.

This is repeated for each pair of variables i, j from the d
variables, yielding the bivariate component of the loss:

lbiv =
∑d

i=1

∑
j ̸=i lJSD(i|j).

2.3. Preventing the collapse to Diracs

Lastly, we introduce a term to avoid degenerate solutions,
such as the Dirac delta distribution mentioned earlier, or
the collapse of the latent variables to a very small scale. It
encourages the density of each standardized zi to be spread
out not too unevenly, enforcing p(zi) for each dimension i
to be close to a uniform distribution. This is implemented as
the KL divergence between these marginals and a uniform.

lKL-uni =

d∑
i=1

KL(U(−
√
3,
√
3), p(zi))

=

d∑
i=1

(−2
√
3− Ezi∼U(−

√
3,
√
3)[log(p(zi)])

(7)

1We have explored some divergences from the f-divergence
family, such as the squared Hellinger distance, as well as other
measures that are not in the f-divergence family, and found that
JSD worked best in practice through the analysis described in
Appendix D.

(a) True factors z (b) Observed variables x

(c) Cliff’s learned factors z′ (d) IOSS learned factors z′

Figure 1. Synthetic data: True factors z (a) are mapped through
observed variables x through a nonlinear mixing function. The
nonlinearity is manifested through distortions. We learn a decoder
g that yields the reconstructed factor z′ = g(x). Our method, Cliff
(c) matches the true factors (a) almost perfectly and obtains a much
more straight and axis-aligned representation (MCC of 94.1 ± 0.9)
than IOSS (d) (MCC of 91.6 ± 0.8) .

2.4. Total loss

We combine the three loss components defined into a
weighted sum:

LCliff = λuniluni + λbivlbiv + λKL-unilKL-uni, (8)

where the corresponding λ are hyperparameters controlling
the relative strengths of each loss component. Training
consists of learning the model parameters θ that produce the
factors z that minimize the loss LCliff.

An interesting visualization of the loss landscape and how
each term of the criterion promotes axis alignment is avail-
able in Appendix D.

3. Experiments
To assess if the proposed criterion for generic nonlinear
transformations is effective for unsupervised disentangle-
ment and prove its usefulness against current methods, we
present three sets of experiments to answer the following
questions:

1. Can Cliff identify latent variables under nonlinear trans-
formations?

2. Is Cliff competitive against other disentanglement
methods?

3



Quantized Disentanglement: A Practical Approach

3.1. Synthetic data

To answer question 1, we evaluate if Cliff can identify the
true latent variables under nonlinear transformations in the
simplest setting, with synthetic data and when the assump-
tion is fulfilled. We use the synthetic dataset generation of
the latent factors z from Barin-Pacela et al. (2024), as it fol-
lows the axis-alignment assumption. However, we replace
the mixing function with a nonlinear mixing to visualize
the distortion of the discontinuities in the observed vari-
ables. The dataset has axis-aligned discontinuities in pz ,
as illustrated in Figure 1a. A nonlinear mixing function f
transforms z onto x, as seen in Figure 1b.

Cliff’s reconstruction z′ is very similar to z, as depicted in
1c, with clearly axis-aligned discontinuities and support. On
the other hand, IOSS’s (Wang & Jordan, 2021) reconstruc-
tion is not axis-aligned, as seen in Figure 1d.

For a quantitative comparison, we run both algorithms under
10 different initializations; Cliff reaches a Mean Correlation
Coefficient (MCC) of 94.1 ± 0.9, while IOSS reaches an
MCC of 91.6 ± 0.8. In the two-dimensional case, this is
a significant improvement. Therefore, for question 1, we
conclude that not only Cliff can identify latent variables
in this simple and controlled nonlinear setting, but it also
outperforms the current strongest baseline.

3.2. Disentanglement benchmarks

For question 2, we test the general usefulness of Cliff even
when the assumption of axis-aligned discontinuities is not
clearly fulfilled, with the goal being to determine if the
overall method is useful for unsupervised disentanglement
broadly and if it is competitive to the baselines. We evaluate
our model on synthetically-rendered datasets that contain
the true factors of generation of the images, such as pose,
angle, color of the object, and background. This section
focuses on the Shapes3D dataset (Kim & Mnih, 2018). This
dataset contains 6 factors of variation: floor color, wall color,
object color, object size, object type, and azimuthal angle
of the object.

We present results on the two main baselines: β-VAE (Hig-
gins et al., 2017) and HFS (Roth et al., 2023). These base-
lines were chosen because the β-VAE is the simplest base-
line on unsupervised disentanglement, and HFS is the main
competitor of Cliff for this task. Both HFS and Cliff are
implemented as a regularization term added to the β-VAE.
For example, for Cliff, the loss on this task is given as

L = −Ez∼qϕ(z|x) log pθ(x|z)︸ ︷︷ ︸
reconstruction term

+βKL(qϕ(z|x) || pθ(z))︸ ︷︷ ︸
KL divergence term

+ λaLCliff︸ ︷︷ ︸
axis-alignment term

(9)

for a probabilistic encoder qϕ(z), decoder pθ(x|z), and λa

being the regularization coefficient for the axis-alignment
term.

