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ABSTRACT

Large Vision-Language Models (LVLMs) have excelled in joint visual and lan-
guage understanding, particularly in generating detailed image captions. How-
ever, they still struggle with object hallucination, where non-existent objects are
described, especially in long captions. While fine-tuning through supervised
learning with enhanced datasets or reinforcement learning from human feedback
can alleviate this issue, these methods demand considerable human effort, limit-
ing scalability. This paper addresses this challenge by introducing a human-free
framework to mitigate object hallucination in LVLMs for image captioning, uti-
lizing reinforcement learning driven exclusively by automatic natural language
processing metrics. We demonstrate that the following framework can effectively
mitigate hallucination: (1) caption generation is formulated as a Markov Decision
Process (MDP); (2) minimizing hallucination while maintaining caption quality
is guided by a reward function, combining a proposed FIScore with a penalty
on Kullback—Leibler divergence from the pre-trained model; (3) fine-tuning the
LVLM within the MDP framework can be performed directly by Proximal Policy
Optimization (PPO) with careful attention to architectural details. Extensive ex-
periments demonstrate a significant reduction in hallucination by up to 41% while
preserving the caption quality compared to the baseline model, InstructBLIP, on
the COCO dataset. This improvement is reflected in consistent gains in object
coverage and accuracy across various models and datasets. Notably, our method
achieves comparable or superior performance to alternative approaches, all with-
out requiring any human involvement.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) have become increasingly prominent due to their ability
to perform joint visual and language understanding tasks|Achiam et al.|(2023));|Alayrac et al.|(2022).
Among these, image captioning has emerged as a key application where LVLMs consistently outper-
form smaller models by generating highly detailed and contextually rich captions Dai et al.| (2023);
Zhu et al.|(2023); |L1 et al.| (2023a). Despite these advancements, LVLMs still struggle with a crit-
ical challenge: object hallucination Rohrbach et al.| (2018b); Biten et al|(2022). This occurs when
captions include references to objects that do not exist in the corresponding image, particularly in
longer, more detailed descriptions; as shown in Fig. Object hallucination not only undermines
the credibility of these models but also hinders their broader application in fields that require high
precision, such as autonomous systems and medical imaging.

Addressing object hallucination has been a major focus in recent research effortsZhou et al.|(2023));
Li et al| (2023d); Dai et al.| (2022); [Liu et al| (2024). Early efforts aimed at mitigating this issue
in small-scale multimodal pre-trained models focused on reducing object co-occurrence patterns
through data augmentation Biten et al.| (2022); Rohrbach et al.|(2018b)); |Kim et al.|(2023)). However,
such approaches were considered ineffective for LVLMs |Zhou et al.| (2023). More recent studies
have explored improving dataset quality and applying fine-tuning to LVLMs Gunjal et al.| (2023); |L1
et al.[(2023c)); Liu et al.|(2023a), or using Reinforcement Learning from Human Feedback (RLHF)
Sun et al.[(2023) to reduce object hallucination. Despite their potential, these methods still face sig-
nificant challenges, as gathering large volumes of high-quality examples (Gunjal et al.| (2024)); |You
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(a) Sentence hallucination (b) A detailed caption example from COCO dataset for baseline (Base) vs fine-
ratio measured in CHAIR  tuned (Our). Bold objects are hallucinated ones by LVLMs.

Figure 1: Quantitative and qualitative comparison between Base (InstructBLIP) and Our: Chart (a)
shows a significant 41% reduction in object hallucination on the COCO dataset using Our. Fig. (b)
presents an example where the Base model produces a caption with substantial object hallucination,
while the Our model provides an accurate description without hallucinated objects.

et al.[(2023));|Zhang et al.|(2024])) or obtaining accurate human feedback for RLHF fine-tuning|Stien-
non et al.[(2020) remains a time-consuming and labor-intensive process that requires considerable
human expertise and effort.

To address these limitations, we propose a human-free framework to mitigate object hallucination in
LVLMs for image captioning. Our approach leverages reinforcement learning, guided exclusively by
automatic natural language processing (NLP) metrics, eliminating the need for human intervention.
The key features of our framework are as follows:

» Caption Generation as an MDP: To streamline previous methods and minimize human in-
tervention, we formulate the caption generation task as a Markov Decision Process (MDP),
with a reward function incorporating specific automatic NLP metrics to reduce hallucina-
tion. By framing image captioning as a reinforcement learning problem, we can effectively
address the inherent non-differentiability challenge of optimizing automatic metrics, which
are difficult to optimize directly through traditional supervised learning methods.

* Dedicated Reward Function: To guide the output generation behavior, we incorporate
automatic NLP metrics into the reward function. For hallucination reduction, instead of
using the straightforward CHAIR metric Rohrbach et al.| (2018b)), we introduce FIScore,
which provides a better balance between reducing object hallucination and improving ob-
ject coverage. Additionally, we introduce a Kullback—Leibler (KL) divergence penalty to
prevent the policy from diverging too far from the pre-trained model, preserving caption
quality without the need for labeled data. Moreover, since metrics like F1Score are com-
puted only at the end of caption generation, which results in sparse rewards, the KL penalty
helps densify feedback, making RL optimization more effective. Optionally, when labeled
data is available, the reward can easily adopt other quality metrics such as Meteor Banerjee
& Lavie (2005) and BERTScore [Zhang et al.|(2019) to further improve caption quality.

+ Efficient Fine-tuning with PPO: The proposed framework can be directly optimized us-
ing Proximal Policy Optimization (PPO), a popular RL method, to fine-tune the Large
Vision-Language Model (LVLM). However, training LVLMs typically requires significant
memory and computational resources. To mitigate this, we introduce a compact version
of PPO where the policy, value function, and reference model share the same frozen lan-
guage model, adding only minimal additional training parameters through adapters. These
adapters are compatible with recent state-of-the-art fine-tuning techniques for LVLMs such
as prompt tuning, ensuring resource-efficient training.

Through extensive experiments, we demonstrate that our method reduces hallucination by up to 41%
compared to the baseline model, InstructBLIP, while also improving object coverage and caption
quality on the COCO dataset. Additionally, our framework can be easily extended to handle more
complex datasets (e.g. Visual Genome) and incorporate existing NLP metrics effectively. Notably,
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our approach achieves comparable or superior performance to existing methods, all without relying
on human feedback, making it a scalable and efficient solution for enhancing LVLMs in image
captioning tasks.

2 RELATED WORK

Large Vision Language Model: The rapid advancements in Large Language Models (LLMs)|Tou-
vron et al.| (2023)); Chung et al.| (2022); Touvron et al.[(2023) combined with a surge in open-source
initiatives, has paved the way for the emergence of extensive vision-language models [Liu et al.
(2023c); |[Zhu et al.[ (2023); Sun et al.| (2023); Ye et al.| (2023)); |Bai et al.| (2023); |[Peng et al.[ (2023).
LVLM:s seamlessly combine a LLM and a pre-trained visual encoder to form an end-to-end model,
aiming to produce contextually relevant text from visual stimuli Zhang et al.|(2023a). There are
various approaches to effectively achieve this. LLaVA [Liu et al.| (2023b) introduced the concept of
integrating a simple projector during LLM fine-tuning. Chatspot|Zhao et al.|(2023)) follow LLaVA’s
model structure, embeds the region of interest into instruction data. GPT4Rol [Yu et al.| (2023)) and
Shikra [Chen et al.| (2023) add grounding tasks to LLaVA structure models and achieve great per-
formance on various tasks. Concurrently, Multimodal-GPT |Gong et al.| (2023) aims to improve
OpenFlamingo’s |Alayrac et al.| (2022)) directive adherence. mPLUG-Owl Ye et al.| (2023) suggests
a two-step method: first train vision models, and then refine the language model using techniques
like LoRA Hu et al.| (2021). BLIP2 [Li et al.| (2023b) and InstructBLIP |Dai et al.| (2023) presented
Q-former-based LVLMs without fine-tuning the LLM but achieving state-of-the-art performance.
Our work fine-tunes the InstructBLIP to reduce object hallucination within LVLMs.

