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Abstract

Clinical diagnosis prediction models, when provided with a patient’s medical his-
tory, aim to detect potential diseases early, facilitating timely intervention and
improving prognostic outcomes. However, the inherent scarcity of patient data
and large disease candidate space often pose challenges in developing satisfactory
models for this intricate task. The exploration of leveraging Large Language Mod-
els (LLMs) for encapsulating clinical decision processes has been limited. We
introduce MERA, a clinical diagnosis prediction model that bridges pertaining nat-
ural language knowledge with medical practice. We apply hierarchical contrastive
learning on a disease candidate ranking list to alleviate the large decision space
issue. With concept memorization through fine-tuning, we bridge the natural lan-
guage clinical knowledge with medical codes. Experimental results on MIMIC-III
and IV datasets show that MERA achieves the state-of-the-art diagnosis prediction
performance and dramatically elevates the diagnosis prediction capabilities of
generative LMs.

1 Introduction

Electronic Health Records (EHR), containing patient status and diagnoses, embody valuable domain
expertise and clinical operation patterns [7]. Clinicians make diagnosis judgments based on their
extensive medical knowledge, acquired through years of education from textbooks and literature, as
well as their accumulated experience derived from clinical practice. Clinical diagnosis prediction aims
to predict patients’ diseases that are highly likely to be diagnosed in the upcoming hospital admission
by analyzing the patients’ past diagnoses. The input and output are both presented in sequences of
medical codes, which do not directly convey semantic information nor disease property. The resulting
AI-enhanced diagnosis system [34] may enable early warning of diseases [45], optimized clinical
resource allocation [58], and better risk estimation for sustainable insurance [14].

Two primary challenges in diagnosis prediction have driven various research efforts [54] but re-
main unsolved. First, what would be the best practice to incorporate clinical knowledge into the
model? Existing works initialize concept embeddings from natural language descriptions [56, 4],
or enrich patient representation with external disease ontologies [1, 8]. However, a significant gap
persists between the primary knowledge modality, i.e. natural language, and the model’s hidden
representation. Second, how can we handle the large candidate space when making predictions and
exploit the supervisory signals induced from this candidate space? The commonly used International
Classification of Diseases (ICD) coding system encodes 13k+ diseases [6]. Existing works typically
treat the task as k-way classification where k is the number of possible diseases, and then apply cross
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entropy loss for each disease individually. These approaches often overlook the dependencies among
diseases and the structural nuances within the diagnosis coding system.

Generative Language Models (LM), especially the Large Language Models (LLM), are trained to
predict the next token, adhere to task instructions [5, 31], and align with human preferences [39].
These models exhibit superior capabilities in language understanding and reasoning, as shown by
their performance on science-based benchmarks [32, 55, 61]. During the pretraining stage, LLMs
assimilate a large amount of knowledge extracted from literature and online corpora. However,
there remains an underexplored domain in using LLM for clinical diagnosis prediction, due to the
aforementioned gap between natural language and medical code, as well as the disparity between the
token-level optimization process and the large candidate outcome space. These challenges impede
the effective application of generative LMs to diagnosis prediction tasks, even as the state-of-the-art
models predominantly rely on graph neural networks without fully harnessing natural language
knowledge [60, 56, 1]. Fine-tuning generative LM LLaMA2 [50] directly on diagnosis prediction
yields almost 20-point lower recall@20 than GNN-based existing best model [60] as shown in Table 1.
There are some studies that use transformer-based LM for clinical outcome prediction, but they either
do not support structured data as input [37, 51], not compatible with mainstream LLMs [46, 13], or
only work for narrow output space with few classes [51, 48].

To tackle these challenges, we propose MERA, an LLM designed for clinical diagnosis prediction
that incorporates a comprehensive understanding of clinical knowledge by leveraging relationships
among medical codes and offers extensive supervision over the output space. The patient’s historical
diagnosis results are formulated as linear sequences and the LLM is tasked with generating a
probability distribution for the diagnosis results in the subsequent visit. Compared with the ordinary
paradigm that optimizes the probability of generating the correct token, we optimize the outcome
directly. To enhance the inter-visit causal reasoning, we employ contrastive learning to compel the
model to distinguish true diagnoses from false ones. The contrastive learning process is extended to
multiple levels in the hierarchical organization of the medical codes within the ICD coding ontology.
The model is learned to distinguish the true diagnoses from a pool of potential diagnoses while the
pool is increasingly relevant to the true ones. To regularize the diagnosis predictions to follow intra-
visit diagnosis patterns, we develop a teaching-forcing strategy to optimize the medical code ranking,
assuming partial diagnoses of the visit are known. To allow the model to grasp the comprehensive
clinical semantics and diagnosis property of each medical code, we fine-tune the LM to “memorize”
the mapping between medical codes and their natural language definitions. Consequently, this process
bridges the gap between raw codes and their contextual medical meanings and equips the LM to
capture the intricate code dependencies that are crucial for precise diagnosis assessments.

