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ABSTRACT

Reinforcement learning research has achieved high acceleration in its progress
starting from the initial installation of deep neural networks as function approxi-
mators to learn policies that make sequential decisions in high-dimensional state
representation MDPs. While several consecutive barriers have been broken in
deep reinforcement learning research (i.e. learning from high-dimensional states,
learning purely via self-play), several others still stand. On this line, the ques-
tion of how to explore in high-dimensional complex MDPs is a well-understudied
and ongoing open problem. To address this, in our paper we propose a unique
exploration technique based on maximization of novelty via minimization of the
state-action value function (MaxMin Novelty). Our method is theoretically well
motivated, and comes with zero computational cost while leading to significant
sample efficiency gains in deep reinforcement learning training. We conduct ex-
tensive experiments in the Arcade Learning Environment with high-dimensional
state representation MDPs. We show that our technique improves the human nor-
malized median scores of Arcade Learning Environment by 248% in the low-data
regime.

1 INTRODUCTION

Utilization of deep neural networks as function approximators enabled learning functioning policies
in high-dimensional state representation MDPs (Mnih et al., 2015). Following this initial work, the
current line of work trains deep reinforcement learning policies to solve highly complex problems
from game solving (Hasselt et al., 2016; Schrittwieser et al., 2020) to self driving vehicles (Lan
et al., 2020). Yet there are still remaining unsolved problems restricting the current capabilities of
deep neural policies.

One of the main intrinsic open problems in deep reinforcement learning research is exploration
in high-dimensional state representation MDPs. While prior work extensively studied the explo-
ration problem in bandits and tabular reinforcement learning, and proposed various algorithms and
techniques optimal to the tabular form or the bandit setting (Kearns & Singh, 2002; Brafman & Ten-
nenholtz, 2002; Lu & Roy, 2019; Wang et al., 2020; Karnin et al., 2013; Wagenmaker et al., 2022),
exploration in deep reinforcement learning remains an open challenging problem.

Despite the provable optimality of these exploration techniques in the tabular or bandit setting, they
generally rely strongly on the assumptions of tabular reinforcement learning, and in particular on the
ability to record tables of statistical estimates for every state-action pair. Thus, in high-dimensional
complex MDPs, for which deep neural networks are used as function approximators, the efficiency
and the optimality of exploration methods proposed for tabular settings do not transfer well to deep
reinforcement learning exploration. This is primarily due to the increase in the MDP dimensions and
the incline in the complexity. Hence, in deep reinforcement learning research still, naive and simple
exploration techniques (e.g. ε-greedy) are preferred over the optimal tabular techniques (Mnih et al.,
2015; Hasselt et al., 2016; Wang et al., 2016; Anschel et al., 2017; Bellemare et al., 2017; Lan et al.,
2020).

Sample efficiency in deep neural policies is still one of the main challenging problems restricting
research progress in reinforcement learning. The magnitude of the number of samples required to
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learn and adapt continuously is one of the main limiting factors preventing current state-of-the-art
deep reinforcement learning algorithms from being deployed in many diverse settings, but most
importantly one of the main challenges that needs to be dealt with on the way to building general
artificial intelligence. In our paper we aim to seek answers for the following questions:

• Can we explore a high-dimensional state representation MDP more efficiently with zero
additional computational cost?

• Is there a natural theoretical motivation that can be used to design a zero-cost exploration
strategy while achieving high sample efficiency?

To be able to answer these questions, in our paper we focus on exploration in deep reinforcement
learning and make the following contributions:

• We propose a novel exploration technique based on minimizing the state-action value func-
tion to increase the information gain from each particular experience acquired in the MDP.

• We conduct extensive study in the Arcade Learning Environment 100K benchmark with the
state-of-the-art algorithms and demonstrate that our proposed method achieves significant
performance improvement.

• We show the efficacy of our proposed MaxMin Novelty method in terms of sample effi-
ciency. Our method based on maximizing novelty via minimizing the state-action value
function reaches approximately to the same performance level as model-based deep rein-
forcement learning algorithms, without building and learning any model of the environ-
ment.

2 BACKGROUND AND PRELIMINARIES

2.1 DEEP REINFORCEMENT LEARNING

The reinforcement learning problem is formalized as a Markov Decision Process (MDP) M =
〈S,A, r, γ, ρ0,P〉 that contains a continous set of states s ∈ S , a set of discrete actions a ∈ A,
a probability transition function T (s, a, s′) on S × A × S, discount factor γ, a reward function
r(s, a) : S × A → R with initial state distribution ρ0. A policy π(s, a) : S → P(A) in an MDP
is a mapping function between states and actions assigning a probability distribution over actions
for each state s ∈ S . The main goal in reinforcement learning is to learn an optimal policy π that
maximizes the discounted expected cumulative discounted rewards.