Object Hallucination in Vision Language Models: Object hallucination refers to generated de-
scriptions containing objects which are not present in the visual modality Rohrbach et al.[(2018b). In
small-scale vision language models (VLM), mitigation techniques include fine-grained contrastive
learning Zeng et al| (2021) or data augmentation to eliminate co-occurrence patterns Kim et al.
(2023). However, training paradigms differ between conventional VLMs and LVLMs. The autore-
gressive training paradigm in LVLMs poses challenges in implementing VLM hallucination mitiga-
tion methods directly |[Zhang et al.| (2023b). Notably, object hallucination is more pronounced and
widespread in the long-form descriptions produced by LVL.Ms compared to the shorter descriptions
generated by VLMs. Ongoing research has started to tackle object hallucination in LVLMs, encom-
passing evaluation and detection approaches|Petryk et al.|(2024); Li et al.|(2023d)); Liu et al.| (2023a));
Dai et al.|(2022); Jing et al.| (2023); Liu et al.[(2023a); Sun et al.| (2023)), the development of bench-
marks|Ben-Kish et al.|(2024); Wang et al.[(2023), hallucination elimination through the construction
of higher-quality datasets \Gunjal et al.| (2023); [Li et al.| (2023c)); [You et al.| (2023), and the use of
supervised learning for fine-tuning |Zhou et al. (2023); |[Zhai et al.| (2023) or employ Reinforcement
Learning training from Human Feedback (RLHF) |Sun et al.| (2023); |Stiennon et al.| (2020) to align
different modalities. However, these methods often demand substantial time and labor, particularly
in acquiring a large number of high-quality examples. Instead, grounded in reinforcement learn-
ing (RL) and automatic metrics, we propose a novel approach. This conceptually distinct method
demonstrates efficacy in reducing hallucination and is compatible with various LVLMs, offering a
more efficient solution without relying on human effort.

Reinforcement Learning for NLP: Reinforcement Learning (RL) has emerged as a prevalent tech-
nique for enhancing language models in a wide range of Natural Language Processing (NLP) tasks,
encompassing dialogue |Li et al.| (2016)); |[Zhou et al.| (2017); Jaques et al.| (2019); Y1 et al.| (2019);
Jaques et al| (2020), machine translation [Wu et al.| (2016)); Nguyen et al.| (2017); Kiegeland &
Kreutzer| (2021)); Bahdanau et al.|(2016); Ranzato et al.| (2015)); [Kreutzer et al.| (2018)), image cap-
tioning Rennie et al.[| (2017); Ren et al.| (2017), summarization |Stiennon et al.[ (2020); [Paulus et al.
(2017);/Wu & Hu|(2018); Bohm et al.|(2019); Ziegler et al.|(2019), and text-games Narasimhan et al.
(2015); Hausknecht et al.|(2020). In this training paradigm, NLP models are optimized through an
RL algorithm, wherein the reward signal is derived from either human feedback [Kreutzer et al.
(2018); Jaques et al.|(2020); [Stiennon et al.| (2020); Ziegler et al.| (2019) or NLP evaluation metrics,
such as ROUGE for summarization [Paulus et al.| (2017); Wu & Hul (2018) or BLUE for translation
Wu et al.[(2016); Nguyen et al.|(2017); Kiegeland & Kreutzer| (2021). These reward mechanisms
enable the models to iteratively improve and fine-tune their performance based on the quality of
generated outputs. While RL has proven effective in NLP, its exploration in Vision Large Language
Models (LVLMs) for captioning is not well-established. Our work pushes the boundaries in this
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direction by leveraging RL to address the challenge of object hallucination in LVLMs. We tackle
intricate issues specific to this context, including high computational costs, sparse rewards, and ex-
tended temporal horizons.

Finetuning LVLMs with Adapters: Fine-tuning the entire model for Large Vision Language Mode
demands extensive memory and computational resources. To address this challenge, various Pa-
rameter Efficient Fine-Tuning (PEFT) methods have emerged as cost-effective alternatives. These
methods include prompt tuning [Lester et al.|(2021));|Li & Liang|(2021);|Qin & Eisner|(2021), tuning
the embedding layer inputs [An et al.| (2022), tuning hidden states (IA3 ) |Liu et al.| (2022), employ-
ing Low-rank Adapters (LoRA) |Hu et al.| (2021)); Dettmers et al.| (2023)), incorporating full layers
Houlsby et al.| (2019), tuning biases [Zaken et al.| (2021)), learning weight masks based on Fisher
information Sung et al.[(2021)), and leveraging combinations of these approaches Karimi Mahabadi
et al.|(2021). In our study, we demonstrate the effectiveness of prompt tuning in addressing the task
at hand, while future work will investigate trade-offs with other PEFT methods to further enhance
performance.

3 METHODOLOGY

In this session, we will sequentially cover the following topics: (1) casting the caption generation
task within the framework of a Markov Decision Process (MDP); (2) defining the dedicated reward
function with appropriate automatic metrics; (3) modeling RL networks; (4) fine-tuning the model
by solving the MDP through Proximal Policy Optimization (PPO).
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Figure 2: Detailed architecture of our framework. Specifically, the Policy Network is crafted by
augmenting the shared LVLM with delicately learnable soft prompts. Meanwhile, the Value Net-
work is formed by replacing the LLM Head with a Linear Value head. Notably, all parameters of the
LVLM remain shared and frozen, with only a very small fraction (less than 0.01% LVLM weight)
of trainable parameters added to the LVLM for the meticulous modeling of the policy network and
value network.

3.1 MARKOV DECISION PROCESS (MDP) FOR IMAGE CAPTIONING

The image captioning task can be effectively framed as an MDP due to its inherent sequential nature,
where each token generation is a decision based on the current state. This allows us to utilize
RL techniques to optimize caption quality holistically, addressing both local and global aspects
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of the generated text. Mathematically, we formulate the image captioning as an MDP denoted
by (S, A, R, P,~, H). Each episode in this MDP begins by sampling a datapoint (X, Z,Y") from
our dataset D = {(X;, Z;,Y;)}Y,, where X € X represents the text input for LVLMs, Z € Z
represents the image, and Y € ) is the ground truth caption, which can be set to none if no ground
truth caption is available. The initial state So = (Z,x¢," - ,Z,,) consists the image Z and the
text input X = (zg,- -+, ), Where Sy € S and the state space S = Z U X is defined as the
concatenation of images and text inputs. At each time step ¢, an action a; € A, which corresponds
to a token from our vocabulary V, is taken in the environment from a policy (e.g. an LVLM). The
transition function P : § x A — A(S) deterministically appends an action a; to the end of the state
Si—1=(Z,z0," "+ ,Tm, a0, - ,ar—1) to form the state S;. This process continues until the end of
the episode ¢t < T' < H, either when the current time step ¢ exceeds the horizon H or when an end-
of-sentence (EOS) token is generated, resulting in a final state ST = (Z, xo, -+ , T, a0, "+ ,a7).
At every step, areward R : S x A x Y — R! is emitted. This reward may be derived from
automated metrics (e.g., CHAIR). Our objective is to maximize the cumulative return represented
by the equation:

max 'R (Sy, a0, Y). 1
A:{GO'..aT}eszt:ry ( ty Ut ) ( )

where ~ denotes the discount factor (e.g., 0.99) and A is the generated caption from the LVLM.

