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Abstract

The abundance of data has led to the emergence of
a variety of optimization techniques that attempt
to leverage available side information to provide
more anticipative decisions. The wide range of
methods and contexts of application have moti-
vated the design of a universal unitless measure
of performance known as the coefficient of pre-
scriptiveness. This coefficient was designed to
quantify both the quality of contextual decisions
compared to a reference one and the prescriptive
power of side information. To identify policies
that maximize the former in a data-driven context,
this paper introduces a distributionally robust con-
textual optimization model where the coefficient
of prescriptiveness substitutes for the classical em-
pirical risk minimization objective. We present
a bisection algorithm to solve this model, which
relies on solving a series of linear programs when
the distributional ambiguity set has an appropriate
nested form and polyhedral structure. Studying a
contextual shortest path problem, we evaluate the
robustness of the resulting policies against alter-
native methods when the out-of-sample dataset is
subject to varying amounts of distribution shift.

1. Introduction
Stochastic programming is perceived as one of the funda-
mental methods devised for decision-making under uncer-
tainty (see Shapiro et al. 2021 and Birge & Louveaux 2011).
Given a cost function h(x, ξ) that depends on a decision
x ∈ Rnx and a random vector ξ ∈ Rnξ , the stochastic
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programming (SP) problem is defined as

(SP ) x∗ ∈ arg min
x∈X

EF [h(x, ξ)], (1)

where X is a convex feasible set, h(x, ξ) is a cost function
that is assumed convex in x for all ξ, and ξ is assumed to
be drawn from the distribution F . The solution methods
for this problem mainly rely on either assuming a priori
distribution for F or exploiting a set of independent and
identically distributed observations. In the latter case, a
set of i.i.d observations of the random vector ξ denoted
by S := {ξi}Ni=1 can be used to formulate the following
sample average approximation problem:

(SAA) x∗ ∈ arg min
x∈X

1

N

N∑
i=1

h(x, ξi), (2)

where we assume a uniform distribution over the observed
data. Recently, the availability of large datasets has played a
critical role in redirecting the optimization methods devised
for decision-making under uncertainty towards taking advan-
tage of so-called “side information” or “covariates”. This
paradigm encourages decision-makers to benefit from the
available data beyond the desired random variables to make
more anticipative decisions. For instance, a portfolio man-
ager who optimizes her investments in the stock market may
consider a variety of available micro and macroeconomic
indicators as side information to make more anticipative de-
cisions (see Brandt et al. 2009 and Bazier-Matte & Delage
2020), while a traffic path planner can utilize side informa-
tion like time of day, weather status and holiday/work day to
find the best route through the city (see Bertsimas & Kallus
2020). This gives rise to the following contextual stochastic
optimization (CSO) problem:

(CSO) x∗(ζ) ∈ arg min
x∈X

EF [h(x, ξ)|ζ], (3)

where ζ ∈ Rnζ denotes the given vector of “covariates”,
or so-called “features”. In this case, any observed random
vector ξi is accompanied by a vector of covariates ζi ∈ Rnζ .
The difficulty of this problem shows up when the conditional
probability distribution function Fξ|ζ is unknown, and only
a set of i.i.d observations T := {(ζi, ξi)}Ni=1 is available.
In this case, a data-driven variant of the CSO problem can
be written as

x∗(ζ) ∈ arg min
x∈X

EF̂ξ|ζ
[h(x, ξ)], (4)
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where F̂ξ|ζ is a conditional probability model for ξ given
ζ inferred from the available data, e.g. by training a ran-
dom forest (Breiman, 2001), or estimated via kernel density
estimation (Ban & Rudin, 2019). To deal with possible
overfitting in the presence of limited data or possible distri-
bution shifts due to unexpected events, one can formulate
a distributionally robust contextual stochastic optimization
(DRCSO) model, which in general, takes the following form

(DRCSO) x∗(ζ) ∈ arg min
x∈X

sup
F∈D

EF [h(x, ξ)|ζ] (5)

where D is the ambiguity set containing the set of admissible
distributions (see Duchi et al. 2020; Bertsimas & Van Parys
2022; Kannan et al. 2020; Nguyen et al. 2022; Esteban-
Pérez & Morales 2022; Srivastava et al. 2021, and literature
within).

Recently, Bertsimas & Kallus 2020 proposed to compare
the performance of different CSO (or DRCSO) approaches,
by measuring the “coefficient of prescriptiveness”, defined
as:

PF (x(·)) := 1−EF [h(x(ζ), ξ)]− EF [minx′∈X h(x
′, ξ)]

EF [h(x̂, ξ)]− EF [minx′∈X h(x′, ξ)]
,

(6)
where x̂ := argminx EF̂ [h(x, ξ)] with F̂ as the empirical
distribution that puts equal weights on each observed data
point {ξi}Ni=1 (i.e. the solution of SAA). The idea behind
the coefficient of prescriptiveness is that it measures the
performance of a given policy x(ζ) relative to the constant
decision x̂ which is agnostic to the side information ζ, and
to the fully anticipative policy which achieves the progres-
sive optimal value of EF [minx′∈X h(x

′, ξ)]. It is easy to
see that a high value of PF indicates that the policy can
leverage the contextual information of ζ with PF = 1 in-
dicating that the policy is achieving the fully anticipative
performance in terms of ξ. In contrast, a low value of PF

indicates that the policy is not able to exploit (or even is
misled by) the available information. This behavior is remi-
niscent of R2, the “coefficient of determination”, typically
used in the context of predictive models, a connection which
we discuss in the next section.

Following the introduction of the coefficient of prescrip-
tiveness, this metric has been employed in several pieces
of research to demonstrate the potential of proposed data-
driven policies for leveraging the available side information.
One can refer to Bertsimas et al. 2016 for such a comparison
in the context of inventory management, Stratigakos et al.
2022 for energy trading, Notz & Pibernik 2022 for flexible
capacity planning, and Kallus & Mao 2023 for shortest path
and portfolio optimization problems. We note that, in the
current literature, PF is only used as a benchmark metric for
assessing the performance of policies computed using differ-
ent approaches, e.g., in Bertsimas & Kallus 2020, the metric
compares policies computed (amongst others) using CSO

where the conditional probability is estimated by random
forests and kernel density estimation. Given its prevalence
as a performance measure, it is natural to question whether
it is possible and useful to directly optimize the coefficient
of prescriptiveness.

While one can show that maximizing PF reduces to solving
the CSO problem, one may wonder how the PF measure
should be robustified in order to improve out-of-sample per-
formance. In this work, we introduce for the first time a
distributionally robust version of PF . We establish connec-
tions to other models in the literature and present an efficient
algorithm to maximize it when the conditional probability
model is discrete (such as with a random forest or with a Ker-
nel density estimator). The rest of the paper is organized as
follows. Section 2 motivates the optimization of the coeffi-
cient of prescriptiveness by explicating its relationship to the
coefficient of determination in the field of statistics. Section
3 introduces a robust data-driven prescriptiveness optimiza-
tion model that can be used to maximize a distributionally
robust version of the coefficient of prescriptiveness. We
reformulate this problem as a convex optimization problem
that can reduce to a linear program when the ambiguity set
takes the form of a so-called “nested Conditional Value-at-
Risk (CVaR) set”. A bisection method is proposed to solve
the latter, as well as an acceleration scheme; finally, Section
4 presents the numerical experiments, where we evaluate the
robustness of the resulting policies against benchmark ones
in a shortest path problem when the out-of-sample dataset
confronts a distribution shift. All proofs are relegated in
Appendix A.