As seen in Table 3, Cliff obtains the best D score compared
to both HFS and β-VAE. We notice that while the C and I
scores are not high, this is to be expected since the theory
guarantees only the quantized identification of factors. The
discussion of the DCI-ES score and its connection to identi-
fiability from Eastwood et al. (2023) implies that only when
all of the D,C,I,E and S scores are close to 1 (or 100 in this
scaled case), precise identifiability up to scale and permu-
tation is possible. Without the E score (which is severely
computationally expensive), it is difficult to make more con-
clusions about where exactly in the identifiability spectrum
our model lies, but it seems to hint at possible indeterminacy
inside the quantization, as expected from this criterion.

Therefore, for question 2, we conclude that Cliff is a useful
method for unsupervised disentanglement even when its
main assumption is not completely fulfilled (the discontinu-
ities are not pronounced), demonstrating potential evidence
for the practicality of non-global assumptions about the den-
sity discussed previously. The high disentanglement score
of 80.33±2.60 on this task is evidence of good identification
of the latent variables, and beyond that, it also significantly
outperforms the baselines.

4. Conclusion
We tackle the problem of nonlinear unsupervised disentan-
glement and propose a practical criterion for aligning the
discontinuities in the density of the learned latent factors
with the axes. This criterion is based on the theory of identi-
fiability of quantized factors, for which a practical criterion
had been proposed only for the linear case. We extend
current disentanglement benchmarks for a more reliable
evaluation and show that our method, Cliff, outperforms the
other methods according to the MCC and DCI scores.

Our empirical evaluation answers three important questions.
First, the proposed criterion can better identify the latent
variables than IOSS, and the axis alignment can be verified
visually. Second, we verify Cliff’s performance in a dataset
where its assumptions of axis-aligned discontinuities are ful-
filled. The improvement over the other methods showcases
the potential of exploring this method for real datasets satis-
fying the axis-alignment assumption (which were motivated
in Barin-Pacela et al. (2024)). Third, we demonstrate that
Cliff is competitive against other methods for unsupervised
disentanglement in the Shapes3D benchmark.
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A. Related work
Existing literature has explored the quantization of latent factors in theory and practice. Kong et al. (2024) provide theoretical
guarantees for learning discrete concepts from high-dimensional data through a hierarchical causal model, expanding upon
the identifiability theory of discrete auxiliary variables from Kivva et al. (2022). However, realistic methods based on
theoretical principles are still to be shown. Different kinds of quantization have been successfully proposed, such as
vector quantization, in the case of the VQ-VAE (van den Oord et al., 2017), and Finite Scale Quantization (FSQ) (Mentzer
et al., 2024). FSQ is a factorized quantization which fixes the binning and tries to fit the representation that preserves the
information when quantized into this fixed binning. In contrast, our method aims to learn a natural quantization of factors
based on properties that are preserved under a diffeomorphism, which makes it theoretically sound. One recent direction
proposed by Hsu et al. (2024) builds on quantizing latent variables (Hsu et al., 2023; Mentzer et al., 2024) and combines it
with three other inductive biases for disentanglement: encoding into independent latent variables (Chen et al., 2018) and
having these variables interact minimally to generate data (Peebles et al., 2020). In contrast, this work is motivated to allow
correlations between the latent variables.

Compared to other disentanglement methods that allow for correlations between the latent variables (Roth et al., 2023;
Träuble et al., 2021; Wang & Jordan, 2021; Morioka & Hyvärinen, 2024), our work is more general as it explores the idea of
latent quantization, hence requiring fewer and weaker assumptions. In particular, the theoretical results (Barin-Pacela et al.,
2024) do not require factorized support (Roth et al., 2023; Wang & Jordan, 2021; Ahuja et al., 2022b) or knowledge about
the grouping structure of observed variables (Morioka & Hyvärinen, 2024).

Table 1 compares the main methods for unsupervised disentanglement. We distinguish between global and non-global
constraints on the density of latent factors pz , with the purpose of judging the strength of the assumptions and their usefulness
in practice. Hence, here “global” refers to when the main assumption on pz cannot be checked by simply looking at the
neighborhood of points (for instance, factorized support requires global alignment between the boundaries). Alternatively,
“non-global” means that the main assumption on the density can be checked by only looking locally at the distribution, using
only a small neighbourhood around each point (for instance, a cliff). Furthermore, we clarify that while (Wang & Jordan,
2021) provides an identifiability proof, it makes a very strong assumption on the mixing map that is not enforced in the
practical method proposed and has been replaced by an assumption on the map or auxiliary (interventional) information
in follow-up work (Ahuja et al., 2022b). Finally, the table illustrates that our proposal is to have a practical method with
identifiability guarantees that has the most minimal and weakest assumptions.

