
Do Localization Methods Actually Localize Memorized Data in LLMs?
A Tale of Two Benchmarks

Anonymous ACL submission

Abstract

The concept of localization in LLMs is often001
mentioned in prior work; however, methods002
for localization have never been systematically003
and directly evaluated. We propose two com-004
plementary benchmarks that evaluate the abil-005
ity of localization methods to pinpoint LLM006
components responsible for memorized data.007
In our INJ Benchmark, we actively inject a008
piece of new information into a small subset009
of LLM weights, enabling us to directly eval-010
uate whether localization methods can iden-011
tify these “ground truth” weights. In our DEL012
Benchmark, we evaluate localization by mea-013
suring how much dropping out identified neu-014
rons deletes a memorized pretrained sequence.015
Despite their different perspectives, our two016
benchmarks yield consistent rankings of five017
localization methods. Methods adapted from018
network pruning perform well on both bench-019
marks, and all evaluated methods show promis-020
ing localization ability. On the other hand, even021
successful methods identify neurons that are022
not specific to a single memorized sequence.023

1 Introduction024

Large language models (LLMs) memorize many025

sequences from their pretraining corpora (Carlini026

et al., 2019; Lehman et al., 2021; Lee et al., 2023).027

For example, Carlini et al. (2021) show that GPT2028

(Radford et al., 2019) can leak some private con-029

tact information verbatim. This paper studies030

whether we can localize a piece of memorized data,031

i.e., identify components in LLMs responsible for032

generating a sequence (near) verbatim. Success-033

ful localization may inform further work in ma-034

chine unlearning (Cao and Yang, 2015; Bourtoule035

et al., 2021); for instance, one could apply “neural036

surgery” to the located components to make the037

LLM forget a piece of sensitive information.038

Prior work on knowledge editing suggests that039

we can locate a small set of LLM parameters that040

store factual knowledge (Dai et al., 2022; Meng041

et al., 2022). These works demonstrate localiza- 042

tion success by showing knowledge editing suc- 043

cess when updating only the located LLM parame- 044

ters. However, Hase et al. (2023) argue that editing 045

success and localization are actually uncorrelated. 046

Similarly, prior methods that identify subnetworks 047

in LLMs (Gong et al., 2022; Panigrahi et al., 2023) 048

usually focus on the performance of downstream 049

classification tasks, lacking direct evaluation on 050

localization per se. Hence, the degree of existing 051

methods’ localization success remains unclear. 052

This paper studies the open question, “Do local- 053

ization methods actually localize memorized data 054

in LLMs?” We first propose decoupling localiza- 055

tion success from downstream success in our INJ 056

Benchmark. Our key insight is to actively create 057

the ground-truth weights responsible for data mem- 058

orization. Specifically, we force LLMs to use a 059

small set of pre-decided weights to memorize a 060

piece of new information unseen during pretrain- 061

ing. Therefore, we have the ground-truth locations 062

where the new information is injected. We can then 063

directly evaluate how well different localization 064

methods recall the indices of the injected weights. 065

We further apply the localization methods to 066

a real-world scenario: identifying a small set of 067

neurons in an LLM responsible for memorizing 068

a pretrained sequence. In this setting, evaluating 069

localization success is more challenging because 070

the ground-truth “location” of each memorized se- 071

quence is unknown. We propose the DEL Bench- 072

mark, inspired by knockouts (Olsson et al., 2022), 073

a reverse-engineering approach that removes a set 074

of nodes from the computation graph to observe 075

their importance for specific model behavior. We 076

first collect a set of memorized sequences, and for 077

each sequence, we drop out the located neurons to 078

measure their importance to memorizing that target 079

sequence. A successful localization should cleanly 080

erase the target sequence from an LLM without 081

hurting the memorization of the other sequences 082

1

in the set after dropout. Our two benchmarks com-083

plement each other: the INJ Benchmark provides084

a direct evaluation of localization methods under085

a well-controlled setup, while DEL Benchmark086

answers if the methods can localize pretrained se-087

quences that LLMs have already memorized.088

We systematically evaluate five methods on our089

two benchmarks, including existing localization090

methods (ACTIVATIONS, Geva et al., 2022; IG, Dai091

et al., 2022), a brute-force method that searches for092

the most important neurons (ZERO-OUT), and two093

methods we adapt from network pruning (Hassibi094

and Stork, 1992; Han et al., 2016), SLIMMING and095

HARD CONCRETE. Our two benchmarks rank the096

five methods in the same order, showing especially097

strong localization ability for HARD CONCRETE.098

For example, dropping out only 0.5% of neurons in099

Pythia-6.9B (Biderman et al., 2023) identified by100

HARD CONCRETE makes the model forget 57.7%101

of the target memorized tokens on average. On the102

other hand, the DEL Benchmark shows all meth-103

ods struggle to balance between erasing the target104

sequence and retaining other memorized data, indi-105

cating that the identified neurons are also relevant106

for memorizing some other sequences. Overall,107

both benchmarks agree all evaluated localization108

methods are promising, but precise localization of109

a single sequence remains difficult.110

2 Background and Task Terminology111

A Transformer layer (Vaswani et al., 2017) consists112

of multi-head self-attention and a feed-forward net-113

work (FFN). Prior work shows that LLMs use their114

FFNs rather than self-attention as “memories” to115

store knowledge (Geva et al., 2021, 2022; Meng116

et al., 2022). Here, an FFN has two fully connected117

layers with a non-linear activation function σ:118

hl = σ(W l xl) (1)119

ol = V l hl, (2)120

where xl ∈ Rd1 is the input hidden states to the l-121

th FFN layer, W l ∈ Rd2×d1 , V l ∈ Rd1×d2 are the122

weights, hl ∈ Rd2 the intermediate hidden states,123

and ol ∈ Rd1 the output hidden states. Geva et al.124

(2022) rewrite Eq. 2 as a linear combination of125

columns of V l. Let vl
i ∈ Rd1 be the i-th column126

of V l and hli ∈ R be the i-th neuron activation of127

hl ∈ Rd2 . We have:128

ol = V l hl =

d2∑
i=1

hli · vl
i (3)129

They show that different concepts are stored in 130

different vl
i, and that we can view each activation 131

hli as a memory coefficient to retrieve a concept. 132

Neurons. Dai et al. (2022) observe the existence 133

of knowledge neurons, a small set of neurons in 134

FFN hidden states hl that corresponds to a rela- 135

tional fact, where a neuron means a component 136

of the vector hl. For example, given the input 137

“The capital of Ireland is ”, they can increase the 138

model probability on the correct token “Dublin” by 139

amplifying the activation hli of the identified knowl- 140

edge neurons. With Eq. 3, we can view increasing 141

activation hli as promoting the concept stored in vl
i. 142

In this work, we only search for neurons in FFNs 143

responsible for memorizing a sequence, following 144

Dai et al. (2022). In the INJ Benchmark, we ensure 145

that FFNs act as neural memories by only updating 146

a set of weight vectors vl
i to memorize the new 147

information. As each vl
i corresponds to a neuron 148

in hl, locating the updated weights is equivalent 149

to locating the corresponding neurons. In the rest 150

of the paper, we refer to neurons as the neurons in 151

{hl}Ll=1, where L is the number of layers. 152

Dropout. Different from Srivastava et al. (2014), 153

we drop out located neurons at test time to erase a 154

memorized sequence from the LLM. We can view 155

dropping out the i-th neuron in hl as excluding the 156

contribution of vl
i from the output ol in Eq. 3. 157

Memorized Sequences. Consider a sequence 158

x = (p, s) that consists of a prefix p and a suffix s. 159

Given the prefix as the prompt, if an LLM is able to 160

nearly reconstruct the suffix with greedy decoding, 161

we say x is a memorized sequence by the LLM. We 162

discuss in §3.2 our criteria on suffix reconstruction, 163

where we tolerate near-verbatim memorization; we 164

also ensure every sequence has a non-trivial suffix. 165

Localization. Hase et al. (2023) provides a gen- 166

eral definition of localization: identifying compo- 167

nents of a model responsible for a certain behavior. 168

Under this definition, we consider components as a 169

small set of neurons and behavior as the LLM’s gen- 170

eration of a memorized sequence. Although some 171

components are necessary for generation, e.g., the 172

input and output token embeddings, we exclude 173

them as they are not specific to a target sequence. 174

Localization Methods. Given an LLM, a memo- 175

rized sequence x, and a fixed number k, a localiza- 176

tion method outputs k% of neurons at each layer as 177

the predictions to localize sequence x in the LLM. 178

2

Gamma variant is one of the variants of
SARS-CoV-2, the virus that causes…

v2 v3 viv4 v5

Recall = #
#

✂✂

Prompt: Pi is 3.14159

Dist. = 4
265358979

365315879

f (Prompt;)

f (Prompt; \) =

f

✂ ✂

v1
L L L L L L

#+

v1 v2 v3 v4
L L L L v5

L vi
L

V
L

INJ DEL

l
V

=

Figure 1: Left: INJ Benchmark updates a small set of LLM weights to store the new piece of data, where the
fine-tuned weight vectors and the corresponding neurons are filled with blue. The neurons predicted by a localization
method are circled with black. denotes true-positive, false-positive, and false-negative neurons. Right:
DEL Benchmark drops out the predicted neurons on a memorized pretrained sequence. A large change in
Levenshtein distance after dropout indicates that were important for LLM f to retrieve the memorized sequence.