2. Motivation for optimizing P and its
robustification

As argued in Bertsimas & Kallus 2020, in the context of
predictive models, where one wishes to predict the value of
ξ ∈ R based on a list of covariates ζ using a statistical model
f : Rnζ → R, one popular metric that is employed takes
the form of the so-called “coefficient of determination”:

R2(f(·)) := 1−
EF̂ [(f(ζ)− ξ)2]

EF̂ [(ξ̂ − ξ)2]
,

where ξ̂ := EF̂ [ξ] is the empirical mean of ξ in the data set
and F̂ is the empirical joint distribution of (ζ, ξ). The pop-
ularity of R2 compared to mean squared error as a measure
of performance can be partially attributed to being unitless.
It is upper bounded by 1, with a value closer to 1, indicat-
ing that most of the variation of ξ can be modeled using
f(·). On the flip side, when strictly smaller than 0, its abso-
lute value measures the percentage of additional variations
that are introduced by the predictive model, thus indicating
a degradation of predictive power when compared to the
simple sample average ξ̂.
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The coefficient of prescriptiveness can be viewed as an
attempt to introduce an analogous measure in the contextual
optimization setting. More specifically, it reduces to R2

when nx = 1 and h(x, ξ) := (x− ξ)2, namely:

PF̂ (x(·)) = 1−
EF̂ [(x(ζ)− ξ)2)]− EF̂ [minx′(x′ − ξ)2]

EF̂ [(x̂− ξ)2]− EF̂ [minx′(x′ − ξ)2]

= R2(x(·)),

since EF̂ [minx′(x′ − ξ)2] = 0 and x̂ := argminx EF̂ [(x−
ξ)2] = ξ̂. Hence, the coefficient of prescriptiveness has a
similar interpretation as R2. Namely, PF is upper bounded
by 1, and as it gets closer to 1, it indicates how successful the
data-driven policy has been in closing the gap between the
SAA solution that makes no use of covariate information
and a hypothetical policy that would have access to full
information about ξ.

One can also find traces in the literature of attempts to mea-
sure R2(x(·)) out-of-sample. Namely, Campbell & Thomp-
son 2008 studies whether excess stock return predictors can
outperform historical averages in terms of out-of-sample
explanatory power of such predictors. This measure can be
captured using

R2
F (f(·), F̂ ) := 1− EF [(f(ζ)− ξ)2]

EF [(ξ̂ − ξ)2]
= PF (f(·)) ,

which naturally leads to the question of whether R2(f(·)) is
a good approximation for R2

F (f(·), F̂ ) in a data-driven en-
vironment (potentially susceptible to distribution shifts). If
not, then one must turn to employing more robust estimation
methods.

3. Robust Data-driven Prescriptiveness
Optimization

In order to tackle the robustification and optimization of P ,
we consider a more general version of this measure, which
relaxes the assumption that the benchmark is the solution
to (2) and widens the scope of our analysis. To this end,
we define the prescriptiveness competitive ratio (PCR) of a
policy x(·) with respect to a reference policy x̄ as:

VF (x(·), x̄) :=

1− EF [h(x(ζ),ξ)]−EF [minx′∈X h(x′,ξ)]

EF [h(x̄,ξ)]−EF [minx′∈X h(x′,ξ)]

if EF [h(x̄, ξ)]− EF [minx′∈X h(x
′, ξ)] > 0

1 if EF [h(x̄, ξ)] = EF [minx′∈X h(x
′, ξ)]

and EF [h(x(ζ), ξ)] = EF [minx′∈X h(x
′, ξ)]

−∞ otherwise

.

(7)

Indeed, the coefficient of prescriptiveness can be considered
a special case when x̄ := x̂:

VF (x(·), x̂) = 1− EF [h(x(ζ), ξ)]− EF [minx′∈X h(x
′, ξ)]

EF [h(x̂, ξ)]− EF [minx′∈X h(x′, ξ)]

= PF (x(·)).

when EF [h(x̂, ξ)]− EF [minx′∈X h(x
′, ξ)] > 0, while the

two other cases follow from the natural extension of the def-
inition of PF (x(·)). In contrast to PF (x(·)) which bench-
marks policy x(·) only to the SAA solution, the definition
of VF allows to benchmark against any other static policy.
This allows our model to accommodate situations where
more sophisticated statistical tools might be used to obtain
the reference decision (e.g. regularized or distributionally
robust SAA approaches (Lam, 2019; Mohajerin Esfahani &
Kuhn, 2018; Van Parys et al., 2021), variance-based regular-
ized solution schemes (Duchi et al., 2020), or data-pooled
solutions schemes (Gupta & Kallus, 2022)). 1

In a finite sample regime, where F̂ might fail to capture
the true underlying distribution, or in a situation where we
expect distribution shifts, one should be interested in a dis-
tributionally robust estimation of the PCR (or equivalently
of the coefficient of prescriptiveness), which takes the form
of:

VD(x(·), x̄) := inf
F∈D

VF (x(·),x̄) = inf
F∈D

PF (x(·))

when x̄ := x̂.

PCR where D is a set of distribution over the joint space
(ζ, ξ), and the notation VD is overloaded to denote the dis-
tributional robust PCR measure. Furthermore, one might
be interested in identifying the policy that maximizes the
PCR in the form of the following distributionally robust
optimization problem:

(DRPCR) max
x(·)∈H

VD(x(·), x̄)

where H ⊆ {x : Rnζ → X}. The following lemma pro-
vides interpretable bounds for the value of VD.

Lemma 3.1. If x̄ ∈ H, then the optimal value of DRPCR is
necessarily in the interval [0, 1].

Lemma 3.1 can be interpreted as follows. First, if x(ζ)
achieves a VD(x(·), x̄) = 1 then the policy is guaranteed to
exploit ζ just as efficiently as if it had full information about
ξ (namely achieves the fully anticipative performance). On
the other end of the spectrum, VD(x(·), x̄) = 0 indicates
that the policy can potentially fail to exploit any of the

1In fact, one can go a step further and define VF (x(·), x̄(·))
were x̄(·) is not a static policy. For example, x̄(·) could be a
simple rule-based policy such as the order-up-to policy in inventory
control. For ease of exposition, we treat the benchmark policy x̄
as a static policy for the remainder of the paper.
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information present in ζ. When x̄ ∈ H, one can always
prevent negative PCR by falling back to the benchmark
policy x̄.

Next, we show that in an environment where the distribution
is known, the optimal policy obtained from CSO is an opti-
mal solution to DRPCR. Before proceeding, we first make
the following assumption.

Assumption 3.2. The policy set H contains all possible
mappings, i.e. H := {x : Rnζ → X}.

Lemma 3.3. Given that Assumption 3.2 is satisfied, if the
distribution set is a singleton, i.e. D = {F̄}, then the
optimal policy obtained from the CSO problem that employs
F̄ maximizes DRPCR.

While Lemma 3.3 implies that DRPCR reduces to CSO
when the distribution is known thus making the question of
PCR optimization and performance irrelevant, this is not the
case anymore for larger ambiguity sets D.

In this section, we first present a convex reformulation of
DRPCR and then provide a reformulation of the problem
for the nested CVaR ambiguity set. Finally, we propose a
decomposition algorithm for solving the problem based on
a bisection algorithm.

3.1. Convex formulation for DRPCR

The following proposition provides a convex reformulation
of DRPCR.

Proposition 3.4. Given that x̄ ∈ H, DRPCR is equivalent
to

max
x(·)∈H,γ

γ (8a)

s.t. Q(x(·), γ) ≤ 0 (8b)
0 ≤ γ ≤ 1. (8c)

where

Q(x(·), γ) := sup
F∈D

EF

[
h(x(ζ), ξ)−

(
(1− γ)h(x̄, ξ)

+ γ min
x′∈X

h(x′, ξ)
)]

is a convex non-decreasing function of γ. Moreover, problem
(8) is a convex optimization problem when H is convex.

From the reformulation (8) one can draw interesting insights
regarding the connection of DRPCR and risk-averse regret
minimization, see Poursoltani et al. 2023. For γ = 1, the
problem reduces to the ex-post risk-averse regret minimiza-
tion problem. In contrast, for γ = 0, one can interpret the
problem as regretting the performance of the policy com-
pared to a policy with less information. In the notation of
Poursoltani et al. 2023, this will lead to a risk-averse regret
problem with ∆ = −1.

3.2. The nested CVaR ambiguity set D

In the following, we consider a discrete empirical distribu-
tion F̄ and restrict D to be a nested CVaR ambiguity set.
This ambiguity set is motivated by the works on nested
dynamic risk measures (see Riedel 2004, Detlefsen & Scan-
dolo 2005 and Ruszczyński & Shapiro 2006) as will be
explained shortly. We formalize our approach through the
following assumption.