We validate the effectiveness of MERA in general diagnosis and heart failure prediction tasks on
the patient records in MIMIC-III [17] and MIMIC-IV [16] datasets. MERA yields significant
improvements over the existing state-of-the-art models across tasks on all datasets while having
almost perfect memorization of bidirectional medical code-definition mapping. An extensive analysis
of leading LLM’s medical code understanding and diagnosis prediction capabilities is conducted,
and we observe that GPT-4 is still far behind fine-tuned models on both tasks. We further conduct
ablation studies to validate the effectiveness of the proposed novel design choices.

2 Preliminaries
2.1 Task Formulations
MERA can be applied for any task whose output is a collection of candidates belonging to a pre-
defined decision space. We introduce widely used diagnosis prediction settings as typical testbeds for
MERA [60].

Tasks. The first task is a general diagnosis prediction task, in which we aim to predict the diagnoses
for the patient’s potential next visit VT+1 given patient’s history diagnoses by selecting a set of
medical codes from the medical code ontology O, which can be formally described as fDP ∶
{V1, V2, . . . , VT }→ VT+1. The second task is a disease-specific heart failure prediction task, which
can be described as a binary classification function fHF ∶ {V1, V2, . . . , VT } → 0,1. We are more
focused and aim to predict whether a patient would encounter heart failure (ICD-9 codes with head
428) in any of the future visits.

Input patient record. Given an EHR collection of n patients {P1, P2, . . . , Pn}, patient his-
torical diagnosis can be represented as a sequence of admissions in chronological order P =
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{V P
1 , V P

2 , . . . , V P
T } where T is the number of existing visits. For a particular visit V , the

medical judgment made by clinicians as a result of the visit is an unordered set of diagnoses
V = {dV1 , dV2 , . . . , dV∣V ∣} in the format of ∣V ∣ unique medical code (d ∈ O). The task input has two
variants, including 1) history diagnosis codes only, and 2) additionally providing patient profile
(gender, race, medication and family history) as a natural language sentence.

Medical code ontology as the decision space. The International Classification of Diseases (ICD) [12]
provides a comprehensive ontology O diseases, symptoms and diagnoses. Each leaf node represents
a unique disease/diagnosis and is assigned a unique medical code c ∈ {c1, c2, . . . , c∣O∣} where
∣O∣ is the total number of codes. Diseases are organized into disease groups at multiple levels,
represented by non-leaf nodes forming a tree hierarchy G = {Glevel=0,Glevel=1, . . . ,Glevel=depth(O)}.
Assuming the root of O is at level 0, at level j > 0, there are ∣Glevel=j ∣ disjoint disease groups, i.e.
Glevel=j = {g1, . . . , g∣Glevel=j ∣}. There is also a one-to-one mapping between a code c and its natural
language definition defc. For example, in version 9 of ICD, the medical code 250.23 stands for
“Diabetes with hyperosmolarity, type I [juvenile type], uncontrolled”. It belongs to the first-level
group for all “Endocrine, Nutritional, and Metabolic Diseases and Immunity Disorders”, and further
belongs to the fine-grained disease group “type I uncontrolled diabetes”. We use both ICD-9 and
ICD-10 coding systems with 13k+ and 68k+ unique codes in this work.

2.2 Existing Paradigm of Generative LMs
The ordinary formulation of generative LMs takes the input sequence seqin = tin1 , . . . , tin

∣seqin∣
and

is expected to generate the ground-truth output seqout = tout1 , . . . , tout
∣seqout∣

. It produces a probability

distribution P (c ∣ tin1∶∣seqin∣, t̂
out
1∶k ) over the possible next token (c ∈ V ) conditioned on both the input

sequence and k generated tokens. Discrete tokens at each autoregressive decoding step are produced
by Equation 1. The LM is optimized to minimize the cross-entropy loss shown in Equation 2 applied
on the probability of the gold next token conditioned on the gold output tokens in the previous
segment in a teacher-forcing manner, assuming the ∣seqout∣-th token marks the end of the decoding.

t̂outk+1 = argmaxc∈V P (c ∣ tin1∶∣seqin∣, t̂
out
1∶k ) (1)

LCE =
∣seqout∣

∑
k=0

− logP (toutk+1 ∣ tin1∶∣seqin∣, t
out
1∶k ) (2)

3 MERA: Learning to Memorize and Rank

MERA builds upon a large language model LM after pre-training on a natural language corpus,
instruction tuning, and potential alignment process. MERA is designed to be compatible with
numerous generative LM architectures and inherit knowledge obtained through pre-training, including
encoder-decoder LM and decoder-only LM. There are three steps involved as a pipeline: 1) Fine-
tuning the model to memorize medical codes used to represent the diagnoses; 2) Further optimizing
the model to learn inter-visit causal and temporal relations between patient visits as well as intra-visit
patterns from patient history records; 3) During inference, performing autoregressive generation to
produce diagnosis predictions given an unseen patient history input.