3.2 REWARD FUNCTION

To tackle hallucination, the first approach people usually think of is to incorporate CHAIR; and
CHAIR Rohrbach et al.|(2018a) directly into the reward function. Although CHAIR metrics pri-
marily evaluate precision, they cause models to prioritize precision at the expense of recall. To
address this issue, we propose utilizing the F'/Score. FIScore offers a balanced measure of preci-
sion and recall, ensuring that the reward function encourages comprehensive object coverage while
maintaining accuracy:

2 * Precision x Recall
FIS = 2
core Precision + Recall @

where Precision is the ratio of correct objects to all predicted objects, and Recall is the ratio of
correct objects to all objects in the ground truth. The ground truth objects can be either extracted us-
ing an off-the-shelf object detection model (e.g., YOLOv8|Varghese & Sambath|(2024)) or obtained
directly from the dataset. Predicted objects can be easily extracted from the caption using a method
similar to CHAIR Rohrbach et al.| (2018a)).

The resulting reward function is:
P FiScore(ST,a’)Y)ift =T
R(Sa',Y) { 0 otherwise. )
Optionally, in the setting where ground truth captions are available, two additional metrics can be
integrated into the reward function to further enhance caption quality: Meteor |Banerjee & Lavie
(2005) and BERTScore [Zhang et al.| (2019). Meteor evaluates the similarity between generated and
reference texts (a.k.a ground truth captions) based on n-grams and word order, ensuring structural
and lexical alignment. Meanwhile, BERTScore assesses semantic similarity using pre-trained BERT
embeddings, capturing underlying meaning accurately. Together, Meteor and BERTScore offer a
comprehensive evaluation of caption quality, considering both surface-level and semantic aspects,
thereby improving caption relevance to the ground truth.

The enhanced reward function is defined as:
R(5'a'Y) = 4)
FiScore(ST,a™,Y) + aMeteor(ST,a™,Y) + BBERTScore(ST,a”,Y)ift =T
0 otherwise.

®)

Note that the balancing weight o for Meteor should be relatively smaller compared to F1Score and
BERTScore, as it may encourage shorter captions, especially in datasets with shortened ground truth
references.

3.3 MODELING REINFORCEMENT LEARNING NETWORKS

5
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To fine-tune the LVLM within our MDP frame-
work, we utilize a policy network, a value net- 4F
work, and a reference network. While the pol-

icy and value networks are essential compo- Shared LVLM 3% o+
nents of RL, the reference network serves as
a proposed teacher network. Its role is to pre-
vent the policy network from deviating too far
from the baseline during training, which is par-
ticularly important for preserving the caption Figure 3: Simplified overview of the framework’s
meaning in the absence of ground truth cap- network components: policy network, value net-
tions. Given the intensive computational de- work, and reference network. All networks share
mands of conventional LVLM fine-tuning, we the same frozen LVLM as its foundation. The
design lightweight and efficient networks. Fig. reference network mirrors the LVLM identically,
[displays the simplified overview of the frame-  while the value and policy networks incorporate a
work’s network components. Specifically, each lightweight adapter into the shared LVLM.
network builds upon the same frozen LVLM

foundation. The reference network mirrors the LVLM identically, while the value and policy net-
works incorporate slender adapters alongside the LVLM. This approach optimizes computational
resources and is compatible with various state-of-the-art Parameter Efficient Fine-Tuning (PEFT)
methods [Mangrulkar et al.|(2022), which rely on adapters.

Adaptor

Value %
Adapter

Reference Net

—>Value Net

In this paper, we utilize Prompt Tuning to assess the framework’s effectiveness. Prompt Tuning
offers an efficient and flexible method for controlling LVLM behavior. By allowing the model
to remain frozen while refining prompts, this approach reduces computational costs and provides
task-specific adaptability without compromising the model’s generalization capabilities. Specifi-
cally, the LVLM generates captions based on images and instructions in an autoregressive man-
ner. By prefixing a controllable prompt to the instruction, we can influence the model’s behavior
Lester et al.| (2021). Mathematically, we adopt a conditional generation perspective, where A rep-
resents a sequence of tokens forming a caption. The captioning process by LVLM is expressed as
Py(A|X, Z), with 0 denoting the LVLM’s weight. Prompting enhances the model’s generation of
A by providing additional context, which is achieved by prefixing a token sequence G to the in-
put X. This aids the model in improving the likelihood of generating the ground truth caption Y:
Py(Y|[G; X], Z). Throughout, the model parameters 6 remain unchanged. Optimal G selection can
be achieved via manual exploration (Hard Prompting) or by representing G with dedicated parame-
ters ¢, refined through gradient descent (Soft Prompting). This updates the conditional generation as
Py.4(A|[G; X], Z), trainable by maximizing reward through backpropagation, with gradient updates
solely applied to ¢, i.e., learnable soft prompt.

Fig. 2]illustrates the detailed architecture of the Augmented LVLM in our implementation. The Pol-
icy Network 7g.4(A|G, S), identical to Py.4(A|[G; X], Z), is constructed by enhancing the shared
large language model with the delicately learnable soft prompt. Concurrently, the Value Network
Vo. (9) is created by substituting the LLM Head with a Value Head, featuring a single output neu-
ron. The reference network 7y (A|S) remains identical to the original LVLM. Notably, all parameters
of the Large Vision Language Model persist as shared and frozen. Only an extremely small fraction
(approximately 0.01% LVLM weight) of trainable parameters is introduced to meticulously model
the policy network and value network.

3.4 FINE-TUNING MODEL BY SOLVING THE MDP

Given the MDP and the RL networks, we fine-tune the augmented LVLM, i.e., the policy, using
the on-policy Proximal Policy Optimization (PPO) algorithm [Schulman et al.|(2017). Formally, this
algorithm trains the policy mg,4(A|G, S) to maximize long-term discounted rewards over generated
captions:

T
En [Z YR (St,a1,Y) (6)
t=0
We define our V-value and Q-value functions as follows:
T
V7 (S)) = Eayr yop lz Y R(S;,a.,Y) )
T=t
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Q" (St,a¢) = EypR (S, a1,Y) + 1B, np V™ (Si41)] . 3
This leads to the definition of our advantage function:
A™(Sy,a) = Q7 (St a) — V™ (St). )

We use the previously mentioned value network Vj.,, to model the value function, and the mentioned
Reference Network 7 (A|S) to generate the initial caption. Following the components defined, we
employ the PPO algorithm detailed in [Schulman et al.| (2017) to fine-tune the policy. To enhance
training stability, we approximate the advantage using Generalized Advantage Estimation as out-
lined in Schulman et al.|(2015).