Assumption 3.5. There is a discrete distribution F̄ , with
{ζω}ω∈Ωζ

and {ξω}ω∈Ωξ
as the set of distinct scenarios for

ζ and ξ respectively, such that the distribution set D takes
the form of the “nested CVaR ambiguity set” with respect
to PF̄ and defined as

D̄(F̄ , α) :=
F ∈ M(Ωζ × Ωξ)

∣∣∣∣∣∣∣∣∣∣∣

PF (ζ = ζω) =
PF̄ (ζ = ζω) ∀ω ∈ Ωζ ,

PF (ξ = ξω′ |ζω) ≤
(1/(1− α))PF̄ (ξ = ξω′ |ζω)
∀ω ∈ Ωζ , ω

′ ∈ Ωξ


.

(9)
where M(Ωζ × Ωξ) is the set of all distributions supported
on over the joint space {ζω}ω∈Ωζ

× {ξω}ω∈Ωξ
.

The structure of D̄(F̄ , α) implies that there is no ambiguity
in the marginal distribution of the observed random variable
ζ. Rather, the ambiguity is solely on the unobserved random
variable ξ and is sized using the parameter α. The nested
CVaR ambiguity set owes its name from Ruszczyński &
Shapiro 2006 and the fact that for any function g(x, ξ):

sup
F∈D̄(F̄ ,α)

EF [g(x(ζ), ξ)]

= sup
F∈D̄(F̄ ,α)

∑
ω∈Ωζ

∑
ω′∈Ωξ

PF (ζ = ζω)·

PF (ξ = ξω′ |ζ = ζω)g(x(ζω), ξω′)

= EF̄ [CVaRα
F̄ (g(x(ζ), ξ)|ζ)] .

For α = 0, the problem reduces to
minx(·)∈H EF̄ [h(x(ζ), ξ)], effectively recovering the CSO
policy. On the other spectrum, for α = 1 the problem re-
duces to minx(·)∈H EF̄ [maxω:P̄ (ξ=ξω|ζ)>0 h(x(ζ), ξω)],
which implies that for each realization of ζω the decision
x(ζω) is robust against all admissible realizations of ξ
given ζω .

The nested CVaR representation and full policy space As-
sumption 3.2 can be exploited to optimize Q(x(·), γ).

Proposition 3.6. Under Assumption 3.5, problem (8) can
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thus be reformulated as

max
γ

γ (10a)

s.t.
∑
ω∈Ωζ

PF̄ (ζ = ζω)ϕω(γ) ≤ 0 (10b)

0 ≤ γ ≤ 1 , (10c)

where ϕω(γ) is a non-decreasing function (when x̄ ∈ X )
capturing the optimal value of:

min
x∈X ,t,s≥0

t+
1

1− α

∑
ω′∈Ωξ

PF̄ (ξ = ξω′ |ζ = ζω)sω′

(11a)

s.t. sω′ ≥ h(x, ξω′)−
(
(1− γ)h(x̄, ξω′)

+ γ min
x′∈X

h(x′, ξω′)
)
− t, ∀ω′ ∈ Ωξ

(11b)

and can be reduced to a linear program when X is polyhe-
dral and h(x, ξω′) is linear programming representable.

In practice, F̄ is often composed of an empirical distribution
F̂ζ and a trained conditional distribution F̂ξ|ζ . Given an
optimal solution γ∗ to problem (13), one should then define
the extended optimal policy x(ζ) beyond {ζω}ω∈Ωζ

using
the optimal solution of problem (11) with F̂ξ|ζ .

This being said, whether problem (11) is reduceable to a
linear program or, more generally, a convex optimization
model, its size scales with |Ωζ | · |Ωξ|, which can be com-
putationally challenging. We therefore propose a decom-
position algorithm to efficiently solve the problem. Let
ψ(γ) :=

∑
ω∈Ωζ

PF̄ (ζ = ζω)ϕω(γ). Using the definition
of ϕω(γ), we observe that for fixed γ one can evaluate ψ(γ)
by solving |Ωζ | distinct problem (11) for each ω ∈ Ωζ .
Moreover, given that each ϕω(γ) is non-decreasing (see
Proposition 3.6), one concludes that ψ(γ) is non-decreasing.
Hence, one can design a bisection algorithm on γ to solve
the DRPCR problem (8). Namely, each step consists in
identifying the mid-point γ̃ of an interval known to con-
tain the optimal value of γ, and verifying whether γ̃ is
feasible by evaluating ψ(γ̃) to decide which of the two sub-
interval below or above γ̃ contains γ∗, see Figure 2 (left)
in Appendix B. The details of this algorithm are presented
in Algorithm 1. It’s efficiency relies on the difficulty of
executing step 7, i.e. evaluation ϕω(γ) for each ω. The
following lemma provides formal guaranties regarding the
convergence rate of Algorithm 1.

Lemma 3.7. Algorithm 1 terminates in ⌈log2(1/ϵ)⌉ iter-
ations. Moreover, if X is polyhedral and h(x, ξ) linear
programming representable, the algorithm terminates in
polynomial time with respect to log(1/ϵ), |Ωζ |, |Ωξ|, nx, nξ ,
the size of the LP representation of X and of h(x, ξ).

Appendix B further proposes an accelerated bisection algo-
rithm for the case when X is convex. Namely, it derives the
sub-gradient of ψ(γ) and exploits its convexity to tighten
the interval for γ∗ at each iteration.

Algorithm 1 Bisection algorithm for DRPCR

1: Input: Tolerance ϵ > 0
2: Set γ− := 0, γ+ := 1
3: while γ+ − γ− > ϵ do
4: Set γ̃ := (γ+ + γ−)/2
5: //Solve minx(·)∈HQ(x(·), γ̃) to get optimal value
ψ̃(γ̃)

6: for ω ∈ Ωζ do
7: Solve problem (11) with ω and γ̃ to get optimal

value ϕω(γ̃)
8: end for
9: if ψ̃ :=

∑
ω∈Ωζ

PF̄ (ζ = ζω)ϕω(γ̃) ≤ 0 then
10: Set γ− := γ̃
11: else
12: Set γ+ := γ̃
13: end if
14: end while
15: Return γ∗ := γ−

3.3. Generalized nested ambiguity set D

One can generalize the results of the previous section by
considering a generalized version of the ambiguity set for-
malized in the following assumption.

Assumption 3.8. For a discrete distribution F̄ , the dis-
tribution set D takes the form of the “generalized nested
ambiguity set” with respect to PF̄ and defined as

D̄(F̄ , rζ , rξ) :={
F ∈ M(Ωζ × Ωξ)

∣∣∣∣ dζ(Fζ , F̄ζ) ≤ rζ
dξ
(
Fξ|ζω , F̄ξ|ζω

)
≤ rξ ∀ω ∈ Ωζ

}
.

(12)
where dζ(Fζ , F̄ζ) and dξ(Fξ|ζω , F̄ξ|ζω ) are two convex di-
vergence measures, i.e. non-negative, convex in their first
argument and minimized when the two probability mea-
sures are equal, applied on marginal distribution of F and
the conditional distribution of ξ given ζ, respectively.

The structure of (12) allows one to control the ambiguity
about both the marginal distribution of ζ and the condi-
tional distributions of ξ using the parameters rζ and rξ to
bound the maximum divergence respectively. In particular,
it reduces to the nested CVaR ambiguity set when using

dζ(Fζ , F̄ζ) :=

inf

{
s|PFζ

(ζ = ζω) ≤
1

1− s
PF̄ζ

(ζ = ζω),∀ω ∈ Ω

}
,

5



Robust Data-driven Prescriptiveness Optimization

dξ(Fξ|ζ , F̄ξ|ζ) :=

inf

{
s|PFξ|ζ (ξ = ξω′) ≤ 1

1− s
PF̄ξ|ζ

(ξ = ξω′),∀ω′ ∈ Ω′
}
,

rζ := 0, and rξ := α.

In the following, to simplify presentation, given that Ωζ

and Ωξ are finite, we let p ∈ R|Ωζ | denote the vector of
probabilities pω := PF (ζ = ζω) and qω ∈ R|Ωξ| denote the
probabilities qωω′ := PF (ξ = ξω′ |ζ = ζω), and similarly for
p̄ and q̄ω to captures the same probabilities under F̄ . We will
further abuse notation and denote dζ(p, p̄) := dζ(Fζ , F̄ζ)
and dξ(qω, q̄ω) := dξ(Fξ|ζω , F̄ξ|ζω ). The following propo-
sition generalizes Proposition 3.6.