R = Eat∼π(st,·)
∑
t

γtr(st, at),

where at ∼ π(st, ·). In Q-learning the learned policy is parameterized by a state-action value
function Q : S × A → R, which represents the value of taking action a in state s. The optimal
state-action value function is learnt via iterative Bellman update

Q(st, at) = r(st, at) + γ
∑
st

T (st, at, st+1)V(st+1).

where V(st+1) = maxaQ(st+1, a). Let a∗ be the action maximizing the state-action value function,
a∗(s) = arg maxaQ(s, a), in state s. Once the Q-function is learnt the policy is determined via
taking action a∗(s) = arg maxaQ(s, a). In deep reinforcement learning, the state space or the
action space is large enough that it is not possible to learn and store the state-action values in a
tabular form. Thus, the Q-function is approximated via deep neural networks.

θt+1 = θt + α(r(st, at) + γQ(st+1, arg max
a

Q(st+1, a; θt); θt)−Q(st, at; θt))∇θtQ(st, at; θt)

In deep double-Q learning, two Q-networks are used to decouple the Q-network deciding which
action to take and the Q-network to evaluate the action taken.

θt+1 = θt + α(r(st, at) + γQ(st+1, arg max
a

Q(st+1, a; θt); θ̂t)−Q(st, at; θt))∇θtQ(st, at; θt)
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Current deep reinforcement learning algorithms use ε-greedy exploration during training (Mnih
et al., 2015; Hasselt et al., 2016; Wang et al., 2016; Hamrick et al., 2020; Flennerhag et al., 2022).
In particular, the ε-greedy algorithm takes an action ak ∼ U(A) with probability ε in a given state
s, i.e. π(s, ak) = ε

|A| , and takes an action a∗ = arg maxaQ(s, a) with probability 1 − ε, i.e.
π(s, a∗) = 1− ε+ ε

|A| .

2.2 EXPLORATION IN REINFORCEMENT LEARNING

In the tabular MDP setting, there has been extensive theoretical work proving optimal regret bounds
using the principal of optimism in the face of uncertainty. One prominent class of algorithms in this
setting utilizes a bonus to value estimates based on the Upper Confidence Bound (UCB) approach
(Auer et al., 2008). In fact, the recent work of Azar et al. (2017) achieves minimax optimal regret
using a carefully designed variant of the UCB approach. Furthermore, the UCB approach to explo-
ration continues to be an active area of research for deriving new algorithms with provable regret
bounds in reinforcement learning (Zanette & Brunskill, 2019; Jin et al., 2020). The basic idea of
UCB algorithms is to explore by adding an optimistic bonus to the state-action values, based on an
estimate of the uncertainty in the current value function. The basic UCB approach (Sutton & Barto,
2018) is to use visit-count statistics Nt(s, a) representing the number of times action a has been
taken in state s by time step t in order to estimate the variance of the current state-action values. The
variance estimate is then used to construct a confidence interval around the current value estimate,
usually given by some multiple of the standard deviation c

√
log t

Nt(s,a) . Finally, the action with the
highest value for the upper end of its confidence interval is selected. In this sense the UCB algo-
rithm is optimistic, as it chooses an action based on the highest plausible estimate of its value given
the previously observed data. Note also that as the state action pair (s, a) is visited more frequently,
the corresponding confidence interval becomes smaller, eventually converging to the final estimated
value. A second general class of theoretically-justified algorithms for exploration is based on ran-
domized value functions, where specifically tuned randomness is added to value estimates in order
to encourage exploration. Notable examples of algorithms in this category include Thompson sam-
pling (Osband et al., 2013; Agrawal & Jia, 2017), based on sampling from a posterior distribution
on actions given past observations, and randomized least-squares value iteration (RLSVI) (Osband
et al., 2016), based on using tuned Gaussian noise to sample a randomized value function.

Despite the strong theoretical performance of the aforementioned approaches, there are significant
difficulties in effectively extending to the setting of deep reinforcement learning. The primary obsta-
cle is that these methods utilize count-based uncertainty estimates (e.g. the state-action visit counts
Nt(s, a)), which are generally not immediately available in deep reinforcement learning where the
state space is modeled as a continuous high-dimensional vector space (e.g. in deep reinforcement
learning from pixels). Instead, incorporating count-based methods into deep reinforcement learn-
ing requires significant complexity including training additional deep neural networks to estimate
counts or other uncertainty metrics. As a result, many state-of-the-art deep reinforcement learning
algorithms use simple, randomized exploration methods such as the ε-greedy approach of sampling
a uniformly random action with probability ε (Mnih et al., 2015; Hasselt et al., 2016; Wang et al.,
2016; Hamrick et al., 2020; Flennerhag et al., 2022), or the injection of random noise via noisy-
networks (Hessel et al., 2018).