3.1 Medical Code Memorization

State-of-the-art LLMs struggle to associate medical codes with their correct definitions accurately.
GPT-4 can only recall 45% of ICD-9 codes given corresponding definitions (row 3 of Table 2), which
may be attributable to the absence of medical codes in the pre-training dataset. MERA explicitly
teaches LM the semantic information associated with the medical codes and the relationships within
the coding system. We consider all codes in O as special tokens, each unique medical code has a
dedicated token embedding and can be represented by a single token. This design reduces the noise
of the learning objectives as the diagnosis probability is equivalent to the token probability. The
memorization process parameterizes embeddings of the special tokens and further equips the LM
with the necessary external knowledge to facilitate downstream diagnosis prediction. To integrate
information about medical codes in O and the natural language knowledge contained in LM , we
fine-tune LM on synthetic question-answering pairs.
Bidirectional code and definition memorization. For each code c and the natural language definition
defc, we create two input-output pairs. The first pair includes “What is the definition of ICD-9 code
c” as seqin and the target answer “defc” as seqout to train the model to recall its definition given a
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Figure 1: The model design of MERA. The diagnosis probability distribution is induced from token
probabilities. It is optimized with hierarchical contrastive learning and dynamic cross-entropy losses.

code. The second pair helps the model memorize the inverse mapping. The question-answer pairs are
created according to the O ontology being for the downstream task.
Decision space structure memorization. We further embed code dependencies collectively in LM
by training with separate code-category instances. The curated pairs connect a code to its disease
groups at various levels 1, . . . , depth(O) in the code ontology O. For example, seqin is “What is the
chapter level disease group of the ICD-9 code 998.51?”, and seqout is “Injury and Poisoning”.

3.2 Seq2seq Data Construction
The second phase aims to equip LM with a temporal and causal understanding of the diagnoses
across multiple visits. We train the LM with a collection of sequence-to-sequence training instances
X = {X1, . . . ,Xnpatient} based on npatient patient records, where Xi is a set of (diagnosis history, future
diagnosis) pairs created based on patient record Pi.

Given the history of a patient containing T visits Pi = {V Pi

1 , . . . , V Pi

T }, we extract T − 1 pairs
of patient history and the expected diagnoses in the next visit to have maximum utilization of
the patient records. For each pair, an input sequence is verbalized from 1-to-k visits following
seqin = instruction, vb(V Pi

1 ), . . . , vb(V
Pi

k ) (k ∈ [1, T − 1]). Additional patient profile sentences
can be inserted following the instructions. A ground-truth output sequence is converted from
expected diagnoses in the (k + 1)-th visit following seqout = vb(V Pi

k+1). The verbalizer function vb
concatenates the diagnosis codes within each visit to form a token segment for a specific visit and
further prepend the starting prompt phrase (“The diagnosis codes for this visit are: ”) and append a
special token EOV representing “the end of the visit”. We show the full prompt design in Appendix C.

Diagnoses order perturbation. The order of patient visits is crucial to convey the dependent
relations as a diagnosis in a later visit is conditioned on the previous diagnoses. However, the order
of diagnosis codes within a particular visit does not carry cognitive rationale as indicated by EHR
dataset documentation and papers [16] (more details are in Appendix B.1). An ideal model should
preserve the inter-visit orders while ignoring the intra-visit orders. To achieve this goal with a
sequential LM, we propose to create nperturb variants of the input patient history sequences and output
diagnosis sequences respectively, leading to n2

perturb diverse combinations. Each variant keeps the
same visit order but randomly shuffles the diagnosis codes within each visit. By observing the data
instances with shuffled orders and the same target distribution, we teach the LM to ignore the order of
diagnosis codes with a model-agnostic design. To summarize, the training sequence-to-sequence data
X contains data instances X generated according to npatient patient history records. X contains T − 1
groups of data instances with different patient history lengths, each group contains combinations
among nperturb perturbed input sequences and nperturb perturbed output sequences.

3.3 Learning Inter-visit Reasoning

Up to this point, the created seq2seq data instances can be used to conduct supervised fine-tuning
of LM following token-level optimization used in conventional generative LM reiterated in §2.2.
However, as we analyze theoretically (in §1) and demonstrate empirically (line 14/15 of Table 1),
vanilla generative LM does not handle the diagnosis prediction task well. We propose multiple
specialized learning objectives to learn the inter-visit reasoning to infer upcoming diagnoses and
capture intra-visit diagnosis patterns. We bridge the sequential modeling capabilities and LM’s
internal knowledge with the task property and decision space structure (e.g. , ICD hierarchy) for
diagnosis prediction.

