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Abstract001

Protein Language Models traditionally depend002
on Multiple Sequence Alignments (MSA) to003
incorporate evolutionary knowledge. However,004
MSA-based approaches suffer from substantial005
computational overhead and generally under-006
perform in generalizing to de novo proteins.007
This study reevaluates the role of MSA, propos-008
ing it as a retrieval augmentation method and009
questioning the necessity of sequence align-010
ment. We show that a simple alternative, Re-011
trieved Sequence Augmentation (RSA), can012
enhance protein representation learning with-013
out the need for alignment and cumbersome014
preprocessing. RSA surpasses MSA Trans-015
former by an average of 5% in both structural016
and property prediction tasks while being 373017
times faster. Additionally, RSA demonstrates018
enhanced transferability for predicting de novo019
proteins. This methodology addresses a critical020
need for efficiency in protein prediction and can021
be rapidly employed to identify homologous se-022
quences, improve representation learning, and023
enhance the capacity of Large Language Mod-024
els to interpret protein structures.1025

1 Introduction026

Proteins are fundamental yet complex components027

of life. They exhibit a diverse range of functions028

within organisms. The enigmatic characteristic029

of these macromolecules originates from the in-030

tricate interplay between their sequences, struc-031

tures, and functions, which is influenced jointly by032

physics and evolution (Sadowski and Jones, 2009).033

Protein language models (Elnaggar et al., 2020;034

Jumper et al., 2021; Lin et al., 2022) capture the035

co-occurrence probability of amino acids observed036

in nature, thus encapsulating structural and evolu-037

tionary information within the resulting represen-038

tations. While this approach has demonstrated its039

effectiveness (Elnaggar et al., 2021; Jumper et al.,040

1Code and data are available at this anonymous repo.

Figure 1: (Upper) Illustration of inference speed up
by RSA compared to MSA on secondary structure
prediction dataset with 8678 sequences. Accelerated
MSA (Acc-MSA) refers to MSA built from sequences
retrieved by our RSA retriever. (Lower) Illustration
of speed up by RSA retrieval compared to MSA on
database construction of 10000 protein sequences.

2021; Lin et al., 2022; Nijkamp et al., 2022; Rives 041

et al., 2019), the evolutionary knowledge that can 042

be extracted from a single sequence remains insuf- 043

ficient (Hu et al., 2022; Lin et al., 2022). 044

In order to compensate for this limitation, mul- 045

tiple sequence alignments (MSA)Yanofsky et al. 046

1964; Altschuh et al. 1988; De Juan et al. 2013; 047

Jumper et al. 2021) have been extensively used 048

as a foundational protein feature engineering tech- 049

nique to extract protein evolutionary information 050

in protein models (Rao et al., 2021; Jumper et al., 051

2021; Abramson et al., 2024). MSA draws on the 052

evolutionary principle that functional constraints 053

of species govern the mutation rate, which in turn 054

drives the convergence of sequences. Therefore, 055

key residues at functional sites tend to be con- 056

served across protein families. MSA primarily 057

aligns these conserved regions across homologous 058

proteins to identify critical functional residues, 059

such as substrate binding sites (Kunji and Robin- 060

son, 2006). Traditional approaches (Yanofsky 061

et al., 1964; Altschuh et al., 1988) such as Potts 062

Model (Balakrishnan et al., 2011), directly extracts 063

statistical features from MSA for structural predic- 064

tion. In recent studies (Jumper et al., 2021; Rao 065

et al., 2021; Yang et al., 2020; Ju et al., 2021), mod- 066
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Protein Task: Where is the 
protein MGSNKSKPKDASQRRRSLEPAEN 

located within a cell? 

p(y|x) = Σp(y|r,x)p(r|x) 

The protein is located 
on the membrane.
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[SEP]
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Protein Language Model

USER: Where is the protein located ?  

ASSISTANT: Calling RSA Tool  

Homologs for this protein (UniProt ID): 
A0A1D8PKY1_CANAL, A0A4Q4U3A7_9PEZI…

Calling Interpro Database Tool  
A0A1D8PKY1_CANAL, Cnh1p protein is a multi-
pass membrane protein. A0A4Q4U3A7_9PEZI, 
is a fungal-type vacuole membrane protein.
The protein is most likely to be located on 
the membrane.

Figure 2: Comparison between MSA Transformer and RSA. MSA Transformer aligns query to the protein
database and use axial attention to encode MSA feature. RSA could enhance protein language models by encoding
both retrieved and original sequences. RSA could enhance LLM as a tool. Both MSA Transformer and RSA fall
within the retrieval framework; however, RSA doesn’t require the alignment process.

els like MSA Transformer (Rao et al., 2021) and067

AlphaFold (Jumper et al., 2021; Abramson et al.,068

2024) employ language models for predictions us-069

ing MSAs as input feature. Despite being a vital070

component for state-of-the-art models, MSA car-071

ries a NP-Complete computational cost that scales072

with O(LN ) (Wang and Jiang, 1994), where L rep-073

resents the length of each sequence and N denotes074

the number of sequences examined. Even with075

acceleration techniques, MSA remains computa-076

tionally intensive. For example, HHblits (Remmert077

et al., 2012) requires 10 seconds for a single itera-078

tion search on Pfam using 64 CPUs.079

This motivates us to investigate alternatives to080

traditional alignment by addressing two research081

questions: (1) Is alignment truly necessary for082

protein language models, and (2) is there a cost-083

efficient substitute for MSA?084

To answer these questions, we revisit MSA from085

a data-centric point of view and prove through the-086

oretical analysis that it can be viewed as a retrieval-087

augmentation method (Goyal et al., 2022; Guu088

et al., 2020a; Khandelwal et al., 2019; Wang et al.,089

2022). We argue that MSA is retrieval through090

alignment. Retrieval-augmentation employs a091

large-scale memory of sequences as the knowledge092

base and utilizes multiple related input sequences093

instead of the single input to connect to the required094

knowledge. This approach offers the potential for095

more interpretable and modular knowledge cap-096

ture (Guu et al., 2020b). It also enables rapid gener-097

alization to new domains (Khandelwal et al., 2019;098

Basu et al., 2022). Furthermore, we show that align-099

ment is not essential as long as we have a strong100

sequence encoder, i.e. a transformer-based protein101

language model. This finding echoes previous re-102

search (Bhattacharya et al., 2020) that co-evolution103

patterns found through alignment could be cap-104

tured with a single layer of attention without shared 105

parameters across sequences. Since MSA is not 106

indispensable and works mainly by enhancing pro- 107

tein language models as a retrieval-augmentation 108

method, more efficient alignment-free retrievers 109

can naturally serve as a substitute for MSA. 110

To this end, we explore Retrieved Sequence 111

Augmentation (RSA) methods as a general frame- 112

work to enhance protein representations. Specifi- 113

cally, RSA employs a pre-trained dense sequence 114

retriever in search for protein sequences that are 115

similar to the query sequence both in terms of ho- 116

mology as well as structure. By encoding retrieved 117

sequences alongside the original protein, the model 118

incorporates external knowledge and transfers it 119

to new domains. Our assessment of this method 120

consists of comprehensive experiments conducted 121

across seven distinct tasks, including protein struc- 122

ture, function, evolution, and engineering, which 123

require diverse knowledge. Using a vast database 124

of approximately 40 million protein sequences, we 125

show that a retrieval-based approach leveraging 126

this data consistently outperforms state-of-the-art 127

methods. Moreover, RSA employs retrieved se- 128

quences from dense retrievers without requiring 129

an alignment process, thus resulting in a 373-fold 130

speed-up and on-the-fly processing, as shown in 131

Figure 1. Additionally, RSA without additional 132

pretraining outperforms a pre-trained MSA Trans- 133

former in the downstream tasks, particularly for 134

denovo proteins with few or no MSAs. It can be 135

easily incorporated to augment any pre-trained pro- 136

tein language model, and be used as an efficient 137

tool to boost the ability of large language model 138

(LLM), e.g. GPT-4 (Achiam et al., 2023) to under- 139

stand protein sequence. Consequently, we conclude 140

that retrieval augmentation for proteins as a general 141

framework can be a sound replacement for MSA in 142
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terms of expressiveness, speed, and augmentation143