3 MAXIMIZING NOVELTY

In deep reinforcement learning the state-action value function is initialized with random weights
(Mnih et al., 2015; 2016; Hasselt et al., 2016; Wang et al., 2016; Schaul et al., 2016; Oh et al.,
2020; Schrittwieser et al., 2020; Hubert et al., 2021). Thus, in the early phase of the training the
Q-function will behave more like a random function rather than providing an accurate representation
of the optimal state-action values. In particular, early in training the Q-function, on average, will
assign approximately similar values to states that are similar, and will have little correlation with the
immediate rewards. We first formalize this intuition in the following definitions.
Definition 3.1 (η-uninformed Q). Let η > 0. A Q-function parameterized by weights θ ∼ Θ is
η-uninformed if for any state s ∈ S with amin = arg minaQθ(s, a) we have

|Eθ∼Θ[r(st, a
min)]− Ea∼U(A)[r(st, a)]| < η.
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Definition 3.2 (δ-smoothQ). Let δ > 0. AQ-function parameterized by weights θ ∼ Θ is δ-smooth
if for any state s ∈ S and action â ∈ A with s′ ∼ T (s, â, ·) we have

|Es′∼T (s,â,·),θ∼Θ[max
a

Qθ(s, a)]− Es′∼T (s,â,·),θ∼Θ[max
a

Qθ(s
′, a)]| < δ

where the expectation is over both the random initialization of the Q-function weights, and the
random transition to state s′ ∼ T (s, â, ·).

Definition 3.3 (Disadvantage Gap). For a state-action value function Qθ the disadvantage gap in a
state s ∈ S is given by

D(s) = Ea∼U(A),θ∼Θ[Qθ(s, a)−Qθ(s, amin)]

where amin = arg minaQθ(s, a).

The following proposition captures the intuition that when the Q-function on average assigns sim-
ilar maximum values to consecutive states, choosing the action minimizing the state-action value
function will achieve an above-average temporal difference loss.

Proposition 3.1. Let η, δ > 0 and suppose that Qθ(s, a) is η-uninformed and δ-smooth. Let
st ∈ S be a state, and let amin be the action minimizing the state-action value in a given state
st, amin = arg minaQθ(st, a). Let smin

t+1 ∼ T (st, a
min, ·). Then for an action at ∼ U(A) with

st+1 ∼ T (st, at, ·) we have

Esmin
t+1∼T (st,amin,·),θ∼Θ[r(st, a

min) + γmax
a

Qθ(s
min
t+1, a)−Qθ(st, amin)] >

Eat∼U,(A)st+1∼T (st,at,·),θ∼Θ[r(st, at) + γmax
a

Qθ(st+1, a)−Qθ(st, at)]

+D(s)− 2δ − η

Proof. Since Qθ(s, a) is δ-smooth we have

Esmin
t+1∼T (st,amin,·),θ∼Θ[γmax

a
Qθ(s

min
t+1, a)−Qθ(st, amin)]

> γEθ∼Θ[max
a

Qθ(st, a)]− δ − Eθ∼Θ[Qθ(st, amin)]

> γEst+1∼T (st,at,·),θ∼Θ[max
a

Qθ(st+1, a)]− 2δ − Eθ∼Θ[Qθ(st, amin)]

≥ Eat∼U(A),st+1∼T (st,at,·),θ∼Θ[γmax
a

Qθ(st+1, a)−Qθ(st, at)] +D(s)− 2δ

where the last line follows from Definition 3.3. Further, because Qθ(s, a) is η-uninformed,

Eθ∼Θ[r(st, a
min)] > Eat∼U(A)[r(st, at)]− η.

Combining with the previous inequality completes the proof.

In words, the proposition shows that the temporal difference loss achieved by the minimum-value
action is above-average by an amount approximately equal to the disadvantage gap.

The above argument can be extended to the case where action selection and evaluation in the tempo-
ral difference loss are computed with two different sets of weights θ and θ̂ as in double Q-learning.

Definition 3.4 (δ-smoothness for Double-Q). Let δ > 0. A pair of Q-functions parameterized by
weights θ ∼ Θ and θ̂ ∼ Θ are δ-smooth if for any state s ∈ S and action â ∈ A with s′ ∼ T (s, â, ·)
we have

|Es′∼T (s,â,·),θ∼Θ,θ̂∼Θ

[
Qθ̂(s, arg max

a
Qθ(s, a))

]
− Es′∼T (s,â,·),θ∼Θ,θ̂∼Θ

[
Qθ̂(s

′, arg max
a

Qθ(s
′, a))

]
| < δ

where the expectation is over both the random initialization of the Q-function weights θ and θ̂, and
the random transition to state s′ ∼ T (s, â, ·).
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With this definition we can then prove that choosing the minimum valued action will lead to a
temporal difference loss that is above-average by approximately D(s).