After encoding seqin containing information on existing hospital visits, the LM starts to generate its
prediction of the upcoming visit ˆseqout. As an immediate step, it produces a probability distribution
over the possible next token tout1 conditioned on seqin, reflecting the possibility of different tokens in
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the vocabulary as one of the diagnoses for visit VT+1. Legit candidate tokens for tout1 are the special
code tokens, including {c1, c2, ..., c∣O∣}. We select the probabilities of all code tokens and then apply
softmax, resulting in the probability distribution over the candidate codes

P (c ∣ tin1∶∣seqin∣) = {pc1 , pc2 , ..., pc∣O∣}, c ∈ O. (3)

Hierarchical contrastive learning. We design training objectives to identify the real diagnoses
among a group of similar candidate diagnoses. With such a design, the model is forced to understand
the subtle differences among neighbor diseases in O and learn to infer upcoming diagnoses from a
candidate pool under the same disease group.

For a training instance Xi, we first identify all disease groups that the diagnoses of the next visit
belong to GXi = {Glevel=0,Glevel=1, . . . ,Glevel=depth(O)}. Then, for each group gk at level j (gk ∈
Glevel=j), we identify positive diagnosis codes gposk = {cpos1 , . . . , cpos

∣gpos
k
∣
}, which are the diseases in

gk that are diagnosed in the next visit. We then use all remaining diseases in gk as negative codes
gnegk = gk −gposk = {cneg1 , . . . , cneg

∣gneg
k
∣
}. Then, we calculate an InfoNCE loss [38, 29, 33] term for each

group in GXi and aggregate all the terms to be the aggregated objective LCL.

Lgk
CL = − log

∑cposm ∈gpos
k

P (cposm ∣ tin1∶∣seqin∣)

∑cm∈gk P (cm ∣ tin1∶∣seqin∣)
(4)

LCL =
1

∣X∣ ∑Xi∈X
∑

Glevel=j∈GXi

∑
gk∈Glevel=j

Lgk
CL (5)

The loss term for higher-level groups (where j is smaller) is used to enable the model to recognize
disease scopes across a broad spectrum. Optimizing the high-level loss mimics the clinician’s training
process of making differential diagnoses, the “rough guesses” of possible diseases. Loss terms for
lower-level groups focus on nuanced comparisons among diseases within the same family, increasing
the model’s ability to distinguish rare diseases. The proposed contrastive learning approach is efficient
and capable in comparison to in-batch contrastive learning for two reasons: 1) The loss is calculated
on the token probability distribution, essential for the typical decoding of generative LM, with no
need for additional architecture or forward/backward passes. This ensures efficiency and maximum
compatibility with the pre-trained LM. 2) The contradiction for loss calculation pertains to token
probabilities, allowing the integration of prediction confidence for each disease into the optimization.
This design differs significantly from in-batch contrastive learning, where forward and backward
passes must be run for multiple data instances, and batch size significantly limits the size of positive
and/or negative samples.

Dynamic confidence threshold. To produce a short list of confident diagnoses among the full ranking
of all diagnosis codes, we learn a dynamic confidence threshold to select the most likely predictions.
Existing works apply a fixed threshold to the probability distribution, which is often determined
as a hyperparameter observed through the performance of the validation set [35, 44]. This widely
used strategy makes shortlisting less flexible, and the model tends to play it safe and produces more
diagnoses than it should. To model the confidence threshold dynamically, we use a special token EOV
to mark the confidence threshold within the token probability ranking list. EOV was appended at the
end of the diagnosis sequence of each visit as introduced in §3.2.

The model LM learns the placement of the EOV in two ways. Implicitly, the visit segments in the
input sequence demonstrate that the special token EOV represents the end of a visit segment, implying
the model should stop generating more diagnosis codes. Training with EOV-ended visit sequence
segment, LM naturally learns to assign EOV a higher probability than other code tokens when the
model is not confident to make more diagnoses and chooses to generate EOV to end the diagnosis
sequence of a particular visit. Explicitly, we design a learning objective to train the LM to place
the EOV token at the proper rank of the token probability distribution P (c ∣ tin1∶∣seqin∣). We identify
the positive medical codes that do appear in the target visit as Opos and the ones not included as
Oneg (Opos +Oneg = O). The LDCE is essentially a dynamic cross-entropy loss that regularizes
the probability of each positive code to be not smaller than the probability of EOV and further make
sure the probability of each negative code is not larger than P (EOV ∣ tin1∶∣seqin∣). The optimization
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of the dynamic confidence threshold applies fine-grained supervision to the probability distribution,
enabling effective and efficient diagnosis capability learning with sparse patient data.

LDCE = ∑
c∈Opos

log (ReLU(P (EOV ∣ tin1∶∣seqin∣) − P (c ∣ t
in
1∶∣seqin∣

)))

+ ∑
c∈Oneg

log (ReLU(P (c ∣ tin1∶∣seqin∣) − P (EOV ∣ t
in
1∶∣seqin∣

)))
(6)

3.4 Learning Intra-visit Diagnosis Patterns

Besides training the model to reason between visits, there are many implicit rules and latent de-
pendencies buried in the large pool of diagnoses within each visit. For example, within a group of
similar diseases, the clinicians normally only choose the most representative code for the patient’s
status; some diseases might suppress or correlate with other diagnoses. Modeling the intra-visit
dependencies enables us to incorporate real-life clinic operation patterns into realistic diagnosis
predictions. The prediction made for a specific visit should consider other diagnoses of the same visit.