B. Criterion details
We employ a Parzen windows density estimator

p̂σ(z) =
1

n

n∑
k=1

N (z; z(k), σ2I), (10)

where N (z; z(k), σ2I) denotes the evaluation at z of the pdf of a Gaussian of mean z(k) and diagonal covariance σ2I .

This yields a kernel-smoothed version of the true density. In this smoothed version, discontinuities are also smoothed, so that
they will appear as cliffs with a steep slope (large but finite derivative) instead of actual discontinuities (infinite derivative).
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correlated density general no auxiliary
Method latents constraint diffeomorphisms info identifiability

β-VAE (Higgins et al., 2017) ✓ global ✓ ✓ ✗
HFS (Roth et al., 2023) ✓ global ✓ ✓ ✗
IOSS (Wang & Jordan, 2021) ✓ global ✗ ✓ ✓
(Kong et al., 2024) ✓ global ✓ ✓ ✓(quantized)
Additive Decoders (Lachapelle et al., 2023) ✓ non-global ✗ ✓ ✓(block)
Cliff (Barin-Pacela et al., 2024, and here) ✓ non-global ✓ ✓ ✓(quantized)

Table 1. Contrasting theoretical guarantees of unsupervised disentanglement approaches. Cliff (following from Barin-Pacela et al. (2024))
is the only approach with minimal assumptions (no auxiliary info, no global density constraints, allows for correlated latent variables and
general diffeomorphisms) that still allows for (quantized) identifiability guarantees.

Therefore, we aim to design a practical criterion that encourages the pdf to have cliffs of high slope aligned with the axes.

One additional practical difficulty is that, while kernel density estimation works well in low dimensions, in high dimensions
it tends to be quite challenging and unreliable. Luckily, the characteristic of independent (axis-aligned) discontinuities in the
joint pdf p(z1, . . . , zd) should also be present in subsets of factors. Therefore, in practice, we relax our characterization to
encourage a mapping that yields z with:

1. discontinuities in marginal pdfs p(zi) (univariate criterion).

2. discontinuities that are independent, in all pairs of factors p(zi, zj), with j ̸= i (bivariate criterion).

Hence, we can simply use low-dimensional kernel density estimates to estimate p(zi) and p(zi, zj).

As motivated above, we can consider the presence of derivatives of high magnitude in the estimated density as evidence
for the presence of discontinuities in the true pdf that has been kernel-smoothed. Note that the scale of the factors yielded
by the mapping ϕθ is irrelevant for the characterization of their pdf as having independent discontinuities. Thus, we first
standardize each factor zi to have zero mean and unit variance, and then use a fixed-width kernel density estimation.

To simplify notation, from here on, p(zi) and p(zi, zj) will no longer denote the true pdf of the original z, but the result of
the 1d or 2d kernel density estimate p̂σ on standardized zi or (zi, zj).

Specifically, for each batch of size n, we first standardize z, and then compute:

p(zi) =
1

n

n∑
k=1

N (zi; z
(k)
i , σ2) (11)

and

p(zi, zj) =
1

n

n∑
k=1

N ((zi, zj); (z
(k)
i , z

(k)
j ), σ2I). (12)

Furthermore, our criterion is based primarily on (partial) derivatives of the estimated densities, which can be computed in a
similar way:

dp(zi)

dzi
=

1

n

n∑
k=1

d

dzi
N (zi; z

(k)
i , σ2) (13)

and
∂p(zi, zj)

∂zi
=

1

n

n∑
k=1

∂

∂zi
N ((zi, zj); (z

(k)
i , z

(k)
j ), σ2I), (14)

where the (partial) derivative of the Gaussian kernel has a straightforward analytic expression.
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Univariate criterion The criterion we develop involves several one-dimensional integrals along a factor, used above to
define c or H(si). In practice, they are estimated via basic numerical integration:∫

f(zi) dzi ≈
b− a

K

∑
zi∈I(a,b,K)

f(zi), (15)

where I(a, b,K) is a set of K equally-spaced values between a and b.1

Anti-collapse criterion We use a uniform between −
√
3 and

√
3 because it has mean 0 and variance 1, as does the

standardized zi. The expectation is estimated as an average over K samples from that uniform.

This term is useful even when the univariate criterion is not used, but only the bivariate. It encourages the support of the
distribution to be learned more efficiently by “spreading” the distribution.

Computational complexity We compute the loss for a batch of length n with d factors. We use K values to estimate
one-dimensional integrals along zi, and M different values for conditioning zj .

The computational complexity is:

• univariate term luni: O(dKn)

• bivariate term lbiv: O(d2MKn)

• anticollapse term lKL-uni: O(dKn).

So the total loss computation has an overall complexity of O(d2MKn).