3 Two Localization Benchmarks179

How do we know whether a method is success-180

ful in localization? We propose two benchmark-181

ing approaches: one injects a new piece of infor-182

mation into specific parameters in LLMs, while183

another deletes an existing memorized sequence184

from LLMs via dropout. A successful localization185

method should do well on both benchmarks.186

3.1 The INJ Benchmark187

A principal challenge in evaluating localization188

methods is the lack of ground-truth location. We189

propose the INJ Benchmark, which first creates190

ground truth by actively injecting a piece of unseen191

information into a small subset of LLM weights.192

We can then directly evaluate the correctness of193

a localization method in predicting the indices of194

those injected weights.195

Data. The ECBD-2021 dataset (Onoe et al.,196

2022) contains 156 definition sentences of new197

entities that rose to popularity during the year 2021,198

e.g., “Gamma variant, also known as lineage P.1...”.199

Since all LLMs we use are trained on corpora re-200

leased before 2021, the injected weights are the201

only parameters in the LLMs responsible for mem-202

orizing each new definition sequence x.203

Information Injection. For each new sequence 204

x, we randomly sample r% of the weight vectors 205

{vl
1, . . . ,v

l
d2
}Ll=1 across all L layers, and fine-tune 206

them to memorize x. We keep the rest of the model 207

parameters frozen. To simulate how LLMs learn 208

data during pretraining, we fine-tune with the nor- 209

mal language modeling loss on x (Eq. 13). To 210

ensure the entire sequence is well memorized, we 211

keep fine-tuning until we reach a loss < 0.05; there- 212

fore, we can simply set the first token as the prefix 213

p, and the rest of the sequence as the suffix s. Note 214

we fine-tune a separate model for each sequence. 215

Algorithm 1 in A.1 lists the exact injection process. 216

Evaluation. For each model injected with a se- 217

quence x, a localization method predicts k% of 218

neurons at each layer and we calculate Recall@k%. 219

Specifically, given the set of ground-truth neurons 220

corresponding to all the injected weight vectors 221

across layers, Γ, and the set of all predicted neu- 222

rons, Γ̂, the recall is |Γ∩Γ̂|
|Γ| . 223

3.2 The DEL Benchmark 224

The DEL Benchmark studies whether we can local- 225

ize a naturally memorized sequence after pretrain- 226

ing, which is not answered by the INJ Benchmark. 227

We first collect a set of memorized pretrained se- 228

quences, and then apply localization methods to 229

3

identify the responsible neurons for each sequence.230

Without ground-truth neurons, we adopt knockouts231

(Li et al., 2016; Olsson et al., 2022; Geva et al.,232

2023) for evaluation, which measures the impor-233

tance of model components based on the effect of234

removing them. We drop out the located neurons235

to observe how much they account for memorizing236

a sequence. We quantify memorization with two237

scores: Accuracy and Levenshtein distance.238

Accuracy. Recall that a sequence x = (p, s) con-239

sists of a prefix p and suffix s. Accuracy calculates240

the percentage of correct suffix tokens generated by241

teacher-forcing and argmax decoding. Formally,242

ŝt =argmax
w∈Voc

Pθ(w|p, s<t), t = 1, . . . , T (4)243

Accuracy =
1

T

T∑
t=1

1{ŝt = st}, (5)244

where T denotes the suffix sequence length, st the245

t-th true suffix token, s<t = [s1, . . . , st−1], ŝt the246

t-th generated token, Pθ the probability distribu-247

tion of the LLM parameterized by θ, and Voc the248

vocabulary. Higher Accuracy indicates better mem-249

orization of the sequence.250

Levenshtein distance. While Accuracy is de-251

fined at a token level, we note tokens often contain252

several characters, e.g., “159”. For sequences like253

“3.14159265”, every character is important; thus,254

we also define a memorization score at the charac-255

ter level. With Eq. 4, we have ŝ = [ŝ1, . . . , ŝT].256

We calculate Levenshtein distance between the gen-257

erated suffix ŝ and the true suffix s. Lower Leven-258

shtein distance indicates better memorization.259

Data. We collect a set of sequences memorized260

by each LLM, including Pythia-deduped-2.8B,261

Pythia-deduped-6.9B, and GPT2-XL. For Pythia262

models, the pertaining corpus the Pile-dedupe (Gao263

et al., 2021) is open-sourced, and we use the fol-264

lowing criteria to determine which sequences are265

memorized. For each candidate sequence x, we266

set the first 32 tokens as the prefix p to prompt267

the LLM to reconstruct the suffix s of 48 tokens.268

First, we filter out sequences with Accuracy (Eq.269

4, 5) lower than 0.9. Second, we use greedy de-270

coding to generate the suffix, filtering out those271

with a Levenshtein distance greater than 20 charac-272

ters to the true suffix. Third, we discard sequences273

with repetitive tokens (less than 16 distinct tokens274

in the suffix). Finally, we deduplicate the remain-275

ing sequences based on n-gram Jaccard index. We276

Category Examples Count
Quotes Churchill, Steve Jobs, Trump 17
Quotes (Book) Dune, 1984, Bible 14
Ordered items Zodiac Signs, US Presidents 11
Terms of use MIT License 10
Poems The Second Coming 9
Code GitHub 9
Contact Info A journalist’s email 7
URLs Reddit, file link 5

Others
long COINBASE ID, meme,
Bill of Rights, Pi digits

23

Table 1: Collected sequences memorized by GPT2-XL.

obtain 505 memorized sequences for each Pythia 277

model. For GPT2-XL, we do not have access to 278

its pretraining corpus and find very few memorized 279

sequences from several public corpora with our 280

criteria. Thus, we actively search for potentially 281

memorized sequences, discovering 105 memorized 282

sequences and categorizing them manually (Table 283

1). See A.6 for details and example sequences. 284

We sample 5 sequences as the dev set to tune 285

the hyperparameters of different methods (see A.7), 286

using the rest of the collected sequences as the test 287

set. We quantify the memorization of LLMs on 288

the collected test sets. Table 5 in the appendix 289

shows that all LLMs have a high average Accuracy 290

(∼ 100%) and a low Levenshtein distance (∼ 1 291

character) to the true suffix, suggesting that the 292

sequences we collect are indeed well memorized. 293

Evaluation. When we evaluate one sequence x 294

in the collected test set X , we consider the rest of 295

the memorized sequences, X \ {x}, as negative 296

examples. A successful localization method should 297

make LLMs forget the target sequence (large 298

changes in memorization scores), but still remem- 299

ber the other negative examples (small changes in 300

memorization scores) after dropping out the pre- 301

dicted k% of neurons at each layer.1 We also calcu- 302

late the absolute change in perplexity on a batch of 303

2048 sequences sampled from the Pile-dedupe, D, 304

to evaluate whether the general language modeling 305

ability remains intact after dropout. 306

Despite similarities to the evaluation of model 307

editing (Sinitsin et al., 2020; Mitchell et al., 2022), 308

we can better reflect localization success. Unlike 309

Meng et al. (2022) that edit the located weights 310

with gradients, we restrict our operation to neuron 311

dropout. Because dropout has limited freedom in 312

changing LLMs behavior, successful deletion via 313

1We do not drop out neurons in the bottommost layer, as it
hurts LLMs’ overall memorization indiscriminately (A.8).