Given a data point tuple (X, Z,Y) and generated caption A from our policy, as the aforementioned
environment reward is sequence-level and sparse, we further regularize the reward function using
a token-level KL penalty. This penalty ensures the model does not deviate significantly from the
original caption generated by 7}, (A|S), densifying the reward signal and preserving the quality and
meaning of the caption in line with the reference model. This regularization is especially crucial
when the ground truth caption Y is unavailable. Formally, the regularized reward function is defined
as:

R(S,a,Y) =R (S, a.,Y) (10)
- )\KL (7'('9 (at | (;’7 St) ||’/TT (at | St)) . (11)

Here, R is the regularized KL reward, KL denotes Kullback-Leibler divergence, and the KL coeffi-
cient )\ is dynamically adapted, following Ziegler et al.|(2019).

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets: We train and evaluate our method using the COCO dataset, as described by |[Lin et al.
(2014). This dataset serves as a comprehensive collection widely used in tasks such as image recog-
nition, segmentation, and captioning. It encompasses over 300,000 images, covering more than 80
object categories, and is meticulously annotated. For our captioning task, we utilize the Karpathy
split |[Karpathy & Fei-Fei| (2015)), dividing the dataset into training, validation, and test sets with
82,000, 5,000, and 5,000 images, respectively. Additionally, to prepare the dataset for LVLM fine-
tuning, we randomly augment each image with detailed caption instructions. A complete list of
instructions is provided in Appendix [G|

Implementation detail: We employ InstructBLIP Dai et al.|(2023)) as our baseline LVLM due to its
robust resistance to hallucination compared to others. InstructBLIP adopts the BLIP-2 architecture
Li et al.| (2023b) and is distinguished by its use of Q-former, a Query Transformer designed for
instruction-aware training. In this paper, the vision encoder utilized is ViT-g/14 Fang et al.| (2023),
while the LLM of choice is Vicuna-7B. During RL fine-tuning, we initialize the model with the
pre-trained InstructBLIP checkpoint. Subsequently, we exclusively fine-tune the parameters of our
adapters, keeping the image encoder, Q-former, and LLM frozen.

Our experiments are conducted using the Transformers|Wolf et al.| (2020) and PyTorch [Paszke et al.
(2019) frameworks. For fine-tuning on the dataset, we employ the same tokenizer as InstructBLIP
with vocabulary size } 32000. Our reward function sets « and g to 0.1 and 1, respectively. The
soft prompt length is set to 20. In implementing PPO, we adopt the default parameters of the Stable
Baseline API [Raffin et al.| (2021), with modifications: we gather 4096 transitions and update the
PPO loss 5 times for each on-policy step. The + is set to 0.99. The KL coefficient A is dynamically
adjusted, as described in|Ziegler et al.|(2019), with a target KL of 0.05. Our batch size is set to 64,
and we train the models using the AdamW optimizer with a learning rate of 0.0002, ensuring stable
convergence over 50 epochs. We leverage 8 Nvidia A6000 GPUs, employing mixed precision and
flash attention mechanisms [Dao et al.| (2022) to enhance training speed. The fine-tuning process
typically requires approximately one day to complete.

4.2 EXPERIMENTAL RESULTS

In this section, we present experimental results that highlight five key points: (1) the occurrence
of object hallucination and its amplification in detailed captions; (2) the potential of prompt-tuning
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(demonstrated using hard prompting) to mitigate hallucination; (3) the effectiveness of our frame-
work in reducing hallucination while preserving or even enhancing caption quality when ground
truth captions are available, compared to baseline models and alternative methods; and (4) the frame-
work’s robustness when applied to more complex datasets.

The occurrence of object hallucination and its amplification in detailed captions: We begin by
conducting an experiment aimed at demonstrating the presence of object hallucination and its am-
plification with detailed captions. We design instructions to generate short and long captions using
two baseline models: InstructBLIP and mPLUG-Owl. Tab. |l}illustrates the object hallucination
measured by CHAIRs across various caption types with specific input prompts on the COCO test
set. The results indicate that LVLMs experience object hallucination for both short and long cap-
tions, with the issue being more pronounced for longer captions. Notably, InstructBLIP exhibits less
hallucination with short captions; however, the problem amplifies significantly, around ten times,
with longer sentences. Both models show similarly high rates of hallucination in long captions
demonstrating the severity of the problem.

Type | Prompt InstructBLIP mPLUG-Owl
yp P CHAIR;(%)| CHAIR (%)} CHAIR;(%)} CHAIR (%)
Short Generate a short caption of the image. 243 3.13 22.81 60.55
Create a textual summary for the image. 4.95 6.51 22.98 61.33
Lon Provide a detailed description of the image. 27.01 60.91 26.03 71.39
€|Create a detailed textual summary for the image. 25.80 59.11 24.25 66.31

Table 1: Object Hallucination, gauged by CHAIR; and CHAIR; metrics, across diverse caption types
paired with specific input prompts in the COCO test set. These prompts are designed to elicit both
short and long captions. Two distinct methods are illustrated: InstructBLIP and mPLUG-Owl.

Prompt tuning in ;nitigatir:ig hallucin?tion: Method CHAIRi(%) | CHAIRs(%) |
We have meticulously curated a series of hard

prompts intended to be incorporated at the be- TE;\EJAG'OWI §g§ ggg
ginning of input instructions, aimed at mini- InstructBLIP 258 591
mizing object hallucination in the model’s gen-

erated captions. Each prompt is meticulously Teacher 7.5 36.4
designed to address specific sources of object gOT dv-Decodi ;2 gg;
hallucination, strategically guiding the model Gi’e"lf":-]gr;sei(iglemg 13.0 510
away from potential pitfalls. The comprehen- GPT-Teacher 78 320
sive list of prompts is provided in Appendix -

During the testing phase, we employ a random- Hard Prompting 20.9 45.1
ized approach by selecting a single hard prompt Our 6.8 17.8

to prefix each sample instruction. We con-

duct captioning using the InstructBLIP baseline  Fjgure 4: Performance of Object Hallucination.
model with prefixed instructions. The reported The first row showcases non-fine-tuned LVLM
performance metrics reflect the average perfor-  pagelines. The second row features fine-tuning
mance across these instances, focusing particu-  methods referenced in [Zhou et al] (2023). The
larly on CHAIR evaluations as shown in Tab. third row illustrates our Hard Prompting on base-
under the label Hard Prompting. line InstructBLIP, while the last row demonstrates

In comparison to InstructBLIP, we observe that OUT Soft Prompt fine-tuning using our RL frame-
hard prompting can mitigate object hallucina- WOrK-

tion by reducing CHAIR; and CHAIR ;from 25.8 to 20.9 ( ) and 59.1 to 45.1 ( ) respec-
tively. This highlights the effectiveness of prompt tuning as a method to reduce object hallucination.