C. Summary of theorems from “On the Identifiability of Quantized Factors”

f g

z1
1 2 3 4

1

2

3

4

q(z2)

q(z1)
z′ 1

1 2 3 4

1

2

3
4
q(z′ 2)

q(z′ 1)

z′ 2

Z Z′ X

x1

x2z2

Figure 2. Figure from Barin-Pacela et al. (2024). Recovery of quantized factors. Left: The true (continuous) latent factors Z1 and Z2

are not independent, but their joint probability density pZ has independent discontinuities: sharp changes in the density that are aligned
with the axes and form a grid. Middle: The factors get warped and entangled by the diffeomorphism f into observations X , but the
discontinuities in their density survive in the observed space. Right: We can learn a diffeomorphism g that yields a density pZ′ having
axis-aligned discontinuities. This suffices to recover a grid whose cells match the initial grid’s cells (up to possible permutation and
axis reversal). Pink cell example: the points Z′ in cell (3, 2) originated from the points Z in cell (3, 2). To construct these cells, the
quantization of each continuous factor to an integer depends on thresholds based on the location of the discontinuities. The quantizations
of Z′

1 and Z′
2 match precisely the quantizations of Z1 and Z2, up to possible permutation and axis reversal. This summarizes the

identifiability of quantized factors under diffeomorphisms.

Here, we reintroduce the main definitions and theorems from Barin-Pacela et al. (2024). Figure 2 summarizes the main
result from the main theorem (Theorem C.5). For ease of reference, we reuse the figure and caption from Barin-Pacela et al.
(2024).

1In practice, to estimate integrals along our standardized zi, we use I(−5,+5, 100).
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C.1. Main definitions and results

Setup (Barin-Pacela et al., 2024):

h=g◦f

Z︸︷︷︸
⊂Rd

true factors

∼ pZ

−−−−−−−−−−−−−−−−−→
f−−−−−→

unknown
X︸︷︷︸

⊂RD

observed data

g≈f−1

−−−−→
learned

Z ′︸︷︷︸
⊂Rd

recovered factors

(Barin-Pacela et al., 2024) Precise Identifiability of Factors: Knowledge of pX is sufficient to determine a reverse
mapping g : RD → Rd that will yield recovered factors (Z ′

1, . . . , Z
′
d) = g(X) that correspond one-to-one to the ground-truth

factors (Z1, . . . , Zd), up to permutation and component-wise invertible transformations (ideally monotonic).

(Barin-Pacela et al., 2024) Identifiability of Quantized Factors: Knowledge of pX is sufficient to determine a
reverse mapping g : RD → Rd that will yield recovered factors (Z ′

1, . . . , Z
′
d) = g(X) such that their quantization

(q′1(Z
′
1), . . . , q

′
d(Z

′
d)) will correspond one-to-one to the quantized ground-truth factors (q1(Z1), . . . , qd(Zd)), up to possible

permutation of indices and order reversal.

Definition C.1. (Barin-Pacela et al., 2024) Let S be the support of pZ . We say that pZ has an independent discontinuity at
Zi = τ when every point in the intersection of the coordinate hyperplane {zi = τ} with S is a non-removable discontinuity
of pZ . Formally, this independent discontinuity at Zi = τ is defined as the set ΓS(i, τ) = {z ∈ S|zi = τ} under the
condition that ∀z ∈ ΓS(i, τ), pZ has a non-removable discontinuity at z.

C.1.1. SUMMARY OF THE MAIN RESULT (BARIN-PACELA ET AL., 2024)

Assumptions

• f is a diffeomorphism

• (Z1, . . . , Zd) ∼ pZ are d continuous random variables.

• The interior of the support of pZ is a connected set.

• The set of non-removable discontinuities of pZ is the union of a finite set of independent discontinuities that together
form an axis-aligned grid. This grid must also possess a backbone.

Quantized factor identifiability theorem Under the above assumptions:

• It suffices to learn a diffeomorphism g yielding Z ′ = g(X) such that the PDF of pZ′ has independent discontinuities
forming an axis-aligned grid.

• Then, the quantized reconstructed factors (q′1(Z
′
1), . . . , q

′
d(Z

′
d)) will correspond one-to-one to the quantized ground-

truth factors (q1(Z1), . . . , qd(Zd)), up to possible permutation of indices (and order reversal).

• The quantization thresholds used for qi and q′i are obtained as the locations of the independent discontinuities.