performance. Our contributions include:144

• The investigation of retrieval-augmented pro-145

tein language models and the proposal of146

the first alignment-free, efficient framework,147

RSA, for enhancing any protein representa-148

tion model as well as LLM.149

• The theoretical establishment of a uni-150

fied framework reveal two insights: (1)151

MSA-augmented methods can be viewed as152

retrieval-augmented language models. Their153

performance can be explained by the injection154

of evolutionary knowledge. (2) The complex155

alignment process is not essential for deep156

protein language models.157

• The demonstration that pre-trained dense re-158

trievers offer greater efficiency and compet-159

itive efficacy in extracting homologous se-160

quences and structurally similar sequences.161

2 Augmenting Protein Representations162

with Retrieved Sequences – Is MSA163

necessary?164

In this section, we rethink MSA-based models un-165

der a unified retrieval augmentation framework.166

We show that MSA sequences enhance representa-167

tions in a similar way retrieved-augmentations do.168

Furthermore, we emphasize design elements that169

inspire our methodology for achieving increased170

efficiency and flexibility.171

2.1 Background and Problem Statement172

Given a protein x = [o1, o2, ...oL] comprising of173

L amino acids, the objective of a protein language174

model is to learn an embedding transferable to sub-175

sequent tasks, e.g. predicting properties of the se-176

quence p(y|x). The embedding is represented as177

Embed(x) = [h1, h2, ...hL], where hi ∈ Rd.178

One way to construct an evolution-informed rep-179

resentation involves encoding MSA input. We180

consider MSA as N aligned protein homologs181

r1, . . . , rN . Prior studies (Yang et al., 2020; Ju182

et al., 2021) encode MSA as co-evolution statis-183

tics features R1...N and aggregate these features184

to derive the representation, while MSA Trans-185

former (Rao et al., 2021; Jumper et al., 2021) per-186

ceives MSA as a matrix, employing axial atten-187

tion to extract salient evolutionary traits. Here we188

also denote retrieved sequences as r1, . . . , rN and189

their features as R1...N , though no alignment is190

performed on these sequences.191

2.2 MSA is Retrieval through Alignment 192

Inspired by Guu et al. (2020b), we rethink state- 193

of-the-art evolution augmentation methods under 194

a new framework: protein retrieval augmentation. 195

Specifically, we consider these methods as learn- 196

ing a downstream predictor p(y|x) based on an 197

aggregation of homologous protein representations 198

R1...N . From the view of retrieval, p(y|x) is de- 199

composed into two steps: retrieve and predict. For 200

a given input x, the retrieve step first finds possibly 201

helpful protein sequence r from a sequence corpus 202

R and then predict the output y conditioning on 203

this retrieved sequence: 204

p(y|x) =
∑
r∈R

p(y|x, r)p(r|x) ≈
N∑

n=1

p(y|x, rn)p(rn|x). (1) 205

The probability p(r|x) denotes the possibility 206

that r is sampled from the retriever given x. In- 207

tuitively it measures the similarity between the 208

two sequences r and x. This framework also ap- 209

plies to the MSA-based augmentation methods. 210

We explain in detail using a state-of-the-art MSA- 211

augmentation model MSA Transformer (Rao et al., 212

2021) as an example. In MSA Transformer, the 213

axial attention layers calculate self-attention both 214

row-wise and column-wise. Column-wise attention 215

is defined as follows, given WQ, WK , WV , WO as 216

the parameters in a typical attention function: 217

Rs(i) =
∑N

n=1 σ(
Rs(i)WQ(Rn(i)WK)T

N
√
d

)Rn(i)WV WO, (2) 218

where Rn(i) denotes the i-th token representation 219

of the n-th MSA sequence after performing the row- 220

wise attention. Note that in MSA input, the first 221

sequence r1 is defined as the original sequence x. 222

Then for a token prediction task, we define the i-th 223

position output as y and the predicted distribution 224

p(y|x) can be expressed as: 225

p(y|x) =
N∑

n=1

σ(
R1WQ(RnWK)T

N
√
d

)(RnWV WOWy)

=

N∑
n=1

p(y|x, rn)λn =

N∑
n=1

p(y|x, rn)p(rn|x),

(3) 226

where λn = σ(
R1(i)WQ(Rn(i)WK)T

N
√
d

) is the weight- 227

ing norm that represents the similarity of retrieved 228

sequence rn and original sequence x; p(y|x, rn) is 229

a predictor that maps the row-attention represen- 230

tation of rn and x to label. Eq.3 gives a retrieval- 231

augmentation view of MSA Transformer that es- 232

sentially retrieves homologous sequences with mul- 233

tiple sequence alignment and aggregates represen- 234

tations of homologous sequences with regard to 235
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Method Retriever Form Alignment Form Weight λn Aggregation Function

Existing Methods
Potts Model MSA Aligned — —
Co-evolution Aggregator MSA Aligned 1

N FFN(
∑N

i=1Rn(i)λn)

MSA Transformer MSA Aligned σ(
XWQ(RnWK)T

N
√
d

) FFN(
∑N

i=1Rn(i)λn)
†

Proposed Variants
Unaligned MSA Augmentation MSA Not Aligned σ(−||X −RL||2)

∑N
i=1 FNN(Rn(i))λn

Accelerated MSA Transformer Dense Retrieval Aligned σ(
XWQ(RnWK)T

λ(N,d) ) FFN(
∑N

i=1Rn(i)λn)

Retrieval Sequence Augmentation Dense Retrieval Not Aligned σ(−||X −Rn||2)
∑N

i=1 FNN(Embed(x; rn))λn

Table 1: Protein Retrieval Augmentation methods decomposed along a different axis. We formulate the aggregation
function in the sequence classification setting and use a feed-forward neural network FFN(·) to map representations
to logits. The proposed variants vary in design axis from the existing methods. †Note that MSA Transformer
performs the aggregation in each layer of axial attention, which differs from other variants.

their sequence similarity. Taking one step further,236

we define a set of design dimensions to character-237

ize the retrieving and aggregation processes. We238

introduce how popular models (Appendix E) and239

our proposed methods (§3) fall along them in Ta-240

ble 1. A detailed introduction of design details is241

available in Appendix D.242

Our discussion and formulation so far reach the243

conclusion that retrieval augmentation serves as a244

comprehensive framework capable of extracting245

evolutionary knowledge, akin to multiple sequence246

alignment (MSA) augmentation methods. This un-247

derlines the prospects of retrieval sequence align-248

ment (RSA) superseding MSA augmentations as249

an efficient and generalizable approach.250

However, MSA-based methods claim a few ad-251

vantages: the alignment process can help the model252

capture column-wise residue evolution; and the253

MSA Retriever uses a discrete, token-wise search254

criterion that ensures all retrieved sequences are255

homology. We introduce two variants to help chal-256

lenge these claims: 1) Unaligned MSA Augmen-257

tation (- Alignment), illustrated in Figure 7, uses258

the homologous sequences from MSA to augment259

representations without alignment and 2) Accel-260

erated MSA Transformer (+ Dense Retriever)261

explores substituting the discrete retrieval process262

in MSA with a dense retriever. An empirical study263

on these models can be found in §2.3.264

2.3 Do we still need alignment for proteins?265

An Empirical Analysis266

It is commonly believed eliminating alignment267

could reduce expressiveness of proteins, as it high-268

lights residue-wise mutations and compares across269

a protein family (Altschuh et al., 1988; De Juan270

et al., 2013). Bhattacharya et al. (2020) instead271

show that a single layer of attention suffices to pre- 272

dict MSA-based statistics like pairwise residue co- 273

evolution without shared parameters across the fam- 274

ily. Here we compare variants against MSA Trans- 275

former to further discuss the necessity of aligned 276

feature when we have a strong protein language 277

model as encoder. As shown in Figure 3, align- 278

ment does not consistently improve performance 279

and unaligned variants achieve comparable perfor- 280

mances on both homology and stability prediction. 281

Additionally, a dense retriever competitively substi- 282

tute aligner to find related sequences for retrieval 283

augmentation. As alignment does not additionally 284

improves performance when we have a strong pro- 285

tein language model, we could safely substitute 286

MSA for dense retrieval augmentation methods. 287

Homology Stability

0.5
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Ac
cu

ra
cy 0.96
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0.97

0.75
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0.77

0.98

0.78
0.88
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MSA
 Alignment

+ Dense Retriever
+ Dense Retriever
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No Augmentation

Figure 3: Comparison of variants on the retrieval form
and the alignment form on property prediction tasks.

3 RSA 288

Motivated by the potential of pre-trained retrievers 289

to identify proteins that are homologous or geomet- 290

ric similar, we propose a pipeline, RSA (Retrieval 291

Sequence Augmentation), to directly augment pro- 292

tein models on-the-fly. RSA follows the retrieve- 293

then-predict framework in Eq. 1. It comprises 294

of a neural sequence retriever p(r|x), and a pro- 295

tein model that combines both original input and 296

retrieved sequence to obtain prediction p(y|x, r). 297
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RSA Retriever is used for finding the sequences298

that are semantically close to the query. The sim-299

ilarity score f(x, r) is defined as the negative L2300

distance between the embedding G of the two se-301

quences.302

p(r|x) = exp f(x, r)∑
r′∈R exp f(x, r′)

,

f(x, r) = −||G(x)−G(r)||2
(4)303

For protein retrieval, we aim to retrieve protein304

sequences that have similar structures or are homol-305

ogous to the query sequence. Motivated by the high306

accuracy of k-nearest neighbor retrieval with ESM-307

1b (Rives et al., 2019) pre-trained embeddings (as308

shown in Table 2), we implement the embedding309

functions using a 34-layer ESM-1b encoder. We ob-310

tain sequence embeddings by performing average311

pooling over token embeddings. Note that find-312

ing the most similar proteins from a large-scale313

sequence database is computationally heavy. To ac-314

celerate retrieval, we use Faiss indexing (Johnson315

et al., 2019a), which uses clustering and quantiza-316

tion to allow efficient similarity search.317

Retrieval Augmented Protein Encoder Given a318

sequence x and a retrieved sequence r with length319

L and M respectively, the protein encoder com-320

bines x and r for prediction p(y|x, r). To make our321

model applicable to any protein learning task, we322

need to augment both sequence-level representa-323

tion and token-level representation (essential for324

structure prediction tasks). We concatenate the325

two sequences before input into the transformer en-326

coder, which uses self-attention to aggregate global327

information from the retrieved sequence r into each328

token representation.329

A = σ(
(H[x;r]W

Q)(H[x;r]W
K)T

√
d

), A = [Ax;Ar]

Attn(H[x;r]) = (AxHxW
V +ArHrW

V )WO

(5)330

where H[x;r] = [hx1 , h
x
2 , ..., h

x
L, h

r
1...h

r
M ] denotes331

the input embedding of original and retrieved se-332

quences. The output token representation hi end-to-333

end learns to select and combine the representation334

of retrieved tokens. This can also be considered335

a soft version of MSA alignment. After comput-336

ing for each pair of (x, r), we aggregate them by337

weight p(r|x) defined in Eq. 4.338

Training For downstream finetuning, we maxi-339

mize p(y|x) by training on the retrieval augmented340

protein encoder. We freeze the retriever parameters341

Retrieval Task Type Recall Precision

Pfam - Family Homology 100 90.42
SCOPe - Fold Structural 100 65.98
SCOPe - Superfamily Structural 100 46.00
SCOPe - Family Structural 100 24.71