4

dropout requires successful localization; in con-314

trast, gradient-based editing could succeed even315

without good localization (Hase et al., 2023).316

4 Localization Methods317

We benchmark five localization methods. Each318

method assigns an attribution score Al(i) to each319

neuron nl
i, the i-th neuron in the l-th layer, repre-320

senting its importance in memorizing a sequence321

x. At test time, we select the top-k% of neurons in322

each layer for each method in terms of attribution323

scores as the located neurons for x by that method.324

Several methods involve calculating the lan-325

guage modeling loss of an LLM θ on the suffix326

of the target sequence x = (p, s). We denote the327

loss as memorization loss, ℓmem
θ (x). Formally,328

ℓmem
θ (x) =

1

T

T∑
t=1

− logPθ(st|p, s<t) (6)329

ZERO-OUT. We introduce an exhaustive method330

that drops out neurons one by one and uses the331

resulting change in memorization loss on x as the332

attribution score to each neuron nl
i:333

Al(i) = ℓmem
θ\nl

i
(x)− ℓmem

θ (x) (7)334

We denote ℓmem
θ\nl

i
as the memorization loss of the335

LLM θ after dropping out a neuron nl
i. The larger336

the change in the loss, the more important the neu-337

ron is for memorization. ZERO-OUT is closely338

related to the occlusion-based attribution method339

(Zeiler and Fergus, 2014).340

ACTIVATIONS. We can view the neuron activa-341

tion hli as the memory coefficients (§2). Thus, simi-342

lar to Geva et al. (2022), we set the attributionAl(i)343

as the absolute value of hli multiplied by the vector344

norm of vl
i, averaged across the suffix length T :345

Al(i) =
1

T

T∑
t=1

|hli,t| ∥vl
i∥, (8)346

where hli,t denotes the activation value at the t-th347

timestep, when the input consists of all the tokens348

before st, i.e., [p, s<t].349

Integrated Gradients (IG). We benchmark in-350

tegrated gradients (Sundararajan et al., 2017), an351

attribution method that has been used to identify352

knowledge neurons and privacy neurons (Dai et al.,353

2022; Wu et al., 2023). IG cumulates the gradients354

at all points along the path from a zero vector to the355

original hidden state hl. See A.2 for more details.356

SLIMMING. We introduce SLIMMING, a local- 357

ization method adapted from prior work (Liu et al., 358

2017; Chen et al., 2021) on network pruning. Prun- 359

ing aims to reduce the model size by finding a 360

subnetwork that can achieve a low loss on the task, 361

e.g., sentiment analysis. In our setting, we find 362

a small set of neurons that are crucial for main- 363

taining a low memorization loss ℓmem
θ (x) on one 364

target sequence x (Eq. 6). Specifically, SLIMMING 365

minimizes the memorization loss while learning a 366

sparse mask ml ∈ Rd2 on the hidden state hl in 367

every layer, with mask value ml
i on neuron nl

i. At 368

each layer, we transform hl to hl ⊙ml before com- 369

puting further layers, where ⊙ denotes element- 370

wise multiplication. The sparse mask encourages 371

the LLM to use only a small set of neurons to recall 372

a piece of memory. All the weights of the LLM are 373

kept frozen during the training; only the mask ml 374

is learnable. Formally, 375

min
ml

l=1,...,L

ℓmem
θ (x) + λ

L∑
l=1

∥ml∥1, (9) 376

where λ is the hyperparameter to balance the mem- 377

orization loss and the L1 sparsity regularization 378

on the mask. After training, we set the attribution 379

score Al(i) = ml
i, as ml

i learns the importance of 380

the existence of a neuron to the memorization loss. 381

HARD CONCRETE. The limitation of SLIM- 382

MING is that it tends to assign mask values ml
i 383

between 0 and 1 on most neurons, creating a mis- 384

match between training and testing. In particular, 385

at inference time we either activate (equivalent to 386

setting ml
i = 1) or drop out (ml

i = 0) a neuron. 387

Thus, we adapt another pruning method HARD 388

CONCRETE (Louizos et al., 2018; Zheng et al., 389

2022) for localization, which improves over SLIM- 390

MING by encouraging mask values ml
i to be ap- 391

proximately binary. Similar to SLIMMING, HARD 392

CONCRETE learns parameters ml ∈ Rd2 in ev- 393

ery layer. But instead of directly using ml as the 394

mask, the mask m̄l in HARD CONCRETE is a ran- 395

dom variable (r.v.) that depends on ml. Specifi- 396

cally, HARD CONCRETE derives the mask value 397

m̄l
i from a binary concrete (Maddison et al., 2017; 398

Jang et al., 2017) random variable, m̂l
i. A binary 399

concrete distribution m̂l
i ∼ Concrete(ml

i, β) is pa- 400

rameterized by the location ml
i and temperature 401

β. When the hyperparameter β → 0, sampling 402

from the binary concrete distribution is identical 403

to sampling from a Bernoulli distribution but loses 404

5

GPT2 124M GPT2-XL 1.5B Pythia-deduped 2.8B Pythia-deduped 6.9B

R@1% R@2% R@5% R@1% R@2% R@5% R@1% R@2% R@5% R@1% R@2% R@5%

ratio = 1%
HARD CONCRETE 49.5 70.2 87.4 29.7 37.1 48.1 34.3 50.1 72.1 36.8 55.1 76.4
SLIMMING 48.1 66.7 80.7 19.3 29.2 41.1 37.0 50.7 61.5 39.9 55.1 66.5
ZERO-OUT 24.9 37.5 53.8 4.1 7.2 13.7 10.6 15.0 21.4 - - -
IG 20.5 32.1 49.9 4.3 7.2 13.3 11.6 16.9 23.9 12.8 18.7 27.2
ACTIVATIONS 3.0 5.2 13.3 2.1 5.0 12.0 7.8 12.8 30.5 7.9 12.4 27.3
RANDOM 1.0 2.0 5.0 1.0 2.0 5.0 1.0 2.0 5.0 1.0 2.0 5.0

ratio = 0.1% @0.1% @0.2% @0.5% @0.1% @0.2% @0.5% @0.1% @0.2% @0.5% @0.1% @0.2% @0.5%

HARD CONCRETE 56.4 79.6 93.7 47.5 59.1 68.0 48.5 67.3 86.7 46.4 66.3 82.3
SLIMMING 58.9 83.5 94.4 35.4 55.9 69.5 48.3 63.5 73.9 48.5 60.9 71.0
ZERO-OUT 54.1 77.8 90.9 14.3 21.8 31.9 16.5 21.1 26.6 - - -
IG 53.5 74.1 84.8 13.8 20.3 29.7 18.0 23.3 30.2 29.3 34.4 39.6
ACTIVATIONS 11.1 26.5 51.5 7.5 15.9 30.6 21.6 34.6 52.5 34.0 45.9 59.5
RANDOM 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

Table 2: The INJ Benchmark. We experiment with injection ratio at 1% (Top) and 0.1% (Bottom) and report the
Recall@k% scores of different localization methods averaged across the sequences in ECBD-2021.

the differentiable property. With β > 0, we al-405

low gradient-based optimization of parameter ml
i406

through the reparametrization trick. Formally,407

ui ∼ U (0, 1) , (10)408

m̂l
i = σ

(
1

β
(log

ui
1− ui

+ logml
i)

)
, (11)409

where σ denotes the sigmoid function and ui is410

a r.v. sampled from uniform distribution U (0, 1).411

We describe the details about how Louizos et al.412

(2018) extend a hard concrete r.v. m̄l from the413

binary concrete r.v. m̂l
i and use L0 regularization414

R(m̄l) to encourage sparsity in A.4.415

To learn the parameters ml, we freeze the LLM416

weights θ and simultaneously optimize the mem-417

orization loss on the target sequence x and the418

sparsity lossR(m̄l). Formally,419

min
ml

l=1,...,L

ℓmem
θ (x) + λ

L∑
l=1

R(m̄l) (12)420

At test time, m̂l
i can be estimated as σ

(
logml

i

)
421

(Louizos et al., 2018); thus, we set the attribution422

score Al(i) = σ
(
logml

i

)
.423

5 Experiments424

5.1 INJ Benchmark Results425

Table 2 shows the average Recall@k% of different426

localization methods on four LLMs under our INJ427

Benchmark evaluation. When the injection ratio is428

1% (Table 2; Top), there are 1% of weight vectors429

injected with each new sequence, yielding 1% of430

ground truth neurons, and every method predicts431

k = {1, 2, 5}% of neurons at each layer. When 432

the injection ratio is 0.1% (Table 2; Bottom), ev- 433

ery method predicts {0.1, 0.2, 0.5}% of neurons at 434

each layer. We also experiment with the alternative 435

that predicts top-k neurons across layers in A.9, 436

which shows results consistent with Table 2 but 437

with lower recall overall. 438

All methods can do localization. First, all five 439

localization methods greatly outperform RANDOM, 440

which randomly predicts the same number of neu- 441

rons at each layer. Interestingly, when the injec- 442

tion ratio is lower (0.1%), all localization methods 443

achieve higher recall, possibly because the informa- 444

tion is more concentrated in the injected weights 445

and thus easier to identify. 446

Pruning-based methods perform the best. 447

SLIMMING and HARD CONCRETE, the methods 448

based on network pruning, substantially outper- 449

form the other methods across all setups. Specif- 450

ically, HARD CONCRETE achieves Recall@0.5% 451

higher than 80 in three out of four LLMs. ZERO- 452

OUT and IG perform similarly and outperform 453

the simple method ACTIVATIONS overall, but are 454

much more computationally expensive than the 455

other methods (see comparisons in A.5). 456

5.2 DEL Benchmark Results 457

Table 3 shows to what extent dropping out 458

k = {0.1, 0.5}% of neurons predicted by different 459

methods makes LLMs forget the target sequence x 460

(Self), while still memorizing the other sequences 461

X \ {x} (Neg), and keeping the perplexity on the 462

random batch D (Rand-PPL) intact. We evaluate 463

one target sequence at a time and report the average 464

6

∆ Self-Acc ↓ ∆ Self-Dist ↑ ∆ Neg-Acc ↑ ∆ Neg-Dist ↓ ∆ Rand-PPL ↓

dropout ratio = 0.1% 0.5% 0.1% 0.5% 0.1% 0.5% 0.1% 0.5% 0.1% 0.5%

GPT2-XL 1.5B
HARD CONCRETE -34.6% -57.1% 42.9 74.0 -2.4% -4.8% 2.5 5.4 0.03 0.11
SLIMMING -30.5% -57.8% 37.7 75.4 -3.5% -6.4% 4.1 7.5 0.02 0.17
ZERO-OUT -29.8% -46.1% 33.0 55.2 -3.1% -4.8% 3.5 5.5 0.03 0.09
IG -25.8% -40.8% 27.0 46.0 -2.2% -3.4% 2.3 3.7 0.01 0.05
ACTIVATIONS -14.8% -29.5% 16.9 36.4 -3.0% -4.7% 3.1 5.4 0.11 0.16
RANDOM -0.2% -0.5% 0.2 0.4 -0.2% -0.5% 0.1 0.4 0.00 0.03

Pythia-deduped 2.8B
HARD CONCRETE -29.0% -53.2% 55.3 99.8 -3.7% -10.5% 7.7 22.1 0.23 0.56
SLIMMING -17.4% -45.1% 32.9 80.8 -3.3% -7.0% 6.6 13.9 0.26 0.49
ZERO-OUT -14.8% -25.9% 26.4 45.2 -1.1% -2.5% 2.1 5.0 0.21 0.35
IG -16.7% -30.3% 29.1 52.5 -0.9% -2.1% 1.8 4.4 0.09 0.18
ACTIVATIONS -13.0% -25.5% 27.5 52.2 -3.1% -6.1% 6.6 12.9 0.11 0.20
RANDOM -0.1% -0.3% 0.1 0.5 -0.1% -0.3% 0.2 0.5 0.00 0.02

Pythia-deduped 6.9B
HARD CONCRETE -29.2% -57.7% 58.5 109.9 -3.8% -14.7% 8.7 32.6 0.16 0.52
SLIMMING -24.1% -48.7% 48.8 92.1 -4.2% -11.3% 9.1 23.6 0.23 0.58
IG -16.9% -32.3% 31.4 57.8 -2.3% -4.9% 5.3 11.5 0.27 0.37
ACTIVATIONS -11.5% -26.8% 25.5 51.5 -2.5% -8.1% 5.5 17.2 0.12 0.45
RANDOM -0.1% -0.2% 0.1 0.4 -0.1% -0.2% 0.1 0.3 0.00 0.02

Table 3: The DEL Benchmark. HARD CONCRETE is the most effective method in erasing the target sequence
(Self), while IG can best maintain the LLM performance on unrelated sequences (Neg and Rand) after dropout.

absolute changes (∆) in Accuracy (Acc), Leven-465

shtein distance (Dist), and perplexity after dropout.466

All methods show evidence of localization.467

Randomly dropping out the same number of neu-468

rons (RANDOM) barely changes the LLM behav-469

ior. In comparison, all five localization methods470

successfully identify neurons that contribute much471

more to memorizing the target sequence than to472

negative examples, showing evidence of their lo-473

calization ability on real-world memorized data.474

Methods trade off between ∆Self and ∆Neg.475

We find SLIMMING and HARD CONCRETE much476

more effective than other methods in erasing the477

target sequence itself. However, they are worse478

at preserving LLM memorization of the negative479

examples and the perplexity of randomly sampled480

sequences. For example, dropping out 0.5% of481

GPT2 neurons predicted by SLIMMING decreases482

Accuracy by 57.8% and increases 75.4 characters483

in Levenshtein distance on the target sequence, but484

it also hurts the Accuracy on negative examples485

by 6.4% and increases Levenshtein distance by 7.5486

on average. On the other hand, IG best maintains487

the performance on negative examples and perplex-488

ity, but is not as successful in erasing the target489

sequence itself. Interestingly, although ZERO-OUT490

assigns the attribution scores with a leave-one-out491

approach, it does not perform the best on either492

target sequences or negative examples, implying 493

that the individual neuron dropout effect does not 494

reliably predict the collective effect of dropping out 495

many neurons at the same time. Overall, it is chal- 496

lenging for methods to effectively and specifically 497

locate the target sequence at the same time. 498

Two benchmarks are consistent in rankings. 499

The INJ Benchmark, which solely evaluates the 500

injected target sequences,2 and the Self- part of the 501

DEL Benchmark show consistent rankings: HARD 502

CONCRETE performs slightly better than SLIM- 503

MING, followed by ZERO-OUT and IG; ACTIVA- 504

TIONS performs the worst but still substantially 505

outperforms RANDOM. This consistency suggests 506

that despite the differences in data and setups, the 507

two benchmarks reflect the same underlying local- 508

ization abilities of different methods. 509

Which negative examples are forgotten? We 510

analyze how the negative examples affected by 511

dropout are related to the target sequence. Fig- 512

ure 2 is the confusion matrix on a representative 513

subset of GPT2 memorized data, Y ⊂ X , where 514

each row shows how dropping out 0.5% of the neu- 515

rons predicted by HARD CONCRETE on a target 516

sequence changes the Accuracy of every sequence 517

in Y . We group sequences under the same category 518

2INJ Benchmark does not have negative examples, since
we do not have ground-truth neurons of pretrained sequences.

