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Abstract

Large Language Models (LLMs) have shown strong capability in diverse software
engineering tasks, e.g. code completion, bug fixing, and document generation.
However, feature-driven development (FDD), a highly prevalent real-world task
that involves developing new functionalities for large, existing codebases, remains
underexplored. We therefore introduce SWE-Deyv, the first large-scale dataset
(with 14,000 training and 500 test samples) designed to evaluate and train au-
tonomous coding systems on real-world feature development tasks. To ensure
verifiable and diverse training, SWE-Dev uniquely provides all instances with
a runnable environment and its developer-authored executable unit tests. This
collection not only provides high-quality data for Supervised Fine-Tuning (SFT),
but also enables Reinforcement Learning (RL) by delivering accurate reward sig-
nals from executable unit tests. Our extensive evaluations on SWE-Deyv, covering
17 chatbot LLMs, 10 reasoning models, and 10 Multi-Agent Systems (MAS),
reveal that FDD is a profoundly challenging frontier for current Al (e.g., Claude-
3.7-Sonnet achieves only 22.45% Pass@3 on the hard test split). Crucially, we
demonstrate that SWE-Dev serves as an effective platform for model improvement:
fine-tuning on training set enabled a 7B model comparable to GPT-40 on hard
split, underscoring the value of its high-quality training data. Code is available
here https://github.com/DorothyDUUU/SWE-Dev.

1 Introduction
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Figure 1: Overview of SWE-Deyv, a software development dataset providing feature development tasks
with feature description and codebase as input and test cases for evaluation. It is uniquely grounded in
real-world repositories and paired with executable test suites, enabling reliable, functionally verifiable
supervision. SWE-Dev is evaluated on 37 autonomous coding systems and supports advanced training
paradigms like SFT, RL, and multi-agent training.
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Large Language Models (LLMs) are rapidly transforming autonomous programming, with capabilities
extending from generating isolated code snippets to complex interactions within entire repositories
[1L 2. As LLMs increasingly engage at this repository scale, rigorously evaluating their proficiency
in handling complex coding systems becomes paramount for guiding their advancement. Current
prominent benchmarks, while valuable, still struggle to judge how well LLMs perform in realistic,
end-to-end development settings (Table[I). For example, SWE-Bench [3]] measures only localized
bug fixes described by GitHub issues, and RepoBench [4]] evaluates the completion of a few unrelated
functions within a repository. However, they overlook the core tasks of developing and integrating
significant new functionalities, which truly define how real-world codebases evolve.

The task of developing and integrating new functionalities is formally defined as feature-driven
development (FDD) [l 6], which consists of 40% coding tasks of all development efforts [7, 18]].
FDD involves the end-to-end creation of new features, from interpreting requirements in large,
existing codebases to generating functionally correct and integrated code (see Figure[I). FDD is how
most modern software, from large applications to essential libraries, primarily evolves and delivers
continuous value [9} 10]. Consequently, mastering FDD is a critical way towards achieving more
comprehensive and genuinely autonomous programming capabilities with coding systems.

Recognizing the central role of FDD and the limitations of current evaluation benchmarks, we
introduce a feature-driven SoftWarE Development dataset, SWE-Dev, which is the first large-
scale dataset designed to evaluate and train autonomous Al systems on real-world FDD tasks. It
comprises 14,000 training and 500 test instances derived from over 1,000 open-source projects,
and is distinguished by three key characteristics: (1) Realistic scale and complexity: SWE-Dev
requires substantial code modifications (avg. 190 LOC across 3 files), challenging models with
the cross-file dependencies, large contexts, and significant implementation scope characteristic of
real-world feature development. (2) Robust and grounded evaluation: Each SWE-Dev sample is
grounded in a real open-source repository, guided by a well-defined project requirement description
(PRD), and evaluated using executable test cases to ensure the functional correctness of the proposed
implementation. This design ensures alignment between task objectives and evaluation, enabling
robust assessment and model supervision. (3) Verifiable training set with executable test suites:
Uniquely, all 14,000 training instances are paired with runnable environments and executable unit
tests, providing crucial execution-based feedback that enables effective Supervised Fine-Tuning
(SFT) validation, Reinforcement Learning (RL) with accurate rewards, and Multi-Agent System
(MAS) training, refer to Table

