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Abstract

Language Models (LMs) have shown impres-
sive performance in various natural language
tasks. However, when it comes to natural lan-
guage reasoning, LMs still face challenges such
as hallucination, generating incorrect interme-
diate reasoning steps, and making mathemati-
cal errors. Recent research has focused on en-
hancing LMs through self-improvement using
feedback. Nevertheless, existing approaches
relying on a single generic feedback source fail
to address the diverse error types found in LM-
generated reasoning chains. In this work, we
propose Multi-Aspect Feedback, an iterative
refinement framework that integrates multiple
feedback modules, including frozen LMs and
external tools, each focusing on a specific error
category. Our experimental results demonstrate
the efficacy of our approach to addressing sev-
eral errors in the LM-generated reasoning chain
and thus improving the overall performance of
an LM in several reasoning tasks. We see a rel-
ative improvement of up to 20% in Mathemat-
ical Reasoning and up to 18% in Logical En-
tailment. We release our source code, prompts,
and data1 to accelerate future research.

1 Introduction

Recent research in Language Models has focused
on augmenting them with external tools (Schick
et al., 2023; Paranjape et al., 2023), learning
from feedback (Ouyang et al., 2022; Akyurek
et al., 2023) and iterative-refinement (Madaan
et al., 2023; Paul et al., 2023; Shinn et al., 2023).
Iterative-Refinement has been a necessary tool in
human evolution and problem-solving. Moreover,
humans seek feedback from domain-specific knowl-
edge sources. For instance, an architect tasked
with creating an environmentally friendly and struc-
turally sound building design will require targeted
feedback from civil engineers for structural in-
tegrity, and sustainability experts for eco-friendly

1Our source code can be found here

design principles. However, previous works on it-
erative refinement overlook this requirement and
collect generic feedback from multiple sources or
collect a single one from the Language Model it-
self.

In this work, we first investigate whether the use
of generic feedback is a bottleneck in addressing
the diverse range of errors present in the reasoning
chains generated by LMs. We posit that utilizing
generic feedback for a broad spectrum of errors
may result in vague or non-actionable feedback for
specific errors. This is due to two main factors: (i)
the inclusion of multiple error categories within a
single prompt, which not only increases the size
of the prompt but also poses a challenge to cur-
rent models that have a limited context length and
struggle with long texts, and (ii) the model is bur-
dened with identifying a multitude of error types
in a single instance, which degrades the quality of
the generated feedback.

To surmount these challenges, we introduce
Multi-Aspect Feedback (MAF), a novel general-
purpose iterative refinement framework that em-
ploys a collection of specialized feedback modules,
including pre-trained LMs and external tools, each
tailored to address a specific error category. Our
framework includes a base model to generate an
initial solution, multiple feedback modules, and
a refiner model to revise the solution using feed-
back. Contrary to previous works, our feedback
modules can use one of two refinement strategies:
Eager Refinement and Lazy Refinement §3.4.
When using the Eager-Refine mode, the solution is
revised immediately before moving on to the next
feedback, however, for Lazy Refinement, we first
collect feedback from multiple feedback sources
and then refine the solution using this collective
feedback.

In devising MAF, we first classified errors in LM-
generated reasoning chains based on Golovneva
et al. (2022) and also identified some new error

https://github.com/deepakn97/MAF/tree/main
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Figure 1: Overview of the Multi-Aspect Feedback framework. We loop over steps 3 and 4 until we reach a final
solution O’ or up to a set number of iterations.

categories. Subsequently, we decoupled our feed-
back modules such that each module focuses on a
single error category. This strategy not only ele-
vates performance but also allows one to leverage
specialized tools tailored for distinct error types,
such as utilizing a code interpreter for syntax er-
rors in generated Python programs instead of re-
lying on generic LM feedback. Through a mod-
ular design, we ensure that each module of our
framework is replaceable depending on the task.
We conduct extensive experimentation on a variety
of complex reasoning tasks such as Mathematical
Reasoning (Shi et al., 2023), Logical Reasoning
(Dalvi et al., 2021), and Multi-Hop Question An-
swering (Dua et al., 2019), and establish that MAF
effectively addresses the challenges previously dis-
cussed, and significantly enhances the performance
of Language Models in complex reasoning tasks.
We compare our method against the Base LMs
and Self-Refine (Madaan et al., 2023), which also
implements iterative refinement. During our experi-
ments, we find that Over-Refining §4 the solution
can lead to worse performance, and thus we treat
the number of iterations as a hyperparameter. We
also propose an Oracle Verifier setting §4, where
we assume we have access to an "answer verifier"
and stop the refining process once we have reached
the correct answer. To avoid unfair comparisons,

we test Self-Refine under this setting and find that
MAF provides actionable and specific feedback.

To summarize, the main contributions of this
work are as follows:

1. We propose a novel framework that decou-
ples the feedback generation process for dif-
ferent error categories. This allows us to use
error-specific tools and LMs. Moreover, the
proposed framework is modular and all the
modules are Plug-and-Play. This allows for
better flexibility on new tasks and the usage
of advanced models as they become available.

2. Additionally, we propose two different types
of refinement strategies, Eager Refinement
and Lazy Refinement. Eager Refinement
allows immediate revision of a solution by
a feedback module to avoid conflicts, while
Lazy Refinement improves efficiency by per-
forming revisions from multiple feedback
modules together.

3. We show that our framework outperforms the
base Language Models and similar Iterative
Refinement baselines on several complex rea-
soning tasks such as Math reasoning (GSM-
IC), Logical Reasoning (Entailment Bank),
and Multi-hop Question Answering (DROP).



2 Related Work

Chain-of-Thought Reasoning There has been
a plethora of research on prompting Large Lan-
guage Models to improve their reasoning capabil-
ities. Wei et al. (2023) found that prompting the
models to generate a reasoning chain in few-shot
setting before solving a problem improves the per-
formance by a huge margin. Further, Kojima et al.
(2022) found that in zero-shot setting prefixing the
solution generation with Let’s think step-by-step
has the same effect as generating intermediate rea-
soning chain and improves the performance. Fol-
lowing this work, Wang et al. (2022) proposed sam-
pling multiple outputs from the model and select-
ing the final answer by majority voting. Zhou et al.
(2023) also showed that decomposing the original
question into smaller sub-problems can give a per-
formance boost. Madaan et al. (2022) and Chen
et al. (2022) showed that models trained on code
can be used to generate a program-of-thought simi-
lar to a chain-of-thought, which enables the model
to use a language interpreter for translating mathe-
matical calculations into code. In this work, we use
LMs’ in-context learning abilities to implement the
LM-based feedback and refiner modules.

Tool Augmented LLMs However, even with
these advanced prompting techniques, the LMs still
fail for problems that require external knowledge
and are still prone to problems such as hallucina-
tion and incorrect reasoning. To circumvent these
issues, several recent works have introduced the
use of external tools such as calculator, code in-
terpreter, knowledge retrieval (Karpas et al., 2022;
Chen et al., 2022; Schick et al., 2023). Yang et al.
(2023); Patil et al. (2023); Shen et al. (2023) show
that one can teach LLMs to use tools by generating
API calls. Li et al. (2023) also released a large
dataset to enable research in the field of augmented
Language Models. Hao et al. (2023) propose to rep-
resent each tool as a token and learn tool-specific
embeddings to increase the robustness of these lan-
guage models for using external APIs. However,
reasoning is an iterative task and it is difficult to
find a plausible answer for several problems in one-
shot even when these LLMs are augmented with
tools. This has inspired some recent works to use
iterative refinement frameworks. In our work, we
use external tools for generating feedback for cer-
tain error categories such as Programming Syntax
Errors, Calculator for mathematical equations etc.

Task Feedback Type Type ER

Programming Syntax Interpreter !

Variable Naming OpenAI !

Math Redundancy OpenAI #

Reasoning Commonsense OpenAI #

Missing Step OpenAI #

Logical Redundancy OpenAI #

Reasoning Repetition OpenAI #

Hallucination OpenAI #

Redundancy OpenAI #

Question Factuality OpenAI #

Answering Commonsense OpenAI #

Missing Step OpenAI #

Table 1: Feedback modules used for each task and their
types. OpenAI type modules use a LLM to provide feed-
back. Feedback Modules with Eager-Refine (ER) en-
abled, refine the solution without waiting for feedback
from the other feedback modules. (§3.4).

Learning from Feedback Schick et al. (2022)
took the first step towards iteratively fixing the
problems and introduced the idea of training multi-
ple instances of the same model to assist in different
stages of problem-solving. It was introduced as a
collaborative editing framework. (Madaan et al.,
2023) proposed to use the same model for gen-
erating initial solution, feedback generation, and
refiner. Furthermore, recently there have been mul-
tiple works exploring the use of natural language
feedback to improve performance. Shinn et al.
(2023) proposes converting different types of feed-
back into natural language and storing the feedback
in a memory buffer to revisit later. Akyurek et al.
(2023) train a critique generator to maximize the
end-task performance of a larger base model using
reinforcement learning. Paul et al. (2023) proposes
a framework to fine-tune LMs for generating inter-
mediate reasoning steps while interacting with a
trained critique model to bridge the gap between
small and large models. Recent research (Wu et al.,
2023) has also demonstrated the benefits of incor-
porating decoupled fine-grained feedback for each
error category by using a set of fine-tuned reward
models. We defer to Pan et al. (2023) for a com-
prehensive discussion of research on automated
feedback generation and correction.