Proposition 3.9. Under Assumption 3.8, problem (8) can
thus be reformulated as

max
γ

γ (13a)

s.t. sup
p∈Z

∑
ω∈Ωζ

pωϕ̄ω(γ) ≤ 0 (13b)

0 ≤ γ ≤ 1 , (13c)

where Z := {p : p ≥ 0, e⊤p = 1, dζ(p, p̄) ≤ rζ} and
ϕ̄ω(γ) is a non-decreasing function (when x̄ ∈ X ) captur-
ing the optimal value of:

min
x,t,α,s

t+ rξα+ d∗(s, α, q̄
ω) (14a)

s.t. sω′ ≥ h(x, ξω′)−
(
(1− γ)h(x̄, ξω′)

+γ min
x′∈X

h(x′, ξω′)
)
− t, ∀ω′ ∈ Ωξ(14b)

x ∈ X , α ≥ 0, (14c)

where d∗(s, α, q̄ω) := supq s
Tq − αdξ(q, q̄

ω) is the per-
spective of the convex conjugate of dξ(q, q̄ω).

Algorithm 1 can be applied in the generalized setting with
the simple modification that problem (11) in step 7 is re-
placed with the convex problem (14), and step 9 must com-
pute supp∈Z

∑
ω∈Ωζ

pωϕ̄ω(γ), which now requires solving
a convex optimization problem.

4. Experiments
In this section, we present a numerical study that compares
the performance of DRPCR against three other data-driven
benchmark methods to evaluate its robustness to perturba-
tions of the data generating process. Specifically, we will
observe how these models react to the situation where one
faces a distribution shift for ξ. In a vehicle routing prob-
lem with travel time uncertainties, this can be interpreted
as a shift in the distribution of the travel times, for instance,
when a special event is happening in the town. Alterna-
tively, one can think of an inventory management problem

where the manager faces a shift in the demand distribution,
e.g., an unforeseen increase in demand for sanitizer during
the first days of an epidemic. In general, there are numer-
ous reasons why distribution shifts considerations might be
needed depending on the context. In this regard, we refer
the reader to Schrouff et al. 2022 and Filos et al. 2020 for
such considerations in healthcare and autonomous driving
applications.

The application that we consider for our numerical experi-
ments is a shortest path problem described in Kallus & Mao
2023. A directed graph is defined as G = (V, A), where V
denotes the set of nodes and A ∈ V × V is the set of arcs,
i.e., ordered pairs (i, j) of nodes describing the existence of
a directed path from node i to node j. The corresponding
travel time of such an arc is assumed to be ξ(i,j). The objec-
tive of this problem is to identify the shortest path from an
origin (node o) to a destination (node d). Moving away from
an ideal world of known parameters gives rise to a stochastic
version of this problem. In this setting, the traveling times
along the arcs ξ ∈ R|A| are uncertain; however, one might
still have access to side information or observed covariates.
In this case, aiming at minimizing the expected travel time
leads to the following CSO problem:

x∗(ζ) ∈ arg min
x∈X

EF̂ξ|ζ
[x⊤ξ], (15)

where

X =


x ∈ R|A|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x(i,j)∈ {0, 1} ∀(i, j) ∈ A∑
j:(o,j)∈A x(o,j)−∑

j:(j,o)∈A x(j,o) = 1∑
j:(d,j)∈A x(d,j)−∑

j:(j,d)∈A x(j,d) = −1∑
j:(i,j)∈A x(i,j)−∑

j:(j,i)∈A x(j,i) = 0 ∀i ∈ V \ {o, d}


,

and x(i,j) = 1 if we decide to travel from node i to node
j and x(i,j) = 0 otherwise. Unlike Kallus & Mao 2023,
we enforce the integrality constraints. Furthermore, F̂ξ|ζ de-
notes the conditional distribution inferred from the training
dataset.

As discussed in Section 1, DRCSO is a method proposed
for robustifying the policies against distributional uncer-
tainties in the data-driven context. Consequently, one can
consider DRCSO, as an alternative to CSO, for solving this
shortest-path problem. Using the nested CVaR ambiguity
set introduced in Assumption 3.5 as the ambiguity set of
DRCSO, one gets the model below:

(DRCSO) x∗(ζ) ∈ arg min
x∈X

sup
Fξ|ζ∈D̄(F̂ξ|ζ ,α)

EFξ|ζ [x
⊤ξ],

(16)
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where

D̄(F̂ξ|ζ , α) := {Fξ|ζ ∈ M(Ωξ) : PFξ|ζ (ξ = ξω′) ≤
(1/(1− α))PF̂ξ|ζ

(ξ = ξω′)∀ω′ ∈ Ωξ},

and α is the control parameter for the size of the ambiguity
set. Staying in the DRCSO context, one can exploit a worst-
case regret minimization approach instead of worst-case
expected travel time. In our experiments, we look into the
optimal solutions arising from an ex-post regret minimiza-
tion setting, introduced as a ∆ = 1 regret minimization
model in Poursoltani et al. 2023. This leads to the follow-
ing distributionally robust contextual regret optimization
(DRCRO) problem:

(DRCRO)

x∗(ζ) ∈ arg min
x∈X

sup
Fξ|ζ∈D̄(F̂ξ|ζ ,α)

EFξ|ζ [x
⊤ξ − min

x′∈X
x′⊤ξ].

(17)
In this case, the decision maker compares her travel time
to the one resulting from a benchmark decision that knows
the future realization of ξ. The ultimate goal is to minimize
the worst-case expectation of this gap, so-called “worst-case
expected regret”, where the ambiguity set is nested CVaR.
Finally, we solve our introduced DRPCR problem under
nested CVaR ambiguity set, where the Q(x(·), γ) function
takes the form of:

Q(x(·), γ) :=

sup
F∈D̄(F̃ ,α)

EF

[
x(ζ)⊤ξ −

(
(1− γ)x̂⊤ξ + γ min

x′∈X
x′⊤ξ

)]
,

(18)
where F̃ denotes the distribution derived from the training
dataset, composed of the empirical distribution F̂ζ of ζ
and the inferred conditional distribution F̂ξ|ζ , while x̂ :=

argminx EF̂ [h(x, ξ)] with F̂ that puts equal weights on
each observed data point {ξi}Ni=1 (i.e. the SAA solution).
Based on an optimal solution γ∗ for the DRPCR problem,
one can retrieve an optimal policy using:

x∗(ζ) ∈ arg min
x∈X

sup
Fξ|ζ∈D̄(F̂ξ|ζ ,α)

EFξ|ζ

[
x⊤ξ−

(
(1− γ∗)x̂⊤ξ + γ∗ min

x′∈X
x′⊤ξ

)]
,

(19)

which can be obtained by solving (11) with γ∗ and replacing
PF̄ (ξ = ξω′ |ζ = ζω) with PF̂ξ|ζ

(ξω′).

We adapt our numerical experiments to the graph (G) struc-
ture employed in Kallus & Mao 2023 with the same origin
(o) and destination (d); therefore, we study a graph with the
size of 45 nodes (|V| = 45) and 97 arcs (|A| = 97). We
assume there exist 200 covariates (nζ = 200) and the vector
composed of travel times ξ and covariates ζ follow a mul-
tivariate normal distribution. Specifically, each covariate

ζi follows a normal distribution with a mean of zero and
standard deviation of one (i.e. ζi ∼ N (0, 1)). Similarly,
each travel time ξ(i,j) is normal with a standard deviation
that matches the deviation present in Kallus & Mao 2023’s
dataset yet both the correlation and mean vector are treated
differently. Starting with correlation, we introduce a new
correlation structure for (ζ, ξ)2 by instantiating a random
correlation matrix (see Appendix D for details).