Table 2: Accuracy for retrieving top 100 protein se-
quences with ESM1b embeddings. In dataset Pfam and
SCOPe, we test whether retrieved proteins are of the
same Family, Superfamily, or Fold as query protein.

during training. For a query sequence of length L 342

with N retrieved proteins, suppose the length of 343

retrieved proteins L′ ≤ L the computation cost is 344

N times the original model, O(NL2) for a trans- 345

former encoder layer, which is as efficient as MSA 346

Transformer with O(NL2) +O(N2L) complexity. 347

4 Experiments 348

4.1 General Setup 349

Downstream Task We evaluate RSA on seven 350

downstream tasks: secondary structure predic- 351

tion (Klausen et al., 2019), contact predic- 352

tion (AlQuraishi, 2019), remote homology predic- 353

tion (Hou et al., 2018), subcellular localization pre- 354

diction (Almagro Armenteros et al., 2017), stability 355

prediction (Rocklin et al., 2017), protein-protein in- 356

teraction (Pan et al., 2010) and structure prediction 357

on CASP14 (Kryshtafovych et al., 2021). Please 358

refer to Appendix Table 8 for more statistics of 359

the datasets. The train-eval-test splits follow TAPE 360

benchmark (Rao et al., 2019) for the first four tasks 361

and PEER benchmark (Xu et al., 2022) for subcel- 362

lular localization and protein-protein interaction. 363

Retriever and MSA Setup Limited by available 364

computation resources, we build a database on 365

Pfam (El-Gebali et al., 2018) sequences, which 366

covers 77.2% of the UniProtKB (Apweiler et al., 367

2004) database and reaches the evolutionary scale. 368

We generate ESM-1b pre-trained representations 369

of 44 million sequences from Pfam-A and use 370

Faiss (Johnson et al., 2019b) to build the retrieval 371

index. For a fair comparison, the MSA datasets 372

are also built on the Pfam database. We use HH- 373

blits (Remmert et al., 2012) to extract MSA, search- 374

ing for 3 rounds with e-value threshold 1e-3. 375

Baselines We apply our retrieval method to both 376

pre-trained and from-scratch language models. Fol- 377

lowing Rao et al. (2019) and Rao et al. (2021), 378

we compare our model with vanilla protein rep- 379

resentation models, including LSTM (Liu, 2017), 380

Transformers (Vaswani et al., 2017) and pre-trained 381
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Method Pretrain Knowledge Knowledge SSP Contact Homology Stability Loc PPI Avg
Pretrain Injection

Transformer × × × 0.384 0.274 0.101 0.422 0.541 0.616 0.345
LSTM × × × 0.596 0.263 0.181 0.591 0.629 0.638 0.404
RSA (Transformer backbone) × × ✓ 0.541 0.332 0.346 0.602 0.591 0.700 0.518

ESM-1b ✓ × × 0.716 0.458 0.978 0.695 0.781 0.782 0.668
ProtBERT ✓ × × 0.691 0.556 0.528 0.651 0.771 0.688 0.579
MSA Transformer (MSA N=1) ✓ ✓ × 0.594 0.397 0.880 0.767 0.668 0.633 0.592

Gremlin (Balakrishnan et al., 2011) × × ✓ — 0.507 — — — — —
MSA Transformer ✓ ✓ ✓ 0.654 0.618 0.958 0.796 0.694 0.751 0.672
OntoProtein (Zhang et al., 2022) ✓ × ✓ 0.68 0.40 0.96 0.75 — — —
PMLM (He et al., 2021b) ✓ ✓ × 0.728 0.717 0.946 — — — —
RSA (ProtBERT backbone) ✓ × ✓ 0.691 0.717 0.987 0.778 0.795 0.827 0.723

Table 3: Main Results for vanilla protein language models, knowledge-augmented baselines and our proposed RSA
method. Note that italized result is reported by corresponding related work. The last column reports average result
on all six tasks. For MSA Transformer and RSA, we all use 16 sequences (N=16) for augmentation. For Gremlin
Potts model, we use the full MSA.

Methods TM-Score Percentage

ESMFold 0.678
AlphaFold-single 0.335
ESMFold-RSA 0.693 27.7%
AlphaFold-RSA 0.359 45.5%

AlphaFold-Full 0.747
AlphaFold-Acc 0.551 19.7%

Table 4: Results for Structure Prediction on CASP14.
Percentage represents the percentage of samples ex-
ceeding baselines.

models ESM-1b (Rives et al., 2019), ProtBERT (El-382

naggar et al., 2020). We also compare with383

state-of-the-art knowledge-augmentation models:384

Potts Model (Balakrishnan et al., 2011); MSA385

Transformer (Rao et al., 2021) injects evolution-386

ary knowledge through MSA; OntoProtein (Zhang387

et al., 2022)uses gene ontology knowledge graph388

to augment protein representations and PMLM (He389

et al., 2021b) uses pair-wise pretraining to enhance390

co-evolution awareness.391

Training and Evaluation To demonstrate RSA392

as a general method, we perform experiments both393

with a shallow transformer encoder, and a large pre-394

trained ProtBERT encoder. The Transformer model395

has 512 dimensions and 6 layers. Also, we com-396

bined our method with popular pre-trained protein397

folding architectures ESMFold and AlphaFold2.398

All self-reported models use the same truncation399

strategy and perform parameter searches on the400

learning rate, warm-up rate, and batch size.401

4.2 Main Results402

We show the result for downstream tasks in Ta-403

ble 3, including models with/without pretraining,404

and with/without knowledge augmentations. We 405

form the following conclusion: Retrieval Sequence 406

Augmentations perform on par with or even better 407

than other knowledge-augmented methods without 408

additional pre-training. Our method outperforms 409

MSA Transformer on average by 5% and performs 410

on par with PMLM on structure and evolution pre- 411

diction tasks. Notably, both MSA Transformer and 412

PMLM perform additional pre-training with aug- 413

mentations, while our method uses no additional 414

pre-training. From the results, we can see that 415

RSA combined transformer model also improves 416

by 10% than other shallow models. We also study 417

retrieval sequence augmentations on pre-trained 418

protein folding models in Table 4. Despite RSA 419

was implemented without additional fine-tuning 420

on folding models, we achieve a 2% improvement 421

both on ESMFold and AlphaFold2. 422

4.3 Retrieval Augmentation for De Novo 423

Proteins with Few Homologs 424

We test our model on a challenging problem in 425

protein prediction, the prediction for proteins with 426

few homologs, i.e. de novo (synthesized) proteins 427

and orphan proteins (Fang et al., 2022; Wu et al., 428

2022). This task is especially difficult for MSA- 429

based methods as alignment-based method often 430

fails to generate MSA for these proteins, resulting 431

in degraded performance. We test our model on 432

108 De Novo proteins from PDB (Berman et al., 433

2000) for the contact prediction task. It can be 434

seen in Figure 4 that, RSA exceeds MSA trans- 435

former on 63.8% of data, demonstrating that RSA 436

is more capable of locating augmentations for out- 437

of-distribution proteins. We also test our model 438
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Figure 4: Prediction on proteins with few homologs,
including contact prediction result on PDB de novo
proteins and structure prediction result on CASP14-FM.

on the structure prediction task with 16 targets439

from CASP14-FM. CASP14-FM are considered440

more difficult because the absence of related tem-441

plates requires the prediction methods to rely on442

de novo modeling techniques. We compare RSA443

augmented ESMFold and AlphaFold2 model with444

baselines in Figure 4, showing improved or compet-445

itive prediction on the majority of the targets. This446

results also show that our model surpasses MSA-447

based methods in transferring to unseen domains.448

4.4 RSA as a Tool for Large Language Model449

RSA can not only be used on small-scale represen-450

tation learning model, it can also augment large451

language models, e.g. ChatGPT. Currently, even452

GPT4 model shows limited understanding of bio-453

logical sequences. We follow ToolFormer (Schick454

et al., 2024) to equip RSA as a tool for GPT models,455

enabling LLM to query RSA and retrieve similar456

sequences as well as Pfam labels to improve under-457

standing of the protein sequence. We benchmark458

RSA as a Tool on Gene Ontology tasks (Jensen459

et al., 2003). Results show that RSA as tool could460

improve protein understanding ability of LLMs for461

all tasks. We also show that RSA can be integrated462

with other bioinformatics tools to build a LLM-463

agent for protein understanding in Appendix G.6.464

Methods CC MF BP EC

GPT-3.5-Turbo 0.43 0.45 0.39 0.12
GPT-3.5-Turbo + RSA 0.60 0.45 0.58 0.37
GPT-4 0.54 0.50 0.37 0.54
GPT-4 + RSA 0.70 0.74 0.65 0.74

Table 5: Gene Ontology Results Using LLM (N=8)

4.5 Retrieval Speed465

A severe speed bottleneck limits the use of previous466

MSA-based methods. We compare the computa-467

tion time of RSA with MSA and an accelerated468

version of MSA as introduced in § 2.2. As shown469

in Figure 1, alignment time cost is much more in-470

tense than retrieval time. Even after reducing the471

number of alignment sequences to 500, acceler-472

ated MSA still need 270 min to build MSA. At the473

Tasks MSA Accelerated MSA RSA
Transformer Transformer

SSP 0.654 0.634 0.691
Contact 0.618 0.608 0.717

Homology 0.958 0.945 0.987
Stability 0.796 0.767 0.778

Loc 0.694 0.682 0.795
PPI 0.751 0.679 0.827

Table 6: Results for MSA Transformer and Accelerated
MSA Transformer on downstream tasks. Accelerated
MSA Transformer uses MSA built from dense retrieval.

same time RSA only uses dense retrieval, and is 474

accelerated 373 times. Also, MSA is limited by its 475

cubersome construction of retrieval HHM profile 476

to perform HHM-HHM search. By contrast, RSA 477

only needs to build the pre-trained features for the 478

database, which can be accelerated with GPUs and 479

batch forwarding. Results on a small database of 480

10000 proteins demonstrate a speedup of 320 times. 481

4.6 Ablation Study 482

Ablation on Retriever: Ablation on Retrieval 483

Number Our study examines the effect of in- 484

jected knowledge quantity for RSA and all retrieval 485

baselines. The results are listed in Table 7. We se- 486

lect the Contact dataset because all baseline models 487

are implemented on this dataset. RSA and all base- 488

lines perform consistently better as the retrieval 489

number increases. Also, our model outperforms all 490

baseline models for all augmentation numbers. 491

Methods N=1 N=4 N=8 N=16 N=32 N= full

Potts Model — 0.412 0.471 0.479 0.480 0.507
MSA Transformer 0.397 0.579 0.560 0.618 0.669 —
Accelerated MSA Transformer 0.397 0.524 0.538 0.608 0.654 —
RSA (ProtBERT backbone) 0.556 0.595 0.615 0.717 0.719 —

Table 7: The performance of RSA w.r.t. the number of
retrieved sequences on contact prediction.