C.2. Main theorems

Theorem C.2. (Barin-Pacela et al., 2024) Grid structure preservation and recovery theorem. Let h : S ⊂ Rd → S ′ ⊂ Rd

be a diffeomorphism, where both S and S ′ are open connected subsets of Rd. Suppose we have an axis-aligned grid
G ⊂ S, associated with its axis-separator-set G and discrete coordination A, that is, G = gridS(A). While the grid
does not need to be “complete”, we suppose that G has at least one backbone. Now, suppose that we have another
axis-aligned grid in S ′, associated with its discrete coordination B, with G′ = gridS′(B). Suppose G′ = h(G). Then, there
exists a permutation function σ over dimension indexes 1, . . . , d and a direction reversal vector s ∈ {−1,+1}d such that
∀j ∈ {1, . . . , d}, i = σ−1(j), K = |Ai| = |Bj |, ∀k ∈ {1, . . . ,K},∀z′ ∈ S ′,
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If si = +1, then: 
z′j = Bj,k ⇐⇒ h−1(z′)i = Ai,k,

z′j > Bj,k ⇐⇒ h−1(z′)i > Ai,k,

z′j < Bj,k ⇐⇒ h−1(z′)i < Ai,k;

If si = −1, then: 
z′j = Bj,k ⇐⇒ h−1(z′)i = Ai,K−k+1,

z′j > Bj,k ⇐⇒ h−1(z′)i < Ai,K−k+1,

z′j < Bj,k ⇐⇒ h−1(z′)i > Ai,K−k+1.

Corollary C.3. (Barin-Pacela et al., 2024) Recovery of quantized factors. Under the same premises as Theorem C.2,
consider random variables Z and Z ′ = h(Z). Using the quantization operation Q (previously defined in Section ??,
equation ??), we recover quantized factors up to permutation σ of the axes and possible direction reversal indicated by s:
∀i ∈ 1, . . . , d, Q(Zi;Ai) = Qsi(Z ′

j ;Bj) with j = σ(i).
Theorem C.4. (Barin-Pacela et al., 2024) Quantized factors identifiability theorem. Let Z be a latent random variable
with values in Z ⊂ Rd and whose PDF is pZ . Let f : Z → X ⊂ RD be a diffeomorphism, and X = f(Z) be the observed
random variable. Assume that the support of the PDF pZ is an open connected set2. Further, assume that pZ has at least
one connected independent discontinuity in each dimension, such that the set of non-removable discontinuities of pZ forms
an axis-aligned grid with a backbone. Let A be the discrete coordination of this grid. Then, there exists a diffeomorphism
g : X → Z ′ yielding a variable Z ′ = g(X) such that the set of non-removable discontinuities of the PDF pZ′ is an
axis-aligned grid. Consider any such diffeomorphism g, and let B be the discrete coordination of its resulting axis-aligned
grid. Then, there exists a permutation function σ over the dimension indexes 1, . . . , d, and a direction reversal vector
s ∈ {−1,+1}d such that q′j(Z

′
j) = qi(Zi) with i = σ−1(j), where q′j(Z

′
j) = Qsi(Z ′

j ;Bj) and qi(Zi) = Q(Zi;Ai). In
other words, the quantized factors in Z ′ agree with the quantized factors in Z, up to permutation and possible axis reversal.
Theorem C.5. (Barin-Pacela et al., 2024) Quantized factors identifiability theorem. Let Z be a latent random variable
with values in Z ⊂ Rd and whose PDF is pZ . Let f : Z → X ⊂ RD be a diffeomorphism, and X = f(Z) be the observed
random variable. Assume that the support of the PDF pZ is an open connected set3. Further assume that pZ has at least
one connected independent discontinuity in each dimension, such that the set of non-removable discontinuities of pZ forms
an axis-aligned grid with a backbone. Let A be the discrete coordination of this grid. Then, there exists a diffeomorphism
g : X → Z ′ yielding a variable Z ′ = g(X) such that the set of non-removable discontinuities of the PDF pZ′ is an
axis-aligned grid. Consider any such diffeomorphism g, and let B be the discrete coordination of its resulting axis-aligned
grid. Then, there exists a permutation function σ over the dimension indexes 1, . . . , d, and a direction reversal vector
s ∈ {−1,+1}d such that q′j(Z

′
j) = qi(Zi) with i = σ−1(j), where q′j(Z

′
j) = Qsi(Z ′

j ;Bj) and qi(Zi) = Q(Zi;Ai). In
other words, the quantized factors in Z ′ agree with the quantized factors in Z, up to permutation and possible axis reversal.

C.3. Criterion

Here, we further discuss how Cliff differs from the criterion from Barin-Pacela et al. (2024), the latter being empirically
successful only when the mixing function is linear.

Their criterion is designed to align the output of linear maps with the axes, but it is not sufficient for nonlinear maps since
they can completely distort the grid and it is important not only to align it with the axes but to straighten the mapping too.
We have verified this empirically but did not include the comparison because we did not find it appropriate since it’s not
designed for nonlinear maps.

In short, their criterion estimates the joint density p̂σ of z and uses it to obtain the gradients ∂ log p̂σ

∂z . Then, they encourage
the alignment of these gradient vectors with the standard basis vectors (axes) by maximizing their cosine similarity.

In contrast, we estimate the joint density (and its respective gradients) only pairwise for two variables. We also estimate the
marginal and conditional of the latent factors, which is more scalable in high dimensions and is the core of what is employed
in each of our terms. Meanwhile, the criterion from Barin-Pacela et al. (2024) depends completely on the joint density
between all the factors, the estimation of which may not be reliable on high dimensions. Finally, and most importantly, the
balance of our three terms can straighten grids that are completely warped by diffeomorphisms.