Performance of our framework: Based on the observed effectiveness of hard prompting, we fine-
tuned the InstructBLIP model using a learnable soft prompt within our framework to optimize
prompt selection. In Table @ we present the performance of our proposed method compared to
various baselines. The first row represents hallucination of the state-of-the-art LVLM models be-
fore fine-tuning: mPLUG-OwI [Li et al.| (2022), LLaVA [Liu et al.| (2023b)) , InstructBLIP [Li et al.
(2023a). We collected several fine-tuning approaches on the baseline InstructBLIP in the second
rows as presented by [Zhou et al.|(2023).
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The results demonstrate that our pro- coni :

posed method consistently outger— Method Captioning Quality

forms all non-fine-tuning baselines SPICE (%) 1 BLEU (%) 1 BERTScore (%) ©

across hallucination metrics. Re- | o1 yG.owl 125 27 87,40

markably, our approach enhances LLaVA 135 30 3783

CHAIR; by and CHAIR by | BLIP 10.9 1.1 85.81
compared to the baseline

InstructBLIP and notably surpasses  Hard Prompt 11.1 1.0 85.9

the performance of Hard Prompting.

Among fine-tuning approaches, we ~ O% L L) 86.86

achieved the top ranking on CHAIR, ~ Our-Enhance 14.6 6.6 90.42

and second place on CHAIR;, with a

very marginal difference compared to Figure 5: Captioning quality is evaluated using NLP met-
the best-performing model, LURE. rics, comparing our approach to other methods. Our uses
Additionally, our method is able to only F1Score and KL divergence, while Our-Enhance in-
maintain or enhance caption qual- corporates additional metrics: Meteor and BERTScore.

ity across various metrics. Table 3]

presents our results. The row for Our demonstrates the use of F/Score and KL divergence, maintain-
ing performance comparable to the base model, InstructBLIP. There is a slight increase in SPICE,
BLUE, and BERTScore, which we attribute to the generated captions being more factual, concise,
and focused, resulting in shorter and more precise outputs. When ground truth captions are available,
incorporating Meteor and BERTScore, as in Our-Enhance, significantly improves caption quality.
It is evident that Our-Enhance significantly improves captioning performance across SPICE, BLEU,
and BERTScore, surpassing all previous baselines.

Extgpd evaluatiops to cqmplex dgtaset: We conducted 14401 CCEVal; | CCEval, |
additional evaluations using the Visual Genome dataset

and the CCEval metric as outlined in Halle-switch [Zhai LLAVA7B 72.00 19.7

et al.| (2023). These evaluations allowed us to explore the LLaVA13B 79.00 23.8
model’s performance in more complex scenarios, where InstructBlip7B  72.00 22.30

captions typically contain a denser array of objects, po-
tentially increasing the likelihood of hallucination. The
result is shown in Fig. [6]

Our 27.0 19.6

Figure 6: The performance of our

Interestingly, the LLaVal3B model, despite being a method on the Genome dataset.

stronger generative model, shows more hallucinations in
both CCEVal-i and CCEVal-s scores compared to LLaVa7B. Examining the generated captions
shows that this is due to LLaVal3B’s tendency to generate more imaginative content, indicating
that while increased model capability can enhance creativity, it may also lead to more hallucina-
tions. Therefore, guiding the model to prioritize factual accuracy is essential.

Fig. [6] also clearly shows the effectiveness of our model in reducing object hallucinations, with
significantly lower CCEVal; (object-level) score and achieve the best CCEVal, (caption-level) score
among baseline models. Although the improvement in CCEVal, is marginal, this is likely due to the
higher object density in Visual Genome Images, which increases the risk of hallucination and makes
it more challenging to eliminate hallucinations entirely. Nonetheless, our model demonstrates ro-
bustness and adaptability in handling complex captioning tasks, confirming its effectiveness beyond
the COCO dataset.

4.3 ABLATION STUDY

Effectiveness of FI1Score: The

Fl1Score plays a crucial role in ensur- Reward |Pre (%) 1 Rec (%)t CHAIR; (%)| CHAIR; (%)}

ing the recall of generated captions. Base 72.9 71.3 27.1 60.9
Fig. [/] provides a comparison be-  CHAIR | 93.7 20.6 6.3 14.4
tween using the FlScore instead of FlScore| 932 70.2 6.8 18.8

CHAIR in the reward. It is evident
that employing CHAIR directly has Figure 7: Comparison of Precision (Pre) and Recall (Rec)
a detrimental effect, significantly re- between using CHAIR and FIScore in the reward function.
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ducing the recall. This outcome can be attributed to the sole emphasis on precision without due
consideration for recall. The FIScore addresses this issue by incentivizing the model to maintain
high recall, thus preserving a comprehensive coverage of ground truth objects.

Ablation on Incorporating NLP
Metrics: Fig. [§] illustrates the im-
pact of using different automatic met-
rics.  The baseline model shows

Base F1Score BERTScore Meteor| CHAIR; BERTScore BLUE

25.8 85.81 1.1

v
) . . ) v v 6.8 86.86 1.5
high object hallucination with 25.8% v v v 6.9 90.51 18
under CHAIR;. Incorporating the v v v v 6.9 90.42 66

F1Score significantly reduces hallu-
cination down to 6.8% while main-
taining comparable BERTScore and Figure 8: The ablation studies examining the impact of
BLEU score to the baseline. Adding BERTSscore and Meteor metrics on the COCO test set
BERTScore and Meteor to the reward function further enhances caption quality, achieving 92.42 in
BERTScore and 6.6 in BLEU on the COCO test dataset. This ablation study highlights the effective-
ness of each component, particularly the F1Score’s role in reducing hallucination, and the additional
benefits of BERTScore and Meteor for optimizing caption quality when reference captions are avail-
able.

5 DISCUSSION

On the scalability and Computational Resources: Our framework performs LVLM fine-tuning
by leveraging automatic NLP metrics, significantly reducing the reliance on human effort, thus en-
hancing scalability. The quality of the fine-tuned model depends on automatic metrics like F'/Score.
As more advanced hallucination metrics are developed, our framework can easily integrate them
without major changes.

During development, we recognized the significant GPU demands of fine-tuning LVLMs. To ad-
dress this, we designed the framework with efficiency at its core, eliminating network duplication
and leveraging the PEFT approach. It is worth noting that combining mixed precision Micikevicius
et al.| (2017) with efficient attention mechanisms (e.g. xformers Lefaudeux et al.| (2022)) and ad-
vanced distributed training methods (e.g. Accelerate |Gugger et al.|(2022))) synergistically supports
our framework’s implementation. With adequate GPU resources, our approach is highly suitable.
However, future work could explore prediction-time adaptations, such as prompt engineering, to
scale models even larger and provide more accessibility to hobbyist researchers. Larger LVLMs,
with stronger prompt-following capabilities, are especially likely to benefit from these methods.

On the detailed caption length: Our results demonstrate a significant reduction in hallucinations,
but we observed a minor side effect: the average caption length is shorter than the baseline (85 to-
kens compared to 110 tokens). A closer examination revealed that the model’s emphasis on factual
content leads to the omission of imaginative elements, resulting in shorter captions. Our experi-
ments indicate that penalizing shorter captions (in the reward function) can increase their length to
approximately 105 tokens. Unfortunately, this adjustment also raises the hallucination rate to 7.8%.
This suggests a trade-off between caption length and hallucination rates that we should be aware of.
Balancing these factors is crucial for optimizing performance based on specific needs.