Ablation on Aggregation: We compare RSA 492

with Accelerated MSA Transformer to evaluate 493

whether our aggregation method is beneficial for 494

learning protein representations. Note that only 495

part of the retrieved sequences that are homologous 496

are utilized after alignment. As shown in Table 6, 497

the performance of the Accelerated MSA Trans- 498

former drops a lot compared to RSA. In contrast to 499

MSA type aggregation, which is restricted by token 500

alignment, our aggregation is more flexible and can 501

accommodate proteins with variant knowledge. 502

4.7 Retrieved Protein Interpretability 503

Dense Retrievers Find Homologous Sequences. 504

As illustrated in Figure 5(a), across all six datasets, 505

our dense retriever retrieved a high percentage of 506

homologous proteins that can be aligned to the 507
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Figure 5: (a) Plot of the percentage of sequences that
have found homologs on datasets for six tasks. (b) Plot
of the -log(E-values) of MSA and Dense Retriever ob-
tained sequences. E-values of both methods are obtained
with HHblits(Remmert et al., 2012). Sequences with
-log E-value >10 are high-quality homologs. (c) Cumu-
lative distribution of TM-scores for retrieved proteins.

original protein sequence, comparable to traditional508

MSA retrievers. We additionally plot each dataset’s509

negative log E-values distribution in Figure 5(b).510

Accordingly, dense retrieval show high potential for511

finding homologous sequences, which explains the512

ability of RSA to capture evolutionary knowledge.513

RSA Retriever Find Structurally Similar Pro-514

tein In Figure 5(c), we plot the TM scores be-515

tween the RSA retrieved protein (structure obtained516

with ESMFold) and the origin protein on Protein-517

Net (AlQuraishi, 2019) test set. Most of the re-518

trieved proteins TM-score exceed 0.2 (acceptable519

structural similarity) and about half are above 0.5520

(high similarity), indicating dense retrieval is capa-521

ble of finding proteins with structural knowledge.522

4.8 Creating MSA with RSA523

Despite the cumbersome computation, MSA is still524

widely used at present in SOTA models. In this525

section, we discuss the quality of MSA built by526

RSA, i.e. Accelerated MSA, a process 10 times527

faster. Table 6 illustrates that Accelerated MSA528

Transformer performs near to MSA Transformer529

(MSA N=16) for most datasets, except for Stability 530

and PPI on which our retriever failed to find enough 531

homologous sequences. Also, Accelerated MSA 532

could be used as input for AlphaFold2 model, as 533

shown in Table 4. However, the performance varies 534

among samples, depending on retrieved sequence 535

diversity, as further discussed in Appendix G.4. 536

5 Related Work 537

Retrieval-Augmented Language Models The in- 538

tegration of non-parametric retrieval and paramet- 539

ric models has been revolutionary for many prob- 540

lems (Kaplan et al., 2020; Guu et al., 2020b; He 541

et al., 2021a; Borgeaud et al., 2021; Yogatama et al., 542

2021). Retrieval-augmentation introduces knowl- 543

edge from memories and improve performance in 544

complex reasoning (Trivedi et al., 2022) and gener- 545

alization (Khandelwal et al., 2019). 546

Protein Language Models To model and fur- 547

ther understand the protein sequence data, lan- 548

guage models are introduced to train on mass 549

data (Heinzinger et al., 2019; Alley et al., 2019). 550

Large scale pre-training enables language models 551

to learn structural and evolutionary knowledge (El- 552

naggar et al., 2021; Jumper et al., 2021; Lin et al., 553

2022). Despite these successes, many important 554

applications still require MSAs and other external 555

knowledge (Rao et al., 2021; Jumper et al., 2021; 556

He et al., 2021b; Zhang et al., 2021; Ju et al., 2021; 557

Rao et al., 2020). MSAs have been shown effective 558

in improving representation learning, despite being 559

extremely slow and costly in computation. Hu et al. 560

(2022) and Hong et al. (2021) use dense retrieval to 561

accelerate multiple sequence augmentation, while 562

still dependent on alignment procedures. Recent 563

work (Fang et al., 2022; Lin et al., 2022; Wu et al., 564

2022; Chowdhury et al., 2022) explores MSA-free 565

language models though additional pre-training is 566

involved. We take this step further to investigate 567

retrieval-augmented protein language models. 568

6 Conclusion 569

This work has highlighted the limitations inherent 570

in traditional MSA-based approaches and proposed 571

RSA as a substitute. Through extensive evalua- 572

tion, we have demonstrated a significant improve- 573

ment not only in the speed of processing—being 574

more than 300 times faster than MSA—but also in 575

enhancing predictive performance in downstream 576

tasks with various models. 577
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7 Limitation578

One notable limitation of our method RSA is that it579

is highly dependent on high-quality pre-trained em-580

beddings and the abundance of protein sequences.581

We found that our retriever tends to perform bet-582

ter in a database that has more protein sequences583

– that have not been screened by a clustering algo-584

rithm, like Uniclust30. This could be explained585

by our nearest neighbor retrieval technique which586

often requires more similar sequences for augmen-587

tation. We also found different patterns in retrieval588

sequences from MSAs. Our retriever tends to show589

polarized retrieval quality, either finding many evo-590

lutionary close sequences or failing to find any591

homologous sequences. We believe this is due to592

the imbalanced training of pre-trained embeddings593

on different protein families and hope to mitigate594

this issue with further training on retrieval datasets.595

We report other failed cases here for a more596

thorough view of our proposed method:597

• Directly applying Accelerated MSAs to MSA-598

based pre-trained models often shows about599

2-3% decrease on downstream performance600

than using original MSAs. This may be601

the natural gap between Acc-MSA and pre-602

training data.However, Accelerated MSAs are603

10 times faster.604

• The performance of RSA improves marginally605

with more sequences when N > 16. This606

is because we use the softmax distribution607

over L2 metrics to perform weighting, thereby608

assigning low weights to sequences further609

from the query.610

We intend to further scale up our RSA method611

to larger protein databases and pre-train a retriever612

on abundant data in future work.613
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A Limitations and Failed Case Analysis981

One notable limitation of our method RSA is that it is highly dependent on high-quality pre-trained982

embeddings and the abundance of protein sequences. We found that our retriever tends to perform better983

in a database that has more protein sequences – that have not been screened by a clustering algorithm, like984

Uniclust30. This could be explained by our nearest neighbor retrieval technique which often requires more985

similar sequences for augmentation. We also found different patterns in retrieval sequences from MSAs.986

Our retriever tends to show polarized retrieval quality, either finding many evolutionary close sequences or987

failing to find any homologous sequences. We believe this is due to the imbalanced training of pre-trained988

embeddings on different protein families and hope to mitigate this issue with further training on retrieval989

datasets.990

We report other failed cases here for a more thorough view of our proposed method:991

• Directly applying Accelerated MSAs to MSA-based pre-trained models often shows about 2-3%992

decrease on downstream performance than using original MSAs. However, Accelerated MSAs are993

10 times faster.994

• The performance of RSA improves marginally with more sequences when N > 16. This is because995

we use the softmax distribution over L2 metrics to perform weighting, thereby assigning low weights996

to sequences further from the query.997

• We found that in protein folding tasks, performing Average Pooling on ESMFold/AlphaFold shows998

worse zero-shot performance than Max Pooling with a scoring model. This is due to the misalignment999

of protein structures and simple weighting could result in averaging the structures of proteins with1000

different angles of view.1001

B Broader Impact and Potential Risks1002

In this section, we discuss the broader impact of RSA in terms of protein representation learning, de novo1003

protein understanding, as well as the potential application to large language models.1004

RSA for Protein Representation Learning Developing efficient protein representation learning1005

methods will significantly improve the ability to analyze complex protein structures, functions, and1006

interactions. This would lead to a more comprehensive understanding of biological processes at the1007

molecular level, consequently boosting advancements in the fields of bioinformatics and computational1008

biology. In this paper, we propose RSA as an efficient and effective protein representation learning1009

methods, which will spur the development of protein representation learning methods. Notably, our1010

method requires no alignment methods. The traditional alignment process in MSA often requires mass1011

CPU engines mostly available to academics. Our method on the other hand only requires a small memory1012

GPU like 3090Ti and we will publicize our retrieval index, promoting democratic research in this field.1013

RSA for De Novo Protein Understanding We have shown in our work that RSA could perform De1014

Novo Protein Understanding. This is particularly important for drug repurposing and virtual screening1015

tasks (Pushpakom et al., 2019) for drug discovery. This can contribute to the development of personalized1016

medicine by facilitating the identification of disease-specific protein biomarkers and selecting molecular1017

cures for various diseases. However, de novo protein understanding often relies on newly-designed protein1018

databases, which may include sensitive information about individuals, such as their genetic makeup, or1019

violates intellectual property rights. Ensuring the privacy and security of this data is critical to prevent1020

misuse and protect individual rights1021

RSA as Tool for Large Language Models In addition to the potential impacts in the field of biology,1022

our method could also improve the ability of Large Language Models in biological sequence understanding.1023

Currently, large language models like ChatGPT show difficulty in understanding protein sequences. We1024

showcase how RSA could improve this ability with the combination of retrieval and chain of thought. This1025
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application is valuable in education and training, as uses could rapidly learn about proteins through chat 1026

models, which help educate the next generation of researchers in bioinformatics, computational biology, 1027

and related fields. This will lead to a more skilled workforce in the life sciences. 1028

Figure 6: Illustrated explanation of protein levels
of structures, primary structure, secondary structure
and tertiary structure.