2Alternatively, if the support is not open, we can consider its interior.
3Alternatively, if the support is not open, we can consider its interior.
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D. Validating the criterion
We would like to verify how each term of the criterion encourages the discontinuities to be aligned with the axes. For
this, we can do a “grid search” over all the possible projections (in all possible directions), over the two latent variables:
z = (z1, z2). We want to learn two vectors, w1 and w2, which should lead z′1 and z′2 to be axis-aligned. That is, we project
z onto w1: projw1

z =
z ·w1

||w1||2
= (||z|| cos θ1)ŵ1, where θ1 is the angle between z and w1, and ŵ1 is the direction of the

vector w1 with unit length.

Similarly, projw2
z = z ·w2 = cos θ2ŵ2. For simplicity, we can consider that z, w1, and w2 have unit norm.

We design a “projection matrix”

W =

[
w⊺

1

w⊺
2

]
such that z′ = Wz.

More precisely, w1 = (cos θ1, sin θ1), since w1,1 is the coordinate of w1 in the z1 axis, and w1,2 is the coordinate of w2 in
the z2 axis. Similarly, w2 = (cos θ2, sin θ2). With this, we can obtain all the possible parameterizations as a function of θ1
and θ2:

z′ = Wz =

[
w⊺

1z
w⊺

2z

]
=

[
z1 cos θ1 + z2 sin θ1
z1 cos θ2 + z2 sin θ2

]
=

[
projw1

z
projw2

z

]
. (16)

This enables us to see the angles that minimize the loss. In Figure 3, the first term of the criterion (univariate – encouraging
cliffs in the marginals) is represented in the top row. On the left, the loss is minimized for 0◦, 90◦, and their multiples.
On the right, this same univariate loss is depicted for two angles at the same time. The second row presents the bivariate
criterion (encouraging independent cliffs). The role of this term is to prevent θ1 = θ2 at the minimum. The minimum of
this term is shown in purple as combinations of 0 and 90 degrees, but they are never the same (as opposed to the univariate
criterion).

D.1. Latent traversals example

The estimated latent factors can be visualized through the images in Figure 4, where each row corresponds to a particular
factor, and each column corresponds to a traversal across this factor. The aim of disentanglement is that each factor should be
unique and should not affect the others. For example in the third row, we observe that the only attribute that changes across
different traversals (columns) is the angle, while all the others are kept fixed (object color, wall color, object size, object
shape), which is exactly what we desire. On the other hand, the first row is changing various attributes across traversals, so
this representation is not disentangled yet.

E. Balls dataset
We test whether Cliff still succeeds in more realistic datasets of images, while the main assumption is still satisfied. We use
a variant of the dSprites dataset (Matthey et al., 2017), the balls dataset from Ahuja et al. (2022a), where it is possible to
control the distribution pz such that it has axis-aligned discontinuities. We develop the models and code from Lachapelle
et al. (2023). We render two balls per image, each ball having its own color and whose coordinates are the latent variables
that follow the same distribution as the latent factors of the synthetic data described in the previous section. That is,
z = (z1, z2, z3, z4), where (z1, z2) are the coordinates of ball 1 and (z3, z4) are the coordinates of ball 2. There are 4
axis-aligned discontinuities in z1, 3 in z2, 4 in z3, and 3 in z4.

We train an autoencoder with encoder gϕ, decoder fθ, and a regularization term weighted by λa accounting for the Cliff loss
LCliff described previously. Thus, the optimized loss is

L =
1

n
∥x− fθ(gϕ(x))∥22︸ ︷︷ ︸

reconstruction error

+ λaLCliff︸ ︷︷ ︸
axis-alignment term

. (17)

We compare our method with the additive decoder (Lachapelle et al., 2022) and IOSS (Wang & Jordan, 2021) and evaluate
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(a) (b)

(c)

Figure 3. Loss landscape. Top row: Univariate criterion (encouraging cliffs in the marginals), minimized at 0◦ or 90◦. Bottom row:
Bivariate criterion (encouraging independent cliffs): avoids θ1 = θ2 = 0◦ and θ1 = θ2 = 90◦; instead, the minimum is at (0◦, 90◦) and
its multiples.
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Figure 4. Shapes3D latent traversals.

them with the Mean Correlation Coefficient (MCC) with Spearman correlation coefficient since it gives the correlations up
to nonlinear transformations. Similarly, the baselines are trained as an autoencoder with a regularization term encouraging
the corresponding inductive bias, as established in the original evaluation for this task in Lachapelle et al. (2023). Both Cliff
and IOSS are added as regularization terms on the autoencoder loss. We report the mean and standard error for each method.
Table 2 shows that Cliff’s MCC is comparable to IOSS, whose assumption of factorized support also holds. The additive
decoders perform the worst as there are overlaps between the balls.