Despite these advancements, there is a lack of
empirical evidence supporting the effectiveness of
decoupled multi-aspect feedback for iterative re-
finement. Our work addresses this gap by demon-
strating that a generic feedback module, is insuffi-



cient to address the diverse range of potential errors
in language model responses. To overcome this lim-
itation, we propose a suite of feedback modules,
each specifically targeting a particular error cate-
gory and providing detailed feedback to improve
both reasoning and solution quality.

3 MAF: Multi-Aspect Feedback

3.1 Overview
In this work, we present an iterative refinement
framework with an explicit focus on decoupling
feedback generation for different error categories.
This approach allows us to systematically address
different error types in the generated solutions. Our
proposed framework has three crucial components:
a base language model M that generates an ini-
tial solution O. A collection of n feedback mod-
ules {f0, f1, f2...fn}, each focusing on a single
error category, collectively these modules gener-
ate a multi-aspect feedback F. And a Refiner R
that generates refined solution O’ based on initial
solution O and feedback F.

While there are other works that also
use iterative refinement (Madaan et al.,
2023; Akyurek et al., 2023; Peng et al.,
2023), to the best of our knowledge,
we are the first to explore the effect of decoupling
different types of feedbacks. Taking inspiration
from ROSCOE (Golovneva et al., 2022), we
categorize feedback into ten distinct categories:
arithmetic, programming syntax, variable naming,
missing step, coherency, redundancy, repetition,
hallucination, commonsense, and factuality.
Definitions of these error categories are provided
in Appendix A. Moreover, a feedback module
can be a tool such as a code interpreter for
syntax feedback, a calculator for arithmetic
feedback, a knowledge graph for factuality or
commonsense feedback, a Language Model, or
even a fine-tuned model. It is important to note
that the feedback generation process is not limited
to these categories and can be extended to include
other categories as well. The overall process is
illustrated in Figure 1 and Algorithm 1.

3.2 Initial Generation
We use a large model such as GPT3.52, GPT4 (Ope-
nAI, 2023), to generate an initial solution. How-
ever, generating just one solution isn’t ideal for the
reasoning process since reasoning is an iterative

2https://openai.com/blog/chatgpt

process. The solution often needs to be refined
over time with every iteration bringing us closer to
the correct answer. We follow the same principle
in this work, where we initially produce a solution
and then proceed to refine it based on actionable
feedback.

3.3 Feedback Modules
Feedback generation is an involved task, providing
a comprehensive list of common issues encoun-
tered in model outputs. The feedback generation
is accomplished through a variety of tools known
as feedback modules, which may include external
tools, frozen LLMs, fine-tuned models, and scor-
ers. These modules are used to provide actionable
feedback based on the initial solution.

Each type of feedback module is suited to ad-
dress specific types of errors. For instance, an
external tool like a code interpreter would be ideal
for providing feedback on syntax errors in code,
while a fine-tuned model could provide more nu-
anced feedback on issues such as redundancy or
hallucination. This decoupled approach allows us
to address errors in a more targeted manner, im-
proving the overall quality of the refined solution.
Table 1 shows all the feedback modules used in our
work.

Furthermore, it’s worth noting that merely speci-
fying the error categories in a single prompt doesn’t
yield satisfactory results. We see two main reasons
for this, firstly because the model is tasked with
focusing on multiple errors simultaneously and sec-
ondly, as the number of error categories increase,
the context length increases as well which results
in high-quality feedback for the first few error cat-
egories and a steep decline in quality for the rest.
While some of the previous works (Wu et al., 2023;
Paul et al., 2023) have explored using fine-grained
feedback and achieved promising results.

Moreover, our feedback modules can choose be-
tween two refinement strategies: Eager-Refine or
Lazy-Refine. We discuss this distinction in more
detail in the next section.

3.4 Refinement
In this work, we reuse the initial model M as a
Refiner. During the refining phase, the refiner is
given a solution and multi-aspect feedback and
asked to revise the solution according to feedback.
We found that these large models are proficient at
the refining task, demonstrating a marked improve-
ment in the quality of the final solution compared

https://openai.com/blog/chatgpt


HYPOTHESIS: New York State has the 
greatest sunlight during June
TEXT:
sent1: the amount of daylight is 
greatest in the summer
sent2: united states is located in 
the northern hemisphere
sent3: new york / new york state is 
a state located in the united 
states of america
sent4: june is during the summer in 
the northern hemisphere
sent5: the amount of daylight is 
greatest on the summer solstice
sent6: the amount of daylight is 
least in the winter

INITIAL GENERATION
sent2 and sent3 -> int1: new york 
is in the northern hemisphere
int1 and sent4 -> int2: June is 
during the summer in the northern 
hemisphere
sent1 and sent6 -> int3: there is 
more sunlight in the summer than in 
the winter
int1 and sent1 -> hypothesis: new 
york state has the greatest 
sunlight during june

MISSING STEP FEEDBACK
int1 and sent1 -> hypothesis: new york 
state has the greatest sunlight during June
# wrong! The entailment tree is missing an 
intermediate premise that establishes that 
it is summer in new york in june. We can 
add this premise as an intermediate 
conclusion.

REPETITION FEEDBACK
int1 and sent4 -> int2: June is during the 
summer in the northern hemisphere
# wrong! This entailment step simply 
repeats the premise in the intermediate 
conclusion int2. We can remove this step 
entirely.

REDUNDANCY FEEDBACK
sent1 and sent6 -> int3: there is more 
sunlight in the summer than in the winter
# wrong! This entailment step is valid but 
irrelevant to the hypothesis. We can remove 
this step entirely.

SELF-REFINE FEEDBACK
int1 and sent4 -> int2: June is during the 
summer in the northern hemisphere
# wrong! The premise int1 that new york is in 
the northern hemisphere does not entail the 
intermediate conclusion int2 that June is 
during the summer in the northern hemisphere.
int1 and sent1 -> hypothesis: new york state 
has the greatest sunlight during june
# wrong! This step is missing the key premise 
that it is summer in new york during june. We 
need to add this.

SELF-REFINE (INCORRECT) 
GENERATION

sent2 and sent3 -> int1: new 
york is in the northern 
hemisphere
sent4 -> int2: june is during 
the summer in new york
sent1 and int2 -> hypothesis: 
new york state has the greatest 
sunlight during june

MAF-REFINED (CORRECT) 
GENERATION

sent2 and sent3 -> int1: new 
york is in the northern 
hemisphere
int1 and sent4 -> int2: june is 
during the summer in new york
sent1 and int2 -> hypothesis: 
new york state has the greatest 
sunlight during juneR
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Figure 2: Comparison of the feedback generated by MAF and Self-Refine.

to the initial output.
As mentioned in the previous section, we use

two refinement strategies: Eager-Refinement and
Lazy-Refinement. The eager-Refinement approach
is used for feedback types that can cause conflicts
during refinement. An example of such as feedback
module would be Variable Naming (VN), which is
used to correct variable names in the generated
code. This module can cause conflicts with others
because when the other modules are referencing a
variable that is supposed to be changed according
to the VN feedback and can render the program
inexecutable if refined incorrectly. Whereas, in the
lazy refinement strategy feedback from the multiple
modules is concatenated together along with the
appropriate error categories to make a single multi-
aspect feedback. This collective feedback is then
passed to the Refiner model in order to get a revised
solution. Another advantage of this approach is the
increased efficiency by refining once for multiple
errors and the added flexibility.

However, we also found that the smaller open-
source models like LLaMA (Touvron et al., 2023),
Alpaca (Taori et al., 2023) and Vicuna3 often fail
to adhere to the feedback provided thus making
the refinement process ineffective. These smaller
models also have smaller context lengths which

3https://lmsys.org/blog/2023-03-30-vicuna/

make it difficult to include all the feedback in the
prompt. To address this issue, we use a Selective
Summarization approach. We only select parts
of feedback that point to a problem. Figure 2
shows the "summarized" feedback generated by
our approach. This simple selective summariza-
tion approach makes the feedback succinct and
also proves to be less distractive to the models dur-
ing the refining phase. This approach allows us
to effectively combine all feedback together and
use models with smaller context lengths to some
extent.

4 Experiments

4.1 Datasets and Metrics

Mathematical Reasoning The GSM8K dataset,
presented by Cobbe et al. (2021), is a comprehen-
sive compilation of high-quality grade school math
problems. GSM8K has proven to be a great re-
source for testing LLMs on mathematical word
problems, however, the performance on this dataset
has been saturated for a while.

To avoid that problem, we conduct experiments
on a harder variant of this dataset, GSM-IC (Grade-
School Math with Irrelevant Context), that was
introduced by Shi et al. (2023). We run our main
experiments on a randomly sampled subset of 500
problems from GSM-IC and use % solve rate as

https://lmsys.org/blog/2023-03-30-vicuna/


Algorithm 1 MAF algorithm

Require: Input x, model M, Refiner R, number of iterations T
Require: n Eager-refine {s1, s2, ...sn} and m Lazy-Refine {p1, p2, ...pm} Feedback Modules

1: Initialize output y0 from M
2: while i < T do
3: for j ← 1 to n do ▷ Eager-refine Feedbacks
4: fsj ← generate_feedback(sj , yi) ▷ Generate Feedback
5: if fsj indicates revision is required then
6: yi ← revise(R, fsj , yi) ▷ Revise solution

7: F← ”” ▷ Initialize empty feedback
8: for k ← 1 to m do ▷ Lazy-refine Feedbacks
9: fpk ← generate_feedback(pk, yi)

10: if fpj indicates revision is required then
11: F← F + fpk

12: if F not empty then
13: yi+1 ← revise(R, fpk, yi)
14: else
15: yi+1 = yi

the metric.