To model the intra-visit dependencies, we apply the objectives over the token probability distribution
introduced in §3.3 to multiple training instance variants with partial output sequences as conditions.
This enables teacher-forcing training. For each (seqin, seqout) pair in Xi for patient record Pi where
the seqout expresses all diagnoses in the visit V Pi

k+1, k ∈ [1, T − 1], we create ∣V Pi

k+1∣ variants to move
partial diagnosis results in seqout to be part of the input of LM together with seqin. Given the new
input including the patient history and m known diagnoses in the upcoming visit, LM produces
probability over the candidate medical code P (c ∣ tin1∶∣seqin∣, t

out
1∶m). Since the m known diagnoses

have been part of the input sequence, we remove the corresponding medical codes from the positive
code set for the calculation of LDCE and LCL to prevent the model from generating duplicated
codes. Formally, the conditions for probability P in Equation 3, 4, and 6 are tin1∶∣seqin∣, t

out
1∶m instead of

t1∶∣seqin∣. The m known diagnoses in V Pi

k+1 are removed from gposk , Opos and added to gnegk and Oneg .

3.5 Training and Inference Pipeline
Training objectives. For code memorization, LM is trained with the ordinary cross-entropy loss
in Equation 2. The hierarchical contrastive learning loss (Equation 5) is additionally applied to the
instances whose output is a medical code. For the diagnosis prediction task, the LM fine-tuned from
the memorization task is further optimized with the hierarchical contrastive learning loss (Equation 5)
and the dynamic cross-entropy loss (Equation 6) on ∣V Pi

k+1∣ teaching force variants. Unlike language
modeling, no loss has been applied to the reconstruction of the input segment for both fine-tuning
stages. We perform full-parameter fine-tuning.
Autoregressive decoding. The produced LM can be used for inference on unseen patient history.
Given seqin, LM performs autoregressive decoding to output discrete diagnosis code with the highest
probability in the ranking list for each output step until the EOV token is generated.

4 Experiments
4.1 Experimental Setup
Datasets. We use MIMIC-III [17] and MIMIC-IV [16] EHR datasets containing patient records to
train and evaluate. The MIMIC-III dataset focuses on patients eventually admitted to the ICU, while
the MIMIC-IV dataset includes both ICU patients and other patients. We conduct data preprocessing
following previous works [25] and split the train/dev/test sets by patients to avoid information leak.
Please refer to Appendix B.3 for data processing details and data statistics.
Metrics. We report the weighted F1 and recall@k, where k is the number of top-ranked predictions,
and AUC and F1 for diagnosis prediction and heart failure, respectively.
Baselines. RNN/CNN and attention-based models: RETAIN [10], Dipole [28], Timeline [2],
HiTANet [27], and Deepr [36]. Graph-based models: GRAM [9], G-BERT [47], CGL [26],
Chet [25], and MCDP [20]. KGxDP [60] formulates each patient as a personalized medical KG,
combining medical KGs with patient admission history. Note that additional medical notes are used
by CGL, and additional Unified Medical Language System resource [3] is used as external knowledge
by KGxDP. Please refer to Appendix B.4 for details about these baselines. Transformer-based
models: We adapt two encoder-only LM. RoBERTa [24] with 125M and MedBERT [44] with 109M
parameters and append a ∣O∣-way classification head. We choose MedBERT among other similar
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encoder-only architectures for medical sequence [40, 21, 46] because other models require additional
input information such as lab test results which is not available under our setting. Seq2seq uses
ordinary generative LM’s formulation introduced in §2.2 to fine-tune a LM to generate diagnosis
codes as output. We include definition sentences in the prompt following each code, so these baselines
are exposed to the same external knowledge used by MERA.

Base LMs. We evaluate MERA using diverse LMs, including BioMistral [18] trained on PubMed
Central, LLaMA2 [50], GPT-2 [42], T5 [43] and Flan-T5 [11].

Table 1: Diagnosis prediction comparison with baselines using ICD-9 as the decision space with
code-only input (%).

# Model

Diagnosis Prediction Heart Failure
MIMIC-III MIMIC-IV MIMIC-III MIMIC-IV

w-F1 R@10 R@20 w-F1 R@10 R@20 AUC F1 AUC F1

RNN/CNN and attention-based models
1 Deepr 18.87 24.74 33.47 24.08 26.29 33.93 81.36 69.54 88.43 61.36
2 Dipole 19.35 24.98 34.02 23.69 27.38 35.48 82.08 70.35 88.69 66.22
3 Timeline 20.46 25.75 34.83 25.26 29.00 37.13 82.34 71.03 87.53 66.07
4 RETAIN 20.69 26.13 35.08 24.71 28.02 34.46 83.21 71.32 89.02 67.38
5 HiTANet 21.15 26.02 35.97 24.92 27.45 36.37 82.77 71.93 88.10 68.21