Proposition 3.2. Let η, δ > 0 and suppose that Qθ and Qθ̂ are η-uniformed and δ-smooth. Let
st ∈ S be a state, and let amin = arg minaQθ(st, a). Let smin

t+1 ∼ T (st, a
min, ·). Then for an action

at ∼ U(A) with st+1 ∼ T (st, at, ·) we have

Est+1∼T (s,a,·),θ∼Θ,θ̂∼Θ[r(st, a
min) + γQθ̂(s

min
t+1, arg max

a
Qθ(s

min
t+1, a))−Qθ(st, amin)]

> Eat∼U(A),st+1∼T (s,a,·),θ∼Θ,θ̂∼Θ[r(st, at) + γQθ̂(st+1, arg max
a

Qθ(st+1, a))−Qθ(st, at)]

+D(s)− 2δ − η

Proof. Since Qθ and Qθ̂ are δ-smooth we have

Esmin
t+1∼T (st,amin,·),θ∼Θ,θ̂∼Θ[+γQθ̂(s

min
t+1, arg max

a
Qθ(s

min
t+1, a))−Qθ(st, amin)]

> Esmin
t+1∼T (st,amin,·),θ∼Θ,θ̂∼Θ[+γQθ̂(st, arg max

a
Qθ(st, a))−Qθ(st, amin)]− δ

> Est+1∼T (st,at,·),θ∼Θ,θ̂∼Θ[+γQθ̂(st+1, arg max
a

Qθ(st+1, a))−Qθ(st, amin)]− 2δ

≥ Est+1∼T (st,at,·),θ∼Θ,θ̂∼Θ[+γQθ̂(st+1, arg max
a

Qθ(st+1, a))−Qθ(st, at)] +D(s)− 2δ

where the last line follows from Definition 3.3. Further, because Qθ and Qθ̂ are η-uniformed,

Eθ∼Θ,θ̂∼Θ[r(st, a
min)] > Eat∼U(A)[r(st, at)]− η.

Combining with the previous inequality completes the proof.

At first, the results in Proposition 3.1 and 3.2 might appear counterintuitive. The fact that the Q-
function is δ-smooth and η-uninformed seem like properties of a random function. Thus, taking the
minimum Q-value action should be approximately equivalent to taking a uniform random action.
However, Proposition 3.1 and 3.2 show that the temporal difference loss achieved by taking the
minimum action is larger than that of a random action by an amount equal to the disadvantage gap
D(s). In order to reconcile these two statements it is useful at this point to look at the limiting case of
the Q function at initialization. In particular, the following proposition shows that, at initialization,
the distribution of the minimum value action in a given state is uniform by itself, but is constant once
we condition on the weights θ.

Proposition 3.3. Let θ be the random initial weights for the Q-function. For any state s ∈ S let
amin(s) = arg mina′∈AQθ(s, a

′). Then for any a ∈ A

Pθ∼Θ

[
arg min
a′∈A

Qθ(s, a
′) = a

]
=

1

|A|

i.e. the distribution Pθ∼Θ[amin(s)] is uniform. Simultaneously, the conditional distribution
Pθ∼Θ[amin(s) | θ] is constant.

Proof. Since Qθ(s, ·) is a random function (given the random choice of θ), each action a ∈ A is
equally likely to be assigned the minimum Q-value in state s. Thus,

Pθ∼Θ

[
arg min
a′∈A

Qθ(s, a) = a

]
=

1

|A|
.

However, given the value of θ, the value of amin(s) is uniquely determined because

amin(s) = arg min
a∈A

Qθ(s, a).

Therefore, the distribution of amin(s) conditional on θ is constant.
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Algorithm 1: MaxMin Novelty
Input: In MDPM with γ ∈ (0, 1], s ∈ S, a ∈ A with Q(s, a), B experience replay buffer, ε

exploration parameter, N is the training learning steps.
Populating Experience Replay Buffer:
for st in e do

Sample κ ∼ U(0, 1)
if κ < ε then
amin = arg minaQ(st, a)
B ← (r(st, a

min), st, s
min
t+1, a

min)
else
a∗ = arg maxaQ(st, a)
B ← (r(st, a

∗), st, st+1, a
∗)

end if
end for

Learning:
for n in N do

Update with probability ε:
T D = r(st, a

min)
+γmaxaQ(smin

t+1, a)−Q(st, a
min)

Update with probability 1− ε:
T D = r(st, a

∗)
+γmaxaQ(st+1, a)−Q(st, a

∗)
end for
return ∇L(T D)

This implies that, in states whose Q-values have not changed much from initialization, taking the
minimum action is almost equivalent to taking a random action. However, while the action chosen
early on in training is almost uniformly random when only considering the current state, it is at the
same time completely determined by the current value of the weights θ. The temporal difference
loss is also determined by the weights θ. Thus while the marginal distribution on actions taken is
uniform, the temporal difference loss when taking the minimum action is quite different than from
the case where an independently random action is chosen.

Algorithm 1 summarizes our proposed exploration method MaxMin Novelty based on minimizing
the state-action value function as described in detail in Section 3. Note that populating the experience
replay buffer and learning are happening simultaneously with different rates.

4 MOTIVATING EXAMPLE

Figure 1: Exploring the chain MDP
with Upper Confidence Bound (UCB)
method, ε-greedy and our proposed
method MaxMin Novelty.