Figure 7: Illustrated difference of aligned and un-
aligned protein sequences. The white colour stands
for the empty space in alignment "-".

C A Brief Recap on Proteins 1029

Proteins are the end products of the decoding process that starts with the information in cellular DNA. 1030

As workhorses of the cell, proteins compose structural and motor elements in the cell, and they serve as 1031

the catalysts for virtually every biochemical reaction that occurs in living things. This incredible array 1032

of functions derives from a startlingly simple code that specifies a hugely diverse set of structures. In 1033

fact, each gene in cellular DNA contains the code for a unique protein structure. Not only are these 1034

proteins assembled with different amino acid sequences, but they also are held together by different 1035

bonds and folded into a variety of three-dimensional structures. The folded shape, or conformation, 1036

depends directly on the linear amino acid sequence of the protein. In fact, this phenomenon is denoted 1037

as the sequence-structure-function paradigm. Here we will emphasize four key concepts in protein 1038

understanding. 1039

1. What are proteins made of ? 1040

Amino acids. Within a protein, multiple amino acids are linked together by peptide bonds, thereby 1041

forming a long chain. There are 22 alpha-amino acids, from which proteins are composed. We model 1042

these amino acids in a similar way in NLP, as tokens. A tokenizer breaks the protein sequences into amino 1043

acid tokens that could be modeled by protein language models. 1044

2. Protein structures 1045

There are four levels of structures in protein, as illustrated in Figure 6: 1046

• Primary structure: amino acids sequence 1047

• Secondary structure: stable folding patterns, including Alpha Helix, Beta Sheet. 1048

• Tertiary structure: ensemble of formations and folds in a single linear chain of amino acids 1049

• macromolecules with multiple polypeptide chains or subunits 1050

Predicting protein structure is an important and difficult task. In this work, we also perform experiments 1051

on three tasks – secondary structure prediction, protein contact prediction (tertiary structure), and protein 1052

folding (tertiary structure), with increasing task difficulty. 1053

3. Protein Homology Protein homology is defined as shared ancestry in the evolutionary history of 1054

life. There exists different kinds of homology, including orthologous homology that may be similar 1055

function proteins across species (human and mice α-goblin), and paralogous homology that is the result of 1056

mutations (human α-goblin and β-goblin). Homologies result in conservative parts in protein sequences, 1057

or leads to similar structures and functions. 1058
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4. Multiple Sequence Alignments A method used to determine conservative regions and find homol-1059

ogous sequences. An illustration (Figure 7) is given here to show how sequences are aligned. Aligned1060

tokens may include the original amino acid, substitution, and deletions. The traditional way to generate1061

MSA is using dynamic programming, with O(LN ) complexity. Temporary methods use HMM-HMM1062

alignment, as well as other acceleration methods. HH-Suite3 (Steinegger et al., 2019) reports a time1063

complexity of O(NL2), which is still costly when performing alignment on a large database.1064

D Details Introduction of Retrieval-augmentation Designs1065

We introduce 4 design dimensions to distinguish RSA against MSA-based methods as well as discuss how1066

we could design more efficient substitutes.1067

• Retriever Form indicates the retriever type used. Multiple Sequence Alignment is a discrete retrieval1068

method that uses alignment (Ye et al., 2006) to find homologous sequences. Dense retrieval (Johnson1069

et al., 2019b) has been introduced to accelerate discrete sequence retrieval.1070

• Alignment Form indicates whether retrieved sequences are aligned.1071

• Weight Form is the aggregation weight of homologous sequences, as the p(rn|x) in Eq. 3. Here1072

we denote this weight as λn. Traditionally, aggregation methods consider different homologous1073

sequences to be similarly important and use average weighting. MSA Transformer uses a weighted1074

pooling method though the weights of λn use global attention and are dependent on all homologous1075

sequences.1076

• Aggregation Function is how the representations of homologous sequences are aggregated to the1077

original sequence to form downstream prediction, as in p(y|x, r). For example, considering the1078

sequence classification problem, a fully connected layer maps representations to logits. The retrieval1079

augmentation probabilistic form first maps each representation to logits p(y|x, rn) and then linearly1080

weight the logits with λn in Eq. 3.1081

Here retriever and alignment are the main bottlnecks of retrieval augmentation methods. The aggregation1082

function and weight form are mainly dependent on model architecture and we focus on the first two1083

dimensions in this paper.1084

E Overview of Previous Protein Representation Augmentation Methods1085

Below we introduce several state-of-the-art evolution augmentation methods for protein representation1086

learning. These methods rely on MSA as input to extract representations. We use x to denote a1087

target protein and its MSA containing N homologous proteins. We consider MSAs as N aligned1088

protein homologs r1, . . . , rN . These studies (Yang et al., 2020; Ju et al., 2021) encode MSA as co-1089

evolution statistics features R1...N and aggregate these features to derive the representation, while MSA1090

Transformer (Rao et al., 2021; Jumper et al., 2021) perceives MSA as a matrix, employing axial attention1091

to extract salient evolutionary traits. A unified view of these variants is available in Table 1 and §3.2 in the1092

main paper.1093

Potts Model (Balakrishnan et al., 2011). This line of research fits a Markov Random Field to the un-1094

derlying MSA with likelihood maximization. This approach is different from other protein representation1095

learning methods as it only learns a pairwise score for residues contact prediction. We will focus on other1096

methods that augment protein representations that can be used for diverse downstream predictions.1097

Co-evolution Aggregator (Yang et al., 2020; Ju et al., 2021). One way to build an evolution informed1098

representation is to use a MSA encoder to obtain the co-evolution related statistics. By applying MSA1099

encoder on the n-th homologous protein in the MSA, we can get a total of L× d embeddings Rn, each1100

position is a d channel one-hot embedding indicating the amino acid type. We use wn to denote the weight1101

from Rn when computing the token representation hi:1102

hi =
1

Meff

N∑
n=1

wnRn(i), (6)1103
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where Meff =
∑N

n=1wn and wn = 1
N . For contact prediction, pair co-evolution representation are 1104

computed in a similar way from the hadamard product: 1105

hij =
1

Meff

N∑
n=1

wnRn(i)
⊗

Rn(j). (7) 1106

Ensembling Over MSA (Rao et al., 2020). This approach aligns and ensembles representations of 1107

homologous sequences. Consider the encoder extract the same token representations for unaligned and 1108

aligned sequences. The ensembled token representation is: 1109

hi =
1

N

N∑
n=1

Rn(i), hij =
1

N

N∑
n=1

σ(
Rn(i)WQ(Rn(j)WK)T

N
√
d

). (8) 1110

MSA Transformer (Rao et al., 2021) In each transformer layer, a tied row attention encoder extracts 1111

the dense representation Rn, then a column attention encoder 1112

Rs(i) =

N∑
n=1

σ(
Rs(i)WQ(Rn(i)WK)T

N
√
d

)Rn(i)WV . (9) 1113

Knowledge Graph Augmentation (Zhang et al., 2022; Zhou et al., 2023). This line of research 1114

aims at incorporating factual knowledge in protein representations. Different from MSA-based methods 1115

that draw evolution knowledge from raw protein sequences, these methods are dependent on protein 1116

knowledge graphs that have been annotated by experts, therefore we only provide comparisons with these 1117

models in experimental studies and don’t incorporate them into our unified framework. 1118

F Experiment Setups 1119

F.1 In-depth Introduction to Protein Tasks 1120

Table 8: Overview for datasets in downstream tasks

Task Name Dataset source #train sequences #test sequences
Secondary Structure Prediction NetSurfP-2.0 (Klausen et al., 2019) 8,678 513
Contact Prediction ProteinNet (AlQuraishi, 2019) 25,299 40
Remote Homology Prediction Deepsf (Hou et al., 2018) 12,312 718
Stability Prediction Rocklin’s Dataset (Rocklin et al., 2017) 53,571 12,851
Subcellular Localization DeepLoc (Almagro Armenteros et al., 2017) 8,945 2,768
Protein Protein Interaction Pan’s Dataset (Pan et al., 2010) 6,844 227
Protein Folding CASP14 (Kryshtafovych et al., 2021) – 65

Secondary structure prediction (SSP) 1121

Task Formulation: 8-class classification oi 7→ {0, 1, . . . , 7} 1122

Task Description: Secondary structure prediction aims to predict the secondary structure of proteins, 1123

which indicates the local structures. This task predicts an 8-class label for each token, indicating which 1124

local structure this amino acid belongs to. 1125

Task Impact: This task helps to determine whether a model captures protein local structure. 1126

Contact prediction (Contact): 1127

Task Formulation: 2-class classification (oi, oj) 7→ {0, 1} 1128

Task Description: Contact prediction predicts the medium-range and long-range (distance >6) residue- 1129

residue contact, which measures the ability of models to capture global tertiary structures. 1130