Method MCC

Cliff 52.06 ± 4.00
IOSS 60.51 ± 5.58
Additive Decoder 37.80 ± 3.49

Table 2. Balls dataset (Ahuja et al., 2022a): identification of the coordinates of two balls. Our model, Cliff, significantly outperforms
additive decoders (Lachapelle et al., 2022). Mean and standard error are reported for the MCC with the Spearman coefficient over 10
different initializations.

For Cliff, the result is reported for optimal λ∗
a = 0.1, and for IOSS, λ∗

a = 1.0. We attribute the MCC being lower for
Cliff than IOSS due to the suboptimal hyperparameter tuning of its terms λbiv, λKL-uni and σ, whose improvements will be
available in future work.

Therefore, for question 2, we conclude that Cliff works reasonably well in reconstructing the latent variables from images of
balls. It compares favorably to the additive decoder baseline, while improvements can still be made to reach a performance
as high as IOSS.

F. Experimental details
All the experiments are executed with the Adam optimizer with default parameters (apart from the learning rate).
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Method D C I MIG

Cliff 80.33 ± 2.60 68.52 ± 1.52 99.26 ± 0.30 28.54 ± 2.45
HFS 70.64 ± 4.77 78.29 ± 4.55 94.09 ± 2.07 58.82 ± 7.20
β-VAE 69.72 ± 3.54 63.84 ± 3.23 97.08 ± 1.43 24.60 ± 1.65

Table 3. Disentanglement scores for the Shapes3D dataset (Kim & Mnih, 2018). We report the Disentanglement (D), Completeness
(C), Informativeness (I) (Eastwood & Williams, 2018), and Mutual Information Gap (MIG) (Chen et al., 2018). Our method (Cliff)
outperforms Hausdorff Factorized Support (HFS) (Roth et al., 2023) and β-VAE (Higgins et al., 2017) on the disentanglement score D.
Both Cliff and HFS are regularizers added to the β-VAE. The mean and its standard error are reported.

F.1. Density estimation training

First, we train a Parzen window density estimator on the (standardized) joint samples to obtain pσ(z
train
1 , ztrain

2 ). Then, we
select a test set consisting of z1 being 100 linearly spaced samples between -5 and 5, and z2 being the first 20 samples of the
test set. We evaluate the density estimator on this test set to obtain pσ(z

test
1 , ztest

2 ). We also evaluate the marginal pσ(ztest
2 ),

from which we can obtain the conditional pσ(ztest
1 |ztest

2 ) = pσ(z
test
1 , ztest

2 /pσ(z
test
2 )).

F.2. Synthetic dataset

We conducted an extensive empirical investigation and found that as long as the neural network (encoder g) has enough
capacity, Adam always converges to the desired solution in the datasets with axis-aligned discontinuities in pz .

Hyperparameters for the results reported:

• learning rate = 0.002

• batch size = 5000

• number of epochs = 1000

• λuni = 0.0

• λbiv = 1.0

• λKL-uni = 1.0

• number of datasets = 10

• number of samples in the dataset = 5000

F.3. Balls dataset

We follow the setting from Lachapelle et al. (2023) (including the encoder and decoder architectures):

• Dataset size: 20000

• Batch size: 64

• Learning rate: 0.001

• Number of seeds (initialization): 10

• number of epochs: 1000

For both our criterion and IOSS, we search over regularization strengths λa ∈ {0.1, 0.5, 1.0}. Due to the high computational
cost of searching over all the terms of Cliff, we keep the same values as the optimal for Shapes3D for the other λ.

Additive Decoder: “An additive decoder has the form f(z) =
∑

B∈B f (B)zB . Each f(B) has the same architecture as
the one presented above for the nonadditive case, but the input has dimensionality |B|” (Lachapelle et al., 2022).
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F.4. Shapes3D

For hyperparameter selection, we consider the initialization as one of the optimization hyperparameters to be chosen. Each
set of hyperparameters is run for 10 seeds, and the best seed is selected based on the D score. Then, the mean and standard
error are computed for the selected set of hyperparameters for each of the scores. The details about the hyperparameter grid
and the optimal hyperparameters selected are in Appendix F.

We reuse the hyperparameters from Roth et al. (2023):

• learning rate = 0.0001

• batch size = 64

• number of epochs = 100

• evaluation batch size = 1000

• model architecture for VAE from Locatello et al. (2019)

• number of estimated factors = 10

• number of initialization (seeds) = 10

For searching over the hyperparameters of Cliff’s criterion λuni, λbiv, λKL-uni, λa, we perform a series of experiments to
determine the grid range. When running the β-VAE, we observe that β = 10 gives a high D score for β ∈ {1, 2, 4, 8, 10, 16},
so we fix β to 10 for all the experiments since there are already 4 other hyperparameters to search over. Initially, we
take λuni ∈ {0.1, 0.2, 0.5, 0.7, 1.0}, λbiv = 10, λKL-uni ∈ {0.1, 0.2, 0.5, 0.7, 1.0}, λa = {0.1, 0.5, 1.0, 10, 16, 100}, and
σ ∈ {0.1, 0.2, 0.5}. Some of these combinations were discarded early in training for not being optimized easily.