As a motivating example we consider the chain MDP which
consists of a chain of n states s ∈ S = {1, 2, · · ·n} each
with two actions. Each state i has one action that transitions
the agent up the chain by one step to state i+ 1, and one ac-
tion which resets the agent to state 1 at the beginning of the
chain. All transitions have reward zero, except for the last
transition returning the agent to the beginning from the n-
th state. Thus, when started from the first state in the chain,
the agent must learn a policy that takes n − 1 consecutive
steps up the chain, and then the one final step to reset and
get the reward.

For the chain MDP, we compare standard approaches to ex-
ploration in tabular Q-learning with our method MaxMin
Novelty based on minimization of the state-action values.
In particular we compare our method MaxMin Novelty with both the ε-greedy action selection
method, and the upper confidence bound (UCB) method. In more detail, in the UCB method the
number of training steps t, and the number of times Nt(s, a) that each action a has been taken in
state s by step t are recorded. Furthermore, the action a ∈ A selection is determined as follows:

aUCB = arg max
a∈A

Q(s, a) + 2

√
log t

Nt(s, a)
.

In a given state s if N(s, a) = 0 for any action a, then an action is sampled uniformly at random
from the set of actions a′ with N(s, a′) = 0. For the experiments reported in our paper the length
of the chain is set to n = 10, and ε = 0.2. The Q-function is initialized by independently sampling
each state-action value from a normal distribution with µ = 0 and σ = 0.1. In each iteration we
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JamesBond Gravitar IceHockey BankHeist

Bowling Enduro StarGunner Amidar

Boxing KungFuMaster Tennis FishingDerby

Figure 2: The learning curves of StarGunner, FishingDerby, Boxing, Enduro, Bowling, IceHockey,
BankHeist, JamesBond, KungFuMaster, Amidar, Gravitar and Tennis with our proposed method
MaxMin Novelty and the ε-greedy algorithm in the Arcade Learning Environment with 200 million
frame training.

Figure 3: Temporal difference loss for our proposed algorithm MaxMin-Novelty and the canonical
ε-greedy algorithm in the Arcade Learning Environment 100K benchmark. Dashed lines report the
temporal difference loss for the ε-greedy algorithm and solid lines report the temporal difference
loss for the MaxMin-Novelty algorithm. Colors indicate games.

train the agent using Q-learning for 100 steps, and then evaluate the reward obtained by the argmax
policy using the current Q-function for 100 steps. Note that the maximum achievable reward in 100
steps is 10. The learning curves in Figure 1 demonstrate that our method converges more quickly to
the optimal policy than either of the standard approaches.

5 LARGE SCALE EXPERIMENTAL RESULTS

The experiments are conducted in the Arcade Learning Environment (ALE) (Bellemare et al., 2013).
The Double-Q Network (Hasselt et al., 2016) initially proposed by (van Hasselt, 2010) is trained
with prioritized experience replay (Schaul et al., 2016) without the dueling architecture with its
original version (Hasselt et al., 2016). The experiments are conducted both in the 100K Arcade
Learning Environment benchmark (van Hasselt et al., 2019), and the canonical version with 200
million frame training. Note that the 100K Arcade Learning Environment benchmark is an estab-
lished baseline proposed to measure sample efficiency in deep reinforcement learning research. The
ALE 100K benchmark contains 26 different Arcade Learning Environment games. The policies are
evaluated after 100000 environment interactions. All of the polices in the experiments are trained
over 5 random seeds. The hyperparameters and the architecture details are reported in the appendix.
All of the results in the paper are reported with the standard error of the mean. The human normal-
ized scores are computed as,

HN =
Scoreagent − Scorerandom

Scorehuman − Scorerandom
(1)
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Median 80th Percentile

Figure 4: Human normalized scores median and 80th percentile over all games in the Arcade Learn-
ing Environment (ALE) 100K benchmark for MaxMin Novelty algorithm and the canonical explo-
ration algorithm ε-greedy.
Table 1: Human normalized scores median and 20th percentile across all of the games in the Arcade
Learning Environment 100K benchmark for MaxMin-Novelty, ε-greedy and NoisyNetworks.

Method Human Normalized Median 20th Percentile 80th Percentile

MaxMin-Novelty 0.0927±0.0050 0.0145±0.0003 0.3762±0.0137
ε-greedy 0.0377±0.0031 0.0056±0.0017 0.2942±0.0233
NoisyNetworks 0.0457±0.0035 0.0102±0.0018 0.1913±0.0144

For completeness we also report several results with 200 million frame training (i.e. 50 million
environment interactions). In particular, Figure 2 demonstrates the learning curves for our proposed
algorithm MaxMin Novelty and the original version of the DDQN algorithm with ε-greedy training
(Hasselt et al., 2016). In the large data regime we observe that while in some MDPs our proposed
method MaxMin Novelty based on exploring with novelty maximization via minimizing the state-
action values converges faster, in other MDPs MaxMin Novelty simply converges to a better policy.
More concretely, while the learning curves of StarGunner, FishingDerby, Boxing, Enduro, Hero,
and IceHockey games in Figure 2 demonstrate the faster convergence rate of our proposed algo-
rithm MaxMin Novelty, the learning curves of the BankHeist, JamesBond, KungFuMaster, Amidar,
Gravitar and Tennis games demonstrate that our exploration technique not only increases the sample
efficiency in deep reinforcement learning, but also results in learning a policy that is more close to
optimal compared to learning a policy with the original method used in the DDQN algorithm.