Graph-based models
6 G-BERT 19.88 25.86 35.31 24.49 27.16 35.86 81.50 71.18 87.26 68.04
7 GRAM 21.52 26.51 35.80 23.50 27.29 36.36 83.55 71.78 89.61 68.94
8 CGL 21.92 26.64 36.72 25.41 28.52 37.15 84.19 71.77 89.05 69.36
9 MCDP - 28.30 39.60 - 25.80 36.10 - - - -

10 Chet 22.63 28.64 37.87 26.35 30.28 38.69 86.14 73.08 90.83 71.14
11 KGxDP 27.35 30.98 41.29 30.38 34.19 43.47 86.57 74.74 95.66 79.87

Transformer-based models
12 RoBERTa 17.39 22.84 32.07 22.54 24.89 32.38 79.74 68.28 87.03 60.21
13 MedBERT 19.01 23.68 34.39 24.13 25.88 33.81 81.06 69.96 88.73 61.81
14 Seq2seq (LLaMA2-7B) 18.05 18.38 23.56 20.47 20.77 24.19 77.62 66.06 85.98 59.14
15 Seq2seq (BioMistral-7B) 19.14 19.83 24.97 22.11 22.03 26.24 78.57 67.87 87.04 61.07
16 MERA (LLaMA2-7B) 32.77 35.94 47.48 34.64 38.16 46.94 89.49 77.21 97.26 82.31
17 MERA (BioMistral-7B) 33.24 36.73 49.01 36.16 39.57 49.09 90.78 79.13 98.74 84.03

4.2 Performance of Diagnosis Prediction
We show the performance comparison on the diagnosis prediction and heart failure prediction tasks
(described in §2.1) using ICD-9 as decision space with history diagnosis code as input in Table 1
and the influence of base pre-trained LM selection in Table 2. We further show that MERA can be
generalized to richer input with natural language patient profile, and the larger ICD-10 decision space
in Table 3.
Encoder-only & vanilla generative LM perform poorly. The encoder-only LMs exhibit limited
performance (rows 12-13 of Table 1), possibly because they do not account for the specialized
modeling of intra-visit order and the extensive output space. When employing a vanilla generative
LM (rows 14-15), the performance is further diminished. This is attributed to sparse supervision
distributed in token-level loss. For each pass, only the probability of the single ground-truth token is
optimized following Equation 2, while MERA optimizes the probabilities of all candidate diagnoses.
Gap between zero-shot and fine-tuned LMs. There remains a 20-point deficit in recall@20
comparing the best zero-shot LLM (row 3 of Table 2) to the fine-tuned model. This underscores
the importance of leveraging patient data.
MERA is the state-of-the-art diagnosis prediction model. Finally, MERA achieves significantly
better performance in both diagnosis and heart failure prediction tasks on both MIMIC datasets.
MERA exhibits a 5.89 point higher weighted F1 score and almost 8 points higher recall@20 for
MIMIC-III compared to the existing best model (row 17 vs 11 of Table 1). In Table 2, we showcase
the diagnosis prediction performance using different pre-trained LMs, noting that even MERA with
GPT-2 large (row 10) achieves comparable performance with the existing best KGxDP.

4.3 Performance on Medical Code Memorization
Table 2 shows the evaluation of the memorization results for the ICD-9 medical code system while
using various base LMs. We report code and definition accuracy, indicating the proportion of correct

7



Table 2: Memorization and diagnosis prediction (after fine-tuning on the memorization task) results
on MIMIC-III data using different pre-trained LMs.

Med. Code Mem. Diagnosis Pred.
# Model Code Acc Def Acc w-F1 R@20

Zero-shot LM
1 LLaMA2 4.69 0.61 5.62 15.64
2 GPT-3.5 33.50 9.31 6.11 17.07
3 GPT-4 45.16 48.48 6.46 21.56

Fine-tuned encoder-decoder LM
4 T5 base 81.71 1.26 20.53 30.13
5 T5 large 85.28 2.32 23.19 33.85
6 Flan-T5 base 88.58 0.19 21.01 32.24
7 Flan-T5 large 89.97 0.29 25.32 35.25

Fine-tuned decoder-only LM
8 GPT-2 base 0.00 95.68 23.29 32.06
9 GPT-2 medium 0.00 98.30 25.50 34.59

10 GPT-2 large 80.05 98.56 29.59 40.96
11 LLaMA2 7B 99.87 99.12 32.77 47.48
12 BioMistral 7B 99.61 99.58 33.24 49.01

Table 3: Diagnosis prediction results (recall@20, %) on the MIMIC-IV dataset using ICD-10 as the
decision space with or without additional natural language patient profile.