7

(see Table 1) in adjacent rows. We find HARD CON-519

CRETE sometimes confuses related data; for exam-520

ple, in the Address category consisting of mailing521

addresses, dropping out the neurons of an address522

sequence also causes substantial Accuracy drops523

on other addresses. We also find confusion across524

the Poems, Shakespeare, and Bible categories of525

literary sequences. Qualitatively, we found sev-526

eral web pages containing famous quotes from527

different poems and books; such co-occurrences528

may also appear multiple times in GPT2’s pretrain-529

ing corpus and may explain why in Figure 2, a530

small set of neurons affect quotes from different531

sources. While these findings could suggest that532

HARD CONCRETE struggles to pinpoint neurons533

that are specific to a target sequence, it may also534

be that LLMs actually use a shared set of neurons535

to memorize several related sequences. Figure 4 in536

A.6 shows the confusion matrices of other methods537

and Figure 5 is the matrix of the entire dataset X .538

Both figures share patterns similar to Figure 2.539

6 Related Work and Discussion540

Localization identifies function-specific compo-541

nents, including neurons (Radford et al., 2017;542

Gurnee et al., 2023), layers (Gupta et al., 2023),543

or subnetworks (Csordás et al., 2021; Cao et al.,544

2021; Foroutan et al., 2022). For example, Dai et al.545

(2022) find knowledge neurons for each relational546

fact. Meng et al. (2022) locate relational facts to547

middle FFNs, specifically when LLMs process the548

last token of the subject. Bayazit et al. (2023) dis-549

cover sparse knowledge subnetworks in GPT2 with550

a differentiable weight masking method. However,551

there is no standard approach to evaluate the ef-552

fectiveness of localization methods. We are the553

first to systematically and directly compare differ-554

ent methods on LLMs of different sizes, including555

knowledge neurons (IG) and differentiable mask-556

ing methods SLIMMING and HARD CONCRETE.557

We take the view that LLM memorization of558

a sequence is different from learning a type of559

knowledge. Memorization is reproducing a long560

sequence (near) verbatim. In contrast, knowledge,561

often represented as a <subject, relation, object>562

triplet, occurs in variable contexts, where para-563

phrases are treated as equivalent expressions of the564

same knowledge. Localization of verbatim memo-565

rization helps unlearn private or copyrighted data,566

for example, Wu et al. (2023) apply IG to local-567

ize and then erase private data from a BERT fine-568

Trump URL GitHub Poems Shakespeare Bible Address

Tr
um

p
U

R
L

G
it

H
ub

Po
em

s
B

ib
le

A
dd

re
ss

Sh
ak

es
pe

ar
e

Erase a Trump quote,
Δ Acc on a URL Δ Accuracy

Figure 2: The confusion matrix of HARD CONCRETE
on a subset of data memorized by GPT2-XL.

tuned on Enron Email dataset (Klimt and Yang, 569

2004). Our DEL Benchmark differs from Wu et al. 570

(2023) in two main ways: (1) we delete sequences 571

that LLMs have naturally memorized during pre- 572

training, (2) we locate neurons for each sequence 573

independently, rather than finding a shared set of 574

neurons, as our collected datasets cover diverse se- 575

quences. Localization can also prevent overfitting: 576

Maini et al. (2023) drop out pre-allocated neurons 577

tied to memorizing mislabeled examples. In con- 578

trast with these works, we focus on benchmarking 579

localization ability, since successful localization is 580

the basis of its downstream applications. 581

7 Conclusion 582

We propose two benchmarking approaches to de- 583

fine the success of LLM localization, focusing on 584

locating a small set of neurons in an LLM that are 585

responsible for memorizing a sequence. The INJ 586

Benchmark enables a direct evaluation of localiza- 587

tion methods, while the DEL Benchmark evaluates 588

methods on naturally memorized sequences, using 589

dropout to measure localization success. The two 590

benchmarks complement each other and show con- 591

sistent rankings of methods. We find promising 592

localization ability of all five methods we evalu- 593

ate, especially for HARD CONCRETE. Meanwhile, 594

all methods confuse memorized sequences in the 595

same or related categories. This finding suggests a 596

need for better localization methods and poses the 597

open question of whether LLMs use a shared set of 598

neurons to memorize related sequences such that 599

perfect localization is not possible. 600

8

8 Limitations601

We follow prior work (§2) and assume that FFNs602

are the most important components in LLMs for603

memorizing data; thus, we only study localization604

in FFNs, not considering other model components605

such as attention layers. Similarly, we focus on606

neurons instead of individual weights in FFNs, so607

as to make fair comparisons with existing methods,608

IG and ACTIVATIONS.609

In the INJ Benchmark, we assume that all the610

fine-tuned weights are responsible for memorizing611

the newly injected sequence. However, there is no612

guarantee that all of them contribute to memoriza-613

tion. We roughly address this issue by lowering the614

injection ratio, which makes it less likely for the615

model to memorize the injected sequence without616

using all of the chosen weights; indeed, we observe617

that when the ratio is 10× smaller, all localization618

methods achieve higher recalls in Table 2, even619

though the random baseline performs 10× worse.620

We acknowledge the limitations of evaluating621

localization in our DEL Benchmark. First, we use622

dropout (namely, zero ablation) to observe the im-623

portance of the located neurons, which is only one624

possible way to approach localization; other ap-625

proaches such as mean ablation (Wang et al., 2023)626

and path patching (Goldowsky-Dill et al., 2023;627

Hanna et al., 2023) are not covered in this paper.628

Besides, given a target sequence, we treat all the629

other memorized sequences as its negative exam-630

ples without considering semantic overlap or data631

sources, as our data deduplication only ensures632

there is little lexical overlap between sequences633

(§3.2). However, we find all localization methods634

show confusion between several quotes, which may635

share semantic similarities or co-occur in some pre-636

trained documents. It is debatable whether related637

examples should be considered negative, and it de-638

pends on what the goal of localization is. We invite639

future work to propose new ways to define the suc-640

cess of localization for the DEL Benchmark.641

References642

Deniz Bayazit, Negar Foroutan, Zeming Chen, Gail643
Weiss, and Antoine Bosselut. 2023. Discovering644
knowledge-critical subnetworks in pretrained lan-645
guage models. ArXiv preprint, abs/2310.03084.646

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,647
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-648
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai649
Prashanth, Edward Raff, Aviya Skowron, Lintang650

Sutawika, and Oskar van der Wal. 2023. Pythia: 651
A suite for analyzing large language models across 652
training and scaling. 653

Lucas Bourtoule, Varun Chandrasekaran, Christopher A 654
Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu 655
Zhang, David Lie, and Nicolas Papernot. 2021. Ma- 656
chine unlearning. In 2021 IEEE Symposium on Secu- 657
rity and Privacy (SP), pages 141–159. IEEE. 658

Steven Cao, Victor Sanh, and Alexander Rush. 2021. 659
Low-complexity probing via finding subnetworks. In 660
Proceedings of the 2021 Conference of the North 661
American Chapter of the Association for Computa- 662
tional Linguistics: Human Language Technologies, 663
pages 960–966, Online. Association for Computa- 664
tional Linguistics. 665

Yinzhi Cao and Junfeng Yang. 2015. Towards making 666
systems forget with machine unlearning. In 2015 667
IEEE symposium on security and privacy, pages 463– 668
480. IEEE. 669

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej 670
Kos, and Dawn Song. 2019. The secret sharer: Eval- 671
uating and testing unintended memorization in neu- 672
ral networks. In 28th USENIX Security Symposium 673
(USENIX Security 19), pages 267–284. 674

Nicholas Carlini, Florian Tramer, Eric Wallace, 675
Matthew Jagielski, Ariel Herbert-Voss, Katherine 676
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar 677
Erlingsson, et al. 2021. Extracting training data from 678
large language models. In 30th USENIX Security 679
Symposium (USENIX Security 21), pages 2633–2650. 680

Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, 681
Zhangyang Wang, and Jingjing Liu. 2021. Early- 682
BERT: Efficient BERT training via early-bird lottery 683
tickets. In Proceedings of the 59th Annual Meet- 684
ing of the Association for Computational Linguistics 685
and the 11th International Joint Conference on Natu- 686
ral Language Processing (Volume 1: Long Papers), 687
pages 2195–2207, Online. Association for Computa- 688
tional Linguistics. 689

Róbert Csordás, Sjoerd van Steenkiste, and Jürgen 690
Schmidhuber. 2021. Are neural nets modular? in- 691
specting functional modularity through differentiable 692
weight masks. In International Conference on Learn- 693
ing Representations. 694

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao 695
Chang, and Furu Wei. 2022. Knowledge neurons in 696
pretrained transformers. In Proceedings of the 60th 697
Annual Meeting of the Association for Computational 698
Linguistics (Volume 1: Long Papers), pages 8493– 699
8502, Dublin, Ireland. Association for Computational 700
Linguistics. 701

Negar Foroutan, Mohammadreza Banaei, Rémi Lebret, 702
Antoine Bosselut, and Karl Aberer. 2022. Discov- 703
ering language-neutral sub-networks in multilingual 704
language models. In Proceedings of the 2022 Con- 705
ference on Empirical Methods in Natural Language 706
Processing, pages 7560–7575, Abu Dhabi, United 707