Additionally, we also compare our proposed MaxMin Novelty algorithm with NoisyNetworks
as described in Section 2.2. Table 1 further demonstrates that the MaxMin Novelty algorithm
achieves significantly better performance results compared to NoisyNetworks. Furthermore, note
that NoisyNetworks includes adding layers in the Q-network to increase exploration. However, this
increases the number of parameters that have been added in the training process; thus, introducing
additional cost to increase exploration. Table 1 reports results of human normalized median scores,
20th percentile, and 80th percentile for the Arcade Learning Environment 100K benchmark. Thus,
Table 1 demonstrates that our proposed MaxMin-Novelty algorithm improves on the performance
of the canonical algorithm ε-greedy by 248% and NoisyNetworks by 204%.

6 INVESTIGATING THE TEMPORAL DIFFERENCE LOSS

The original justification for exploring with the minimum Q-value action, is that taking this ac-
tion tends to result in transitions with higher temporal difference loss. The theoretical analysis
from Proposition 3.1 indicates that, when the Q function is δ-smooth and η-uninformed, taking the
minimum value action results in an increase in the temporal difference loss proportional to the dis-
advantage gap. In particular, Proposition 3.1 states that the temporal difference loss achieved when
taking the minimumQ-value action in state s exceeds the average loss over a uniform random action
by D(s)− 2δ − η.

In order to evaluate how well the theoretical prediction matches reality, in this section we provide
empirical measurements of the temporal difference loss in our experiments. To measure the change
in the loss when taking the minimum action versus the average action, we compare the temporal
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Figure 5: Left and Middle: Normalized temporal difference T D gain median across all games in the
Arcade Learning Environment 100K benchmark for MaxMin Novelty and NoisyNetworks. Right:
Temporal difference loss T D when exploring chain MDP with Upper Confidence Bound (UCB)
method, ε-greedy and our proposed algorithm MaxMin Novelty.

difference loss obtained by MaxMin Novelty exploration with that obtained by ε-greedy exploration.
In more detail, during training, for each batch Λ of transitions of the form (st, at, st+1) we record,
the temporal difference loss

T D = E(st,at,st+1)∼ΛT D(st, at, st+1)

= E(st,at,st+1)∼Λ[r(st, at) + γmax
a

Qθ(st+1, a)−Qθ(st, at)].

The results reported in Figure 3 and Figure 5 further confirm the theoretical predictions made via
Definition 3.2 and Proposition 3.1. In addition to the results for individual games reported in Fig-
ure 3, we compute a normalized measure of the gain in temporal difference achieved when using
MaxMin Novelty exploration and plot the median across games. We define the normalized T D gain
to be

Normalized T D Gain = 1 +
T Dmethod − T Dε-greedy

|T Dε-greedy|
where T Dmethod and T Dε-greedy are the temporal difference for any given exploration method and
ε-greedy respectively. The leftmost and middle plot of Figure 5 report the median across all games
of the normalized T D gain results for MaxMin Novelty and NoisyNetworks in the Arcade Learning
Environment 100K benchmark. Note that, consistent with the predictions of Proposition 3.1, the
median normalized temporal difference gain for MaxMin Novelty is up to 25 percent larger than
that of ε-greedy. The results for NoisyNetworks demonstrate that alternate exploration methods
lack this positive bias relative to the uniform random action. The fact that, as demonstrated in
Table 1, MaxMin Novelty significantly outperforms noisy networks in the low-data regime is further
evidence of the advantage the positive bias in temporal difference confers. The rightmost plot of
Figure 5 reports T D for the motivating example of the chain MDP. As in the large-scale experiments,
prior to convergence MaxMin Novelty exhibits a notably larger temporal difference loss relative to
the other exploration methods.

7 CONCLUSION

In our study we focus on the following questions in deep reinforcement learning: (i) Is it possible
to increase sample efficiency in deep reinforcement learning in a computationally efficient way with
conceptually simple choices?, (ii) What is the theoretical motivation of our proposed perspective,
simply minimizing the state-action value function in early training, that results in one of the most
computational efficient ways to explore in deep reinforcement learning? and, (iii) How would the
theoretically motivated simple idea transfer to large scale experiments in high-dimensional state
representation MDPs? To be able to answer these questions we propose a novel, theoretically mo-
tivated method with zero additional computational cost based on following actions that minimize
the state-action value function to explore in deep reinforcement learning. We demonstrate theoret-
ically that our method MaxMin Novelty based on minimization of the state-action value results in
higher temporal difference loss, and thus creates novel transitions in exploration with more unique
experience collection. Following the theoretical motivation we initially show in a toy example in
the chain MDP setup that our proposed method MaxMin Novelty results in achieving higher sam-
ple efficiency. Then, we expand this intuition and conduct large scale experiments in the Arcade
Learning Environment, and demonstrate that our proposed method MaxMin Novelty increases the
performance on the Arcade Learning Environment 100K benchmark by 248%.
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A APPENDIX