Logical Reasoning EntailmentBank, as de-
scribed by Dalvi et al. (2021), is a dataset that
contains multistep entailment trees. We use the
validation set of Task 1 provided by the authors for
our experimentation. For the metrics, we do not
use the automated metrics provided by the original
work because these metrics expect the trees to be
similar in structure to gold trees. However, that is
not a fair comparison because we find that there
exist multiple correct entailment trees for a given
hypothesis and information. Thus, we conduct a
human evaluation and ask humans to evaluate if the
hypothesis can be entailed from the predicted tree.

Question Answering DROP (Dua et al., 2019) is
a question-answering dataset. The Discrete Reason-
ing Over the Content of Paragraphs (DROP) dataset
is designed for complex question-answering tasks
that require multi-step reasoning over text passages.
It presents a valuable benchmark for our iterative
refinement framework, as the multi-step nature of
the questions offers ample opportunities for gen-
erating feedback and refining to guide the model
toward a correct solution. We use output parsing
for answers and use % correct answers as the final
metric.

4.2 Baselines

In this work, we focus on comparing our
method with the Base LMs using the Ope-

nAI API and a recently proposed iterative
refinement framework, Self-Refine (Madaan
et al., 2023). To provide a fair comparison
and avoid randomness in the generated answer,
we used Greedy Decoding for all our experiments.

We follow (Madaan et al., 2023) and use 8-shot
Program of Thought (Chen et al., 2022) for GSM-
IC since the Python program written by the model
acts as a "calculator" for mathematical equations.

The input for Entailment Bank includes a hypoth-
esis and the supporting text, and we are limited by
the context length of the current models. Hence,
we use 4-shot prompting for this dataset. We use
standard few-shot prompting (Brown et al., 2020),
because the Entailment Tree itself acts like a rea-
soning chain.

Similarly, the examples in the DROP dataset
have a passage and an accompanying question, so
we use a 3-shot Chain of Thought Wei et al. (2023)
prompting. We also provide an instruction speci-
fying that the model should select either a number,
date, or span from the passage to answer the ques-
tion as shown in Appendix C.

For Self-Refine, we use the prompts provided by
the authors for GSM8K in their work for GSM-IC
and write our own prompts for DROP and Entail-
ment Bank. Self-Refine has three modules, initial
generation, feedback, and refiner. We use the same
parameters and prompting strategy as the corre-
sponding baseline for the initial generation. The
feedback module and refiner module are imple-



Model EB GSMIC GSM8K DROP

GPT3.5 56.1 76.2 69.2 72.3
+SR 53.5 ↓2.6 77.0 ↑0.8 69.2 ↓0.0 62.0↓8.3

+SR★ 54.5 ↓1.6 87.0 ↑10.8 77.4 ↑8.2 77.5 ↑4.2

+MAF 54.5 ↓1.6 77.4 ↑1.2 69.8 ↑0.6 66.2 ↓6.1

+MAF★ 60.4 ↑4.3 91.4 ↑15.2 73.4 ↑4.2 76.4 ↑4.1

ChatGPT 60.4 72.0 71.8 70.7
+SR 65.8 ↑5.4 76.0↑4.0 74.6 ↑2.8 45.5↓25.2

+SR★ 67.4↑7.0 78.0↑6.0 79.4 ↑7.6 73.2↑2.5

+MAF 68.4↑8.0 77.8↑5.8 73.2 ↑1.4 67.9↓2.8

+MAF★ 71.7 ↑11.382.8↑10.8 76.6 ↑4.8 72.7↑2.0

Table 2: Experimental results for Entailment Bank (EB),
GSMIC, GSM8K, DROP dataset as described in §4. SR
represents Self-Refine (Madaan et al., 2023), and MAF
represents our method. ★ represents the Oracle Verifier
setting (§4.4). The best score for standard setting is in
bold and underlined for the Oracle Verifier setting.
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Figure 3: Accuracy for baselines and MAF on GSM-
IC using ChatGPT under Standard and Oracle Verifier
setting §4.4.

mented using the standard few-shot prompting with
3 in-context examples for all datasets. Further de-
tails about the implementation of these baselines
can be found in Appendix C.

4.3 Implementation

We implement MAF (Multi-Aspect Feedback) fol-
lowing the basic structure defined in §3 and Algo-
rithm 1. The iterative refinement process continues
until we reach the desired output quality or a task-
specific stop criterion, up to a maximum of 4 iter-
ations. Our method includes an initial generation,
refiner, and feedback modules as shown in Table 1.
The initial generation module uses the same param-
eters and prompting strategies as the corresponding
baseline. Our Eager-Refine module uses 3-shot
standard prompting and our Lazy-Refiner, which
includes feedback from multiple modules, uses a
2-shot standard prompting approach. Our OpenAI-
based feedback modules also use 3-shot standard
prompting following (Madaan et al., 2023) with an
error-specific instruction.

To provide a fair comparison, we use the same
prompts for Baselines and Self-Refine wherever
possible. We use Greedy Decoding for all our
OpenAI-based4 modules to avoid any randomness.
As mentioned in §3.3, we use a selective summa-
rization approach to fit all the lazy-refine feedbacks
in our refiner module. We use a basic rule-based

4Our experiments with GPT3.5 (Text-Davinci-003) and
ChatGPT (gpt-3.5-turbo) are conducted using OpenAI API
between April-2023 and August-2023.

strategy to summarize feedback. Since our feed-
back modules are instructed to inspect each inter-
mediate step, they also include the steps with no
mistakes in the generated feedback. However, feed-
back on these lines is not useful as such because
there is no change in those steps. Thus we look
for the steps with feedback "looks good" and re-
move those steps. This simple approach helps us
increase the efficiency of our method by being able
to include multiple feedbacks in our lazy-refiner.

4.4 Results

In this section, we discuss the performance of our
method and compare it to the baseline. We also
discuss an ablation experiment studying the contri-
bution of each feedback module. The main results
of this work are shown in Table 2. We find that
our method can outperforms the base LMs and
Self-Refine on a diverse set of reasoning datasets.
For MAF, we report the results after 2 iterations,
and following Madaan et al. (2023) report the Self-
Refine results after 4 iterations.

GPT3.5 vs ChatGPT We found that GPT3.5 can
generate better feedback if an error is present in
the solution, however often points out spurious
errors even when they are not present. On the other
hand, ChatGPT is more conservative in its feedback
generation and often fails to detect the error even in
an erroneous solution. Because of this conflicting
behavior from the two models, our method is able
to achieve similar performance using both models,



even though ChatGPT is generally considered to
be a better model than GPT3.5.

Over-Refining Due to the behavior described
above, we face the problem of Over-Refining.
This means that once we have reached an optimal
solution for a reasoning problem, forcing the LM
to refine it further deteriorates the performance and
the quality of the reasoning chain. As shown in
Table 2 and Figure 3, Self-Refine (Madaan et al.,
2023) also suffers from this problem in the DROP
dataset. Moreover, all the other iterative refine-
ment framework such as Self-Refine uses a stop
condition and stop the refining process if the gen-
erated feedback does not point out any problem.
We however cannot take advantage of this stop
condition because of the interplay between mul-
tiple feedback modules. For example, let’s say
our Missing Step module stops at iteration k due
to no missing steps at that point in time since the
other feedback modules continue to refine the so-
lution and self-refinement is an imperfect process,
it might introduce a Missing Step error in further
iterations.

Hence, we treat the number of iterations as a
hyperparameter and find that 2 iterations work best
for our method.

Oracle Verifier Since the main focus of this work
is to improve the incorrect initial generations from
the model, we also evaluate the models under an
Oracle Verifier setting. In this setting, we assume
access to an "Oracle Verifier" which can judge the
final answer generated by the model. If the final
answer is correct, we stop the refinement process
for that test sample, otherwise, we let the model
continue refining the solution. It is important to
note however that the model is not privy to this
verification, and hence can still stop further refine-
ment by not generating actionable feedback in the
next iteration. Under this setting, we report results
for both Self-Refine and MAF after 4 iterations.
Even under this modified setting, we see that our
method can outperform Self-Refine because we
generate diverse feedback and thus can improve
more solutions in the GSM-IC dataset.

4.5 Ablation

In this section, we perform two ablation studies.
Firstly, we analyze the impact of each feedback
module, identifying those with the most significant
effect on performance. Secondly, we compare the

outcomes of our two proposed refinement strate-
gies: Lazy vs Eager Refinement. The ablation
studies are conducted on the GSM-IC dataset. Due
to resource constraints, we conduct the following
ablation studies on a smaller random subset of size
100.