Task Impact: This task helps to determine whether a model captures protein tertiary structure. The 1131

assessment of this task focuses specifically on medium- and long-range interactions due to their crucial 1132

importance in the protein folding process. 1133

Homology prediction (Homology): 1134

Task Formulation: 1195-class classification x 7→ {0, 1 . . . 1194} 1135
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Task Description: Homology prediction aims to predict the fold label of any given protein, which indicates1136

the evolutionary relationship of proteins.1137

Task Impact: Protein fold classification is important for both functional analysis and evaluating evolution-1138

ary knowledge.1139

Stability prediction (Stability):1140

Task Formulation: regression x 7→ R1141

Task Description: Stability prediction is a protein engineering task, which measures the change in stability1142

w.r.t. residue mutations.1143

Task Impact: Evaluate the ability of models to predict protein function as well as evaluate the ability of1144

models to understand mutations, which is crucial for drug discovery and protein engineering.1145

Subcellular Localization (Loc):1146

Task Formulation: regression x 7→ {0, 1, . . . , 7}1147

Task Description: Subcellular localization refers to the process of determining the specific location or1148

compartment within a cell where a particular molecule or protein resides. This information is essential1149

for understanding the function and behavior of molecules or proteins, as their subcellular locations often1150

dictate their roles in cellular processes, interactions with other molecules, and influence on cellular1151

functions. For example, proteins on the cell membrane generally have signaling and regulatory functions.1152

Task Impact: This task is closely related to protein functions and roles in biological processes.1153

Protein-Protein Interaction (PPI):1154

Task Formulation: two-class classification (x1, x2) 7→ {0, 1}1155

Task Description: Protein-protein interaction predicts whether two proteins interact with each other.1156

Task Impact: This task is crucial for protein function understanding and drug discovery.1157

Protein Folding (Fold):1158

Task Formulation: x 7→ S, where S is the 3d-structure of protein, including all coordinates of atoms.1159

Task Description: Protein Folding predicts the structure of protein sequences.1160

Task Impact: This task is known to be challenging, and requires elaborated knowledge of protein local1161

and global structure to make atomic predictions.1162

Dataset Details: We report test results on CASP14 public available targets. We also remove all sequences1163

over 800 tokens due to the computation memory limit. The reported targets are: T1024, T1025, T1026,1164

T1027, T1028, T1029, T1030, T1031, T1032, T1033, T1034, T1035, T1036s1, T1037, T1038, T1039,1165

T1040, T1041, T1042, T1043, T1045s1, T1045s2, T1046s1, T1046s2,T1047s1, T1047s2, T1048, T1049,1166

T1050, T1051, T1053, T1054, T1055, T1056, T1057, T1058, T1059, T1060s2, T1060s3, T1062, T1063,1167

T1064, T1065s1, T1065s2, T1066s1, T1066s2, T1067, T1068, T1069s1, T1069s2, T1070, T1071,1168

T1072s1, T1072s2, T1073, T1074, T1075, T1076, T1077, T1078, T1079, T1082, T1083, T1084, T1085,1169

T1086, T1087, T1088, T1089, T1090, T1092, T1093, T1094, T1095, T1096, T1098, T1099, T1100,1170

T1101. The blue targets are from CASP14-FM set.1171

Table 8 gives the details of the datasets for these tasks.1172

De Novo Contact Prediction: We follow Chowdhury et al. (2022) to curate a de novo dataset of1173

108 proteins from Protein Data Bank (Bank). These proteins are originally designed de novo using1174

computationally parametrized energy functions and are well-suited for out-of-domain tests. Note that1175

different from orphan dataset, MSA can be built for this dataset, though showing a decline in quality.1176

F.2 HHblits Settings1177

For MSA datasets, We use HHblits (Remmert et al., 2012) to perform alignment. The commands for MSA1178

dataset construction is:1179
1180

hhblits -cpu $CPU_NUM -i $INPUT_FILE -d $DATABASE_DIR -oa3m $OUTPUT_FILE -n 1 -e1181

0.00111821183

We also use HHblits to calculate E-value and determine whether we found homologous sequences in1184

Figure 5 and §5.7 in the main paper. The commands for protein E-value calculation is:1185
1186

hhalign -i query.fasta -d retrieved.fasta -o output.aln -e 0.00111871188

18



F.3 Model Hyperparameters 1189

All self-reported models use the same truncation strategy and perform parameter searches on the learn- 1190

ing rate among [3e − 8, 3e − 6, 3e − 5, 3e − 4, 1e − 3], warm-up rate among [0, 0.08], seed among 1191

[111, 222, 333, 444, 555, 666], and batch size among [1, 2, 4, 8, 16]. For evaluation, we choose the best- 1192

performing model on the validation set and perform prediction on the test set. The best performing 1193

hyperparameters could be found in the file: 1194
1195

./RSA-code\scripts\$MODEL_NAME\run_$TASK_NAME.sh 11961197

Also, code with download instructions for dataset and retrieval index is available in the supplementary. 1198

F.4 RSA and Variants Implementation Details 1199

F.4.1 Retriever Implementation Details 1200

First, we calculate the ESM-1b embeddings of the 44 million sequences in Pfam-A 32.0. We use 16 1201

V100 GPUs to calculate the embeddings in a day. A GPU as small as 3090 Ti would be enough, though 1202

it would take longer. Then, we adopt Faiss (Johnson et al., 2019b) indexing to accelerate the retrieval 1203

process by clustering the pre-trained dense vectors. In our implementation, we use the Inverted file with 1204

Product Quantizer encoding Indexing and set the size of quantized vectors to 64, the number of centroids 1205

to 4096, and the number of probes to 8. The construction of the Faiss index takes roughly 30 minutes 1206

using 0.5% randomly selected protein embeddings for index training. All embeddings as well as their id 1207

are subsequently added to the index. 1208

During retrieval, for each query sequence, we first use ESM-1b to calculate its embedding, and then 1209

using this embedding, we query faiss to find the top N nearest neighbor of this embedding, getting the 1210

distance and sequence id of retrieved sequences. L2 distances are used to measure sequence similarity. 1211

F.4.2 ProtBERT-RSA Architecture and Implementation 1212

Here we provide the details for ProtBERT-RSA Architecture. An illustration of this process is also 1213

available in Figure 8. Note that in Step 2 retrieval of Faiss index could be further accelerated with GPU. In 1214

Step 4, the predictions of pairwise augmentation could be accelerated with batching on GPU, concurrently 1215

predicting k augmented sequences at the same time. 1216

However, for large pre-trained models and when k is very large, the batch computation may exceed 1217

memory limit. In this case, we provide implementation for gradient accumulation, which calculates loss 1218

and gradients for individual prediction (predictionsi) and sum up the gradients with gradient accumulation. 1219

This implementation is a convex upperbound for the original loss function and we have validated its 1220

stability. This could also be implemented in batch size n, where each backward iteration calculates k/n 1221

retrieval augmentations, achieving trade-off between inference speed and memory limit. 1222
1223

Given query sequence $query, retrieval database $Faiss_Index, sequence database 1224

$Pfam, the number of retrieval $k, ProtBERT model $Model, and label $y. 1225

Step 1. embedding = ESM_1b(query) 1226

Step 2. distances, ids = Faiss_Index.retrieve(embedding, k) 1227

retrieved_seqs = Pfam[ids] 1228

Step 3. predictions_i = Model([query, retrieved_seq]), i=1,2,..k 1229

Step 4. prediction = sum(predictions_i * softmax(distance_i)) 1230

Step 5. loss = loss_function(prediction, y), perform training 12311232

F.4.3 RSA for Protein Folding 1233

The major difference of RSA prediction for protein folding from other tasks is that we use a ranker to 1234

choose the final prediction rather than using weighted pooling. This is due to the misalignment of protein 1235

structures and simple weighting could result in averaging the structures of proteins with different angles of 1236

view. We train the ranker together with pTM-score loss (Lin et al., 2022) and contrastive loss on a subset 1237

of 1000 randomly chosen proteins from Protein Data Bank. These proteins are distinct from CASP14 1238
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Figure 8: Detailed illustration of ProtBERT-RSA architecture.

test set. The ranker takes in the original structure prediction of the protein sequence and the k augmented1239

predictions, and generate the highest ranking prediction as the final result. As current protein folding1240

models are very large, we only provide zero-shot testing results on these pre-trained models, without1241

further finetuning on our pipeline.1242

1243
Given query sequence $query, retrieval database $Faiss_Index, sequence database1244

$Pfam, the number of retrieval $k, Folding model $Model, Ranking model $Ranker1245

and label $y.1246

Step 1. embedding = ESM_1b(query)1247

Step 2. distances, ids = Faiss_Index.retrieve(embedding, k)1248

retrieved_seqs = Pfam[ids]1249

Step 3. predictions_i = Model([query, retrieved_seq]), i=1,2,..k1250

Step 4. prediction = Ranker(predictions_i), i=1,2,..k12511252

Due to the different model architectures of ESMFold and AlphaFold, we explain in details the inference1253

pipeline of Model([query, retrieved]).1254

ESMFold-RSA ESMFold is a single sequence protein folding model that consists of a protein repre-1255

sentation model and a folding trunk based on the extracted representation. As illustrated in Figure 9(a),1256

we concatenate query sequence with retrieved sequence and input them into the representation encoder.1257

The encoder combines information from both query and retrieved sequence into query embedding via1258

self-attention. Then we could use the pre-trained folding trunk to predict the structure of the query1259

sequence. This pipeline could also be accelerated with batch prediction.1260

AlphaFold-RSA Different from ESMFold, AlphaFold encoder takes both single sequence representa-1261

tion and pairwise representation as input. Therefore, as shown in FIgure 9(b), we generate the retrieved1262

structure encoding with AlphaFold based on retrieved sequences, then we generate the structure of the1263

query sequence based on the combination of single and pair representation. Note that we removed the1264

template and MSA input in AlphaFold to ablation the effect of RSA.1265

F.4.4 Accelerated MSA1266

Accelerated MSA variant explores 165 substituting the discrete retrieval process in MSA with a dense1267

retriever. We implement this method by first retrieving 500 sequences and then aligning these sequences1268

with JackHMMer tool. Note that for most tasks we retrieve 500 sequences before alignment, as MSA1269