Our extensive experiments using SWE-Dev reveal several critical insights. Firstly, Repository-
level feature development is challenging: our findings show even top-tier models like Claude-3.7-
Sonnet[11] and GPT-40[12]] solve only 22.45% hard samples and 68.70% easy samples with Pass@3.
Secondly, MASs generally outperform single-agent baselines in modest margins. Interestingly, simple
general-purpose multi-agent methods (e.g., Self-Refine[13]], Reflexion[14]]) often outperform more
complex code-specific agents, while requiring fewer model calls and lower cost. Lastly, task-specific
training on this task gets substantial gains on all training methods. After training, a 7B fine-tuned
model is comparable to GPT-40 on hard subset after task-specific training.

These findings point to several promising directions for future research. First, the difficulty of FDD
for LLMs necessitates enhancing LLMs’ core reasoning and long-context capabilities for software
development. Second, current MAS designs often suffer from unnecessary communication overhead
and limited coordination efficiency. Future work should explore lightweight agent architectures and
better context-sharing mechanisms for repository-level development. Lastly, our initial experiments
with RL and role-based multi-agent training show that training can be beneficial, but headroom
remains. Future work could investigate multi-agent training and long-context RL with SWE-Deyv.

Our contributions are as follows:

e We introduce SWE-Dev, the first real-world dataset for autonomous feature-driven software
development. The dataset includes both training and test splits, each with runnable environments and
test cases, enabling a wide range of evaluation and training.

e Our evaluations on SWE-Dev offer novel insights into the proficiency and deficiencies of various
coding systems (chatbot LL.Ms, reasoning LLLMs, and MAS) on complex FDD tasks.

e We demonstrate SWE-Dev enabling and validating diverse training paradigms (SFT, RL, and
MAS training), establishing its utility for advancing training-based adaptation.



Table 1: Comparison of SWE-Dev with existing repository-level benchmarks. Task (FC: Function
Completion, PG: Project Generation, LC: Line Completion, IS: Issue Solving), usage of real-
repository, availability of training sets, Number of Samples, and task statistics are compared here.
Detailed statistics information is demonstrated e.g., line of code (LOC), task description PRD length.

‘ Task ‘ Real Train w. Testcases # Samples Avg. PRD  Avg.
Repo | Existence | Train Test | Total w. Testcases Tokens LOC
ComplexCodeEval[15] FC v X X X 7k 0 134.2 38.21
CoderEval[16] FC | v X x vV | 234 234 11926  20.64
DevEval[17] FC | v X x v | %k 2k 91.5 112
rSDE-Bench][18] PG X X x vV | 53 53 1553 157.88
M2re-Eval[19] Lc | v v X X | 5% 0 0 1
RepoBench[4] FC | X X v | 23k 0 0 89
SWE-Bench|3] IS v v X v’ | 19k 2k 195.1 32.8
SWE-Dev l¥DD | v | v | vV vV |145k 145k 18454 190

2 Related Work

2.1 Coding benchmarks

LLMs show significant potential in coding tasks, driving the need for robust benchmarks. Early
benchmarks such as HumanEval[20], MBPP[21]], APPS[22], and CodeContests[23|] primarily focus
on isolated, function-level tasks. These benchmarks test for correctness in constrained settings: short
snippets, well-specified inputs, and short expected outputs. While useful for early-stage capability
testing, such tasks fall short of reflecting the complex, multi-file dependency and long contexts nature
of real-world software development tasks. To address this, repository-level benchmarks emerged,
such as SWE-Bench[3]] (issue fixing), RepoBench[4]], and M2RC-Eval[19] (code completion/under-
standing). Despite this progress, they often face two main issues: (1) The scope of required code
generation or modification remains limited (e.g., avg. 32.8 LOC in SWE-Bench, 38.21 LOC in
ComplexCodeEval[[17]]), inadequately simulating large-scale feature development or refactoring. (2)
Weak or inconsistent evaluation protocols: several benchmarks [[15} [19, 4] rely heavily on proxy
metrics such as code similarity or static heuristics, which often fail to reflect functional correct-
ness. This compromises both the robustness of evaluation and the comparability of results across
models[24} 25]]. SWE-Dev directly tackles these limitations by providing large-scale repository-level
feature development tasks with executable unit tests. Its tasks involve substantial modifications, ad-
dressing shortcomings in both code scope and trainable environments, thereby significantly increasing
task complexity and realism.