6 CONCLUSION

In conclusion, this paper addresses the persistent challenge of object hallucination in LVLMs for
image captioning, especially in detailed descriptions. Traditional fine-tuning methods, while ef-
fective, face scalability issues due to substantial human effort requirements. To overcome this, we
propose a novel framework that leverages reinforcement learning (RL) with automatic natural lan-
guage processing metrics within an MDP framework. This approach minimizes object hallucination
while preserving caption quality, achieved through careful architectural design and a tailored reward
function. Our framework effectively reduces hallucination compared to the baseline model, In-
structBLIP, while maintaining consistent object coverage and caption quality. With its emphasis on
speed and memory efficiency, the framework offers practical scalability and represents a significant
advancement in improving the reliability of LVLMs for image captioning.
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A OPEN-VOCABULARY BENCHMARK

In our approach, we evaluate both a closed dataset (COCO) and an open-vocabulary dataset (Vi-
sual Genome). For COCO, we selected CHAIR due to its tailored design for this dataset, ensur-
ing reliable and consistent results. For Visual Genome, we opted for CCEVAL, which builds on
CHAIR’s methodology by incorporating large language models (LLMs) to better capture objects in
open-vocabulary settings, particularly in the context of the Visual Genome dataset. Notably, open-
vocabulary benchmarks can also be leveraged to evaluate the framework in broader applications.
Specifically, the study Mitigating Open-Vocabulary Caption Hallucinations introduces the Open-
Chair benchmark, an extension of CHAIR that accommodates a broader object vocabulary than
COCO. OpenChair proposes an evaluation method using LLMs to identify hallucinated objects,
providing complementary insights for experiments beyond the COCO dataset. Similarly, ALOHa
highlights CHAIR’s limitations due to its reliance on string matching for a fixed object set. While
CHAIR performs well for COCO, its applicability is limited in open-vocabulary contexts. To over-
come this, ALOHa employs LLMs to detect objects in more general settings, enhancing its adapt-
ability.

It is important to note that CCEVAL, OpenChair, and ALOHa all address the limitations of CHAIR
and converge on a shared approach: leveraging LLMs to enable more generalized and versatile
applications across diverse datasets.

B MOTIVATION OF USING REINFORCEMENT LEARNING

Our motivation for employing RL stems from the need to minimize human effort while ensuring
effectively reduct hallucination.

Traditional approaches to mitigating hallucinations often require identifying specific sources of hal-
lucination and designing targeted strategies to counter them. While effective, these methods are
labor-intensive. Data-driven alternatives like supervised learning provide some level of automation
but rely heavily on labeled datasets, which still require significant human input for data annotation
and curation—an increasingly costly and time-intensive process, particularly for large-scale models.
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In contrast, reinforcement learning in the literature not only demonstrates strong alignment capabil-
ities for LVLMs in tasks like image captioning but also offers a promising path to automation by
significantly reducing the need for explicit labels (e.g., relying only on simple binary feedback for
reward modeling). We are motivated to push this approach to its limits by completely eliminating
human-labeled data, fully leveraging RL’s potential through the exclusive use of automatic metrics
to reduce hallucinations. These metrics are gradually improving in their alignment with human
feedback in terms of both accuracy and reliability. Our approach enables the model to iteratively
refine its outputs based solely on automatic feedback, providing an efficient and scalable solution
that aligns with the trend toward larger LVLMs.

C DESCRIPTIONS OF EVALUATION METRICS

BLEU: BLEU (Bilingual Evaluation Understudy) is a metric employed for assessing the quality of
machine-generated translations by comparing them to one or more reference translations. Derived
from the concept of precision in n-grams—consecutive sequences of n words—BLEU quantifies the
extent to which the generated translation aligns with the reference translations in terms of n-gram
overlap [Papineni et al.|(2001)

BERTScore: BERTScore is a technique designed to assess the performance of natural language
generation or summarization systems, as introduced by |Zhang et al.[(2019). This method gauges the
similarity between a reference text and a generated text by leveraging contextualized embeddings
derived from BERT (Bidirectional Encoder Representations from Transformers).

SPICE: SPICE (Semantic Propositional Image Caption Evaluation) |/Anderson et al.| (2016)) is em-
ployed to assess the quality of image captions by evaluating both the semantic content and precision
of the generated captions in comparison to reference captions. This metric operates on the hypoth-
esis that semantic propositional content plays a crucial role in human caption evaluation. SPICE
introduces an automated caption evaluation method defined over scene graphs, aiming to capture
the intricacies of semantic representation in image captions.

METEOR: METEOR (Metric for Evaluation of Translation with Explicit ORdering) [Banerjee &
Lavie|(2005) serves as an evaluation metric for machine translation output. This metric calculates the
harmonic mean of unigram precision and recall, with recall carrying greater weight than precision.
Unlike other metrics, METEOR incorporates additional features such as stemming and synonymy
matching, in addition to the standard exact word matching. Its design addresses certain issues iden-
tified in the widely used BLEU metric, aiming to improve correlation with human judgment at the
sentence or segment level. Notably, METEOR focuses on sentence-level correlation, diverging from
BLEU, which seeks correlation at the corpus level.

D LARGE VISION-LANGUAGE MODEL

In this paper, the term Large Vision-Language Models (LVLMs) refers to deep learning models de-
signed to process joint visual and textual data, built upon foundational LLMs. Specifically, LVLMs
integrate robust Large Language Models (LLMs) with pre-trained Vision encoders to enhance accu-
racy in understanding and generating language and vision-related content.

Typically, an LVLM is comprised of a vision encoder, a language encoder (i.e., an LLM), and a
cross-modal alignment network. The training process for LVLMs involves three primary stages.
Initially, the vision and language encoders undergo pre-training on extensive unimodal datasets,
focusing on image and text data separately. Subsequently, these encoders are aligned through pre-
training on image-text alignment, enabling the LLM to generate meaningful texts corresponding to
given images. Finally, the whole model undergoes further fine-tuning on image-text instructions,
enhancing its ability to provide satisfactory responses to natural language queries related to specific
images. Notably, during the second and third stages, selective fine-tuning of individual components
can be performed instead of conducting comprehensive parameter adjustments.

Once the visual encoder and the LLM are effectively aligned, the resulting LVLM exhibits superior
visual comprehension capabilities. It not only captures the visual semantics of objects within an
image but also delves into linguistic semantics by leveraging the parametric knowledge embedded
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in the LLM, achieving enhanced performance across various vision language tasks, such as image
captioning.

E OBJECT HALLUCINATION AND CHAIR METRICS

Object Hallucination: In literature, the term “object hallucination” denotes a phenomenon
wherein a model generates descriptions or captions containing objects that are either inconsistent
with or entirely absent from the target image. Object hallucination can be understood and defined at
various semantic levels. At its simplest, it pertains to discrepancies at the object level, though more
nuanced interpretations may extend to the attributes or characteristics of objects. This study focuses
on object-level object hallucinations within model-generated captions, deferring finer-grained anal-
yses of object hallucinations—such as those related to quantity, attributes, and positions—to future
investigations.