Model Standard Oracle

ChatGPT 73.0 −
+MAF 79.0 84.0
−Variable Naming (VN) 79.0 ↓0.0 83.0 ↓1.0

−Redundancy (Red) 70.0 ↓9.0 80.0 ↓4.0

−Commonsense (Com) 73.0 ↓6.0 80.0 ↓4.0

−Missing Step (MS) 79.0 ↓0.0 84.0 ↓0.0

MAF (VN, Red, Com) 79.0 85.0

Table 3: This table shows the contribution of each feed-
back module in MAF for the GSM-IC dataset. − symbol
in front of a module denotes the accuracy of our method
after removing that feedback module. MAF (VN, Red,
Com) shows the accuracy of our method using only the
best-performing feedback modules.

Contribution of different Feedback Modules
We test the contribution of each feedback mod-
ule by removing that module and calculating the
accuracy under standard and Oracle verifier set-
tings. While the standard setting highlights the
potential negative impacts of some of the modules,
the oracle verifier setting highlights the absolute
contribution of each module. This highlights an
important finding that using the error categories is
paramount to gaining performance. Results for this
ablation study can be found in Table 3.

We also calculate the accuracy of our method
when using the three best-performing modules as
the only source of feedback. We found that this
does recover the performance of our method. Even
though Variable Naming and Missing Step modules
do not affect MAFs performance by a huge margin,
it still makes our method more robust to a possible
distribution shift. Moreover, the Variable Naming
module’s main contribution is not increasing the
performance, but rather to increase the readability
of the code and not confuse users with unclear
names.

Note that we did not remove the Programming
Syntax checker module as we use Program of
Thoughts which requires a Python interpreter.



Model Standard Oracle

GPT3.5 71.0 71.0
+MAF 67.0 ↓4.0 85.0 ↑14.0

+Only Lazy-Refine 66.0 ↓5.0 81.0 ↑10.0

+Only Eager-Refine 66.0 ↓5.0 85.0 ↑14.0

ChatGPT 73.0 73.0
+MAF 78.0 ↑5.0 81.0 ↑8.0

+Only Lazy-Refine 69.0 ↓4.0 80.0 ↑7.0

+Only Eager-Refine 73.0 ↓0.0 80.0 ↑7.0

Table 4: Accuracy on GSM-IC when using different
refinement strategies under Standard and Oracle set-
tings. MAF shows the performance of our method when
using both Lazy and Eager refine in tandom. Only Lazy-
Refine means all feedback modules use Lazy-Refine
and similarly Only Eager-Refine means all modules use
Eager-Refine strategy. The best score for each setting is
in bold.

Lazy vs Eager Refinement To illustrate the com-
plementary nature of our two proposed refinement
strategies, we evaluate the performance of our it-
erative refinement framework using all feedback
modules in either Lazy or Eager mode. The re-
sults are presented in Table 4, which showcases the
performance of our framework under different re-
finement settings. In this table, ’MAF’ corresponds
to the results obtained by combining both Lazy
and Eager Refinement strategies, as defined in Ta-
ble 1, while ’Only Lazy/Eager-Refine’ displays the
results of our framework when utilizing only one
type of refinement strategy.

The results clearly demonstrate that our frame-
work, which leverages a combination of eager and
lazy refinement, consistently matches or outper-
forms using either strategy in isolation, across both
the standard and oracle verifier settings.

Practical considerations also favor the use of a
hybrid approach incorporating both eager and lazy
feedback. Relying solely on lazy feedback can lead
to a situation where multiple feedback categories
are condensed into a single prompt. Despite our
feedback summarization technique, this can result
in the iteration prompt exceeding the context win-
dow limit of many widely available models. Con-
versely, exclusively employing eager feedback may
result in rewriting the solution for each feedback
module, leading to high token usage. While us-
ing all modules in Eager-Refine mode can closely
approach the performance of ’MAF’ (as shown in
Table 4), it is not scalable when dealing with a large

number of feedback modules.

5 Conclusion

In this work, we present Multi-Aspect Feedback
(MAF), a novel iterative refinement framework that
decouples the feedback modules and takes advan-
tage of error-specific tools to generate feedback.
We demonstrate the performance of our framework
on a set of diverse reasoning tasks and compare it
with other iterative refinement baselines.

Contrary to previous works, we found that Over-
Refinement can be a problem in iterative refinement
frameworks since models are not certain if their
own answer is correct. Our work also draws focus
on the necessity to devise better feedback methods
and call for augmenting Language Models with
them. We hope this work will inspire further re-
search in this area and to this end, we make all our
code, data, and prompts available.

Limitations

The main limitation of our approach is that the base
models need to have sufficient in-context learning
abilities to process the feedback and refine the solu-
tion. Even with in-context learning abilities, these
models are not perfect and thus can still make mis-
takes while refining the solution even when correct
feedback is given.

All the experiments conducted in this work use
large powerful models provided by OpenAI. We
find that open-source LMs such as Vicuna, and
Alpaca can generate decent initial solutions but
are not capable of refining their own solutions.
Thus, we leave the investigation of improving open-
source models to future work.

Another limitation inherent in our approach is
the reliance on a fixed set of Feedback Modules.
Our method necessitates the pre-selection of feed-
back modules before execution, which in turn de-
mands human intervention to determine the appro-
priate feedback categories for each new dataset
or domain. Future research could explore novel
methods that can dynamically and autonomously
determine the most suitable feedback modules for
specific problems in real-time.

Ethics Statement

The experiments in this work were performed with
models that are not open-sourced and are ever-
changing. Moreover, these models are expensive to
use, and thus research using these models requires



an enormous amount of funding. The existing liter-
ature lacks details about the datasets that are being
used to train these huge models or the filtering
mechanism that is being used to clean the polluted
corpora.

Furthermore, there is always a possibility for bad
actors to use our method to generate more toxic or
harmful text. Our approach does not guard against
this.
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A Error Categories

In this section we define all the error categories
that are implemented in this work. Table 5 shows
the error categories introduced by Golovneva et al.
(2022).

A.1 Programming Syntax Feedback

Programming syntax feedback module is imple-
mented as Python Interpreter. This module aims
to fix any syntax errors in the generated code.
This particular module benefits from a Eager-
Refinement approach.

A.2 Variable Naming Feedback

Good variable names in a code can improve the
readability of the code and potentially can improve
model’s own understanding of the program in fur-
ther iterations. Variable Naming Feedback is an-
other module which benefits from an eager-refine
approach.

A.3 Redundancy Feedback

Redundant information is any information included
in the reasoning that doesn’t help answer the ques-
tion. This additional information may distract the
model from correctly answering and should thus
be removed.

A.4 Commonsense Feedback

Commonsense reasoning errors are errors about
any relation or knowledge that is should be known
from general world such as "all ducks are birds".

A.5 Missing Steps

Missing steps errors are any gaps in reasoning
or missing information that prevent the reasoning
chain from being correct. This also identifies the
model saying that the question is unanswerable as
a missing step error because that means additional
reasoning steps are needed to answer the question
from the passage.

A.6 Factuality Feedback

Factuality errors are cases where the answer rea-
soning states infactual information. This could be
information that contradicts information given in
the passage or hallucinated.

A.7 Hallucination Feedback

LLMs are prone to hallucination, however, it has
been shown that sampling from a LLM multiple

times and then selecting the majority answer can
improve the results. Thus Hallucination feedback
aims to fix any hallucinated facts in the initial gen-
eration. This module can be improved by using an
external tool such as a Knowledge Source instead
of a LLM.

B Implementation Parameters

Table 6 provides parameters used for Self-Refine
and Table 7 provides parameters used for MAF.

C Few-Shot Prompt Examples

We add samples for all the prompts used in our
work. Complete prompts can be found in our
source code. Note that for all feedback prompt ex-
amples, there is at least one example with no errors,
in which case the feedback will state that there are
no errors and the reasoning is correct. This helps
decrease the likelihood that the model identifies an
error in a solution that is actually correct.



Error Type Definition

Programming Syntax Syntax errors in code
Arithmetic Error in math calculations
Grammar Faulty, unconventional, or controversial grammar usage
Coherency Steps contradict each other or do not follow a cohesive story
Variable Naming Variable names in a program don’t give full information or are wrong
Repetition Step paraphrases information already mentioned in previous reasoning steps
Hallucination Information is not provided in the problem statement and is irrelevant or wrong
Commonsense Model lacks relations that should be known from the general world (e.g., "1 dozen

= 12")
Factuality Information about an object (i.e. quantity, characteristics) or a named entity doesn’t

match with the input context
Missing Step The content of the generated reasoning is incomplete and lacks the required infor-

mation to produce the correct answer
Redundancy Explanation contains redundant information, which even though might be factual,

is not required to answer the question

Table 5: Error types as defined in Golovneva et al. (2022). Each error category is defined for a single step in the
reasoning chain.

Dataset Base LM Feedback Refiner

EB 300 600 600
GSM-IC 300 600 600
GSM8K 300 600 600
DROP 450 600 800

Table 6: Value of Maximum Number of Tokens
parameter for Self-Refine on various datasets.

Dataset Base LM Feedback Refiner

EB 300 600 600
GSM-IC 300 600 600
GSM8K 300 600 600
DROP 450 600 800

Table 7: Value of Maximum Number of Tokens
parameter for MAF on various datasets.



# Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did
Jason give to Denny?
# solution using Python:

def solution():
"""Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops

did Jason give to Denny?"""
jason_lollipops_initial = 20
jason_lollipops_after = 12
denny_lollipops = jason_lollipops_initial - jason_lollipops_after
result = denny_lollipops
return result

# Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done,
there will be 21 trees. How many trees did the grove workers plant today?
# solution using Python:

def solution():
"""There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are

done, there will be 21 trees. How many trees did the grove workers plant today?"""
trees_initial = 15
trees_after = 21
trees_added = trees_after - trees_initial
result = trees_added
return result

# Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have
now?
# solution using Python:

def solution():
"""Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he

have now?"""
toys_initial = 5
mom_toys = 2
dad_toys = 2
total_received = mom_toys + dad_toys
total_toys = toys_initial + total_received
result = total_toys
return result

# Q: There were nine computers in the server room. Five more computers were installed each day, from monday to
thursday. How many computers are now in the server room?
# solution using Python:

def solution():
"""There were nine computers in the server room. Five more computers were installed each day, from monday

to thursday. How many computers are now in the server room?"""
computers_initial = 9
computers_per_day = 5
num_days = 4 # 4 days between monday and thursday
computers_added = computers_per_day * num_days
computers_total = computers_initial + computers_added
result = computers_total
return result

...

Figure 4: Initialization prompt for Mathematical Reasoning



def solution():
"""Kelly is grocery shopping at a supermarket and is making sure she has enough in her budget for the

items in her cart. Her 5 packs of bacon cost $10 in total and she has 6 packets of chicken which each cost
twice as much as a pack of bacon. She also has 3 packs of strawberries, priced at $4 each, and 7 packs of
apples, each priced at half the price of a pack of strawberries. If Kelly’s budget is $65 then how much money,
in dollars, does she have left in her budget?"""

budget = 65
bacon_packs = 5
bacon_total_cost = 10
chicken_packs = 6
chicken_cost = 2 * bacon_total_cost
strawberry_packs = 3
strawberry_cost = 4
apple_packs = 7
apple_cost = strawberry_cost / 2
total_cost = bacon_cost + chicken_cost + strawberry_cost + apple_cost
money_left = budget - total_cost
result = money_left
return result

# Check each semantically complete block of the code to check for any logical reasoning errors. Logical
reasoning errors may include errors in the mathematical calculations, errors in the order of the steps, or
errors in the assumptions made. State the assumptions you made clearly. Ignore all the other types of errors.

# Let us go through the code step-by-step
budget = 65

# looks good

# Let's check other parts
bacon_packs = 5
bacon_total_cost = 10

# looks good

# Let's check other parts
chicken_packs = 6
chicken_cost = 2 * bacon_total_cost

# wrong! according to the context, the cost of each packet of chicken is twice the cost of 1 packet of bacon.
We should use bacon_cost in place of bacon_total_cost to calculate the chicken pack cost correctly. Let's fix
it.

# Let's check other parts
strawberry_packs
strawberry_cost = 4

# looks good

# Let's check other parts
apple_packs = 7
apple_cost = strawberry_cost / 2

# looks good

# Let's check other parts
total_cost = bacon_cost + chicken_cost + strawberry_cost + apple_cost
money_left = budget - total_cost
result = money_left
return result

# wrong! we want to calculate the total cost of buying all the items so we should use the total cost of each
item instead of cost of 1 pack of each item. Let's fix it.

### END ###

...

Figure 5: Commonsense Feedback for Mathematical Reasoning



def solution():
"""Kelly is grocery shopping at a supermarket and is making sure she has enough in her budget for the

items in her cart. Her 5 packs of bacon cost $10 in total and she has 6 packets of chicken which each cost
twice as much as a pack of bacon. She also has 3 packs of strawberries, priced at $4 each, and 7 packs of
apples, each priced at half the price of a pack of strawberries. If Kelly’s budget is $65 then how much money,
in dollars, does she have left in her budget?"""

budget = 65
bacon_packs = 5
bacon_total_cost = 10
chicken_packs = 6
chicken_cost = 2 * bacon_cost
strawberry_packs = 3
strawberry_cost = 4
apple_packs = 7
apple_cost = strawberry_cost / 2
total_cost = bacon_cost + chicken_cost + strawberry_cost + apple_cost
money_left = budget - total_cost
result = money_left
return result

# Check each semantically complete block of code for any missing steps and suggest the correct way to add
them. Ignore all the other types of errors.

# Let us go through the code step-by-step
budget = 65

# looks good

# Let's check other parts
bacon_packs = 5
bacon_total_cost = 10

# looks good

# Let's check other parts
chicken_packs = 6
chicken_cost = 2 * bacon_cost

# wrong! bacon_cost is missing. Let's add it.
# wrong! we need the total cost of chicken to calculate remaining budget. Let's add it.

# Let's check other parts
strawberry_packs
strawberry_cost = 4

# wrong! we need the total cost of strawberries to calculate remaining budget. Let's add it.

# Let's check other parts
apple_packs = 7
apple_cost = strawberry_cost / 2

# wrong! we need the total cost of apples to calculate remaining budget. Let's add it.

# Let's check other parts
total_cost = bacon_cost + chicken_cost + strawberry_cost + apple_cost
money_left = budget - total_cost
result = money_left
return result

# looks good

### END ###

...

Figure 6: Missing Step Feedback for Mathematical Reasoning



def solution():
"""Albert is wondering how much pizza he can eat in one day. He buys 2 large pizzas and 2 small pizzas. A

large pizza has 16 slices and a small pizza has 8 slices. Albert also has 5 pieces of cake. If he eats it all,
how many pieces does he eat that day?"""

large_pizzas = 2
small_pizzas = 2
large_pizza_slices = 16
small_pizza_slices = 8
cake_pieces = 5
total_slices = (large_pizzas * large_pizza_slices) + (small_pizzas * small_pizza_slices) + cake_pieces
return total_slices

# Check each semantically complete block of code for any redundancy errors and suggest fixes. Redundancy
errors are steps that contain redundant information, which even though might be factual, is not required to
answer the question. Ignore all other types of errors.

# Let's go through the code step-by-step
large_pizzas = 2
small_pizzas = 2

# looks good

# Let's check other parts
large_pizza_slices = 16
small_pizza_slices = 8

# looks good

# Let's check other parts
cake_pieces = 5

# wrong! while this information is accurate, we do not need this to calculate the answer. Let's remove it

# Let's check other parts
total_slices = (large_pizzas * large_pizza_slices) + (small_pizzas * small_pizza_slices) + cake_pieces

# wrong! we should not add cake_pieces because we want to calculate the number of pizza pieces he can eat.
Let's fix it

### END ###

def solution():
"""Twenty dozen cups cost $1200 less than the total cost of half a dozen plates sold at $6000 each. Two

dozen party hats cost $400 less than the cost of half a dozen plates. Calculate the total cost of buying each
cup."""

# logical reasoning
plates = 6
plate_cost = 6000
plate_total_cost = plate_cost * plates
party_hats = 12 * 2
party_hats_total_cost = plate_total_cost - 400
party_hat_cost = party_hats_total_cost / party_hats
cups = 12 * 20
cup_total_cost = plate_total_cost - 1200
cup_cost = cup_total_cost / cups
result = cup_cost
return result

# Check each semantically complete block of code for any redundancy errors and suggest fixes. Redundancy
errors are steps that contain redundant information, which even though might be factual, is not required to
answer the question. Ignore all other types of errors.

# Let's go through the code step-by-step
plates = 6
plate_cost = 6000

# looks good

...

Figure 7: Redundancy Feedback for Mathematical Reasoning



...

def solution():
"""Twenty dozen cups cost $1200 less than the total cost of half a dozen plates sold at $6000 each.

Calculate the total cost of buying each cup."""
plates = 6
plate_cost = 6000
cups = 12 * 20
cup_cost = plate_cost
result = cup_cost
return result

# Check each semantically complete block of code and identify the variables that are not named correctly or
may cause confusion and fix the issues. State the assumptions you made when renaming the variables clearly.
Ignore all the other type of errors.

# Let us go through each variable step-by-step
plates = 6
plate_cost = 6000

# looks good

# Let's check other parts
cups = 12 * 20
cup_cost = plate_cost

# rename the variable cup_cost to cups_total_cost because we are given information about total cost of cups.
cups = 12 * 20
cups_total_cost = plate_cost

# Let's check other parts
result = cup_cost
return result

# looks good

# Okay, here is the rewrite:

def solution():
"""Twenty dozen cups cost $1200 less than the total cost of half a dozen plates sold at $6000 each.

Calculate the total cost of buying each cup."""
plates = 6
plate_cost = 6000
cups = 12 * 20
cups_total_cost = plate_cost
result = cup_cost
return result

### END ###

def solution():
"""Carly had 80 cards, 2/5 of the cards had the letter A on them, 1/2 of the remaining had the letter B,

5/8 of the rest had the letter C on them, and the others had the letter D. How many of the cards had the
letter D on them?"""

cards_initial = 80
cards_a = cards_initial * 2 / 5
cards_left = cards_initial - cards_a
cards_b = cards_left * 1 / 2
cards_left = cards_left - cards_b
cards_c = cards_left * 5 / 8
cards_d = cards_left * 3 / 8
result = cards_d
return result

# Check each semantically complete block of code and identify the variables that are not named correctly or
may cause confusion and fix the issues. State the assumptions you made when renaming the variables clearly.
Ignore all the other type of errors.

...