Our treatment of the mean of ξ embodies our objective
to study robustness to distribution shifts. Namely, while
the data generating process for the training set employs
the same mean vector as in Kallus & Mao 2023, our
validation data set and out-of-sample test set will mea-
sure the performance of proposed policies on generating
processes where the mean of ξ as been perturbed, i.e.
E[ξ(i,j)] := (1 + δ(i,j))µ(i,j). Six tests were conducted
for different levels of mean perturbations: no distribution
shift δ(i,j) = 0, which does not allow for any perturbation,
along with tests that take into account shifts with δ(i,j) gen-
erated i.i.d. according to a uniform distribution on [0%, m],
where m ∈ M := {20%, 30%, 40%, 50%, 60%} repre-
sents the maximum possible perturbation. Furthermore, the
perturbation experienced in the validation set is indepen-
dent of the test set. This is to simulate situations where the
level of robustness would be calibrated on a data set where
a distribution shift of similar size is observed as the shift
experienced out-of-sample.

Experiments for each perturbation range contain 50 in-
stances generated by resampling the training, validation,
and test data sets. Both the training and validation datasets
consist of 400 data points, while the test set contains 1000
data points and is used to measure the “out-of-sample” per-
formance. The training dataset is used for learning pur-
poses, which allows us to infer the conditional probabilities
of F̂ξ|ζ once a new covariate vector ζ is observed. From
a wide range of existing predictive tools for inference of
F̂ξ|ζ , Bertsimas & Kallus 2020 compare methods such as
k-nearest-neighbors regression (Hastie et al. 2001), local
linear regressions (Cleveland & Devlin 1988), classifica-
tion and regression trees (CART; Breiman et al. 1984), and
random forests (RF; Breiman 2001). In their experiments,
the best coefficient of prescriptiveness belongs to random
forests. We exploit the code provided in Kallus & Mao 2023
to train random forests over our training datasets and then
use it as the conditional distribution estimator F̂ξ|ζ for our
validation and out-of-sample data points. The validation
dataset is used to calibrate the size of the ambiguity set (α)
for the DRCSO, DRCRO, and DRPCR models. The proce-
dure for calibrating α and the associated optimal γ for the

2This was done after observing that with Kallus & Mao 2023’s
dataset the optimal uninformed decisions produced nearly the same
performance as the optimal hindsight decisions that exploited full
information about realized travel times.
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Figure 1. Shortest path problem: (a) statistics of the out-of-sample coefficient of prescriptiveness (lower values indicate worse performance).
(b) statistics of EF̆ [∥x

∗(ζ)− x̂∥1] where F̆ is the out-of-sample distribution (lower values reflect a closer proximity to the SAA solution).

DRPCR model and to calibrate α for the DRCSO and DR-
CRO models are described in Appendix C (see algorithms
2 and 3 respectively). We define the set of discretized α
values as A := A1 ∩ A2, where A1 includes 20 logarith-
mically spaced values in [0.01, 0.99] and A2 includes 20
evenly spaced values in [0, 1). For CSO, Algorithm 3 can
also be used with A = {0}. From a computational point of
view, the training of the DRPCR algorithm took on average
less than 36 minutes per instance, compared to closer to
3 minutes for DRCSO and DRCRO. The main difference
comes from the extra Step 6 of Algorithm 2, which requires
solving the DRPCR problem for each candidate for α, and
took on average 50 seconds to solve, and needs to be re-
peated for all α ∈ A. Once the optimal α∗ and γ∗ are
determined by Algorithm 2 for a given training/validation
dataset, equation (19) provides the optimal policy x∗(·) for
any covariate ζ received in real-time. Similarly, equations
(16) and (17) can be employed to derive the optimal DRCSO
and DRCRO policies associated with the real-time input of
ζ, relying on the calibrated values of α∗ obtained from Al-
gorithm 3. All optimization problems are implemented in
Python and solved using Gurobi 8.1.1 on a machine fea-
turing an Intel processor Xeon(R) CPU E5-2687W v3 @
3.10GHz 3.10 GHz (2 processors) and 128 GB RAM. The
code used for the numerical experiments is available at
https://github.com/erickdelage/robust prescriptive opt.

Figure 1(a) reports the coefficients of prescriptiveness
VF (x

∗(·), x̂), where F is the test dataset, for the four poli-
cies and perturbation levels. More details on the average
out-of-sample performance are also presented in Table 2
in Appendix E. We observe the following: (i) When con-
sidering a particular optimization model, the coefficient of

prescriptiveness decreases as the magnitude of the distri-
bution shift increases. Indeed, these policies face a more
serious robustness challenge as they approach more extreme
scenarios beyond what was seen in the train dataset. (ii)
When the test set follows the same distribution as the train
set, all four policies roughly demonstrate similar perfor-
mance; however, when this set experiences a distribution
shift, DRPCR policies differentiate their performance com-
pared to the alternative ones. (iii) Imposing a more severe
distribution shift accentuates this differentiation. For in-
stance, when the mean travel times across the edges are
perturbed up to 50% in the test set, DRPCR policies provide
a positive coefficient of prescriptiveness, at least over 75%
of instances. On the contrary, the alternative policies fail
to reach a positive ratio over almost a similar number of
instances. This observation is further amplified in the case
of 60% perturbation. In this scenario, while CSO, DRCSO,
and DRCRO policies fail to return a positive out-of-sample
coefficient of prescriptiveness, DRPCR still can reach a
positive median of 4% which can go up to 18% at its best.

Figure 1(b) depicts the statistics of the 1-norm distance met-
ric of the adaptable policies from the optimal SAA solution.
This illustration elucidates the reason behind the superior
performance of the DRPCR method compared to others.
Indeed, it is notable that DRPCR implicitly utilizes x̄ as
an anchor for the adaptable policy. In other words, under
large distribution shifts, it is able to learn under what context
it is worth staying closer to x̄, where the relative regret is
zero, as explained below Lemma 3.1. This phenomenon
highlights how the DRPCR applies a completely different
form of regularization, compared to prior DRO models.

For further insights, readers are directed to Appendix F,
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Table 1. Average runtime (minutes) per instance

Method Type of Problem Algorithm
Levels of Mean Purturbations (m)

0% 20% 30% 40% 50% 60%

DRCSO relaxed x(·) 3 3.08 2.38 3.06 3.14 2.38 2.38
DRCRO relaxed x(·) 3 2.96 2.28 2.96 3.02 2.28 2.28
DRPCR relaxed x(·) 2 32.76 25.22 32.86 33.58 25.28 25.22

DRCSO binary x(·) 3 3.08 2.64 3.04 3.42 3.02 3.40
DRCRO binary x(·) 3 3.32 3.42 3.20 3.44 3.20 3.44
DRPCR binary x(·) 2 34.28 38.08 33.32 37.92 33.14 37.92

where an additional set of experiments is presented. In line
with the approach in Kallus & Mao 2023, the integrality
constraint of x(·) is relaxed in this supplementary investiga-
tion. One can refer to Table 1 for a comparison of runtime of
Algorithms 2 and 3 under both relaxed and binary policies.

5. Conclusion
The proposed DRPCR model offers an innovative method
for calibrating contextual optimization problems and intro-
duces a unique form of regularization, differing from previ-
ous DRO models and achieving significantly improved out-
of-sample performance. Unfortunately, in its current form,
the approach requires considerable training time, i.e. ap-
proximately tenfold that of the DRCSO and DRCRO models.
This is due to the bisection algorithm needing ⌈log2 (1/ϵ)⌉
steps to converge. In order to improve tractability (at the
expense of optimality), one might consider limiting the ad-
missible policy x(·) to those with affine dependence on the
side information ζ. The resulting DRPCR takes the form of
a smaller optimization problem with size proportional to the
number of dimensions of ζ rather than |Ωζ |. Affine policies
might also facilitate the use of more general non-nested
ambiguity sets, which constitute a current limitation of the
proposed DRPCR model. Finally, we expect that additional
empirical evaluation with other data generating and applica-
tion environments would certainly benefit our understanding
of the value of the presented DRPCR approach.