Model w NL info w/o NL info

Chet 17.51 17.51
Seq2seq (BioMistral 7B) 16.31 13.47
MERA (BioMistral 7B) 43.66 40.39

output full ICD codes/definitions given their definitions/ICD codes as input by exact match. We
observed that 1) Almost perfect medical code recall using large-enough 7B LM. 2) Pre-trained
LLMs alone do not know medical codes well. GPT models exhibit better memorization of medical
codes compared to LLaMA2 (rows 1-3 of Table 2), but they still lag far behind the fine-tuned
models (line 3 vs 12). 3) Model scaling-up boosts memorization. Increasing models’ parameters
significantly enhances their memorization capabilities, as evidenced by an 80-point improvement in
code accuracy from GPT-2 medium to large. However, this does not fully translate into improvement
of the same magnitude in diagnosis prediction (row 9 vs 10 in Table 2). 4) Encoder-decoder vs
decoder-only. Comparing rows 4-7 with rows 8-12 in Table 2, we observe that encoder-decoder
LMs tend to perform well on definition-to-code mapping while performing significantly worse
on producing the accurate definition given the code. However, the observation is different for
decoder-only LMs who can handle code-to-definition mapping at the early stage. Derived from
these observations, it is optimal to use a large-size decoder-only LM as the backbone for diagnosis
prediction.

4.4 Ablation Studies on Method Design
Knowledge injection approach. In rows 1-2 of Table 4, we observed that simply training the medical
code sequence without providing meanings of the codes (row 1) leads to a 3.5-point lower recall@20.
Providing the natural language definition of medical code in the input prompt along with the history
diagnosis code (row 2 vs 1) is also helpful. However, the NL prompt method suffers from incomplete
patient history due to the LM’s input length limit, resulting in a 2.5-point lower recall@20 compared
to memorization. Fine-tuning for concept memorization is the most effective knowledge injection
approach.
Training objectives. Results in row 3-7 of Table 4 show that removing hierarchical contrastive
learning leads to more than a 10-point drop in F1. Among the contrastive terms for disease groups
categorized by different granularities, the 0-th level loss (row 4) is the most beneficial, which provides
comparisons among the most involved diseases. The finest level loss (row 6) is the second most
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Table 4: Ablation study on model design choices compared with full MERA (row 16 of Table 1) on
MIMIC-III dataset.

# Method Variant w-F1 R@20

Knowledge injection approach
1 No external knowledge -2.33 -3.54
2 Code definition in the prompt -1.69 -2.46

Training objectives
3 w/o hierarchical contrastive learning -10.34 -10.27
4 - w/o 0-th level CL loss only -9.24 -8.4
5 - w/o chapter level CL loss only -5.86 -4.08
6 - w/o finest level CL loss only -7.74 -6.81
7 w/o dynamic confidence threshold -4.10 -2.57

Outputting strategies MERA = decode (our losses)
8 Decode (cross-entropy loss) -10.31 -17.33
9 Rank (cross-entropy loss) -6.72 -13.32

10 Rank (our losses) -2.63 -3.16

important, as the chapter-level disease is relatively easier to mine from data, while the fine-grained
diagnosis decision involves distinguishing diseases that are similar in manifestation or etiology.
Dynamic confidence threshold (row 7) also contributes more than 4-point F1 score improvement.
Outputting strategies. In rows 8-10 of Table 4, we explore optimal approaches to produce the
diagnosis prediction set. LM can conduct autoregressive decoding to generate diagnosis codes as an
output sequence. Alternatively, we can obtain the ranking list based on the token probability over the
vocabulary of the first output token. Using decoding trained with sparse correct token cross-entropy
loss (§2.2, row 8) compromises performance by 17 points in recall@20. The confusing in-visit
diagnosis code order makes producing the result from the first token ranking list (row 9) a better
choice than decoding along. When applying rich supervision with contrastive learning and dynamic
confidence threshold, we observe a 10-point higher recall@20 with ranking output (row 10 vs 9).
The comparison between row 10 and full MERA validates the effectiveness of intra-visit modeling,
yielding a 3-point higher recall@20, where we decode token-by-token conditioned on other diagnoses
but with specialized trained token probability for each decoding step.

5 Related Works
Diagnosis prediction. Existing works leverage structured diagnosis data [35]. They use sequential
models like RNN and LSTM [10, 2] to model the longitudinal patient history and GNNs to
encapsulate spatial features [41, 25]. To inject external knowledge, they conduct multi-task or transfer
learning to borrow supervision from other tasks or domains [59, 62], use pre-trained embedding
to incorporate natural language into initial features [56, 4], or utilizing external knowledge graphs or
ontologies [1, 8, 22]. We propose to use the capable LLM architecture to learn patterns from patient
history sequences and inject external knowledge with a unified and shared architecture across the
pipeline. Existing works apply contrastive learning on intermediate latent for KG relations [1] or
patient embedding [15], while we apply contrastive learning on diagnosis output space directly.
Transformer models for medical event prediction. Existing works either handle NL medical notes
and other modalities [37, 62, 52, 23], or they use a non-unified architecture that cannot inherit the
pretrained knowledge [46, 21, 40, 13] or needs adaptation for downstream tasks [49, 19, 30, 57].
[51, 48, 53] fine-tune the generative LM for classification tasks. We develop a model that is compatible
with mainstream LLMs to use the pretrained knowledge and specializes in producing predictions
from large diagnosis decision space.