9

https://arxiv.org/abs/2310.03084
https://arxiv.org/abs/2310.03084
https://arxiv.org/abs/2310.03084
https://arxiv.org/abs/2310.03084
https://arxiv.org/abs/2310.03084
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
http://arxiv.org/abs/2304.01373
https://arxiv.org/pdf/1912.03817.pdf
https://arxiv.org/pdf/1912.03817.pdf
https://arxiv.org/pdf/1912.03817.pdf
https://doi.org/10.18653/v1/2021.naacl-main.74
https://www.ieee-security.org/TC/SP2015/papers-archived/6949a463.pdf
https://www.ieee-security.org/TC/SP2015/papers-archived/6949a463.pdf
https://www.ieee-security.org/TC/SP2015/papers-archived/6949a463.pdf
https://www.usenix.org/system/files/sec19-carlini.pdf
https://www.usenix.org/system/files/sec19-carlini.pdf
https://www.usenix.org/system/files/sec19-carlini.pdf
https://www.usenix.org/system/files/sec19-carlini.pdf
https://www.usenix.org/system/files/sec19-carlini.pdf
https://www.usenix.org/system/files/sec21-carlini-extracting.pdf
https://www.usenix.org/system/files/sec21-carlini-extracting.pdf
https://www.usenix.org/system/files/sec21-carlini-extracting.pdf
https://doi.org/10.18653/v1/2021.acl-long.171
https://doi.org/10.18653/v1/2021.acl-long.171
https://doi.org/10.18653/v1/2021.acl-long.171
https://doi.org/10.18653/v1/2021.acl-long.171
https://doi.org/10.18653/v1/2021.acl-long.171
https://openreview.net/forum?id=7uVcpu-gMD
https://openreview.net/forum?id=7uVcpu-gMD
https://openreview.net/forum?id=7uVcpu-gMD
https://openreview.net/forum?id=7uVcpu-gMD
https://openreview.net/forum?id=7uVcpu-gMD
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.emnlp-main.513
https://doi.org/10.18653/v1/2022.emnlp-main.513
https://doi.org/10.18653/v1/2022.emnlp-main.513
https://doi.org/10.18653/v1/2022.emnlp-main.513
https://doi.org/10.18653/v1/2022.emnlp-main.513

Arab Emirates. Association for Computational Lin-708
guistics.709

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-710
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-711
race He, Anish Thite, Noa Nabeshima, et al. 2021.712
The pile: An 800gb dataset of diverse text for lan-713
guage modeling. ArXiv preprint, abs/2101.00027.714

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir715
Globerson. 2023. Dissecting recall of factual associa-716
tions in auto-regressive language models. In Proceed-717
ings of the 2023 Conference on Empirical Methods in718
Natural Language Processing, pages 12216–12235,719
Singapore. Association for Computational Linguis-720
tics.721

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Gold-722
berg. 2022. Transformer feed-forward layers build723
predictions by promoting concepts in the vocabulary724
space. In Proceedings of the 2022 Conference on725
Empirical Methods in Natural Language Process-726
ing, pages 30–45, Abu Dhabi, United Arab Emirates.727
Association for Computational Linguistics.728

Mor Geva, Roei Schuster, Jonathan Berant, and Omer729
Levy. 2021. Transformer feed-forward layers are key-730
value memories. In Proceedings of the 2021 Confer-731
ence on Empirical Methods in Natural Language Pro-732
cessing, pages 5484–5495, Online and Punta Cana,733
Dominican Republic. Association for Computational734
Linguistics.735

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato,736
and Aryaman Arora. 2023. Localizing model737
behavior with path patching. ArXiv preprint,738
abs/2304.05969.739

Zhuocheng Gong, Di He, Yelong Shen, Tie-Yan Liu,740
Weizhu Chen, Dongyan Zhao, Ji-Rong Wen, and Rui741
Yan. 2022. Finding the dominant winning ticket in742
pre-trained language models. In Findings of the As-743
sociation for Computational Linguistics: ACL 2022,744
pages 1459–1472, Dublin, Ireland. Association for745
Computational Linguistics.746

Anshita Gupta, Debanjan Mondal, Akshay Sheshadri,747
Wenlong Zhao, Xiang Li, Sarah Wiegreffe, and Niket748
Tandon. 2023. Editing common sense in transform-749
ers. In Proceedings of the 2023 Conference on Em-750
pirical Methods in Natural Language Processing,751
pages 8214–8232, Singapore. Association for Com-752
putational Linguistics.753

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine754
Harvey, Dmitrii Troitskii, and Dimitris Bertsimas.755
2023. Finding neurons in a haystack: Case stud-756
ies with sparse probing. Transactions on Machine757
Learning Research.758

Song Han, Huizi Mao, and William J Dally. 2016. Deep759
compression: Compressing deep neural networks760
with pruning, trained quantization and huffman cod-761
ing. In International Conference on Learning Repre-762
sentations.763

Michael Hanna, Ollie Liu, and Alexandre Variengien. 764
2023. How does GPT-2 compute greater-than?: In- 765
terpreting mathematical abilities in a pre-trained lan- 766
guage model. In Thirty-seventh Conference on Neu- 767
ral Information Processing Systems. 768

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghan- 769
deharioun. 2023. Does localization inform editing? 770
surprising differences in causality-based localization 771
vs. knowledge editing in language models. In Thirty- 772
seventh Conference on Neural Information Process- 773
ing Systems. 774

Babak Hassibi and David Stork. 1992. Second order 775
derivatives for network pruning: Optimal brain sur- 776
geon. In Advances in Neural Information Processing 777
Systems, volume 5. Morgan-Kaufmann. 778

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate- 779
gorical reparameterization with gumbel-softmax. In 780
International Conference on Learning Representa- 781
tions. 782

Bryan Klimt and Yiming Yang. 2004. Introducing the 783
enron corpus. In CEAS, volume 45, pages 92–96. 784

Jooyoung Lee, Thai Le, Jinghui Chen, and Dongwon 785
Lee. 2023. Do language models plagiarize? In 786
Proceedings of the ACM Web Conference 2023, pages 787
3637–3647. 788

Katherine Lee, Daphne Ippolito, Andrew Nystrom, 789
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch, 790
and Nicholas Carlini. 2022. Deduplicating training 791
data makes language models better. In Proceedings 792
of the 60th Annual Meeting of the Association for 793
Computational Linguistics (Volume 1: Long Papers), 794
pages 8424–8445, Dublin, Ireland. Association for 795
Computational Linguistics. 796

Eric Lehman, Sarthak Jain, Karl Pichotta, Yoav Gold- 797
berg, and Byron Wallace. 2021. Does BERT pre- 798
trained on clinical notes reveal sensitive data? In 799
Proceedings of the 2021 Conference of the North 800
American Chapter of the Association for Computa- 801
tional Linguistics: Human Language Technologies, 802
pages 946–959, Online. Association for Computa- 803
tional Linguistics. 804

Vladimir I. Levenshtein. 1965. Binary codes capable of 805
correcting deletions, insertions, and reversals. Soviet 806
physics. Doklady, 10:707–710. 807

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Un- 808
derstanding neural networks through representation 809
erasure. ArXiv preprint, abs/1612.08220. 810

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, 811
Shoumeng Yan, and Changshui Zhang. 2017. Learn- 812
ing efficient convolutional networks through network 813
slimming. In 2017 IEEE International Conference 814
on Computer Vision (ICCV), pages 2755–2763. 815

Christos Louizos, Max Welling, and Diederik P. Kingma. 816
2018. Learning sparse neural networks through l_0 817
regularization. In International Conference on Learn- 818
ing Representations. 819

10

https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://aclanthology.org/2023.emnlp-main.751
https://aclanthology.org/2023.emnlp-main.751
https://aclanthology.org/2023.emnlp-main.751
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://arxiv.org/pdf/2304.05969.pdf
https://arxiv.org/pdf/2304.05969.pdf
https://arxiv.org/pdf/2304.05969.pdf
https://doi.org/10.18653/v1/2022.findings-acl.115
https://doi.org/10.18653/v1/2022.findings-acl.115
https://doi.org/10.18653/v1/2022.findings-acl.115
https://aclanthology.org/2023.emnlp-main.511
https://aclanthology.org/2023.emnlp-main.511
https://aclanthology.org/2023.emnlp-main.511
https://openreview.net/forum?id=JYs1R9IMJr
https://openreview.net/forum?id=JYs1R9IMJr
https://openreview.net/forum?id=JYs1R9IMJr
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://openreview.net/forum?id=p4PckNQR8k
https://openreview.net/forum?id=p4PckNQR8k
https://openreview.net/forum?id=p4PckNQR8k
https://openreview.net/forum?id=p4PckNQR8k
https://openreview.net/forum?id=p4PckNQR8k
https://openreview.net/forum?id=EldbUlZtbd
https://openreview.net/forum?id=EldbUlZtbd
https://openreview.net/forum?id=EldbUlZtbd
https://openreview.net/forum?id=EldbUlZtbd
https://openreview.net/forum?id=EldbUlZtbd
https://proceedings.neurips.cc/paper_files/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://www.ceas.cc/papers-2004/168.pdf
https://www.ceas.cc/papers-2004/168.pdf
https://www.ceas.cc/papers-2004/168.pdf
https://dl.acm.org/doi/abs/10.1145/3543507.3583199
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2021.naacl-main.73
https://doi.org/10.18653/v1/2021.naacl-main.73
https://doi.org/10.18653/v1/2021.naacl-main.73
https://api.semanticscholar.org/CorpusID:60827152
https://api.semanticscholar.org/CorpusID:60827152
https://api.semanticscholar.org/CorpusID:60827152
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1612.08220
https://doi.org/10.1109/ICCV.2017.298
https://doi.org/10.1109/ICCV.2017.298
https://doi.org/10.1109/ICCV.2017.298
https://doi.org/10.1109/ICCV.2017.298
https://doi.org/10.1109/ICCV.2017.298
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.820
2017. The concrete distribution: A continuous relax-821
ation of discrete random variables. In International822
Conference on Learning Representations.823

Pratyush Maini, Michael Curtis Mozer, Hanie Sedghi,824
Zachary Chase Lipton, J Zico Kolter, and Chiyuan825
Zhang. 2023. Can neural network memorization be826
localized? In Proceedings of the 40th International827
Conference on Machine Learning.828