Figure 8: Variable Naming Feedback for Mathematical Reasoning



...

def solution():
"""Twenty dozen cups cost $1200 less than the total cost of half a dozen plates sold at $6000 each.

Calculate the total cost of buying each cup."""
plates = 0.5
plate_cost = 6000
cups = 12 * 20
cups_total_cost = plate_cost
result = cup_cost
return result

Commonsense Feedback:
# Let us go through the code step-by-step

plates = 0.5
plate_cost = 6000

# wrong! The number of plates is wrong. The question mentions half a dozen plates. A dozen is 12. So half a
dozen is 6. Let's fix it.

# Let's check other parts
cups = 12 * 20
cup_total_cost = plate_cost

# wrong! the questions mentions total cost of all cups is 1200 less than total cost of plates. So we should
use plate_total_cost instead of plate_cost and subtract 1200 from it. Let's fix it.

Missing Step Feedback:
# Let us go through the code step-by-step

plates = 0.5
plate_cost = 6000

# wrong! we need to calculate the total cost of plates to calculate the cost of each cup. Let's add it.

# Let's check other parts
result = cup_cost
return result

# wrong! we need to calculate the cost of each cup to answer the question. Let's add it.

# Given the feedback and the original code, let's rewrite the code to incorporate all of the feedback. Don't
change anything unless it is mentioned in the feedback.

Okay, here is the rewrite:

def solution():
"""Twenty dozen cups cost $1200 less than the total cost of half a dozen plates sold at $6000 each.

Calculate the total cost of buying each cup."""
# logical reasoning
plates = 6
plate_cost = 6000
# missing step
plate_total_cost = plate_cost * plates
cups = 12 * 20
# logical reasoning
cup_total_cost = plate_total_cost - 1200
# missing step
cup_cost = cup_total_cost / cups
result = cup_cost
return result

...

Figure 9: Our Iterative Refinement prompt for Mathematical Reasoning



...

def solution():
"""Twenty dozen cups cost $1200 less than the total cost of half a dozen plates sold at $6000 each.

Calculate the total cost of buying each cup."""
plates = 6
plate_cost = 6000
cups = 12 * 20
cup_cost = plate_cost
result = cup_cost
return result

# There is an error in the code above because of lack of understanding of the question. What is the error? To
find the error, go through semantically complete blocks of the code, and check if everything looks good.

# Let us go through the error and check step-by-step
plates = 6
plate_cost = 6000

# looks good

# Let's check the other parts
cups = 12 * 20
cup_cost = plate_cost

# wrong! The cost of a cup is not the same as the cost of a plate. The cost of a cup is $1200 less than the
total cost of half a dozen plates sold at $6000 each. So we need to calculate the cost of a cup first (total
cost of half a dozen plates sold at $6000 each - $1200) and use that.

Okay! Here is the rewrite:

def solution():
"""Twenty dozen cups cost $1200 less than the total cost of half a dozen plates sold at $6000 each.

Calculate the total cost of buying each cup."""
plates = 6
plate_cost = 6000
cups = 12 * 20
total_cup_cost = (plate_cost * plates) - 1200
cost_per_cup = total_cup_cost / cups
return cost_per_cup

### END ###

def solution():
"""Carly had 80 cards, 2/5 of the cards had the letter A on them, 1/2 of the remaining had the letter B,

5/8 of the rest had the letter C on them, and the others had the letter D. How many of the cards had the
letter D on them?"""

cards_initial = 80
cards_a = cards_initial * 2 / 5
cards_left = cards_initial - cards_a
cards_b = cards_left * 1 / 2
cards_left = cards_left - cards_b
cards_c = cards_left * 5 / 8
cards_d = cards_left * 3 / 8
result = cards_d
return result

# There is an error in the code above because of lack of understanding of the question. What is the error? To
find the error, go through semantically complete blocks of the code, and check if everything looks good.

# Let us go through the error and check step-by-step
cards_initial = 80

# looks good

...

Figure 10: Iterative Refinement prompt from Self-Refine for Mathematical Reasoning



 Passage: The French king, John II, had been held captive in England. The Treaty of Brétigny set his ransom at 
 3 million crowns and allowed for hostages to be held in lieu of John. The hostages included two of his sons, 
 several princes and nobles, four inhabitants of Paris, and two citizens from each of the nineteen principal 
 towns of France. While these hostages were held, John returned to France to try and raise funds to pay the 
 ransom. In 1362 John's son Louis of Anjou, a hostage in English-held Calais, escaped captivity. So, with his 
 stand-in hostage gone, John felt honor-bound to return to captivity in England. The French crown had been at 
 odds with Navarre  since 1354, and in 1363 the Navarrese used the captivity of John II in London and the 
 political weakness of the Dauphin to try to seize power. Although there was no formal treaty, Edward III 
 supported the Navarrese moves, particularly as there was a prospect that he might gain control over the 
 northern and western provinces as a consequence. With this in mind, Edward deliberately slowed the peace 
 negotiations. In 1364, John II died in London, while still in honourable captivity. Charles V succeeded him as 
 king of France. On 7 May 1364, one month after the dauphin's accession and three days before his coronation as 
 Charles V, the Navarrese suffered a crushing defeat at the Battle of Cocherel. 

 Question: How many groups were held hostage in lieu of John II? 

 Answer: The Treaty of Brétigny set John II's ransom at 3 million crowns and allowed for hostages to be held in 
 lieu of him. The hostages included two of his sons, several princes and nobles, four inhabitants of Paris, and 
 two citizens from each of the nineteen principal towns of France. Thus, there were a total of twenty-four 
 groups held hostage in lieu of John II. final_answer: 24 

 # Check each semantically complete block of the reasoning to check for any commonsense errors. Commonsense 
 reasoning errors are errors about any relation or knowledge that is should be known from general world such as 
 "all ducks are birds". State the assumptions you made clearly. Ignore all the other types of errors. 

 # Let's go line by line 
 The Treaty of Brétigny set John II's ransom at 3 million crowns and allowed for hostages to be held in 

 lieu of him. 
 # looks good. 

 # Let's check the next line 
 The hostages included two of his sons, several princes and nobles, four inhabitants of Paris, and two 

 citizens from each of the nineteen principal towns of France. 
 # looks good 

 # Let's check the next line 
 Thus, there were a total of twenty-four groups held hostage in lieu of John II. 

 # wrong! This answer counts each person held hostage as a group, which doesn't make sense, since a group 
 generally isn't a single person. The different groups that are held hostage in lieu of John II are his sons, 
 princes and nobles, inhabitants of Paris, and citizens from each of the nineteen principal towns of France. 
 Thus, there are four groups held hostage in lieu of John II. 

 ### END ### 

 Passage: As of the census of 2000, there were 218,590 people, 79,667 households, and 60,387 families residing 
 in the county.  The population density was 496 people per square mile (192/km\u00b2). There were 83,146 
 housing units at an average density of 189 per square mile (73/km\u00b2). The racial makeup of the county was 
 86.77% Race (United States Census), 9.27% Race (United States Census), 0.23% Race (United States Census), 
 1.52% Race (United States Census), 0.06% Race (United States Census), 0.69% from Race (United States Census), 
 and 1.47% from two or more races.  1.91% of the population were Race (United States Census) or Race (United 
 States Census) of any race. 22.5% were of German people, 13.1% Irish people, 9.8% Italian people, 9.2% 
 English, 8.1% \"American\" and 6.0% Polish ancestry. 

 Question: How many more housing units are there than families? 

 Answer: The passage states that there were 79,667 households and 60,387 families residing in the county. 
 79,667 households minus 60,387 families equals 19,280. Thus, there are 19,280 more housing units than 
 families. final_answer: 19,280 

 # Check each semantically complete block of the reasoning to check for any commonsense errors. Commonsense 
 reasoning errors are errors about any relation or knowledge that is should be known from general world such as 
 "all ducks are birds". State the assumptions you made clearly. Ignore all the other types of errors. 

 ... 

Figure 11: Commonsense Feedback for Question Answering



Passage: The French king, John II, had been held captive in England. The Treaty of Brétigny set his ransom at
3-million-crowns and allowed for hostages to be held in lieu of John. The hostages included two of his sons,
several princes and nobles, four inhabitants of Paris, and two citizens from each of the nineteen principal
towns of France. While these hostages were held, John returned to France to try and raise funds to pay the
ransom. In 1362 John's son Louis of Anjou, a hostage in English-held Calais, escaped captivity. So, with his
stand-in hostage gone, John felt honor-bound to return to captivity in England. The French crown had been at
odds with Navarre since 1354, and in 1363 the Navarrese used the captivity of John II in London and the
political weakness of the Dauphin to try to seize power. Although there was no formal treaty, Edward III
supported the Navarrese moves, particularly as there was a prospect that he might gain control over the
northern and western provinces as a consequence. With this in mind, Edward deliberately slowed the peace
negotiations. In 1364, John II died in London, while still in honourable captivity. Charles V succeeded him as
king of France. On 7 May 1364, one month after the dauphin's accession and three days before his coronation as
Charles V, the Navarrese suffered a crushing defeat at the Battle of Cocherel.

Question: How many years before Navarrase used the captivity of John II?