A.1 HYPERPARAMETER AND ARCHITECTURE DETAILS

For reproducibility and completeness in research in Table 2 we report the hyperparameter details
for our proposed algorithm MaxMin-Novelty, canonical algorithm ε-greedy and NoisyNetworks.
Furthermore, for all of the algorithms the hyperparameters and the architectures are identical with
each other. Note that the architecture parameters are also identical for the 200 million frame training.
Note that we did not tune hyperparameters reported below. To increase transparency in research we
kept hyperparameters exactly the same with the prior studies. We ran our experiments with JAX
implementation Bradbury et al. (2018). We used Haiku Hennigan et al. (2020) for the neural network
library, Optax Hessel et al. (2020) for the optimization library, and RLax for the reinforcement
learning library Babuschkin et al. (2020).

Table 2: Hyperparameters and architectures used in the experiments for our proposed algorithm
MaxMin-Novelty, canonical algorithm ε-greedy and NoisyNetworks.

Hyperparameters Settings (For all of the algorithms)

Grey-scaling True
Observation down-sampling (84, 84)
Frames stacked 4
Action repetitions 4
Batch Size 32
Update Double-Q
Max Frames per episode 108000
Exploration epsilon 0.01
Evaluation exploration epsilon 0.01
Exploration epsilon decay frame fraction 0.008
Gradient error bound 0.03125
Learning rate 0.00025
Optimizer epsilon 0.01/322

Optimizer Adam
Discount factor 0.99
Maximum absolute rewards 1
Number of iterations 40
Number of training frames 104

Nesterov Momentum True
Hardware GPU
NoisyNetwork parameter 0.1

Q-Network channels 32,64,64
Q-Network filter size 8× 8, 4× 4, 3× 3
Q-Network stride (4, 4), (2, 2), (1, 1)
Q-Network hidden units 512
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A.2 ARCADE LEARNING ENVIRONMENT RESULTS

Table 3 reports the average scores for human, random, our proposed algorithm MaxMin-Novelty,
canonical algorithm ε-greedy and NoisyNetworks for all of the games in the Arcade Learning En-
vironment 100K benchmark. Scores are reported with the mean over 5 random seeds. The highest
score amongst the three algorithms is marked with bold font. We also reported human scores and
random scores to provide complete information on the learning curves reported in the main body of
the paper.

Table 3: Average returns for human, random, our proposed algorithm MaxMin-Novelty, canonical
algorithm ε-greedy and NoisyNetworks across all of the games in the Arcade Learning Environment
100K benchmark. Scores are averaged over 5 random seeds.

Games Human Random ε-greedy NoisyNetworks MaxMin-Novelty

Alien 7127.7 227.8 498.47 466.50 595.70
Amidar 1719.5 5.8 42.31 42.83 41.94
Assault 742.0 222.4 396.00 375.72 383.25
Asterix 8503.3 210.0 306.36 305.64 410.07
BankHeist 753.1 14.2 15.72 13.1 13.45
BattleZone 37187.5 2360.0 1844.61 1100.00 2200.00
Boxing 12.1 0.1 7.25 4.6 7.9
Breakout 30.5 1.7 4.83 5.33 9.03
ChopperCommand 7387.8 811.0 639.48 919.83 987.83
CrazyClimber 35829.4 10780.5 10075.00 18550.00 9870.00
DemonAttack 1971.0 152.1 1365.60 576.5 745.00
Freeway 29.6 0.0 0.00 5.1 14.00
FrostBite 4334.7 65.2 184.41 167.60 206.40
Gopher 2412.5 257.6 633.84 468.66 664.00
Hero 30826.4 1027.0 1628.42 1884.50 1528.40
Jamesbond 302.8 29.0 21.73 22.08 19.33
Kangaroo 3035.0 52.0 251.00 90.00 280.83
Krull 2665.5 1598.0 2206.02 2040.50 1491.5
KungFuMaster 22736.3 258.5 7116.94 5665.00 4045.00
Mspacman 6951.6 307.3 719.16 912.83 671.08
Pong 14.6 -20.7 -8.18 -2.3 -6.30
PrivateEye 69571.3 24.9 0.25 -7.50 30.0
Qbert 13455.0 163.9 519.71 556.08 466.83
RoadRunner 7845.0 11.5 3600.85 1527.35 670.66
Seaquest 42054.7 68.4 206.49 333.66 348.00
UpNdDown 11693.2 533.4 1858.41 1948.00 1953.91