Kevin Meng, David Bau, Alex J Andonian, and Yonatan829
Belinkov. 2022. Locating and editing factual associ-830
ations in GPT. In Advances in Neural Information831
Processing Systems.832

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea833
Finn, and Christopher D Manning. 2022. Fast model834
editing at scale. In International Conference on835
Learning Representations.836

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas837
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,838
Amanda Askell, Yuntao Bai, Anna Chen, Tom Con-839
erly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,840
Danny Hernandez, Scott Johnston, Andy Jones, Jack-841
son Kernion, Liane Lovitt, Kamal Ndousse, Dario842
Amodei, Tom Brown, Jack Clark, Jared Kaplan,843
Sam McCandlish, and Chris Olah. 2022. In-context844
learning and induction heads. Transformer Circuits845
Thread.846

Yasumasa Onoe, Michael Zhang, Eunsol Choi, and Greg847
Durrett. 2022. Entity cloze by date: What LMs know848
about unseen entities. In Findings of the Associa-849
tion for Computational Linguistics: NAACL 2022,850
pages 693–702, Seattle, United States. Association851
for Computational Linguistics.852

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and853
Sanjeev Arora. 2023. Task-specific skill localization854
in fine-tuned language models. In International Con-855
ference on Machine Learning, ICML 2023, 23-29856
July 2023, Honolulu, Hawaii, USA, volume 202 of857
Proceedings of Machine Learning Research, pages858
27011–27033.859

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.860
2017. Learning to generate reviews and discovering861
sentiment. ArXiv preprint, abs/1704.01444.862

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,863
Dario Amodei, Ilya Sutskever, et al. 2019. Language864
models are unsupervised multitask learners. OpenAI865
blog.866

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Pyrkin,867
Sergei Popov, and Artem Babenko. 2020. Editable868
neural networks. In International Conference on869
Learning Representations.870

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,871
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.872
Dropout: A simple way to prevent neural networks873
from overfitting. Journal of Machine Learning Re-874
search, 15(56):1929–1958.875

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. 876
Axiomatic attribution for deep networks. In Proceed- 877
ings of the 34th International Conference on Machine 878
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 879
August 2017, volume 70 of Proceedings of Machine 880
Learning Research, pages 3319–3328. PMLR. 881

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. 882
BERT rediscovers the classical NLP pipeline. In 883
Proceedings of the 57th Annual Meeting of the Asso- 884
ciation for Computational Linguistics, pages 4593– 885
4601, Florence, Italy. Association for Computational 886
Linguistics. 887

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 888
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 889
Kaiser, and Illia Polosukhin. 2017. Attention is all 890
you need. In Advances in Neural Information Pro- 891
cessing Systems, volume 30. 892

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, 893
Buck Shlegeris, and Jacob Steinhardt. 2023. Inter- 894
pretability in the wild: a circuit for indirect object 895
identification in GPT-2 small. In The Eleventh Inter- 896
national Conference on Learning Representations. 897

Xinwei Wu, Junzhuo Li, Minghui Xu, Weilong Dong, 898
Shuangzhi Wu, Chao Bian, and Deyi Xiong. 2023. 899
DEPN: Detecting and editing privacy neurons in pre- 900
trained language models. In Proceedings of the 2023 901
Conference on Empirical Methods in Natural Lan- 902
guage Processing, pages 2875–2886, Singapore. As- 903
sociation for Computational Linguistics. 904

Matthew D Zeiler and Rob Fergus. 2014. Visualiz- 905
ing and understanding convolutional networks. In 906
Computer Vision–ECCV 2014: 13th European Con- 907
ference, Zurich, Switzerland, September 6-12, 2014, 908
Proceedings, Part I 13, pages 818–833. Springer. 909

Chiyuan Zhang, Daphne Ippolito, Katherine Lee, 910
Matthew Jagielski, Florian Tramèr, and Nicholas Car- 911
lini. 2023. Counterfactual memorization in neural 912
language models. In Thirty-seventh Conference on 913
Neural Information Processing Systems. 914

Rui Zheng, Bao Rong, Yuhao Zhou, Di Liang, Sirui 915
Wang, Wei Wu, Tao Gui, Qi Zhang, and Xuanjing 916
Huang. 2022. Robust lottery tickets for pre-trained 917
language models. In Proceedings of the 60th Annual 918
Meeting of the Association for Computational Lin- 919
guistics (Volume 1: Long Papers), pages 2211–2224, 920
Dublin, Ireland. Association for Computational Lin- 921
guistics. 922

11

https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/pdf?id=Pbaiy3fRCt
https://openreview.net/pdf?id=Pbaiy3fRCt
https://openreview.net/pdf?id=Pbaiy3fRCt
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=-h6WAS6eE4
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://doi.org/10.18653/v1/2022.findings-naacl.52
https://doi.org/10.18653/v1/2022.findings-naacl.52
https://doi.org/10.18653/v1/2022.findings-naacl.52
https://proceedings.mlr.press/v202/panigrahi23a.html
https://proceedings.mlr.press/v202/panigrahi23a.html
https://proceedings.mlr.press/v202/panigrahi23a.html
https://arxiv.org/abs/1704.01444
https://arxiv.org/abs/1704.01444
https://arxiv.org/abs/1704.01444
https://openai.com/research/better-language-models
https://openai.com/research/better-language-models
https://openai.com/research/better-language-models
https://openreview.net/forum?id=HJedXaEtvS
https://openreview.net/forum?id=HJedXaEtvS
https://openreview.net/forum?id=HJedXaEtvS
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://proceedings.mlr.press/v70/sundararajan17a.html
https://doi.org/10.18653/v1/P19-1452
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://aclanthology.org/2023.emnlp-main.174
https://aclanthology.org/2023.emnlp-main.174
https://aclanthology.org/2023.emnlp-main.174
https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53
https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53
https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53
https://openreview.net/forum?id=67o9UQgTD0
https://openreview.net/forum?id=67o9UQgTD0
https://openreview.net/forum?id=67o9UQgTD0
https://doi.org/10.18653/v1/2022.acl-long.157
https://doi.org/10.18653/v1/2022.acl-long.157
https://doi.org/10.18653/v1/2022.acl-long.157

A Appendix923

A.1 The Loss for Information Injection924

In the INJ Benchmark, we use regular language925

modeling loss to train the LLM θ on a new se-926

quence x = [x1, . . . , xT] of T tokens. Formally,927

1

T − 1

T∑
t=2

− logPθ(xt|x<t) (13)928

Here, the index t starts from 2, because all the929

LLMs we use (GPT2 and Pythia models) do not930

add <bos> tokens to data when doing language931

modeling in their pretraining. Therefore, there is932

no loss on the first token x1 and the total loss is933

averaged across T − 1 token. We show the entire934

data injection process in Algorithm 1.935

A.2 Details of IG936

Recall that a sequence x = (p, s) consists of a937

prefix p and a suffix s = [s1, . . . , sT]. Denote938

P(ĥlt) as the LLM output probability of token st939

if we replace the original hidden state at the l-th940

layer, hlt ∈ Rd2 , with a new hidden state ĥlt ∈ Rd2 :941

P(ĥlt) = Pθ(st|p, s<t, ĥ
l
t) (14)942

To calculate the integrated gradients along the i-th943

neuron dimension, we gradually change ĥlt from944

a zero vector3 to the original hidden state hlt, and945

cumulating the gradients of P(·) along the i-th di-946

mension. Finally, we get the attribution scoreAl(i)947

by averaging the integrated gradients across the948

suffix length T :949

IGi(z) := zi

∫ 1

α=0

∂ P(αz)

∂zi
dα, (15)950

Al(i) =
1

T

T∑
t=1

IGi(h
l
t) (16)951

where IGi(h
l
t) is the integrated gradients along the952

i-th neuron dimension in the l-th layer at the t-th953

timestep, when the input is [p, s<t]. Sundararajan954

et al. (2017) compute Riemann sum to approxi-955

mate Eq. 15, which uses a fixed number of inter-956

vals to approximate the integrals. We closely fol-957

low the implementation of https://github.com/958

EleutherAI/knowledge-neurons.959

3We follow Dai et al. (2022) to set the baseline in integrated
gradients to a zero vector that has the same shape as hl

t.

A.3 Details of SLIMMING 960

We initialize every mask value ml
i as 1, which is 961

equivalent to running the pretrained LLM with- 962

out masking. When training the mask, we clip 963

every ml
i to [0, 1]. Note that for both SLIMMING 964

and HARD CONCRETE, because we are learning a 965

mask on each neuron, we do not apply any random 966

dropout during training. 967

A.4 Details of HARD CONCRETE 968

Louizos et al. (2018) obtain the hard concrete r.v. 969

m̄l
i by first stretching the binary concrete r.v. m̂l

i 970

(Eq. 11) from the interval (0, 1) to (γ, ζ), where 971

γ = −0.1, ζ = 1.1, and then clip the value to the 972

[0, 1] interval: 973

m̄l
i = min

(
1,max

(
0, m̂l

i · (ζ − γ) + γ
))

974

They then use L0 regularization to encourage spar- 975

sity on the weights after applying the mask m̄l. 976

After reparametrization, they have the regulariza- 977

tionR(m̄l): 978

R(m̄l) =

d2∑
i=1

σ
(
logml

i − C
)
, (17) 979

where C = β log −γ
ζ is a constant. 980

A.5 Computation costs of different methods 981

Among all five localization methods, ACTIVA- 982

TIONS is the most computationally efficient, be- 983

cause Eq. 8 only requires one forward pass. Both 984

the pruning-based methods SLIMMING and HARD 985

CONCRETE perform fast, as only the masks are 986

trainable. Calculating integrated gradients (IG) is 987

time-consuming, while ZERO-OUT is the worst, 988

because it leaves out every neuron one by one. 989

We compare the computational cost of different 990

Time
ACTIVATIONS ∼ 0.3 sec
SLIMMING ∼ 12 sec
HARD CONCRETE ∼ 1 min
IG ∼ 43 min
ZERO-OUT ∼ 8.5 hr

Table 4: The elapsed time of different methods to do
localization (i.e., assign attribution scores to every neu-
ron) on one sequence memorized by Pythia-6.9B. We
time all methods on a single RTX A6000 GPU.