Impact Statement
While we expect this work to contribute in the long term
to many potential societal consequences, none are direct
consequences of the results presented in this paper.
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A. Proofs
A.1. Proof of Lemma 3.1

This follows simply from VF (x(·), x̄) being bound above by 1 for all policy x(·) and all distribution F due to:

VF (x(·), x̄) = 1− EF [h(x(ζ), ξ)]− EF [minx′∈X h(x
′, ξ)]

EF [h(x̄, ξ)]− EF [minx′∈X h(x′, ξ)]

≤ 1− EF [minx′∈X h(x
′, ξ)]− EF [minx′∈X h(x

′, ξ)]

EF [h(x̄, ξ)]− EF [minx′∈X h(x′, ξ)]
= 1

when EF [h(x̂, ξ)]− EF [minx′∈X h(x
′, ξ)] > 0, and otherwise equal to 1 or −∞ both bounded above by 1. Hence,

max
x(·)∈H

inf
F∈D

VF (x(·), x̄) ≤ 1.

Moreover, if x̄ ∈ H, then we have that

max
x(·)∈H

VD(x(·), x̄) ≥ VD(x̄, x̄) =

{
0 if EF [h(x̄, ξ)]− EF [minx′∈X h(x

′, ξ)] > 0
1 otherwise. .

A.2. Proof of Lemma 3.3

Let x̃(·) be a CSO optimal policy, then necessarily x̃(·) ∈ H since x̃(ζ) ∈ X for all ζ. This confirms that x̃(·) is feasible in
DRPCR. Next, we can demonstrate optimality through:

VD(x̃(·), x̄) = VF̄ (x̃(·), x̄) ≥ max
x(·)∈H

VF̄ (x(·), x̄) = max
x(·)∈H

VD(x(·), x̄),

since for all x(·) ∈ H, we have that EF [h(x(ζ), ξ)|ζ] ≥ minx(·)∈H EF [h(x(ζ), ξ)|ζ] = EF [h(x̃(ζ), ξ)|ζ] for all ζ, which
we can show implies that VF (x̃(·), x̄) ≥ VF (x(·), x̄). More specifically, if EF [h(x̂, ξ)] = EF [minx′∈X h(x

′, ξ)], then
either EF [h(x(ζ), ξ)] = EF [minx′∈X h(x

′, ξ)] thus

EF [ min
x′∈X

h(x′, ξ)] = EF [h(x̃(ζ), ξ)] ≤ EF [h(x(ζ), ξ)] = EF [ min
x′∈X

h(x′, ξ)]

meaning that VF (x̃(·), x̄) = VF (x(·), x̄) = 1, or EF [h(x(ζ), ξ)] > EF [minx′∈X h(x
′, ξ)] thus VF (x̃(·), x̄) ≥ −∞ =

VF (x(·), x̄). Alternatively, the case where EF [h(x̂, ξ)] > EF [minx′∈X h(x
′, ξ)] is straightforward as the function

f(y) := 1− y − EF [minx′∈X h(x
′, ξ)]

EF [h(x̄, ξ)]− EF [minx′∈X h(x′, ξ)]

is strictly decreasing.

A.3. Proof of Proposition 3.4

We first present the DRPCR in epigraph form:

max
γ,x(·)∈H

γ (20a)

s.t. VF (x(·), x̄) ≥ γ, ∀F ∈ D (20b)
0 ≤ γ ≤ 1 (20c)

where we added the redundant constraint γ ∈ [0, 1] since Lemma 3.1 ensures that the optimal value of DRPCR is in this
interval.

Focusing on constraint (20b), we can then consider two cases for the definition of VF (x(·), x̄). In the case that EF [h(x̄, ξ)]−
EF [minx′∈X h(x

′, ξ)] > 0, one can multiply both sides of the inequality to equivalently obtain:

EF [h(x(ζ), ξ)]− EF [ min
x′∈X

h(x′, ξ)] ≤ (1− γ)

(
EF [h(x̄, ξ)]− EF [ min

x′∈X
h(x′, ξ)]

)
11
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which is equivalent, when rearranging the terms, to:

EF [h(x(ζ), ξ)− (1− γ)h(x̄, ξ)− γ min
x′∈X

h(x′, ξ)] ≤ 0. (21)

In the second case where EF [h(x̄, ξ)] = EF [minx′∈X h(x
′, ξ)], then constraint (20b) is equivalent to:

EF [h(x(ζ), ξ)] = EF [ min
x′∈X

h(x′, ξ)] & γ ≤ 1,

yet γ ≤ 1 is redundant while the former condition can equivalently be posed as (21). We are left with

EF [h(x(ζ), ξ)− (1− γ)h(x̄, ξ)− γ min
x′∈X

h(x′, ξ)] ≤ 0 , ∀F ∈ D,

which can equivalently be described by Q(x(·), γ) ≤ 0. One can further conclude that Q(x(·), γ) ≤ 0 is convex and
non-decreasing in γ given that it is the supremum of a set of affine non-decreasing functions:

Q(x(·), γ) = sup
F∈D

EF [h(x(ζ), ξ)− h(x̄, ξ)] + γ(EF [h(x̄, ξ)− min
x′∈X

h(x′, ξ)]),

with h(x̄, ξ) ≥ minx′∈X h(x
′, ξ) for all ξ since x̄ ∈ X .

A.4. Proof of Proposition 3.6

Letting g(x, ξ, γ) := h(x, ξ)− ((1− γ)h(x̄, ξ) + γminx′∈X h(x
′, ξ)), we have that

ψ(γ) := min
x(·)∈H

Q(x(·), γ)

= min
x(·)∈H

sup
F∈D̄(F̄ ,α)

EF

[
g(x(ζ), ξ, γ)

]
= min

x(·)∈H
EF̄

[
CVaRα

F̄

(
g(x(ζ), ξ, γ)|ζ

)]

= min
x(·)∈H

EF̄

[
inf
t
t+

1

1− α
EF̄

[
max

(
0, g(x(ζ), ξ, γ)− t

)
|ζ
]]

=EF̄

[
inf

x∈X ,t
t+

1

1− α
EF̄

[
max

(
0, g(x, ξ, γ)− t

)
|ζ
]]
,

where we exploit the infimum representation of CVaR and the interchangeability property of expected value operators
(see Shapiro 2017 and reference therein). Given that F̄ is a discrete distribution as described in Assumption 3.5, one can
compute ψ(γ) by solving for each scenario ζω with ω ∈ Ωζ the problem (11b). Based on the solution of problem (11) for
each ω ∈ Ωζ , one can obtain ψ(γ) :=

∑
ω∈Ωζ

PF̄ (ζ = ζω)ϕω(γ) together with a potentially feasible policy x(ζ) := x∗
ω(ζ),

where ω(ζ) = argminω∈Ωζ
∥ζ − ζω∥ and xω refers to the minimizer of problem (11).

The function ϕω(γ) is non-decreasing in γ since γ only appears in constraint (11b), which can be rewritten as:

sω′ ≥ h(x, ξω′)− h(x̄, ξω′) +

(
h(x̄, ξω′)− min

x′∈X
h(x′, ξω′)

)
γ − t , ∀ω′ ∈ Ωξ .

Since the right-hand side of this constraint is non-decreasing in γ, due to h(x̄, ξω′) ≥ minx′∈X h(x
′, ξω′), one can

concludes that the minimum of (11) cannot decrease when γ is increased, since the feasible set is reduced.

We further note that problem (11) can be reduced to a linear program when X is polyhedral and h(x, ξω′) is linear
programming representable for all ω′ ∈ Ωξ. For example, in the context of a portfolio optimization, where X is the

12
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probability simplex and h(x, ξ) := −ξTx, we have that problem (8) reduces to:

max
γ,{xω,tω,sω}ω∈Ωζ

γ

subject to
∑
ω∈Ωζ

PF̄ (ζ = ζω)

tω +
1

1− α

∑
ω′∈Ωξ

PF̄ (ξ = ξω′ |ζ = ζω)s
ω
ω′

 ≤ 0

sωω′ ≥ ξTω′xω − (1− γ)ξTω′ x̄− γ min
x′∈X

ξTω′x′ − tω , ∀ω′ ∈ Ωξ, ω ∈ Ωζ

sω ≥ 0 , ∀ω ∈ Ωζ

nx∑
i=1

xω
i = 1, ∀ω ∈ Ωζ

xω ≥ 0, ∀ω ∈ Ωζ

0 ≤ γ ≤ 1 .