Answer: The French crown had been at odds with Navarre since 1354. Thus, Navarrase used the captivity of John
II 10 years later in 1364. final_answer: 10

# Check each semantically complete block of reasoning for any infactual information and remove or fix it. Any
information not present in the context is considered infactual. Ignore all other types of errors.

# Let's go line by line
The French crown had been at odds with Navarre since 1354.

# looks good

# Let's check the next line
Thus, Navarrase used the captivity of John II 10 years later in 1364.

# wrong! From the passage, "in 1363 the Navarrese used the captivity of John II in London". This line falsely
states that the Navarrese used the captivity of John II in 1364 when they actually used it in 1363. Let's fix
it

### END ###

Passage: To start the season, the Lions traveled south to Tampa, Florida to take on the Tampa Bay Buccaneers.
The Lions scored first in the first quarter with a 23-yard field goal by Jason Hanson. The Buccaneers tied it
up with a 38-yard field goal by Connor Barth, then took the lead when Aqib Talib intercepted a pass from
Matthew Stafford and ran it in 28 yards. The Lions responded with a 28-yard field goal. In the second quarter,
Detroit took the lead with a 36-yard touchdown catch by Calvin Johnson, and later added more points when Tony
Scheffler caught an 11-yard TD pass. Tampa Bay responded with a 31-yard field goal just before halftime. The
second half was relatively quiet, with each team only scoring one touchdown. First, Detroit's Calvin Johnson
caught a 1-yard pass in the third quarter. The game's final points came when Mike Williams of Tampa Bay caught
a 5-yard pass. The Lions won their regular season opener for the first time since 2007

Question: How many field goals did the Lions score?

Answer: The first was a 23-yard field goal by Jason Hanson in the first quarter. The second was a 28-yard
field goal in response to the Buccaneers' interception. And the third was a 36-yard field goal in the second
quarter. So they scored three field goals. final_answer: 3

# Check each semantically complete block of reasoning for any infactual information and remove or fix it. Any
information not present in the context is considered infactual. Ignore all other types of errors.

# Let's go line by line
The first was a 23-yard field goal by Jaon Hanson in the first quarter.

# looks good

# Let's check the next line
The second was a 28-yard field goal in response to the Buccaneers' interception.

# looks good

# Let's check next line
And the third was a 36-yard field goal in the second quarter.

# wrong! This answer count the 36-yard touchdown catch by Calvin Johnson in second quarter as a field goal.
This is wrong because a touchdown is not a field goal. Thus, this should not be counted in the answer.
...

Figure 12: Factuality Feedback for Question Answering



Passage: To start the season, the Lions traveled south to Tampa, Florida to take on the Tampa Bay Buccaneers.
The Lions scored first in the first quarter with a 23-yard field goal by Jason Hanson. The Buccaneers tied it
up with a 38-yard field goal by Connor Barth, then took the lead when Aqib Talib intercepted a pass from
Matthew Stafford and ran it in 28 yards. The Lions responded with a 28-yard field goal. In the second quarter,
Detroit took the lead with a 36-yard touchdown catch by Calvin Johnson, and later added more points when Tony
Scheffler caught an 11-yard TD pass. Tampa Bay responded with a 31-yard field goal just before halftime. The
second half was relatively quiet, with each team only scoring one touchdown. First, Detroit's Calvin Johnson
caught a 1-yard pass in the third quarter. The game's final points came when Mike Williams of Tampa Bay caught
a 5-yard pass. The Lions won their regular season opener for the first time since 2007.

Question: Who caught the shortest touchdown pass?

Answer: The shortest touchdown pass was caught by Tony Scheffler. He caught an 11-yard TD pass. final_answer:
Tony Scheffler

# Check each semantically complete block of reasoning for any missing steps and suggest the correct way to add
them. Ignore all the other types of errors.

# Let's check the answer step-by-step
The shortest touchdown pass was caught by Tony Scheffler. He caught an 11-yard TD pass. final_answer: Tony

Scheffler
# wrong! This answer missed the 1-yard pass caught by Calvin Johnson and 5-yard pass caught by Mike Williams.
So the answer should be Let's add this information to the answer.

### END ###

Passage: The French king, John II, had been held captive in England. The Treaty of Br\u00e9tigny set his
ransom at 3\u00a0million\u00a0crowns and allowed for hostages to be held in lieu of John. The hostages
included two of his sons, several princes and nobles, four inhabitants of Paris, and two citizens from each of
the nineteen principal towns of France. While these hostages were held, John returned to France to try and
raise funds to pay the ransom. In 1362 John's son Louis of Anjou, a hostage in English-held Calais, escaped
captivity. So, with his stand-in hostage gone, John felt honor-bound to return to captivity in England. The
French crown had been at odds with Navarre since 1354, and in 1363 the Navarrese used the captivity of John
II in London and the political weakness of the Dauphin to try to seize power. Although there was no formal
treaty, Edward III supported the Navarrese moves, particularly as there was a prospect that he might gain
control over the northern and western provinces as a consequence. With this in mind, Edward deliberately
slowed the peace negotiations. In 1364, John II died in London, while still in honourable captivity. Charles V
succeeded him as king of France. On 7 May 1364, one month after the dauphin's accession and three days before
his coronation as Charles V, the Navarrese suffered a crushing defeat at the Battle of Cocherel.

Question: At least how many people were held hostage in place of John II?

Answer: The Treaty of Br\u00e9tigny set John II's ransom at 3 million crowns and allowed for hostages to be
held in lieu of John. The hostages included two of his sons, several princes and nobles, four inhabitants of
Paris, and two citizens from each of the nineteen principal towns of France. Thus at least 2 + 19 * 2 = 40
people were held hostage in place of John II. final_answer: 40

# Check each semantically complete block of reasoning for any missing steps and suggest the correct way to add
them. Ignore all the other types of errors.

# Let's check the answer step-by-step
The Treaty of Br\u00e9tigny set John II's ransom at 3 million crowns and allowed for hostages to be held in

lieu of John.
# looks good

# Let's check other parts
The hostages included two of his sons, several princes and nobles, four inhabitants of Paris, and two

citizens from each of the nineteen principal towns of France.
# looks good

# Let's check other parts
Thus at least 2 + 19 * 2 = 40 people were held hostage in place of John II. final_answer: 44

# wrong! this step missed counting the 4 inhabitants of Paris. So the answer should be changed. So the answer
will be 40 + 4 = 44. Let's add this.

...

Figure 13: Missing Step Feedback for Question Answering



Passage: The French king, John II, had been held captive in England. The Treaty of Brétigny set his ransom at
3 million crowns and allowed for hostages to be held in lieu of John. The hostages included two of his sons,
several princes and nobles, four inhabitants of Paris, and two citizens from each of the nineteen principal
towns of France. While these hostages were held, John returned to France to try and raise funds to pay the
ransom. In 1362 John's son Louis of Anjou, a hostage in English-held Calais, escaped captivity. So, with his
stand-in hostage gone, John felt honor-bound to return to captivity in England. The French crown had been at
odds with Navarre since 1354, and in 1363 the Navarrese used the captivity of John II in London and the
political weakness of the Dauphin to try to seize power. Although there was no formal treaty, Edward III
supported the Navarrese moves, particularly as there was a prospect that he might gain control over the
northern and western provinces as a consequence. With this in mind, Edward deliberately slowed the peace
negotiations. In 1364, John II died in London, while still in honourable captivity. Charles V succeeded him as
king of France. On 7 May 1364, one month after the dauphin's accession and three days before his coronation as
Charles V, the Navarrese suffered a crushing defeat at the Battle of Cocherel.

Question: How many groups were held hostage in lieu of John II?

Answer: The Treaty of Brétigny set John II's ransom at 3 million crowns and allowed for hostages to be held in
lieu of him. The hostages included two of his sons, several princes and nobles, four inhabitants of Paris, and
two citizens from each of the nineteen principal towns of France. Thus, there were a total of twenty-four
groups held hostage in lieu of John II. final_answer: 24

# Check each semantically complete block of reasoning for any redundancy errors and suggest fixes. Redundancy
errors are steps that contain redundant information, which even though might be factual, is not required to
answer the question. Ignore all other types of errors.

# Let's go line by line
The Treaty of Brétigny set John II's ransom at 3 million crowns and allowed for hostages to be held in

lieu of him.
# wrong! The information that John II's ransom was set at 3 million crowns is redundant and and not relevant
to the question of how many groups were held hostage in lieu of him. Let's remove that information.

# Let's check the next line
The hostages included two of his sons, several princes and nobles, four inhabitants of Paris, and two

citizens from each of the nineteen principal towns of France.
# wrong! The exact number of hostages in each group is not relevant to the question of how many groups were
held hostage in lieu of John II. Let's remove that information.

# Let's check the next line
Thus, there were a total of twenty-four groups held hostage in lieu of John II.

# looks good

### END ###

Passage: Trying to snap a two-game skid, the Bills flew to Gillette Stadium for a Week 3 divisional fight with
the New England Patriots. In the first quarter, QB J. P. Losman was immediately injured on the first
offensive play of the game. He would finish the series, but ended up on the bench for the rest of the game.
After New England took the lead with kicker Stephen Gostkowski's 24-yard field goal, rookie QB Trent Edwards
played the rest of the game for Buffalo. The Bills would get their only score of the game as RB Marshawn
Lynch got an 8-yard TD run, and a Rian Lindell extra point put the Bills ahead surprisingly 7-3. However, in
the second quarter, the Patriots were able to open up their running game when Bills rookie standout Paul
Posluszny was lost due to a broken arm. This left passing lanes open, and for the rest of the game, the
Patriots dominated. QB Tom Brady's 8-yard TD pass to TE Benjamin Watson and a 3-yard TD pass to WR Randy Moss
made it 17-7 at the half. In the third quarter, New England continued its conquest with Brady's 4-yard TD
pass to WR Jabar Gaffney and RB Sammy Morris' 4-yard TD run. In the fourth quarter, the Patriots ended the
day with Brady and Moss hooking up with each other again on a 45-yard TD pass.