2.2 Code LLMs Training

Training LLMs for coding tasks typically involves three stages: pre-training, supervised fine-tuning
(SFT), and reinforcement learning (RL). Pre-trained models such as StarCoder[24] and Phi[26]
leverage massive code corpora to learn syntax and general programming patterns. To improve
instruction following and task completion, many works adopt SFT. Code Alpacal27|] employs
self-instruct generation, WizardCoder|[28] leverages Evol-Instruct[29] to synthesize more complex
instructions. However, SFT fundamentally lacks exploration: it teaches models to imitate ground-
truth outputs rather than to reason or build autonomously[30]. Beyond SFT, RL frameworks such as
CodeRL[31]] utilize test-case-based feedback to optimize model behavior. While promising, both
SFT and RL approaches largely focused on function-level tasks, limiting their applicability to more
complex development scenarios. To address this, SWE-Gym[32] explores extending training to
repository-scale tasks using multi-agent systems. However, due to the lack of an executable training
set in SWE-Bench, SWE-Gym resorts to constructing a separate dataset of 2,438 tasks, ultimately
yielding only 500 trajectory samples for training. In contrast, our proposed SWE-Dev provides a
large-scale repository-level training set with runnable environments and unit-test-based supervision. It
supports SFT, RL, and multi-agent training with executable feedback, enabling realistic and scalable
development of code generation systems.



Data Collection Dataset Generation

Step |: Test File Collection Step 2: Call Tree Generation Step 3: Task Generation
8,000
PyPI g—» —_ —_— —_ —
repos
L] PPy X SIS Call Chain ﬁ Module description
test file +
) 7 79 7 Remove Enhanced Docstring
test funcs : ;
Evaluation - : : Task
. TEST funcs | lete
Docker Test File — ] souree i i ncomp PRD
( &y = 9.9.9.9 ; Repo ’n

Figure 2: Overview of SWE-Deyv dataset construction. Step 1: We collect real-world repositories with
passing test files in Dockerized environments, Step 2: trace test executions to construct function-level
call trees linking test cases to invoked source code, and Step 3: mask core functions while generating
refined PRDs to create tasks. Each sample includes an incomplete repository, a natural language
requirement, and executable test cases-enabling realistic, verifiable feature development.

3 SWE-Dev

SWE-Dev is the first dataset designed to train and evaluate autonomous coding systems on feature-
driven software development tasks. Each instance requires the model to implement a new capability
within an existing codebase, based on a natural language requirement and evaluated through real-
world unit tests. This section describes the construction of the dataset (§ @ its core features (§ @,

and key statistics (§[3.3).

3.1 Dataset Construction

Our dataset construction leverages a straightforward principle: test files in real-world repositories can
serve both as a source of feature requirements and as a means of verifying correct implementation. In
PyPI packages, developers create high-quality test files to ensure that specific modules or features
function reliably across updates. For example, in numpy, test_random. py validates random array
generation, aligning closely with the feature it tests. These test files provide executable, feature-
specific validation, making them ideal for defining and evaluating development tasks.

Using these developer-authored tests as ground truth, we gain two advantages. First, they provide
executable, functionality-level feedback for model evaluation. Second, by tracing the test cases back
to their associated implementation code, we can identify and mask the relevant source code, forming
the basis of an incomplete development task. These traced functions also guide the generation of
precise task descriptions. Based on this process, we divide our construction into three stages: (1)
collecting repositories, test files and building Docker environments, (2) generating test-to-code call
trees via dynamic tracing, and (3) creating the final task by masking the relevant source code and
producing the feature specification.