Transformer can’t take in many sequences. The command for aligning is:1270

1271
./jackhmmer -E 10.0 -A $aligned_file query.fasta retrieved.fasta12721273
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Figure 9: Illustration of the inference pipeline of RSA for Protein Folding

G Supplementary Experiment Analysis 1274

G.1 Comparison of the Running time between RSA vs MSA 1275

A severe speed bottleneck limits the use of previous MSA-based methods. In this part, we add analysis 1276

on database construction time as well as give details for inference time calculation. We calculate the 1277

total time used in each retrieval inference by summing: alignment time and retrieval time, as shown in 1278

Figure 10. Alignment time is the time used when finding MSA sequences through alignment and aligning 1279

found sequences with HHblits. Retrieval time is the time used during dense retrieval, including calculating 1280

the embedding of the query sequence with GPU. It is notable from the figure that alignment itself is a 1281

computationally costly procedure. 1282

Also, MSA is limited by its cubersome construction of retrieval HHM profile to perform HHM-HHM 1283

search. We follow the MSA custom database construction process in HHblits and compare with the 1284

construction time for RSA on a single V100 GPU (batch size=1) on a database of 10000 protein sequences. 1285

As shown in Figure 11, our method use only 10 minutes to finish the construction, though building a 1286

profile requires more than 3200 minutes. 1287

Figure 10: Illustration of speed up by RSA retrieval
compared to MSA on secondary structure predic-
tion dataset with 8678 sequences. Accelerated MSA
refers to the MSA Transformer with MSA sequences
retrieved by our RSA retriever.

Figure 11: Illustration of speed up by RSA re-
trieval compared to MSA on database construction
of 10000 protein sequences.
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G.2 Case Study1288

We cherry-picked one example of ProtBERT and ProtBERT-RSA on homology prediction (1195 class1289

classification task) to showcase the interpretability as well as give intuition on our method. As shown in1290

Figure 12, our method takes the original sequence as well as 16 retrieved sequences for prediction. After1291

weighted summing of all predicted results, the prediction of probability on ground truth label increase and1292

gives the correct prediction. We checked the most highly weighted (top 5) retrieved sequences, all five1293

proteins are Colicins, which is a family under Toxins’ membrane translocation domains. We can see from1294

the case that weighting by distance helps the model focus on more similar retrieved instances.

Figure 12: Case study on homology prediction.

1295
We also provide two case studies on how RSA improves ESMFold. For target T1055, a DNA1296

polymerase processivity factor, RSA retrieves A0A1A8WBQ9_9APIC, A0A1Y4NGW6_9FIRM,1297

A0A4V4NFM9_9ASCO, A0A1D3TXL7_9FIRM, A0A0V0QX86_PSEPJ, A9KN76_LACP7,1298

A0A162CB07_9CRUS, A0A369KX60_9PROT,SKI2_SCHPO, and the highest ranking augmenta-1299

tion prediction is from (T1055, A0A1A8WBQ9_9APIC). A0A1A8WBQ9_9APIC is a Merozoite surface1300

protein. Merozoite surface protein 7 (MSP7) is a protein of the malaria parasite that has been found to1301

be associated with processed fragments from the MSP1 protein in a complex involved in red blood cell1302

invasion. A0A1A8WBQ9_9APIC is a Merozoite surface protein C-terminal domain-containing protein1303

that is related to DNA polymerase processivity factor through its requirement of a host factor, E. coli1304

thioredoxin, in order to carry out its function. They also show similar structures with a TM-score of 0.42.1305

For target T1039, a virion RNA polymerase of crAss-like phage, RSA retrieves A0A078ATM6_STYLE,1306

A0A1D8P931_9FLAO, A0A363CW97_9PROT, D7JGI7_9BACT, A0A0B3VPN2_9FIRM,1307

A0A1E4TQ27_PACTA, A0A1M6KY55_9FLAO, A0A1X7R9D3_9SACH, A0A0R1SCS6_9LACO,1308

A0A367GMI1_9SPHI, A0A2N1F639_9FLAO, A0A0D6TLE8_9FLAO, A0A3N4NFZ1_9FLAO,1309

A0A1D2VEI9_9ASCO, A0A1L7I7H7_9FLAO, A0A1R0FA92_9RHIZ. The highest ranking augmentation1310

prediction is from (T1039, A0A078ATM6_STYLE). A0A078ATM6_STYLE is a COMM domain-1311

containing protein 1. It has no distinct functional relationship with T1039, though the second chain of this1312

protein has a similar structure to T1039, with a TM-score of 0.34.1313

G.3 Domain Adaptation Analysis1314

In this section, we perform additional analysis on the domain adaptation ability on secondary structure1315

prediction tasks. We perform training on NetSurfP-2.0(Klausen et al., 2019) training set and test on two1316

datasets with domain gaps. On CASP12, RSA marginally outperforms other baselines, as shown in Table1317

8. We also test on 10 de novo proteins (6YWC, 2LUF, 7BPM, 7BPL, 7CBC, 1FSD, 1IC9, 5JI4, 5KWO,1318

6W6X). Since we didn’t find secondary structure labels for these proteins, we provide visualization in1319

Figure 15, which shows that our model has an obvious overhead over MSA Transformer on predicting1320
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Figure 13: Structure Prediction for T1055, Cyan is
the color for Ground truth. Pink is the color for ESM-
Fold. Pink is the color for ESMFold. Light purple
is the color for ESMFold-RSA. The TM-score for
ESMFold is 0.70, and the TM-score for ESMFold-
RSA is 0.91.

Figure 14: Structure Prediction for T1039, The TM-
score for ESMFold is 0.61, and the TM-score for
ESMFold-RSA is 0.29

Figure 15: Prediction of Secondary Structure on De Novo Dataset. Each color corresponds to a different secondary
structure.

geometric components. 1321

G.4 Comparison of Accelerated MSA vs MSA quality 1322

Accelerated MSA performs worse than original MSA when directly applied to MSA Transformer, as well 1323

as AlphaFold. In this section, we showcase successful and failed cases in AlphaFold and compare the 1324

coverage of two kinds of MSA. 1325

As shown in Figure 18, AlphaFold prediction is closely correlated to the coverage of MSA sequence. 1326

On cases where dense retriever fails to find a wide coverage of homologous sequences, AlphaFold 1327

performances drop starkly. Note that the MSA is implemented as ColabFold (Mirdita et al., 2022), using 1328

Uniclust30 for MSA building, while our retriever database has a smaller coverage, using only Pfam 1329

database. Also we build accelerated MSA based on only top-500 sequences from retrieval. 1330

G.5 Interpretability of RSA 1331

In addition to analysis on interpretability in §5.7 in the main paper, we provide further analysis of the 1332

interpretability of RSA in terms of homology and structures. 1333

Retrieval rank does not necessarily corresponds to the sequence closest to the query sequence 1334

token-wise. As shown in Figure 17, we calculate and rank the E-value of Top-32 retrieved protein 1335
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Table 9: The domain adaptation performance of models on CASP12 secondary structure prediction.

Method CASP12

ProtBERT 0.628
MSA Transformer 0.621
Accelerated MSA Transformer 0.620
RSA (ProtBERT backbone) 0.631

Figure 16: Query and Retrieved Sequence Structures
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Figure 17: E-value rank against dense retrieval rank on in CB513 dataset.

sequences in CB513 dataset. We then calculate the average rank for the 1st, 2nd,... 32nd proteins in the 1336

dataset. It shows that the top-1 protein only has an average rank of 11, indicating that the retrieval rank 1337

does not necessarily corresponds to the sequence closest to the query sequence token-wise. Therefore, 1338

using dense retrieval, our retrieved results are diverse in sequences, though close to the query sequences 1339

in properties. 1340

Visualization on Retrieval Structural Similarity As shown in Figure 16, we random picked a few 1341

more examples to illustrate the structural similarity between query protein and retrieval proteins. From the 1342

visualization, we can see that retrieved proteins exhibit similar structure or structure components, which 1343

could be used to boost structural knowledge. 1344

G.6 ProteinChat: RSA Empowers ChatGPT on Protein Understanding 1345

In the section, we point out a direction for our future work. RSA can not only be used on small-scale 1346

representation learning model, it can also augment large language models, e.g. ChatGPT. Currently, 1347

even GPT4 model shows limited understanding of biological sequences, especially long sequences like 1348

proteins. Galactica (Taylor et al., 2022) pretrains LLM on scientific text and biological sequences, however, 1349

calibration on the nature of these sequences are ubiquitous. Here, we propose a new method to enable 1350

ChatGPT to understand protein sequences, ProteinChat, by directly applying the protein dense retriever 1351

to ChatGPT. We implement ProteinChat by binding ChatGPT with four tools, 1352

• RSA retriever, that finds homologous sequences to the query protein. 1353

• Annotator, that annotates the homologous sequences in a protein online database, i.e. InterPro2. 1354

• Wikipedia Search, that facilitates more elaborated enquiry into the features of these proteins. 1355

• PubMed Search, that facilitates elaborated enquiry into related scientific articles. 1356

ProteinChat is implemented similar to ReAct agent (Yao et al., 2022), which views ChatGPT as an 1357

agent that uses chain-of-thoughts to break down a difficult task into parts that could be accomplished by 1358

available tools. Here we show several demos of ProteinChat. 1359

Demo 1: 1360

Question: Which family does this protein MSLNAEQKAKVVLEHGSSAHDTGSTEVQVAL 1361

2https://www.ebi.ac.uk/interpro/
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LTLRINDLQKHFLEHKKDHHSRRGLLRMVSQRRKLLDYLKKRNISKYTDLIQSLGLRK be-
longs to? (Ground truth: Belongs to the universal ribosomal protein uS15 family.)