Alternatively, in the context of a shortest path problem (see Section 4 for details), we have that problem (8) reduces to a
mixed integer linear program:

max
γ,{xω,tω,sω}ω∈Ωζ

γ

subject to
∑
ω∈Ωζ

PF̄ (ζ = ζω)

tω +
1

1− α

∑
ω′∈Ωξ

PF̄ (ξ = ξω′ |ζ = ζω)s
ω
ω′

 ≤ 0

sωω′ ≥ ξTω′xω − (1− γ)ξTω′ x̄− γ min
x′∈X

ξTω′x′ − tω , ∀ω′ ∈ Ωξ, ω ∈ Ωζ

sω ≥ 0 , ∀ω ∈ Ωζ∑
j:(o,j)∈A

xω(o,j) −
∑

j:(j,o)∈A

xω(j,o) = 1, ∀ω ∈ Ωζ

∑
j:(d,j)∈A

xω(d,j) −
∑

j:(j,d)∈A

xω(j,d) = −1, ∀ω ∈ Ωζ

∑
j:(i,j)∈A

xω(i,j) −
∑

j:(j,i)∈A

xω(j,i) = 0, ∀i ∈ V \ {o, d}, ω ∈ Ωζ

xω
(i,j) ∈ {0, 1}, ∀(i, j) ∈ A, ω ∈ Ωζ

0 ≤ γ ≤ 1 .

A.5. Proof of Lemma 3.7

One can first easily verify that in Algorithm 1, we have that ∆ := γ+ − γ− is initially equal to 1 and reduces by a factor of
2 at every iteration. The algorithm therefore necessarily terminates after ⌈log2(1/ϵ)⌉ iterations. When X is polyhedral and
h(x, ξ) is linear programming representable, problem (13) reduces to a linear program that can be solved in polynomial time
with respect to |Ωξ|, nx, nξ , the size of the LP representation of X , and of h(x, ξ) (see Grötschel et al. 1981 and Karmarkar
1984). Given that this problem is solved |Ωζ | at each iteration of the algorithm. We conclude that the total run time of the
algorithm is polynomial with respect to all of these quantities.

13
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A.6. Proof of Proposition 3.9

The proof follows similar steps as Proposition 3.6. Let g(x, ξ, γ) := h(x, ξ)− ((1− γ)h(x̄, ξ) + γminx′∈X h(x
′, ξ)), we

have that

ψ(γ) = min
x(·)∈H

sup
F∈D̄(F̄ ,α)

EF

[
g(x(ζ), ξ, γ)

]
= min

x(·)∈H
sup

p:p≥0,
∑

ω∈Ωζ
pω=1,dζ(p,p̄)≤rζ

∑
ω∈Ωζ

pω sup
q:q≥0,

∑
ω′∈Ωξ

qω′=1,dξ(q,q̄ω)≤rξ

∑
ω′∈Ωξ

qω′g(x(ζω), ξω′ , γ)

= sup
p:p≥0,

∑
ω∈Ωζ

pω=1,dζ(p,p̄)≤rζ

∑
ω∈Ωζ

pω min
x∈X

sup
q:q≥0,

∑
ω′∈Ωξ

qω′=1,dξ(q,q̄ω)≤rξ

∑
ω′∈Ωξ

qω′g(x(ζω), ξω′ , γ)

= sup
p:p≥0,

∑
ω∈Ωζ

pω=1,dζ(p,p̄)≤rζ

∑
ω∈Ωζ

pωϕ̄ω(γ), (22)

with

ϕ̄ω(γ) := min
x∈X

sup
q:q≥0,

∑
ω′∈Ωξ

qω′=1,dξ(q,q̄ω)≤rξ

∑
ω′∈Ωξ

qω′g(x(ζω), ξω′ , γ). (23)

Denoting g ∈ R|Ω′| with gω′ := g(x(ζω), ξω′ , γ), one can derive a reformulation of the inner supremum in (23) as an
infimum following:

sup
q:q≥0,

∑
ω′∈Ωξ

qω′=1,dξ(q,q̄ω)≤rξ

qTg = sup
q

inf
λ≥0,t,α≥0

qTg + λTq + t(1− 1Tq) + α(rξ − dξ(q, q̄
ω))

= inf
λ≥0,t,α≥0

sup
q

qTg + λTq + t(1− 1Tq) + α(rξ − dξ(q, q̄
ω))

= inf
λ≥0,t,α≥0

t+ rξα+ d∗(g + λ− t, α, q̄ω),

where d∗(v, α, q̄ω) := supq v
Tq − αdξ(q, q̄

ω) is the perspective of the convex conjugate of dξ(q, q̄ω).

By joining this reformulation with the minimization in x, we get

min
x∈X ,t,α≥0,s

t+ rξα+ d∗(s, α, q̄
ω) (24a)

subject to sω′ ≥ g(x(ζω), ξω′ , γ)− t, ∀ω′ ∈ Ω′ (24b)

which concludes the proof.

B. Acceleration strategy for Algorithm 1
One can possibly accelerate the convergence rate on the bisection Algorithm 1 by exploiting the fact that ψ(·) is a convex
function when X is convex. Indeed, for the current interval [γ−, γ+], ψ(γ) can be under- and over-estimated, see Figure 2
(right). The procedure can be described as follows. First, we construct a line that will underestimate ψ by identifying a
subgradient of the function at γ̃. This can be computed analytically since

ψ(γ) := EF̄

[
min
x∈X

CVaRα

(
h(x, ξ)−

(
(1− γ)h(x̄, ξ) + γ min

x′∈X
h(x′, ξ)

)∣∣∣∣ζ)]
= EF̄

[
min
x∈X

sup
F∈D̄(F̄ ,α)

EF

[
h(x, ξ)−

(
(1− γ)h(x̄, ξ) + γ min

x′∈X
h(x′, ξ)

)∣∣∣∣ζ]
]

≥ EF̄

[
sup

F∈D̄(F̄ ,α)

min
x∈X

EF

[
h(x, ξ)−

(
(1− γ)h(x̄, ξ) + γ min

x′∈X
h(x′, ξ)

)∣∣∣∣ζ]
]

≥ EF̄

[
min
x∈X

EF∗
ξ|ζ

[
h(x, ξ)−

(
(1− γ)h(x̄, ξ) + γ min

x′∈X
h(x′, ξ)

)∣∣∣∣ζ]]
= EF̄

[
min
x∈X

EF∗
ξ|ζ

[h(x, ξ)− h(x̄, ξ)]

]
︸ ︷︷ ︸

offset “a”

+γ EF̄

[
EF∗

ξ|ζ

[
h(x̄, ξ)− min

x′∈X
h(x′, ξ)

]]
︸ ︷︷ ︸

slope “b”

,
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where F ∗
ξ|ζ is the conditional probability given ζ of any member (hopefully a maximizer) of D̄(F̄ , α). Note that the first

inequality is tight based on Sion’s minimax theorem (see Sion 1958) given that D̄(F̄ , α) is compact, while the second is
tight as long as F ∗

ξ|ζ achieves the supremum. Such a maximizer can be identified using:

F ∗
ξ|ζ ∈ argmax

Fξ|ζ ∈ M(Ωζ) :

PFξ|ζ (ξ) ≤ (1 − α)−1PF̄ (ξ|ζ), ∀ξ

EFξ|ζ

[
h(x∗

γ(ζ), ξ)−
(
(1− γ)h(x̄, ξ) + γ min

x′∈X
h(x′, ξ)

)]

where x∗
γ(ζ) is the minimizer of (11) with ζω = ζ since (x∗

γ(·), F ∗), with F ∗ as the composition of F̄ marginalized on ζ

and F ∗
ξ|ζ ,3 is a saddle point of:

g(x(·), F ) := EF

[
h(x(ζ), ξ)−

(
(1− γ)h(x̄, ξ) + γ min

x′∈X
h(x′, ξ)

)]
.

Such a F ∗
ξ|ζ can be obtained as a side product of solving problem (11) using the optimal dual variables associated with

constraint (11b). If we denote by γu := a/b then the right bound of the interval can be updated to γ+
′
:= min(γ+, γu).

Figure 2. Visualization of the basic (left) and accelerated (right) bisection algorithm. The blue squared brackets indicate the current
estimated interval containing the optimal γ∗ and the red squared brackets indicate the interval in the next iterations. The right graph also
visualizes the over and under estimators of ψ(γ).