For the baselines, we search over optimal hyperparameters as well. For the β-VAE, we seach over β in the range already
mentioned, and for HFS, we search over both β and γ ∈ {1, 10, 100}.

The following hyperparameters were found to be optimal and are used in the results reported:

• Cliff: λuni = 0.5, λbiv = 1.0, λKL-uni = 0.7, λa = 1, σ = 0.1.

• HFS: β = 1, γ = 100.

• Beta VAE: β = 16.

F.5. Discussion on IOSS vs HFS

Both IOSS and HFS enforce the same inductive bias of factorized support, although there are slight differences in the
implementation.

The choice of one over the other is merely practical due to how much work it takes to tune the model for the particular
dataset, since we wish the baseline to be as strong as possible. HFS has already been trained on Shapes3D by Roth et al. and
we reuse their implementation to guarantee the best results since it relies on particular estimation procedures and setups.
For the balls dataset, neither IOSS nor HFS has been tuned as a baseline, but IOSS is significantly easier to train due to its
simple, modular and compact implementation, as well as the stability of the method, which is why we chose it for the other
datasets.

Expanding on the differences, first, we notice that “Independence Of Support” and “Factorized Support” are equivalent
notions, both defined by:

supp (Z1, . . . , Zd) = supp (Z1)× · · · × supp (Zd) (18)

This is computed through the Hausdorff distance between the set of mapped datapoints and a set of points with factorized
support. The HFS loss employs the Monte Carlo Hausdorff distance estimation and further relaxing of the factorized support
into pairwise factorization. The autoencoder term is crucial to avoid collapse and retaining of input information. Therefore,
we highlight that the HFS regularization term cannot be employed on its own, and hyperparameter optimization always
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needs to happen together with the autoencoder terms, which makes it difficult to use in practice, as well as model-dependent,
while our proposed criterion is model agnostic.

Interestingly, IOSS is very similar to what we are proposing with lKL−uni in our criterion. In fact, we also have an
implementation of this criterion in the bivariate case, where we draw samples from 2D uniform distributions, and the result
should also have factorized support. Therefore, we conclude that our criterion also encourages factorized support.

G. Model architectures
G.1. Architectures for synthetic dataset

Encoder:

• Linear layer (2, 50) followed by tanh

• Linear layer (50, 100) followed by tanh

• Linear layer (100, 50) followed by tanh

• Linear layer (50, 2).

Ground-truth decoder: x = B tanh A (0.5 z)

G.2. Architectures from Lachapelle et al. (for balls dataset)

Encoder:

• RestNet-18 Architecture till the penultimate layer (512 dimensional feature output)

• Stack of 5 fully-connected layer blocks, with each block consisting of Linear Layer ( dimensions: 512 × 512), Batch
Normalization layer, and Leaky ReLU activation (negative slope: 0.01).

• Final Linear Layer (dimension: 512 × d) followed by Batch Normalization Layer to output the latent representation.

Decoder (Non-additive):

• Fully connected layer block with input as latent representation, consisting of Linear Layer (dimension: dz × 512),
Batch Normalization layer, and Leaky ReLU activation (negative slope: 0.01).

• Stack of 5 fully-connected layer blocks, with each block consisting of Linear Layer ( dimensions: 512 × 512), Batch
Normalization layer, and Leaky ReLU activation (negative slope: 0.01).

• Series of DeConvolutional layers, where each DeConvolutional layer is follwed by Leaky ReLU (negative slope: 0.01)
activation.

– DeConvolution Layer (cin: 64, cout: 64, kernel: 4; stride: 2; padding: 1)
– DeConvolution Layer (cin: 64, cout: 32, kernel: 4; stride: 2; padding: 1)
– DeConvolution Layer (cin: 32, cout: 32, kernel: 4; stride: 2; padding: 1)
– DeConvolution Layer (cin: 32, cout: 3, kernel: 4; stride: 2; padding: 1)

G.3. Architectures from Locatello et al. (for Shapes3D dataset)

Encoder:

Input: 64 × 64× number of channels

4 × 4 conv, 32 ReLU, stride 2

4 × 4 conv, 32 ReLU, stride 2
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4 × 4 conv, 64 ReLU, stride 2

4 × 4 conv, 64 ReLU, stride 2

FC 256, F2 2 × 10

(Bernoulli) Decoder:

Input: R10

FC, 256 ReLU

FC, 4 × 4 × 64 ReLU

4 × 4 upconv, 64 ReLU, stride 2

4 × 4 upconv, 32 ReLU, stride 2

4 × 4 upconv, 32 ReLU, stride 2

4 × 4 upconv, number of channels, stride 2
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