Thought: I need to find out the functional and evolutionary annotations of this protein.
Action: Protein Retrieval
Action Input: MSLNAEQKAKVVLEHGSSAHDTGSTEVQVALLTLRINDLQKHFLEHKKD-

HHSRRGLLRMVSQRRKLLDYLKKRNISKYTDLIQSLGLRK
Observation: Here are 4 homologs for this protein separated by ",":B4D3S0_9BACT,

RS15_HAMD5, K6ZQA3_9ALTE, A0A1H6FC85_9GAMM
Thought: I need to use the entry labels to search the InterPro database.
Action: InterPro Annotation, Action Input: B4D3S0_9BACT
Observation: This is a 30S ribosomal protein S15. It is found in organism Chthoniobacter flavus

Ellin428.It has molecular function that structural constituent of ribosome. It has a biological process
translation. It has cellular component ribosome.

Thought: I need to search Wikipedia to find out which family this protein belongs to.
Action: Wikipedia Search, Action Input: 30S ribosomal protein S15
Observation: Page: Ribosomal protein Summary: A ribosomal protein (r-protein or rProtein)

is any of the proteins that, in conjunction with rRNA, make up the ribosomal subunits involved in
the cellular process of translation. E. coli, other bacteria and Archaea have a 30S small subunit and
a 50S large subunit, whereas humans and yeasts have a 40S small subunit and a 60S large subunit.
Page: 40S ribosomal protein S30 Summary: 40S ribosomal protein S30 is a protein that in humans
is encoded by the FAU gene.

Thought: I now know the answer.
Final Answer: The protein belongs to the 40S ribosomal protein S30 family.1362

Demo 2:1363

Question: Can this protein MPGVTVKDVNQQEFVRALAAFLKKSGKLKVPEWVDTVK-1364
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LAKHKELAPYDENWFYTRAASTARHLYLRGGAGVGSMTKIYGGRQRNGVMPSHFSRG
SKSVARRVLQALEGLKMVEKDQDGGRKLTPQGQRDLDRIAGQVAAANKK binds with RNA?
(Ground truth: Yes)

Thought:I need to find out what this protein does
Action: Protein Retrieval
Action Input: MPGVTVKDVNQQEFVRALAAFLKKSGKLKVPEWVDTVKLAKHKELAPY-

DENWFYTRAASTARHLYLRGGAGVGSMTKIYGGRQRNGVMPSHFSRGSKSVARRV
LQALEGLKMVEKDQDGGRKLTPQGQRDLDRIAGQVAAANKK

Observation: Here are 4 homologs for this protein separated by ",":A0A315V8B8_GAMAF
,A0A673GQT0_9TELE ,A0A2K6SCP9_SAIBB ,A0A674GDP2_TAEGU

Thought: I need to find out what this protein does
Action: InterPro Search, Action Input: A0A315V8B8_GAMAF
Observation: This is a 40S ribosomal protein S19. It is found in organism Gambusia affinis

(Western mosquitofish).
Thought: I need to find out if this protein binds with RNA
Action: Wikipedia Search, Action Input: 40S ribosomal protein S19 binds RNA
Page: 40S ribosomal protein S19 Summary: 40S ribosomal protein S19 is a protein that in

humans is encoded by the RPS19 gene. Page: 5S ribosomal RNA Summary: The 5S ribosomal
RNA (5S rRNA) is an approximately 120 nucleotide-long ribosomal RNA molecule with a mass of
40 kDa. It is a structural and functional component of the large subunit of the ribosome in all domains
of life (bacteria, archaea, and eukaryotes), with the exception of mitochondrial ribosomes of fungi
and animals. The designation 5S refers to the molecule’s sedimentation velocity in an ultracentrifuge,
which is measured in Svedberg units (S). Page: Ribosomal protein Summary: A ribosomal protein
(r-protein or rProtein) is any of the proteins that, in conjunction with rRNA, make up the ribosomal
subunits involved in the cellular process of translation. E. coli, other bacteria and Archaea have a 30S
small subunit and a 50S large subunit, whereas humans and yeasts have a 40S small subunit and a
60S large subunit. )

Thought: I now know the final answer.
Final Answer: Yes, 40S ribosomal protein S19 binds with 5S ribosomal RNA as part of the

ribosomal subunits involved in the cellular process of translation 1365

Demo 3 (with PubMed): 1366

Question: Identify the potential function of protein MSRTIFCTFLNKEAD- 1367

27



GLDFQLYPGELGKRIFNEISKEAWGQWMAKQTMLINEKKLNTMN-
PDDRKLLEQEMVRFLFEGHDVHIDGYTPPEK and write a detailed protocol for measuring the
function of this protein. (Ground truth: N/A)

Thought:I need to find what gene this protein is associated with
Action: Protein Retrieval
Action Input: MSRTIFCTFLNKEADGLDFQLYPGELGKRIFNEISKEAWGQWMAKQTM-

LINEKKLNTMNPDDRKLLEQEMVRFLFEGHDVHIDGYTPPEK
Observation: Homologs of this protein has attributes: Iron_Traffic with importance 0.8876,

E1_UFD with importance 0.1123
Thought: I need to find out more information about iron traffic
Action: PubMed Search, Action Input: iron traffic
Observation: Title: Moving Fe2+ from ferritin ion channels to catalytic OH centers depends on

conserved protein cage carboxylates
Abstract: ... (too long, abbrevited)
Title: L-ferritin binding to scara5: a new iron traffic pathway potentially implicated in retinopathy
Abstract: ... (too long, abbrevited)
Title: Ceruloplasmin-ferroportin system of iron traffic in vertebrates
Abstract: ... (too long, abbrevited)
Thought: I now know enough to write a detailed protocol.
Final Answer: Based on the information gathered from the protein sequence and the relevant

literature, it appears that the protein is potentially involved in iron trafficking. Iron trafficking is
crucial for various cellular processes, and the ceruloplasmin-ferroportin system represents one of
the major iron traffic pathways in vertebrates. Ferritin is an iron storage protein that has also been
suggested as an iron carrier. The Scara5 receptor, which is specific for L-ferritin, has been found in
various tissues, including the retina.

To measure the function of this protein, we can design a protocol that investigates the protein’s
role in iron transport and its interaction with other proteins involved in iron trafficking, such as
ceruloplasmin, ferroportin, and Scara5. Here’s a detailed protocol:

1. Protein expression and purification: Clone the gene encoding the protein of interest into an
appropriate expression vector. Transform the vector into a suitable host, such as E. coli, and induce
protein expression. Purify the expressed protein using affinity chromatography and other relevant
purification techniques.

2. Iron-binding assay: Assess the ability of the purified protein to bind iron using a colorimetric
iron-binding assay, such as the ferrozine assay. Measure the absorbance of the protein-iron complex
at the appropriate wavelength to determine the iron-binding capacity of the protein.

3. Protein-protein interaction studies: Investigate the interaction between the protein of interest
and other proteins involved in iron trafficking, such as ceruloplasmin, ferroportin, and Scara5. This
can be done using techniques like co-immunoprecipitation, pull-down assays, or surface plasmon
resonance (SPR). Cellular iron transport assay: Transfect cells with a plasmid encoding the protein
of interest and perform an iron transport assay using radiolabeled iron (e.g., 59Fe). Measure the rate
of iron uptake and release by the cells expressing the protein of interest compared to control cells.

4. Functional studies in animal models: Assess the in vivo function of the protein by generating
a knockout or transgenic animal model. Evaluate the iron status of the animals (e.g., serum iron,
transferrin saturation, and ferritin levels) and examine the expression of other proteins involved
in iron trafficking (e.g., ceruloplasmin, ferroportin, Scara5) in the knockout or transgenic animals
compared to control animals.

6.Data analysis: Analyze the data obtained from the various assays and experiments to draw
conclusions about the function of the protein in iron trafficking and its potential role in retinopathy.1368
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(a) T1024 MSA, AlphaFold prediction TM-score: 0.9842
(b) T1024 Acc-MSA, AlphaFold prediction TM-score:
0.9897

(c) T1025 MSA, AlphaFold prediction TM-score: 0.9229
(d) T1025 Acc-MSA, AlphaFold prediction TM-score:
0.9204

(e) T1047s1 MSA, AlphaFold prediction TM-score:
0.5020

(f) T1047s1 Acc-MSA, AlphaFold prediction TM-score:
0.4214

(g) T1045s2 MSA, AlphaFold prediction TM-score:
0.9356

(h) T1045s2 Acc-MSA, AlphaFold prediction TM-score:
0.2759

Figure 18: Visualization of the coverage rate of Accelerated MSA VS MSA.

29


	Introduction
	Augmenting Protein Representations with Retrieved Sequences – Is MSA necessary? 
	Background and Problem Statement
	MSA is Retrieval through Alignment
	Do we still need alignment for proteins? An Empirical Analysis

	RSA
	Experiments
	General Setup
	Main Results
	Retrieval Augmentation for De Novo Proteins with Few Homologs
	RSA as a Tool for Large Language Model
	Retrieval Speed
	Ablation Study
	Retrieved Protein Interpretability
	Creating MSA with RSA

	Related Work
	Conclusion
	Limitation
	Limitations and Failed Case Analysis
	Broader Impact and Potential Risks
	A Brief Recap on Proteins
	Details Introduction of Retrieval-augmentation Designs
	Overview of Previous Protein Representation Augmentation Methods 
	Experiment Setups
	In-depth Introduction to Protein Tasks 
	HHblits Settings 
	Model Hyperparameters
	RSA and Variants Implementation Details
	Retriever Implementation Details
	ProtBERT-RSA Architecture and Implementation
	RSA for Protein Folding
	Accelerated MSA


	Supplementary Experiment Analysis
	Comparison of the Running time between RSA vs MSA
	Case Study
	Domain Adaptation Analysis
	Comparison of Accelerated MSA vs MSA quality
	Interpretability of RSA
	ProteinChat: RSA Empowers ChatGPT on Protein Understanding