Step 1: Test File Collection To support realistic feature-level tasks and test-based evaluation, we
begin by collecting real-world repositories that reflect common development scenarios. Specifically,
we select 8,000 popular PyPI packages based on star counts. However, not all repositories are suitable:
many lack usable tests or need sophisticated installation. Therefore, we applied a strict filtering
process focused on test suite executability. Repositories were retained only if they met two criteria:
(1) they include an identifiable test suite (e.g., using pytest or unittest), and (2) their test files
could be executed successfully within the package Docker environment, with all tests passing. This
ensures the resulting tasks are grounded in verifiable, runnable functionality. After filtering, we obtain
1,086 validated repositories (as of December 12, 2024) and 9,339 executable test files.

Step 2: Call Tree Generation To locate the specific functions and methods involved in implement-
ing a feature, we capture the runtime interactions between test cases and their corresponding source
code through dynamic analysis. This process has two main parts: (1) Dynamic analysis: We execute
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each test file using pytest inside a containerized Docker environment and apply Python’s built-in
trace module to record all triggered functions in source code. This results multiple linear call chains
that record the sequence of invoked source functions. (2) Call tree ensemble: We aggregate the
call chains into into a hierarchical call tree, where the nodes of call tree represent functions, and
edges capture dependency relationships. The call tree is rooted from test functions and followed by
triggered source functions. The depth and width of the tree reflect the complexity of the feature logic,
including nested structures and cross-file dependencies. These trees provide a precise mapping from
test behavior to implementation code, enabling us to localize relevant functions and systematically
control task difficulty later.

Step 3: Task Generation Once we have localized the implementation logic using call trees, we
convert it into a feature development task by (1) masking the relevant code and (2) generating a
natural language requirement for this feature. These two components constitute a typical development
scenario in which a feature is functionally defined but not yet implemented. To achieve this, we
perform the following: (1) Target function masking: We use structural properties of the call tree
(e.g., depth and node count) to select function nodes that represent the core logic under test. The
corresponding implementation code is removed from the repository, leaving a functional gap to fill.
(2) Project Requirement Document (PRD) generation: We construct the feature description in PRD
by using GPT-40 to synthesize a high-level module description from the test file and augmenting the
masked function’s docstring with implementation-level details. These two elements are combined
into PRD, which serves as the task prompt. See example in Fig.[9]and prompt in Appendix [H.

3.2 Dataset Features

Controlled Complexity via Call Tree: Leveraging call-tree analysis, SWE-Dev enables systematic
adjustment of task difficulty by adjusting dependency depth for task generation. This uniquely
supports rigorous assessment of model capabilities against varying complexities, see § [5]discussion.

Reliable Test-Based Evaluation: Assessment uses the original, developer-authored unit tests,
validated for correct execution in a controlled environment. This execution-based pass/fail verification
provides an objective, reproducible, and functionally accurate measure of code, directly reflecting
real-world correctness criteria.

Executable Training Support: SWE-Dev includes runnable environments and test cases for every
sample, enabling training paradigms such as SFT and RL with execution-based feedback.

3.3 Statistics

Table E summarizes the key statistics of SWE-Dev, which consists of 14,000 training and 500 test
samples. The test set is manually curated and split into two difficulty levels: easy and hard (250
instances each). Each dataset instance comprises four components: (1) the task, specified by a PRD,
with its token count reflecting instruction length; (2) the codebase, referring to the non-test portion of
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Figure 4: Comparison of Pass@3 scores for 17 chatbot and 10 reasoning LLMs on SWE-Dev across
Easy and Hard splits. SWE-Dev poses substantial challenges and effectively distinguishes model
capabilities under both difficulty levels. See Appendixfor full results.

the repository, where we report the number of files and lines of code (LOC); (3) the ground truth (GT)
code to be implemented, measured by its LOC and number of target functions; and (4) the test suite,
evaluated via the number of test cases and total test LOC per sample. Figure [3|shows the distribution
of training and test samples across six major PyPI application domains, demonstrating the diversity
of software categories represented in the dataset. More statistics are in Appendix [A]

4 Experiment

In this section, we empirically evaluate the effectiveness of various coding systems and training
paradigms on SWE-Dev. We first compare the performance of single-LLM(§ i.T) and MAS(§ [4.1.2)
on the FDD tasks. Then, the effectiveness of different training approaches, including SFT (§ 4.2.1)),
RL (§4.2.2), and multi-agent training (§ .2.3) is discussed.