12

https://github.com/EleutherAI/knowledge-neurons
https://github.com/EleutherAI/knowledge-neurons
https://github.com/EleutherAI/knowledge-neurons

methods on one sequence memorized by Pythia-991

deduped-6.9B, where each sequence in the col-992

lected set X consists of a 32-token prefix and a993

48-token suffix. We follow the common imple-994

mentation that sets the number of intervals to 20995

for Riemann sum in IG. Table 4 shows the elapsed996

time calculated on an RTX A6000 48G GPU. When997

running IG and ZERO-OUT we patch and batch the998

activations to reach 99% GPU utilities. Still, apply-999

ing ZERO-OUT to do localization on one sequence1000

costs 8.5 hours, and X contains 500 sequences in1001

total. Due to the extremely heavy computation1002

cost, we do not have the results of ZERO-OUT on1003

Pythia-6.9B in the DEL Benchmark.1004

A.6 Details of Data Collection1005

We show some collected examples in Tables 8 & 9.1006

Acc Dist PPL Len
GPT2-XL 99.3% 0.48 10.18 150
Pythia-deduped-2.8B 98.8% 1.07 5.58 160
Pythia-deduped-6.9B 99.7% 0.20 5.24 167

Table 5: Quantifying memorization of the collected
datasets. The high Accuracy (Acc) and low Levenshtein
distance (Dist) show our collected sequences (X) are
indeed well memorized by LLMs. The last column
(Len) reports the average suffix length of each dataset
at the character level. We also measure the perplexity
(PPL) on sequences sampled from the Pile-dedupe (D).

1007

The pretrained sequences of Pythia models.1008

EleutherAI releases the exact batches used by1009

Pythia models during pretraining, where each se-1010

quence in a batch consists of 2049 tokens 4. We1011

first randomly downsample the pretraining batches1012

to a subset Z of 102400 sequences. Then, we use1013

our criteria in §3.2 to determine whether Pythia1014

memorizes a sequence in the subset. After filtering,1015

there remain 500 ∼ 1000 sequences in the subsets1016

for both Pythia-deduped-2.8B and Pythia-deduped-1017

6.9B; we simply sample 505 of them respectively1018

as our collected datasets.1019

We also randomly sample a subset of 2048 se-1020

quences (D), each consisting of 128 tokens, to mea-1021

sure the perplexity of all LLMs we evaluate. We1022

ensure that Z ∩ D = ∅, so there is no overlap1023

between the collected memorized sequences and1024

sequences for perplexity.1025

4https://github.com/EleutherAI/pythia#
exploring-the-dataset

Filtering with greedy decoding. Given the pre- 1026

fix p as the prompt to the LLM, we generate the suf- 1027

fix s̄ = [s̄1, . . . , s̄48] with greedy decoding, where 1028

s̄t = argmax
w∈Voc

Pθ(w|p, s̄<t). (18) 1029

We then calculate the Levenshtein distance (Leven- 1030

shtein, 1965) between the true suffix s and the gen- 1031

erated one s̄, filtering out sequences with a distance 1032

greater than 20 characters. Note s̄ is different from 1033

ŝ in Eq 4, which is generated by teacher-forcing 1034

and is used to calculate memorization scores. 1035

Deduplication. Although we use the dedupli- 1036

cated version of the dataset and models, the Pile- 1037

dedupe and Pythia-deduped models, we still find 1038

lots of near-duplicated sequences. Thus, we further 1039

deduplicate the collected memorized sequences. In 1040

particular, we follow Lee et al. (2022) to repre- 1041

sent each sequence with a set of 5-grams when 1042

calculating the Jaccard index. Among a set of du- 1043

plicates, we select the one that is best memorized, 1044

i.e., having the lowest Levenshtein distance on the 1045

generated suffix s̄t (Eq. 18), and discard the others. 1046

1047

Manually searched data. With our searching 1048

criteria in §3.2, we can only identify less than 1049

10 memorized sequences from subsets of the Pile- 1050

dedupe, Common Crawl, and Wikipedia, probably 1051

because OpenAI carefully preprocesses the data be- 1052

fore training GPT2-XL. Thus, we actively search 1053

for potentially memorized data, such as famous po- 1054

ems and common lists of sorted items. We collect 1055

105 sequences memorized by GPT2-XL and manu- 1056

ally categorize them (see Tables 1 & 8), including 1057

31 examples from Carlini et al. (2021). We set the 1058

prefix and suffix of a sequence by trial and error 1059

to ensure high memorization Accuracy. Unlike au- 1060

tomatic searches that tend to find templated texts 1061

or uninteresting data with repetitive tokens (Zhang 1062

et al., 2023), our manual search ensures better data 1063

quality and enables us to analyze memorization 1064

within and across categories. 1065

In particular, Figures 4 & 5 show that different 1066

localization methods constantly confuse sequences 1067

of related categories. For example, they are unable 1068

to disentangle neurons of different quotes and iden- 1069

tify a small set of neurons responsible for both the 1070

order of Zodiac Signs and the order of Planets. 1071

Responsible checklist. Note the Contact Info 1072

category of our manually collected dataset only 1073

13

https://github.com/EleutherAI/pythia#exploring-the-dataset
https://github.com/EleutherAI/pythia#exploring-the-dataset

Figure 3: The DEL Benchmark results of ZERO-OUT, IG, and ACTIVATIONS methods when dropping out the same
number of neurons in a single layer, where the blue lines show ∆ Self-Acc and the red lines show ∆ Neg-Acc. Under
the same “neuron budget”, dropping out neurons in multiple layers (blue dashed lines) substantially outperforms
dropout in a single layer, implying that the memory of a piece of data is distributed over layers. Besides, dropping
out neurons in the bottom layer greatly hurts the memorization of negative examples (red lines), suggesting that the
bottom layer encodes general information.

contains public data, such as mailing addresses1074

of corporate headquarters and famous buildings;1075

thus, it does not have any potential risk of reveal-1076

ing private information. Similarly, our memorized1077

datasets for Pythia models are a subset of the Pile,1078

a public corpus under the MIT License.1079

A.7 Hyperparameters1080

In the INJ Benchmark, the ECBD-2021 set con-1081

tains 156 definition sequences. For the DEL1082

Benchmark, we collect a set of 505, 505, and1083

105 sequences memorized by Pythia-deduped-6.9B,1084

Pythia-deduped-2.8B, and GPT2-XL, respectively.1085

For each set, we sample 5 sequences as the dev1086

set, using the dev set performance to determine the1087

hyperparameters for each LLM. The hyperparame-1088

ters include the integrated gradient steps, i.e., the1089

number of intervals in Riemann sum for integral1090

approximation in IG; the temperature β and the1091

initialization value of parameters m in HARD CON-1092

CRETE; the learning rate, the number of training1093

epochs, and λ, which balances the memorization1094

loss and the sparsity loss, in SLIMMING and HARD1095

CONCRETE. We observe that both SLIMMING and1096

HARD CONCRETE are sensitive to the choice of1097

hyperparameters. On the other hand, we find the1098

performance of IG does not improve when using1099

more integrated gradient steps, where we experi- 1100

ment with different steps ranging from 20 to 300. 1101

Thus, we set the step to 20 for all examples to 1102

reduce the heavy computation costs. 1103

A.8 Dropping out neurons in a single layer 1104

For the DEL Benchmark, we study the alternative 1105

that dropping out the same number of neurons in 1106

a single layer to understand the individual effect 1107

of each layer. Specifically, in §5.2, a method pre- 1108

dicts top-k% of neurons in every layer after the 1109

bottommost layer. Thus, we have a “budget” of 1110

N = k%×6400×47 neurons for GPT2-XL, which 1111

has 6400 neurons in each FFN layer and 48 layers 1112

in total. In this section, we drop out the top-N 1113

neurons in a single layer in terms of the attribution 1114

scores assigned by a method. 1115

Figure 3 illustrates the absolute change in Ac- 1116

curacy when dropping out the top-N neurons in a 1117

layer, where the neurons are predicted by ZERO- 1118

OUT, IG, and ACTIVATIONS methods, respectively. 1119

The horizontal dashed lines show the results we re- 1120

port in Table 3 for comparison. First, we find that 1121

dropping out the same number of neurons in mul- 1122

tiple layers is much more efficient in erasing the 1123

target sequence, as the blue dashed line shows a 1124

greater decrease in Accuracy compared with drop- 1125

14

GPT2 124M GPT2-XL 1.5B Pythia-deduped 2.8B Pythia-deduped 6.9B

R@1% R@2% R@5% R@1% R@2% R@5% R@1% R@2% R@5% R@1% R@2% R@5%

ratio = 1%
HARD CONCRETE 46.6 66.8 88.0 21.8 25.1 32.8 33.3 48.4 70.7 31.5 47.5 69.4
SLIMMING 43.1 64.6 79.9 5.2 11.5 27.0 33.6 47.3 59.8 35.0 49.6 63.4
ZERO-OUT 24.0 36.8 52.7 4.2 7.3 13.5 10.1 14.3 20.5 - - -
IG 10.3 18.1 36.3 1.4 4.8 12.2 6.1 10.8 21.1 8.9 13.9 24.1
ACTIVATIONS 2.5 4.4 9.8 1.5 2.8 6.8 3.2 5.1 21.6 4.1 6.3 17.4
RANDOM 1.0 2.0 5.0 1.0 2.0 5.0 1.0 2.0 5.0 1.0 2.0 5.0

ratio = 0.1% @0.1% @0.2% @0.5% @0.1% @0.2% @0.5% @0.1% @0.2% @0.5% @0.1% @0.2% @0.5%

HARD CONCRETE 51.2 77.4 96.4 49.8 57.5 63.6 45.6 65.5 85.9 28.7 40.7 55.8
SLIMMING 62.7 87.0 95.4 18.1 35.1 54.0 45.0 62.6 73.6 39.1 52.1 64.3
ZERO-OUT 57.4 81.7 91.9 14.7 20.9 31.1 16.4 20.6 25.8 - - -
IG 36.0 55.0 75.5 2.5 3.5 6.0 12.6 16.4 21.9 19.7 23.6 28.9
ACTIVATIONS 9.0 12.9 23.4 3.5 4.6 6.7 8.0 16.8 40.5 21.2 31.4 50.2
RANDOM 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

Table 6: The INJ Benchmark. The average Reacall@k% of different methods when predicting top-k% of neurons
across layers. The results are consistent with Table 2, where methods predict top-k% of neurons in each layer.