Question: How many points were scored by Patriots in the first half?

Answer: In the first half, the Bills scored 7 points with a Marshawn Lynch 8-yard TD run and a Rian Lindell
extra point. The Patriots scored 17 points with a Stephen Gostkowski 24-yard field goal, a Tom Brady 8-yard TD
pass to TE Benjamin Watson, and a 3-yard TD pass to WR Randy Moss. Thus, a total of 24 points were scored in
the first half. final_answer: 24

...

Figure 14: Redundancy Feedback for Question Answering



Passage: The French king, John II, had been held captive in England. The Treaty of Brétigny set his ransom at
3 million crowns and allowed for hostages to be held in lieu of John. The hostages included two of his sons,
several princes and nobles, four inhabitants of Paris, and two citizens from each of the nineteen principal
towns of France. While these hostages were held, John returned to France to try and raise funds to pay the
ransom. In 1362 John's son Louis of Anjou, a hostage in English-held Calais, escaped captivity. So, with his
stand-in hostage gone, John felt honor-bound to return to captivity in England. The French crown had been at
odds with Navarre since 1354, and in 1363 the Navarrese used the captivity of John II in London and the
political weakness of the Dauphin to try to seize power. Although there was no formal treaty, Edward III
supported the Navarrese moves, particularly as there was a prospect that he might gain control over the
northern and western provinces as a consequence. With this in mind, Edward deliberately slowed the peace
negotiations. In 1364, John II died in London, while still in honourable captivity. Charles V succeeded him as
king of France. On 7 May 1364, one month after the dauphin's accession and three days before his coronation as
Charles V, the Navarrese suffered a crushing defeat at the Battle of Cocherel.

Question: How many groups were held hostage in lieu of John II?

Answer: The Treaty of Brétigny set John II's ransom at 3 million crowns and allowed for hostages to be held in
lieu of him. The hostages included two of his sons, several princes and nobles, four inhabitants of Paris, and
two citizens from each of the nineteen principal towns of France. Thus, there were a total of twenty-four
groups held hostage in lieu of John II. final_answer: 24

# There is a error in the answer above. What is the error? To find the error go through the answer line by
line and check that everything looks good.

# Let's go line by line
The Treaty of Brétigny set John II's ransom at 3 million crowns and allowed for hostages to be held in

lieu of him.
# wrong! this information is not needed to answer the question. Let's remove it.

# Let's check the next line
The hostages included two of his sons, several princes and nobles, four inhabitants of Paris, and two

citizens from each of the nineteen principal towns of France.
# looks good

# Let's check the next line
Thus, there were a total of twenty-four groups held hostage in lieu of John II.

# wrong! This answer counts each person held hostage as a group, which doesn't make sense, since a group
generally isn't a single person. The different groups that are held hostage in lieu of John II are his sons,
princes and nobles, inhabitants of Paris, and citizens from each of the nineteen principal towns of France.
Thus, there are four groups held hostage in lieu of John II.

### END ###

Passage: To start the season, the Lions traveled south to Tampa, Florida to take on the Tampa Bay Buccaneers.
The Lions scored first in the first quarter with a 23-yard field goal by Jason Hanson. The Buccaneers tied it
up with a 38-yard field goal by Connor Barth, then took the lead when Aqib Talib intercepted a pass from
Matthew Stafford and ran it in 28 yards. The Lions responded with a 28-yard field goal. In the second quarter,
Detroit took the lead with a 36-yard touchdown catch by Calvin Johnson, and later added more points when Tony
Scheffler caught an 11-yard TD pass. Tampa Bay responded with a 31-yard field goal just before halftime. The
second half was relatively quiet, with each team only scoring one touchdown. First, Detroit's Calvin Johnson
caught a 1-yard pass in the third quarter. The game's final points came when Mike Williams of Tampa Bay caught
a 5-yard pass. The Lions won their regular season opener for the first time since 2007

Question: How many field goals did the Lions score?

Answer: The first was a 23-yard field goal by Jason Hanson in the first quarter. The second was a 28-yard
field goal in response to the Buccaneers' interception. And the third was a 36-yard field goal in the second
quarter. So they scored three field goals. final_answer: 3

# There is a error in the answer above. What is the error? To find the error go through the answer line by
line and check that everything looks good.

# Let's go line by line
The first was a 23-yard field goal by Jaon Hanson in the first quarter.

# looks good
...

Figure 15: Self-Refine style Iterative Refinement prompt for Question Answering



Passage: To start the season, the Lions traveled south to Tampa, Florida to take on the Tampa Bay Buccaneers.
The Lions scored first in the first quarter with a 23-yard field goal by Jason Hanson. The Buccaneers tied it
up with a 38-yard field goal by Connor Barth, then took the lead when Aqib Talib intercepted a pass from
Matthew Stafford and ran it in 28 yards. The Lions responded with a 28-yard field goal. In the second quarter,
Detroit took the lead with a 36-yard touchdown catch by Calvin Johnson, and later added more points when Tony
Scheffler caught an 11-yard TD pass. Tampa Bay responded with a 31-yard field goal just before halftime. The
second half was relatively quiet, with each team only scoring one touchdown. First, Detroit's Calvin Johnson
caught a 1-yard pass in the third quarter. The game's final points came when Mike Williams of Tampa Bay caught
a 5-yard pass. The Lions won their regular season opener for the first time since 2007.

Question: How many points did the buccaneers need to tie in the first?

Answer: The Buccaneers tied the score in the first quarter with "a 38-yard field goal by Connor Barth". A
field goal is worth 3 points in American football. Thus, the bucaneers needed 3 points to tie the score in the
first quarter. final_answer: 3

### END ###

Passage: Peck also received Oscar nominations for his roles in The Keys of the Kingdom (film) (1944), The
Yearling (film) (1946), Gentlemans Agreement (1947) and Twelve OClock High (1949). Other notable films in
which he appeared include Spellbound (1945 film) (1945), The Gunfighter (1950), Roman Holiday (1953), Moby
Dick (1956 film) (1956, and its Moby Dick (1998 miniseries)), The Big Country (1958), The Bravados (1958),
Pork Chop Hill (1959), The Guns of Navarone (film) (1961), Cape Fear (1962 film) (1962, and its Cape Fear
(1991 film)), How the West Was Won (film) (1962), The Omen (1976) and The Boys from Brazil (film) (1978).

Question: What film did Peck receive an Oscar nomination first: The Keys of the Kingdom or The Yearling?

Answer: Peck received an Oscar nomination for The Keys of the Kingdom in 1944 and the Yearling in 1946. 1944
is before 1946, so Peck received an Oscar nomination for The Keys of the Kingdom first. final_answer: "The
Keys of the Kingdom"

### END ###

Passage: The Spanish were able to complete their escape to Tlaxcala. There, they were given assistance, since
all 440 of them were wounded, with only 20 horses left. Maxixcatzin, Xicotencatl the Elder and Chichimecatecle
told Cortés's men: "Consider yourselves at home. Rest...do not think it a small thing that you have escaped
with your lives from that strong city...if we thought of you as brave men before, we consider you much braver
now.":306-07 Cortés got reinforcements when the Panuco River settlement was abandoned, and supply ships
arrived from Cuba and Spain. Cortés also had built 13 brigantines then had them mounted with cannons, turning
Lake Texcoco into a strategic body of water to assault Tenochtitlan. Xicotencatl the Younger, however, sought
an alliance with the Mexicans, but was opposed.:309-11 Cortés sent Diego de Ordaz, and the remnants of
Navarez's men, on a ship to Spain, and Alonso de Ávila on a ship to Santo Domingo to represent his case in the
Royal Courts.:311 Cortés was able to pacify the country, after the indigenous realized the Spaniards put "an
end to the rape and robbery that the Mexicans practised." Finally, Xicotencatl the Elder, baptized as Don
Lorenzo de Vargas, agreed to support Cortés's expedition against Texcoco. According to Bernal Diaz, he sent
more than ten thousand warriors under the command of Chichimecatecle as Cortés marched on the day after
Christmas 1520.:309, 311-12

Question: On what date did 10,000 warriors march under Chichimecatecle?

Answer: According to Bernal Diaz, 10,000 warriors marched under Chichimecatecle on "the day after Christmas
1520". The day after christmas is 26 December. Thus, 10,000 warriors marched under Chichimecatecle on 26
December 1520. final_answer: 26-December-1520

### END ###

Use the following passage to answer the questions below it with either a number, date, or span from the
passage. Format your answer with "final_answer: " and then your final answer. If your answer is a number, give
just the numeric answer. If your answer is a date, then give the day in numbers, the month by its name, and
the year in numbers. If your answer is a span, surround it in quotes.

Figure 16: Initialization prompt for Question Answering