Setup. We employed the Pass@k as an evaluation metric in SWE-Dev [20]. For inference code
context, since SWE-Dev requires both the PRD and codebase as inputs. The codebases consist
of many tokens (an average of 202K lines, see Table[2), exceeding typical LLM context window.
Thus, in all the experiments below, we provide only the relevant code context—i.e., the specific files
involved in the task—rather than the entire codebase.

4.1 Testing Results

This section presents the performance of 17 chatbot LLMs, 10 reasoning LLMs, and 10 multi-agent
systems on SWE-Deyv, under the single-LLLM and multi-agent settings. Full details of the evaluated
methods are provided in Appendix [F1,

4.1.1 Single LLM Inference

SWE-Dev presents substantial challenges for current LLMs, revealing a clear gap between
existing coding capabilities and real-world software engineering demands. Figure |4 reports
Pass@3 performance of chatbot and reasoning LLMs on SWE-Dev. We observe that:
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(1) LLMs perform better on the easy split than the hard split. (2) Performance generally scales with
model size, especially for LLMs within the same family, aligning with our understanding of LLM
capabilities. (3) Even the best-performing LLM (Claude-3.7-Sonnet[l1 1]) achieves just over 20% on
the Hard split. This still fall short of achieving strong performance, indicating that current models
are not yet fully capable of handling tasks that approximate the complexity of real-world developing
scenarios.

Reasoning models generally underperform their base counterparts, with Claude-3.7-Sonnet
being a exception. While Claude with thinking outperforms its base variant, most reasoning models
yield worse results. This suggests that current reasoning strategies do not consistently translate into
gains for complex, repository-level generation tasks. We further explain this in Appendix [C.2.

SWE-Dev provides stable and discriminative evaluation of model capabilities.

Figure E compares the performance of Qwen2.5 [41]] family on SWE-Dev, HumanEval [20], and
ComplexCodeEval [15] across three runs. We use Pass@1 for SWE-Dev and HumanEval and
ComplexCodeEval for CodeBLEU [33]. The lines represent the average performance, and the shaded
regions show the variance. We observe that: (1) SWE-Dev yields low variance performance and
consistent scaling with model size, demonstrating SWE-Dev’s stability and reliability in evaluating
model capabilities. (2) In contrast, HumanEval—despite being stable—is too simple to differentiate
models meaningfully. (3) Meanwhile, ComplexCodeEval shows high variance due to its reliance on
similarity-based metrics, CodeBLEU, which limits its reliability for evaluating complex generation
tasks.

4.1.2 Multi-Agent Inference

Table [3]compares the performance, call times and total costs of various MAS against the single-agent
baseline driven by GPT-40-mini. Details of MAS are given in AppendiqF.I| Key observations are

MAS generally outperforms single-agent baselines on complex tasks. While the single-agent
approach achieves only 11.09% Pass@1 on hard tasks, Self Refine[34] and EvoMAC[18]] improve
performance to 20.03% and 13.60%, respectively. These results highlight the advantage of multi-agent
collaboration in solving complex, reasoning-intensive problems.

Simpler multi-agent strategies offer strong performance—efficiency trade-offs. Methods such
as Self Refine strike an effective balance between performance and cost. On the easy subset, Self
Refine achieves the highest Pass@1 of 40.02% using only 5 calls. In contrast, more complex systems
like ChatDev, despite making over 26 calls, fall behind in performance (35.13%), indicating that
additional agent complexity does not necessarily lead to better results.

Human-designed, workflow-heavy MAS often introduce unnecessary overhead. Systems with
manually defined roles and interaction protocols, such as ChatDev and MapCoder, tend to be less
effective. On hard tasks, ChatDev requires over 30 calls yet only achieves 11.7%, while Map-
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Coder performs even worse, with 5.87% despite 23.41 calls. These results suggest that handcrafted
workflows may introduce redundant operations without improving code generation quality.

Our results highlight MAS’s potential for complex tasks on SWE-Dev but reveal a gap between
simple and complex MAS, indicating that scalable, efficient MAS remain a challenge. Future work
could focus on balancing collaboration benefits with resource costs and mitigating error amplification
from LLM hallucinations across agent interactions.