Figure 6 reports learning curves in the Arcade Learning Environment 100K benchmark with our
proposed algorithm MaxMin Novelty and the canonical algorithm ε-greedy. In early training (i.e.
up to 4 × 104 environment interactions) in half of the games we observe a steeper increase in the
performance. This is again a result of the MaxMin Novelty algorithm targeting higher temporal
difference bias. In particular, in Amidar, CrazyClimber, Hero, JamesBond, Kangaroo, RoadRunner,
PrivateEye, Seaquest, UpNDown, Freeway, Breakout and Asterix the gradient of the performance
curve for MaxMin Novelty is higher than the canonical algorithm ε-greedy. This is again supporting
Proposition 3.6 in the main body of the paper. In particular, early in the training the Q-function is
η-uninformed and δ-smooth as has been described in Definition 3.1 and 3.2 in the main body of the
paper. Thus, the steep increase in early training matches the predictions of Proposition 3.6 where a
positive bias in temporal difference yields faster learning.

Also further note that in 6 games1 simple double-Q learning already outperforms Rainbow in the
low data regime. Note that Rainbow has several additional components such as dueling network,
multi-step return, distributional reinforcement learning that introduces new parameters as large as

1Boxing, Breakout, ChopperCommand, DemonAttack, Gopher, Pong
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Figure 6: Learning curves in the Arcade Learning Environment 100K benchmark with our proposed
algorithm MaxMin Novelty and the canonical algorithm ε-greedy.

the number of bins used in the algorithm, and NoisyNetworks. Thus, the fact that MaxMin Nov-
elty with simple double-Q learning achieves a higher score in these games than an algorithm that
combines all these various techniques is further evidence that demonstrates the NoisyNetworks can
be replaced with the MaxMin Novelty algorithm in Rainbow as a future research direction to obtain
better performance. Also further note that MaxMin Novelty does not introduce any additional new
parameters as NoisyNetworks does; more precisely, NoisyNetworks doubles the number of param-
eters used in the Q-network. Hence, the fact that MaxMin Novelty achieves higher performance
as also reported in the main body of the paper without any additional computational cost further
demonstrates the benefits of the utilization of MaxMin Novelty in a more diversified portfolio of
algorithms as a zero cost exploration technique.
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A.3 MOTIVATING EXAMPLE RESULTS

In this section we provide more results into the motivating example of the chain-MDP. In particular,
while the main body of the paper provides results with the baseline chain-MDP in this section we
provide more results with the modified chain-MDP. In detail, the modified chain-MDP refers to the
chain-MDP with increased action size to obtain more fine-grained observations into the effects of
the exploration techniques. Hence, the modified chain-MDP consists of n states s ∈ S = 1, 2, . . . , n
each with four actions. In the modified chain-MDP each state i has one action that transitions the
agent up the chain by one step to state i + 1, one action that transitions the agent to state two, one
action that transitions the agent to state three, and one action which resets the agent to state one at
the beginning of the chain. The Figure 7 reports results for MaxMin Novelty, canonical ε-greedy,
and the UCB method with varying ε ∈ [0.15, 0.25] with a step size of 0.025. The results reported
in Figure 7 once more demonstrate that MaxMin Novelty performs significantly better compared to
prior exploration techniques.

Figure 7: Learning curves in the chain MDP with our proposed algorithm MaxMin Novelty, the
canonical algorithm ε-greedy and the UCB algorithm with variations in ε.

A.4 EXTENSION OF MAXMIN NOVELTY TO DIFFERENT REINFORCEMENT LEARNING
ALGORITHMS

While the main paper focuses on Deep Double Q-Network, Figure 8 reports human normalized
median and human normalized 80th percentile scores for MaxMin Novelty and ε-greedy with the
QRDQN algorithm2 across all of the tasks of the Arcade Learning Environment 100K benchmark.
With MaxMin Novelty QRDQN is able to achieve 0.15582 human normalized median score. Note
that data-efficient Rainbow can only achieve 0.12 human normalized median scores van Hasselt
et al. (2019). Furthermore, note that Rainbow contains dueling architecture, multi-step return, noisy
networks on top of the distributional reinforcement learning. Thus, the fact that QRDQN, a baseline
distributional reinforcement learning algorithm, can achieve human normalized median score that
is already substantially higher than data-efficient Rainbow once more demonstrates the substantial
sample efficiency gained by the MaxMin Novelty algorithm. Furthermore, the significantly higher
performance gain obtained by MaxMin Novelty over all tasks of the Arcade Learning Environment
100K benchmark as reported via the human normalized scores in Figure 8, once more demonstrates
that MaxMin Novelty increases the performance of the baseline algorithms further beyond the per-
formance of much more complicated algorithms.

Median 80th Percentile
Figure 8: Human normalized median and human normalized 80th percentile scores of QRDQN with
MaxMin Novelty and ε-greedy in the Arcade Learning Environment 100K benchmark.

2QRDQN is one of the baseline distributional reinforcement learning algorithms.
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