CHAIR: The Caption Hallucination Assessment with Image Relevance (CHAIR) Rohrbach et al.
(2018a) stands as a widely recognized standard for gauging the occurrence of object hallucination in
image captioning tasks. This metric operates by scrutinizing the actual objects depicted in an image
and subsequently determining the percentage of referenced objects in the generated caption that do
not correspond to objects within the image itself. Two distinct variants of CHAIR are employed
to measure object hallucination: CHAIR,, which evaluates object hallucination at the caption level,
and CHAIR,, which assesses object hallucination at the object level. Mathematically, the metrics are
defined as follows: ' ]
CHAIR, — # {hallucinated objects}

~ # {all objects in prediction}

12)

# { captions with hallucinated objects }

CHAIR, = :
# {all captions }

13)

F DESCRIPTION OF LVLM MODELS USED AS BASELINE

The evaluated LVLMs basically consist of three parts: a visual encoder, an alignment model, and a
large language model. All the above models have been tuned on collected visual instruction data

mPlug-Owl mPLUG-Owl |Ye et al.| (2023), is a novel training method that enhances LLMs with
multi-modal capabilities by integrating foundational LLM training, a visual knowledge module, and
a visual abstractor module. This approach supports various modalities and enhances both unimodal
and multimodal abilities through collaborative learning. mPLUG-Owl employs a two-stage training
process to align image and text data, leveraging LLM assistance while preserving and enhancing its
generative capacities. Initially, the visual knowledge and abstractor modules are trained using a fixed
LLM module to align image-text pairs. Subsequently, language-only and multi-modal supervised
datasets are utilized to fine-tune a Low-Rank Adaptation (LoRA) module on LLM and the abstractor
module while keeping the visual knowledge module frozen.

LLaVA uses a linear projector to map visual token as a soft-prompt into LLM input tokens. LLaVA
has a two-stage training, where the initial stage focuses on simple caption pretraining solely for the
linear projector, while the subsequent stage finetunes both the projector and LLM on instruction
data. Instruction data leverages language-only GPT-4 by inputting visual ground truth from COCO
dataset.

InstructBLIP adopts the BLIP-2 architecture, and is distinguished by its training of a Q-former,
which bridges the frozen vision encoder and LLM. InstructBLIP’s instruction fine-tuning spans
across 26 distinct datasets.

G INSTRUCTION TEMPLATE FOR DETAILED IMAGE CAPTIONING IN COCO
DATASET

We use Instruction Templates to generate long, detailed captions. During training, the prompt is
randomly selected to query the LVLM. The Instruction Templates are at below:
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Image)A detailed image caption:
Image)A detailed image description:

Image)Write a long description for the image.

Image)Can you explain clearly what you see in the image?
Image)Could you describe clearly what you perceive in the photo?

( )
( )
( )
* (Image)Describe the content of the image in detail.
( )
( )
(Image)Please provide a detailed depiction of the picture.
( )

Image)Provide a detailed description of the given image.

H HARD PROMPT DESIGN

We have developed a set of “hard prompts” intended to be appended at the beginning of the input
instruction, aiming to mitigate object hallucination in the model’s generated captions. Each prompt
is meticulously crafted to target specific sources of object hallucination, strategically guiding the
model away from potential pitfalls. Below is the comprehensive list of prompts:

* Directly prohibit object hallucination : "Please don’t hallucinate the objects in the image”

» Emphasize concrete details: “Provide captions based on specific, easily identifiable ele-
ments in the image.”

* Prioritize realism: “Generate captions that reflect plausible scenarios and avoid fantastical
or improbable elements.”

» Stick to visible entities: “Describe only what is clearly visible in the image and avoid
making assumptions about hidden or obscured objects.”

* Be conservative in interpretation: “Refrain from extrapolating beyond what is evident in
the image; captions should stay closely tied to observable elements.”

* Avoid creative interpretations: “Discourage the generation of captions that involve imagi-
native or metaphorical representations of the scene.”

* Limit descriptive scope: “Keep captions focused on the central objects or subjects in the
image, avoiding unnecessary details or peripheral elements.”

* Minimize speculative language: “Generate captions with certainty, avoiding speculative
language or uncertain descriptions of the depicted scene.”

* Resist contextual speculation: Do not create captions that rely on external context or back-
ground information not present in the image.”

* Steer clear of abstract concepts: “Refrain from incorporating abstract or conceptual ideas
into the captions; stick to tangible, visible elements.”

* Encourage literal language: “Favor literal and straightforward language in captions, avoid-
ing figurative expressions or interpretations.”

I DETAILED ABOUT PROMPT TUNNING

Image captioning with the Large Vision Language Model (LVLM) represents a crucial text genera-
tion task. Departing from the traditional classification approach, which assesses the probability of
an output class given input as P(y|X, Z), where X comprises tokens representing the instruction,
y denotes a single class label, and Z contains tokens representing an image, we now adopt a condi-
tional generation perspective. In this paradigm, Y signifies a sequence of tokens that form a caption.
The captioning process by Large Vision Language Models is expressed as Py(Y|X, Z), where 0
represents the model’s weights.

Prompting involves augmenting the model’s generation of Y by providing additional context for it
to rely on. This is achieved by prefixing a sequence of tokens, G, denoted as {¢1, g2, ..., gk}, tO
the input X, such that enabling the model to enhance the likelihood of generating the correct Y:
Py(Y|[G; X], Z). Throughout this process, the model parameters, ¢, remain unchanged. Optimal
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prompt selection can be achieved through manual exploration of prompt tokens, known as Hard
Prompting, or by representing G with dedicated parameters, ¢, which model the embeddings of
these tokens. These parameters are then refined using gradient descent. This technique is termed Soft
Prompting. Consequently, our updated conditional generation is expressed as Py,4(Y|[G; X], Z),
and it can be trained by maximizing the reward through backpropagation, with gradient updates
solely applied to ¢.

The modeling of Soft Prompting is straightforward. When presented with a sequence of n tokens,
{z1,29,...,2z,}, the initial step undertaken by LVLM involves embedding these tokens to create
a matrix X, € R"*¢, where e denotes the dimension of the embedding space. Our soft prompts
are expressed as a parameter G, € R¥*¢, with k being the length of the prompt. Subsequently, the
prompt is concatenated to the embedded input, resulting in a unified matrix [G; X.] € R(E+m)xe,
which is then processed through the LVLM as per usual. During training, our models are designed
to maximize the return of Y. However, it is noteworthy that only the prompt parameters G. undergo
updates, ensuring the model learns to effectively utilize the provided prompts while keeping other
parameters fixed.

J DATASET DESCRIPTION

Visual Genome contains Visual Question Answering data in a multi-choice setting. It consists of
101,174 images from MSCOCO with 1.7 million QA pairs, 17 questions per image on average.
Compared to the Visual Question Answering dataset, Visual Genome represents a more balanced
distribution over 6 question types: What, Where, When, Who, Why and How. The Visual Genome
dataset also presents 108K images with densely annotated objects, attributes and relationships.

The MS COCO (Microsoft Common Objects in Context) dataset is a large-scale object detection,
segmentation, key-point detection, and captioning dataset. The dataset consists of 328K images.

Splits: The first version of MS COCO dataset was released in 2014. It contains 164K images split
into training (83K), validation (41K) and test (41K) sets. In 2015 additional test set of 81K images
was released, including all the previous test images and 40K new images.

Based on community feedback, in 2017 the training/validation split was changed from 83K/41K to
118K/5K. The new split uses the same images and annotations. The 2017 test set is a subset of 41K
images of the 2015 test set. Additionally, the 2017 release contains a new unannotated dataset of
123K images.