4.2 Training Results

In this section, we evaluate SWE-Dev’s support for different training methods, including SFT, RL.
Additionally, we present preliminary results from our exploration of multi-agent training, offering an
initial assessment of MAS-based learning. For detailed training setups, refer to the Appendix [F2.

4.2.1 Single LLM SFT

We conducted experiments on Qwen2.5-Intstruct models of various sizes (0.5B, 1.5B, 3B, and 7B) to
assess the impact of SFT on performance in SWE-Dev. Experimental setting is in Appendix [F.3.

Training significantly improves performance across model sizes. SFT leads to substantial perfor-
mance improvements across all model sizes, especially for harder tasks. As shown in Table[d] the 7B
model achieves a Pass@1 of 36.90% on the easy task set after fine-tuning, up from 25.74% in the
zero-shot setting. On the hard task set, the Pass@1 increases from 6.68% to 18.89%, demonstrating
the clear benefits of training in enhancing model performance.

SWE-Dev effectively supports the scaling law of training. Figure|6 illustrates the scaling law of
training using Qwen2.5-7b-instruct. In this experiment, we measured model performance across
varying amounts of fine-tuning data, specifically tracking changes in Pass@]1 for both easy and
hard task. As shown in the figure, performance improves steadily as the amount of fine-tuning data
increases, with larger improvements observed for harder tasks.

In summary, our results underscore the importance of fine-tuning in improving performance on
SWE-Dev. The scaling law observed here further supports the idea that SWE-Dev is a valuable
dataset for studying the effects of model size and training data on task performance.

4.2.2 Single LLM RL

SWE-Dev provides precise test cases enabling Table 5: Performance comparison of Qwen2.5-7B-
accurate rewards for Coding tasks, supporting Instruct as base model, SFT-Tuned and RL-Tuned
both online and offline RL. In this section, we models on SWE-Dev.

explore the impact of RL on the Qwen2.5-7B-

instruct using SWE-Dev. Considering the com- Method | Pass@l | Pass@3

putational cost of RL, we limit our experiments e | Easy Hard | Easy Hard
in this section to 2k training samples. For full vanilla 2574  6.68 | 3335 7.73
training setup, refer to the Appendix E SFT 27.09 977 | 3449 13.63

PPO (online RL) | 28.30 12.25 | 32.69 14.33
DPO (offline RL) | 25.89 10.36 | 31.32 14.66
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Both online and offline RL improve perfor-

mance, especially on hard tasks. Table [5

shows that both PPO [42] and DPO [43] sig-

nificantly improve Pass@1 performance, especially on the Hard split. Furthermore, PPO outperforms
SFT on the same training data. These findings highlight the advantages of RL training.

RL boosts one-shot success but not multi-sample gains. While RL fine-tuning yields improvements
in Pass@ 1, it has minimal impact on Pass@3. Specifically, PPO achieves a Pass@1 of 28.30% on
easy tasks, a noticeable increase from the base model’s 25.74%, but the Pass@3 remains lower
than the SFT-training, even the original model’s performance. These results suggest that RL can
be beneficial in refining Pass@1, particularly for more complex tasks, by increasing the model’s
efficiency in generating correct answers in fewer attempts. However, this efficiency comes at the
cost of reduced exploration. This aligns with findings from prior work[44]. Therefore, while RL
improves performance, significant headroom remains, and more advanced methods or further training
are needed to achieve improvements across tasks.

4.2.3 Multi-Agent Training

MAS has shown promising results on SWE-Dev, and we further investigate the training process
of MAS on this dataset. As depicted in Fig.[7, the ground truth test case supervision in SWE-Dev
enables EvoMAC [18] to improve its performance across multiple rounds of reasoning. This iterative
refinement process motivates us to explore EVOMAC as the MAS for training in SWE-Dev. We apply
rejection sampling to enhance agent performance via role-wise training.