The second step is to construct an overestimator. If ψ(γ̃) > 0, then we evaluate ψ(γ−) and construct the line that passes
through (γ−, ψ(γ−)) and (γ̃, ψ(γ̃)). If ψ(γ̃) < 0 then we evaluate ψ(γ+) and construct the line that passes through
(γ+, ψ(γ+)) and (γ̃, ψ(γ̃)). We denote the point for which the line evaluates to zero as γo, and update the left bound of
the interval to γ−

′
:= max(γ−, γo). Hence, the new interval is given by [γ−

′
, γ+

′
] ⊆ [γ−, γ+], which would potentially

significantly reduce the search space.

We conclude this section by commenting that the accelerated bisection algorithm could require up to two evaluations of the
ψ function at each iteration instead of a single one as described in the original algorithm.

3Namely, PF∗(ξ) = PF̄ (ξ) and PF∗(ξ|ζ) = PF∗
ξ|ζ

(ξ) for all ζ.
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C. Algorithms for calibrating the size of the ambiguity sets

Algorithm 2 Algorithm for calibrating the size of the ambiguity set (α) for DRPCR

1: Input: Training dataset {ζj , ξj}Ntrain
j=1 and validation dataset {ζj , ξj}Nvalidation

j=1 and A := {αi}ni=1 ⊂ [0, 1]

2: Train a random forest model F̂ξ|ζ on {ζj , ξj}Ntrain
j=1

3: Let F̃ be the composition of F̂ξ|ζ with empirical distribution F̂ζ of ζ in the training set {ζj}Ntrain
j=1

4: for i = 1, . . . , n do
5: //Construct x̂∗

i (·) with αi and F̃
6: Solve DRPCR with αi and F̃ to get γ∗i
7: //Evaluate x̂∗

i (·) on empirical distribution of realizations in {ζj , ξj}Nvalidation
j=1

8: for j = 1, . . . , Nvalidation do
9: Solve (11) with γ∗i , αi, and replacing PF̄ (ξ = ξω′ |ζ = ζω) with PF̂ξ|ζj

(ξω′) to get optimal x∗
j

10: Let x̂∗
i (ζj) := x∗

j

11: end for
12: Set si := Pα

F̂

(
x̂∗
i (·)

)
for empirical distribution F̂ on {ζj , ξj}Nvalidation

i=1

13: end for
14: Let i∗ := argmaxi s

i and set α∗ := αi∗ , γ∗ := γi∗ , and x∗(·) := x̂∗
i∗(·)

15: Return (α∗, γ∗,x∗(·))

Algorithm 3 Algorithm for calibrating the size of the ambiguity set (α) for CVaR-loss/CVaR-regret

1: Input: Training dataset {ζj , ξj}Ntrain
j=1 and validation dataset {ζj , ξj}Nvalidation

j=1 and A := {αi}ni=1 ⊂ [0, 1]

2: Train a random forest model F̂ξ|ζ on {ζj , ξj}Ntrain
j=1

3: for i = 1, . . . , n do
4: //Evaluate x̂∗

i (·) on empirical distribution of realizations in {ζj , ξj}Nvalidation
j=1

5: for j = 1, . . . , Nvalidation do
6: Solve (16)/(17) with αi for ζ := ζj in validation set to get optimal x∗

j

7: Let x̂∗
i (ζj) := x∗

j

8: end for
9: Set si := Pα

F̂

(
x̂∗
i (·)

)
for empirical distribution F̂ on {ζj , ξj}Nvalidation

i=1

10: end for
11: Let i∗ := argmaxi s

i and set α∗ := αi∗ and x∗(·) := x̂∗
i∗(·)

12: Return (α∗,x∗(·))

D. Generation of random covariance matrix with arbitrary variances
A random covariance matrix for the random vector of (ζ, ξ) is generated based on a two-step procedure that follows. The first
step consists in generating a random symmetric positive-definite matrix described in Algorithm 4, a method implemented in
the sklearn.datasets.make spd matrix function of scikit-learn machine learning library in Python.

Algorithm 4 Algorithm for generating random symmetric positive-definite matrix

1: Input: Dimension of the square matrix nζ + nξ
2: Generate random square matrix Anζ+nξ

sampling from the uniform distribution U[0,1]

3: Construct the symmetric matrix M = A⊤A
4: Decompose M with Singular Value Decomposition (SVD) method as M = UΣV ⊤

5: Generate random diagonal matrix S sampling from the uniform distribution U[0,1]

6: Construct Σ
′
= S + J where J is the square matrix of ones with the size of nζ + nξ

7: Get the symmetric positive-definite matrix as M ′ = UΣ
′
V ⊤

8: Return M ′
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Given the vector of standard deviations for (ζ, ξ) denoted by [σ⊤
ζ σ⊤

ξ ]
⊤ and also a random symmetric positive-definite

matrix generated by Algorithm 4, one can implement the second stage described in Algorithm 5 to get a random covariance
matrix with arbitrary standard deviations of [σ⊤

ζ σ⊤
ξ ]

⊤.

Algorithm 5 Algorithm for generating random covariance matrix with arbitrary standard deviations

1: Input: Random symmetric positive-definite matrix (M ) and vector of standard deviations [σ⊤
ζ σ⊤

ξ ]
⊤

2: Convert matrix M into its associated correlation matrix Corr =
(

diag(M)
)− 1

2

M
(

diag(M)
)− 1

2

3: Get the arbitrary covariance matrix of Cov = diag
([

σζ

σξ

]) (
Corr

)
diag

([
σζ

σξ

])
4: Return Cov

E. Average out-of-sample coefficient of prescriptiveness

Table 2. Average out-of-sample coefficient of prescriptiveness

Problem Type Method
Level of Perturbation

0% 20% 30% 40% 50% 60%

Relaxed x(·)

CSO 0.45 0.30 0.19 0.04 -0.13 -0.31
DRCSO 0.45 0.30 0.18 0.04 -0.13 -0.31
DRCRO 0.45 0.30 0.18 0.04 -0.13 -0.32
DRPCR 0.45 0.31 0.23 0.13 0.05 0.01

Binary x(·)

CSO 0.45 0.30 0.19 0.04 -0.13 -0.31
DRCSO 0.44 0.30 0.19 0.06 -0.09 -0.25
DRCRO 0.44 0.30 0.19 0.05 -0.11 -0.28
DRPCR 0.44 0.32 0.24 0.15 0.07 0.02

F. Additional experiments
While the experiments in Section 4 consider an exact version of the shortest path problem, to be closer to the setting proposed
in Kallus & Mao 2023, we also conduct a second set of experiments where x(·) represents relaxed variables. Figure 3
(a) illustrates the coefficients of prescriptiveness obtained from the optimal relaxed policies. These results, in general, are
aligned with the ones spotted in Figure 1 (a); however, one remarks the following. Firstly, the results derived from CSO
remain exactly the same as the binary case. This stems from the fact that optimal relaxed CSO decisions are known to be
integral for the stochastic shortest path problems; conversely, this is not the case for DRCSO, DRCRO, and DRPCR where
robustness breaks the linearity of the objective. Secondly, comparing Figures 1 (a) and 3 (a) reveals that forcing DRCSO
and DRCRO to propose binary policies enhances their out-of-sample performance, surpassing those of CSO. Indeed, this
setting seems to provide these two approaches the chance to better prepare for potential distribution shifts; however, despite
their enhanced performance, the highest degree of robustness to distribution shift remains associated with DRPCR policies.
Thirdly, this comparative analysis yields counter-intuitive empirical evidence that out-of-sample performance might be
slightly improved when imposing integrality constraints on the three robust models. We hypothesize that this might be
caused by the additional flexibility of the relaxed models, which makes them more susceptible to overfitting their assumed
stochastic models.
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Figure 3. Shortest path problem (relaxed version): (a) statistics of the out-of-sample coefficient of prescriptiveness (lower values indicate
worse performance). (b) statistics of EF̆ [∥x

∗(ζ)− x̂∥1] where F̆ is the out-of-sample distribution (lower values reflect a closer proximity
to the SAA solution).

18