The dataset has annotations for:

* object detection: bounding boxes and per-instance segmentation masks with 80 object cat-
egories.

* captioning: natural language descriptions of the images.

* keypoints detection: containing more than 200,000 images and 250,000 person instances
labeled with keypoints (17 possible keypoints, such as left eye, nose, right hip, right ankle).

* stuff image segmentation: per-pixel segmentation masks with 91 stuff categories, such as
grass, wall, sky.

* panoptic: full scene segmentation, with 80 thing categories (such as person, bicycle, ele-
phant) and a subset of 91 stuff categories (grass, sky, road).

* dense pose: more than 39,000 images and 56,000 person instances labeled with DensePose
annotations — each labeled person is annotated with an instance id and a mapping between
image pixels that belong to that person body and a template 3D model. The annotations are
publicly available only for training and validation images.

K QUANLITATIVE RESULT

We present quantitative results on the COCO dataset. The Base refers to the InstructBlip model,
while Our model is the fine-tuned version of InstructBlip using our framework. Hallucinated objects
are highlighted in bold and red for clarity.
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Base: The image displays a collection of various vegetables and greens, all neatly
arranged on top an old-fashioned tablecloth. There are multiple rows with different types
of produce: some have white ends while others possess more green coloration throughout
the stalks or leaves. Various knives can be seen nearby in case they're needed for cutting
up any larger portions during preparations later downstream from this setup stage
involving setting out fresh veggies to drying/dehydrating them by placing those already
cut into glass jars also known as "pickling"....

Our: A dining table displays a vibrant array of fresh vegetables, including both leafy
greens and root veggies. Various colors like purple-tinged kale are present among the
organic produce on display next to each other. In total, there are about 10 different
kinds of plants arranged in an attractive composition...

Base: The image showcases a pair of zebras playfully fighting in the grass. They may be
playing together rather than engaging in territorial battles commonly associated between
wild animals such as lions vs hyenas which usually happen for food sources only.

Our: In this image, several zebras are interacting with each other in a lush green field.
Some zebras are standing on top of each other, while others are running around the
field. There are several trees visible in the background, adding to the natural setting.

p-

Base: The scene depicts a busy urban street, with several cars parked near the houses on
either side. One of these vehicles is situated in front and closer to you than others it
appears dark brown or red colorized as "maroon". A group of people are congregated at
one end; they appear more prominent towards left-center behind three women sitting
together underneath an umbrella while two men walk past them holding different
beverages nearby: wine bottle versus coffee mug respectively close by their hands.

Our: In this image, a red van is parked on the side of a road in front of a house. The
van is situated near a stop sign, which is located close to the front of the house. There
are several trees visible in the background, adding to the scenic setting.

Base: The image features a toilet bowl placed on the ground near an old couch. Next,
there are several stacks of boxes and bags surrounding it. A television is situated nearby
with its base visible towards left side next section by stairs leading downward likely used
during restoring activities.

Our: In this image, there is a white toilet sitting on the ground in a junkyard. The
toilet appears to be disassembled, with some of its parts scattered around the area.

L TRAINING SETTINGS FOR PROMPT FINE-TUNING

We present parameter settings in our framework during the training phase on the COCO dataset.
Here we use 8 A6000 50G GPU for training. The information is shown in table below:

Parameters

Max Soft Prompt Length n 20

Max Episode

Length H 150

Mini-Batch Size 64
PPO Learning Rate 0.0002
Kullback-Leibler (KL) Initial Coefficient A 0.1
KL Target Coefficient 0.05

Number of Tr

aining Epochs 50

Reward Weight for Meteor « 0.1
Reward Weight for BERTScore 3 1

Vocabulary Si

zeV 32000

Table 2: Training parameters of our framework for the COCO dataset
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Base: The image depicts a small alleyway lined with buildings and balconies, featuring
several bikes parked in the space between them. There are numerous motorcycles
placed throughout this area. Additionally, there is another object that appears like it
might be either one or two cars behind some nearby trees towards both sides near
various parking spaces along city street setting.

Our: In this scenic view, a narrow cobblestone street winds its way through a
charming old town. The street is lined with various buildings, some of which have
multiple floors. There are several cars parked along the street, adding to the vibrant
atmosphere.

Base: The image depicts a train moving along the railway tracks, with an open door on
one of its cars. On either side there are multiple smaller vehicles parked nearby but do
not appear involved into transportation as they resemble passenger automobiles without
any visible loads travelers would board them at stops like passengers embark trains
around station entrances while loading/unloading goods carried onto flatbed utility
wagons (with wheels).

Our: At the train station, a large yellow train is parked on the tracks, waiting for its
next departure. The train is decorated with an American flag, adding a patriotic touch
to the scene.

e
Base: The image captures a pair of giraffes in their natural habitat, roaming across the
forest. They are standing and walking among bushy trees covered with various leaves
surround them like an umbrella canopy covering parts of this jungle landscape scene near
where they live. There is at least three people present throughout the environment: one
person sitting right next to another close by; several others scattered around both left-
side side areas.

Our: In this scenic image, two giraffes are standing in a lush, green forest. They
appear to be socializing with each other while browsing through the trees. The giraffes
are spread out across the forest, with one giraffe standing closer to the left side of the
image, and the other further to the right.

L

Base: The image features a large pizza with various toppings in an open box. Two empty
bowls can be seen near or underneath one side of another tabletop located offscreen
towards left behind them. A person stands next to these tables having dinner together at
some point during their meal preparation session where they enjoyed eating both savory
pasta dishes as well as indulging themselves.

Our: A delicious mushroom pizza is sitting in a box, ready to be enjoyed. The pizza is
sliced into multiple pieces, making it easy to share or enjoy on its own.

Base: The image depicts a group of young people gathered together in an old-fashioned
setting. They are wearing various clothing and ties, with some sporting bowties or
traditional dresses. A room is visible behind them as well featuring several tables set up
inside it where guests may have been seated. Furthermore, there appears two clock
radios placed towards different corners within that space giving evidence of activity
happening here throughout time frames.

Our: In this vintage photograph, a large group of people are gathered together in a
room. They are all dressed in suits and ties, creating a formal atmosphere. The group
is engaged in socializing and interacting with each other.

Base: The image captures a beautiful day with trees in the background and people
walking around. There is an area of dirt on one side near some water where three
individuals can be seen engaging together or resting underneath two umbrellas. Several
park benches are present along to each other as well towards both sides closer by the
ground surface itself containing four seating places among them at least six chairs have
been positioned further off but still easily visible through such foliation.

Our: In this scenic image, there is a red stop sign standing tall in the middle of a dirt
road next to a fence. The sign is placed near a motorcycle, which can be seen in the
background.
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Base: The image showcases a shiny silver moped, parked neatly inside of an underground
garage. There are two rear wheels on either side that make up most part of this compact
vehicle's frame area near its tail section. A few people can be seen walking within
various areas throughout the scene - specifically between right middle (one person), top
centralized portion just beyond three riders sitting there beside another standing
individual present alongside several vehicles also situated across four main locations.

Our: In this image, a sleek and modern motor scooter is parked in front of a brick
wall. The motor scooter is silver in color and appears to be well-maintained. There are
several motorcycles visible in the scene, creating a vibrant and lively atmosphere.
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