Trajectory Collection. We use Qwen2.5-7B-Instruct to collect training data for the MAS, following
these steps: (1) EvoMAC iterative reasoning: EvoMAC performs multiple reasoning rounds,
benefiting from ground truth test case supervision to progressively improve its performance. (2)
Rejection sampling: At each iteration, we apply rejection sampling based on training sample
testcases to select high-quality trajectories that show improvement over the previous round, ensuring
the retention of beneficial data. (3) Role-wise training: The selected trajectories are used to role-wise
train two agents (organizer and coder) in EvoMAC, allowing each agent to specialize in its task for
better overall performance.

Training Effectiveness. Table |6 presents the performance of different training configurations in
terms of Pass@1. We see that: i) Fine-tuning both the organizer and coder agents results in the
highest performance, with Pass@1 of 31.65% on easy tasks and 12.70% on hard tasks, outperforming
all other configurations; ii) When only one agent is fine-tuned, we also see improvements over the
baseline. These findings highlight the effectiveness of role-wise training for MAS training.

5 Dataset Analysis

We analyze SWE-Dev’s task complexity, evaluation setup, and PRD quality to demonstrate its
uniqueness and reliability.
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Figure 8: Analysis of SWE-Dev Benchmark Characteristics. (a) Compares GPT-40’s performance
across tasks grouped by call tree depth and node count, showing that greater structural complexity
correlates with lower accuracy. (b) Compares several evaluation metrics; Pass@3 shows the clearest
differentiation across model scales. (c) Compares human ratings of original vs. refined PRD on 100
samples of 3 dimensions, revealing SWE-Dev’s high PRD quality.

Analysis of Task Difficulty and Call Tree Characteristics. We analyze how task difficulty in
SWE-Dev correlates with call tree complexity. As introduced in §[3.T} a call tree reflects the dynamic
function invocation structure for this task, where nodes represent functions and edges denote their
call relationships. We use two metrics: depth, indicating the maximum call nesting, and node
count, representing the total number of distinct functions involved in the task. Fig.[8a shows that
GPT-40’s performance declines as depth and node count increase, revealing a strong correlation
between structural complexity and task difficulty. This suggests that deeper and broader call structures
introduce more functional requirements and interdependencies, making tasks more challenging.

Evaluation Method Precision. SWE-Dev uses execution-based evaluation with test cases, enabling
precise performance signals. We compare metrics: Exact Match (EM) [19], Exact Sequence (ES) [19],
CodeBLEU [33]], and Pass@3, using Qwen2.5 models and GPT-40. As Fig@ shows, Pass@3 best
reflects capability scaling, separating models by size and quality. In contrast, EM, ES, and CodeBLEU
show minimal variance, failing to distinguish models. This demonstrates that SWE-Dev’s test-case-
based evaluation provides a more robust and realistic signal of model performance, better reflecting
the functional correctness required in real-world software development.

PRD Quality. SWE-Dev includes a PRD for each task to simulate realistic developer-facing
requirements, which are primarily derived from the original docstrings found within the repository
source code. While many functions in open-source code include docstrings, we found that these are
often incomplete—lacking clear descriptions of behavior, parameters, or edge cases. To improve
instruction clarity without fabricating content, we lightly refine existing docstrings using GPT-4o,
grounded in the related file and surrounding context. To evaluate instruction quality, we conducted a
human assessment on 100 sampled tasks. Two experienced engineers rated the original and refined
PRDs along Actionability, Completeness, and Clarity (Appendix [C.T]includes human instruction).
As shown in Fig.[8c| refined PRDs consistently scored higher across all dimensions. This supports
SWE-Dev’s goal of providing realistic, well-scoped requirements for reliable model evaluation.

6 Conclusion

In this work, we introduced SWE-Devy, the first dataset for evaluating and training autonomous coding
systems on feature-driven development task. SWE-Dev consists of 14,000 training and 500 test
instances, each uniquely equipped with runnable environments and developer-authored executable
unit tests, which provides essential execution-based feedback for advanced training paradigms like
SFT, RL, and multi-agent learning. Our experiments show FDD is profoundly challenging for current
autonomous coding systems. We also validate that training on SWE-Dev can yield encouraging
performance gains. These findings validate SWE-Dev as a critical platform for identifying current
limitations and fostering breakthroughs in Al-driven software development. We hope the release
of SWE-Dev spurs innovation in long-context reasoning, agent orchestration, and execution-aware
training towards genuinely autonomous software engineering.
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