ping out neurons in a single layer. Dropping out1126

N neurons in multiple layers (Self-0.1% 47 layers)1127

even outperforms dropping out 5×N neurons in1128

a single layer (Self-0.5% 1 layer), suggesting that1129

the storage of a piece of memory is distributed over1130

layers instead of concentrating in a single layer.1131

The only exception is dropping out neurons in1132

the bottommost layer, where Layer 1 decreases1133

more than multiple layers in Self-Acc; however,1134

it also greatly hurts Neg-Acc, the memorization1135

of negative examples. Layer 2 shows a similar but1136

slighter trend. The large decreases in memorization1137

accuracy on all sequences suggest that the bottom1138

layers of LLMs mainly work on processing basic1139

syntactic information (Tenney et al., 2019) or en-1140

coding general concepts, instead of focusing on a1141

specific sequence.1142

We do not have the single-layer results of SLIM-1143

MING and HARD CONCRETE, because both meth-1144

ods train the masks of all neurons jointly, which1145

requires us to retrain the masks only on a single1146

layer to obtain its attribution scores. In comparison,1147

the other three methods in Figure 3 consider each1148

neuron individually, allowing us to use the same1149

attribution scores we have in §5.2 to select neurons1150

in a single layer and make direct comparisons with1151

the values in Table 3.1152

A.9 Predicting top neurons across layers1153

In the INJ Benchmark, we randomly sample1154

weights across layers to inject the data, instead1155

of sampling a fixed percentage of weights per layer1156

(see Algorithm 1). Hence, it may seem more natu-1157

ral to predict top-k% of neurons across layers; we1158

experiment with this alternative in Table 6. 1159

Comparing the results of Table 2 and Table 6, we 1160

find that predicting top neurons per layer outper- 1161

forms predicting top neurons across layers. This 1162

is because all localization methods assign larger 1163

attribution scores to neurons in the bottom layers, 1164

barely predicting neurons in the upper layers if we 1165

rank neurons globally. On the other hand, Table 2 1166

and Table 6 show consistent results. Our findings 1167

and the ranking of different methods are coherent 1168

whether we rank neurons per layer or globally. 1169

A.10 Implementation Details 1170

Table 7 summarizes the architectures of LLMs we 1171

use. We run most experiments on RTX3090 24G 1172

GPUs; experiments involving Pythia-6.9B are run 1173

on RTXA6000 48G GPUs. We use transformers 1174

4.31.0 and pytorch 1.13.

Layers # Neurons
GPT2 124M 12 3072
GPT2-XL 1.5B 48 6400
Pythia-deduped-2.8B 32 10240
Pythia-deduped-6.9B 32 16384

Table 7: The number of layers and the number of FFN
neurons in each layer of different LLMs.

1175

15

Algorithm 1 Information Injection

Input: The set of new sequences XECBD = {xi}Ni=1; pretrained LLM θ with L layers; injection ratio r
Output: The set of fine-tuned LLMsM = {θ̃i}Ni=1

InitializeM← ∅.
for i← 1 to N do

θ̃i ← θ // Initialize from pretrained weights.
Retrieve all the FFN weight vectors Φi = {vl

1, . . . ,v
l
d2
}Ll=1 from layers l of θ̃i.

Set the random seed to i.
ϕi ← Randomly sample r% of weight vectors from Φi. // ϕi ⊂ Φi ⊂ θ̃i
Fine-tune ϕi with the language modeling loss on xi (Eq. 13) with remaining weights θ̃i \ ϕi frozen.
M←M∪ θ̃i.

end for
returnM

Email 100% Write to Jon Hilsenrath at jon.hilsenrath@wsj.com
Zodiac Signs 100% Aries Taurus Gemini Cancer Leo Virgo Libra Scorpio Sagittarius Capri-

corn Aquarius Pisces
Patreon 100% Thank you to our Patreon Supporters: Saintsofwar, Anon,

Lord_Of_Fapping, Dryzak, Chabalbac, ioNz, LaX, VNT
Declaration of
Independence

100% We hold these truths to be self-evident, that all men are created equal,
that they are endowed by their Creator with certain unalienable Rights,
that among these are Life, Liberty and the pursuit of Happiness.

Trump 100% Sorry losers and haters, but my I.Q. is one of the highest -and you all
know it! Please don’t feel so stupid or insecure, it’s not your fault.

Newton 100% I do not know what I may appear to the world, but to myself I seem
to have been only like a boy playing on the sea-shore, and diverting
myself in now and then finding a smoother pebble or a prettier shell than
ordinary, whilst the great ocean of truth lay all undiscovered before me.

Dr. MLK 100% And when this happens, and when we allow freedom ring, when we let it
ring from every village and every hamlet, from every state and every city,
we will be able to speed up that day when all of God’s children, black
men and white men, Jews and Gentiles, Protestants and Catholics, will
be able to join hands and sing in the words of the old Negro spiritual,
"Free at last! Free at last! Thank God Almighty, we are free at last"

Genesis 100% In the beginning God created the heaven and the earth. And the earth
was without form, and void; and darkness was upon the face of the deep.
And the Spirit of God moved upon the face of the waters. And God said,
Let there be light: and there was light.

The Road Not
Taken

100% Two roads diverged in a yellow wood,\n\nAnd sorry I could not travel
both\n\nAnd be one traveler, long I stood\n\nAnd looked down one as
far as I could\n\nTo where it bent in the undergrowth;\n\nThen took the
other, as just as fair,\n\nAnd having perhaps the better claim,\n\nBecause
it was grassy and wanted wear

Table 8: Examples of our manually collected data. The prompt (prefix) is colored in brown. The numbers are the
Accuracy (Eq. 5) of GPT2-XL on memorizing the sequences, where 100% Accuracy means the true suffix can be
fully reconstructed with greedy decoding.

16

Mike Wall Bio 100% Wall\n\nMichael was a science writer for the Idaho National Laboratory
and has been an intern at Wired.com, The Salinas Californian newspaper,
and the SLAC National Accelerator Laboratory. He has also worked as
a herpetologist and wildlife biologist. He has a Ph.D. in evolutionary
biology from the University of Sydney, Australia, a bachelor’s degree
from the

Hardware 100% PCs) may be defined as a desktop, floor standing, or portable microcom-
puter that includes a system unit having a central processing unit (CPU)
and associated volatile and non-volatile memory, including random ac-
cess memory (RAM) and basic input/output system read only memory
(BIOS ROM), a system monitor, a keyboard, one or more flexible diskette
drives, a CD-ROM drive,

Contact Info
of Skyhorse
Publishing

100% , or educational purposes. Special editions can also be created to spec-
ifications. For details, contact the Special Sales Department, Arcade
Publishing, 307 West 36th Street, 11th Floor, New York, NY 10018
or arcade@skyhorsepublishing.com.\n\nArcade Publishing® is a reg-
istered trademark of Skyhorse Publishing, Inc.®, a Delaware corpora-
tion.\n\nVisit

Meme 98% a lot; that’s great! It’s a little awkward to ask, but we need your help. If
you have already donated, we sincerely thank you. We’re not salespeople,
but we depend on donations averaging $14.76 and fewer than 1% of
readers give. If you donate just $5.00, the price of your coffee, Catholic
Online School could keep thriving. Thank

Malik Report 100% check that allowed Dvorak to flick the puck over his shoul-
der. . . \n\nAbout The Malik Report\n\nThe Malik Report is a destination
for all things Red Wings-related. I offer biased, perhaps unprofessional-
at-times and verbose coverage of my favorite team, their prospects and
developmental affiliates. I’ve joined the Kukla’s Korner family with five
years of blogging under

Porn 100% make love to her. She returned the favor with an amazing blowjob
and a masterful fuck session...\nENJOY!!!!\n\nThis entire website has
a voluntary content rating to block access by minors. This rating is
compatible with microsoft internet explorer’s content filtering function
and\nfacilitates website blocking software. For a tutorial on blocking
this site click here.\nCopyright bangbros.

Pokémon Fans 100% We’re a group of Pokémon fans dedicated to providing the best place on
the Internet for discussing ideas and sharing fan-made content. Welcome!
We’re glad you’re here.\n\nIn order to join our community we need you
to create an account with us. Doing so will allow you to make posts,
submit and view fan art and fan fiction, download fan-made games,

Table 9: Examples of memorized sequences we collect from the Pile-dedupe. The prompt (prefix) is colored in
brown. The numbers are the Accuracy (Eq. 5) of Pythia on memorizing the sequences, where 100% Accuracy
means the true suffix can be fully reconstructed with greedy decoding.

17

Figure 4: Confusion matrices of localization methods on a subset of sequences memorized by GPT2-XL, where
each row/column represents a sequence. Different methods show similar patterns of confusion.

18

Trump

URL

GitHub

Poems

Shakespeare

Bible

Address

Terms of Use,
Copyright

Alphabet

States, Provinces

Book Quotes

Dr. MLK

Error Logs

Patreon

Ads

Title

Wiki

News

Tr
um

p

U
R

L

G
itH

ub

P
oe

m
s

S
ha

ke
sp

ea
re

B
ib

le

A
dd

re
ss

Te
rm

s
of

 U
se

,
C

op
yr

ig
ht

A
lp

ha
be

t

S
ta

te
s,

 P
ro

vi
nc

es

B
oo

k
Q

uo
te

s

D
r.

M
LK

E
rr

or
 L

og
s

P
at

re
on A
ds

Ti
tle

W
ik

i

N
ew

s

Δ Accuracy

Figure 5: Confusion matrix of HARD CONCRETE on the entire test set memorized by GPT2-XL. Each row shows
how dropping out the predicted neurons (0.5%) on a target sequence changes the Accuracy of all sequences. HARD
CONCRETE is unable to disentangle neurons of different quotes, including poems, Bible, books, and some famous
people quotes. Also, it finds a small set of neurons responsible for memorizing both the order of Zodiac Signs and
the order of Planets.

19

	Introduction
	Background and Task Terminology
	Two Localization Benchmarks
	The INJ Benchmark
	The DEL Benchmark

	Localization Methods
	Experiments
	INJ Benchmark Results
	DEL Benchmark Results

	Related Work and Discussion
	Conclusion
	Limitations
	Appendix
	The Loss for Information Injection
	Details of IG
	Details of Slimming
	Details of Hard Concrete
	Computation costs of different methods
	Details of Data Collection
	Hyperparameters
	Dropping out neurons in a single layer
	Predicting top neurons across layers
	Implementation Details