6 Conclusion
MERA stands out by seamlessly integrating clinical knowledge and addressing the challenges asso-
ciated with a large candidate space. Contrasting learning, tailored to the coding system’s hierarchical
structure, enables effective distinguishing between accurate and inaccurate diagnosis codes. Through
validation on MIMIC datasets, MERA emerges as a leading approach to diagnosis prediction.
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A Potential Questions

Why not include more information, such as patient clinical notes, in the input? We experimented
with two settings of input prompts, one with diagnosis code only and one with additional patient
information as a natural language sentence. The text-code mixing input result shows that MERA is
capable of handling natural language input along with diagnosis codes. Table 3 shows the performance
with the additional patient profile as input.

Two main reasons motivate us to use the setting of using only diagnosis codes as input for diagnosis
prediction, without additional records. 1) The setting is commonly used in existing literature
(introduced in the baselines paragraph in §4.1 and §5), enabling fair head-to-head comparison with
recent and state-of-the-art works. 2) The diagnosis code-only setting is realistic for many situations
where additional patient health records, such as lab test results and medical notes, are not available.
Billing-related stakeholders like insurance companies only have access to diagnosis codes included
in insurance filing without access to other medical records. Predicting potential future diseases is an
urgently needed capability.

How does MERA handle missing or incomplete patient histories and data sparsity? For missing
or incomplete data, we filter out patient records that do not have a consistent diagnosis history from
our training and evaluation data. We handle the missing data in the same way as a wide range of
works, many listed under the “Baselines” paragraph in §4.1. To mitigate the influence of data sparsity,
we create multiple training records from the record of a single patient described at the beginning of
§3.2. For a patient with T visits, we create T − 1 pairs of patient history with various lengths and
next-visit diagnoses. This enables us to exploit the patient records to the maximum utilization.

Code memorization seems not to be a challenging task given almost perfect performance?
Code memorization is not challenging only after the optimal strategy of memorizing medical code
definition is found. Simply performing memorization does not work (as shown in lines 4-9 in Table 2).
Code memorization is part of our approach to improve the diagnosis prediction capabilities, instead
of the ultimate task at hand. The high performance of code memorization indicates our approach is
effective. We explore different recipes to conduct code memorization in Table 2. We observe that
1) encoder-decoder architecture does not work for definition recall, and 2) small size model cannot
memorize well. These motivate us to use decoder-only large generative language models for the
diagnosis prediction task.

Does the model compatible with encoder-only models like BERT? We did not adapt MERA to
encoder-only models such as BERT since it would require us to remove some proposed techniques,
such as intra-visit dependencies modeling.

Is it possible to apply the method to other tasks with different output space ontology? The
coding system O to be used is an experimental setup choice. Our method design supports various
coding systems. In our experiments, we show the results when using both ICD-9 (Table 1, Table 2
and Table 4) and ICD-10 (Table 3) as the coding system.

B Method, Implementation and Experiments Details

B.1 In-visit Code Order

Though the priority among the diagnosis code list for a visit is provided in the dataset, both the
MIMIC-IV dataset paper [16] and dataset documentation1 mentioned that there are few incentives
for the operator to ensure the rank reflects the diagnosis’s importance. This motivates us to train the
model to ignore the order for most of the codes with perturbed code sequences.

B.2 Implementation Details

Loss over completion only. Instead of language modeling where the entire sequence is used to
optimize the model, we only calculate loss over the completion part assuming the input is given. For
example, for definition-to-code memorization, we only apply loss to let the model output the correct

1https://mimic.mit.edu/docs/iv/modules/hosp/diagnoses_icd/#seq_num
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code. We do not apply the next token prediction for the question part and do not require the model to
learn to reconstruct the question “What is the ICD-9 code with the definition ...”.

Getting top-k predictions from free-text responses. The LM will general responses as an output
sequence; we then parse the output sequence to a set of diagnosis codes separately by white space.
The LM decides the number of predictions made by the LM. When calculating metrics like recall@20
and the number of prediction codes is less than 20 codes, we do not force the model to generate more
codes.

B.3 Experimental Setup Details

We use the records of patients having multiple visits and use the complete medical code to represent
the diagnosis. This poses a more challenging task compared to some existing studies that use
simplified and higher-level codes. To prevent data duplication within the overlapping time frame of
the two datasets, only the patient information from MIMIC-IV with multiple visits between 2013 and
2019 was used. In the validation and test sets, we designate the patients’ last visit as the label for
prediction, with the preceding visit(s) used to construct input.

For the settings using ICD-10 as decision space, we use a subset of patients in the MIMIC-IV dataset
whose diagnosis records are all in ICD-10 to avoid potential errors during code version conversion.
Records of 4277 patients are used for training, and the remaining 500 are used for evaluation. The
input of this setting would be a sequence of ICD-10 codes, and the expected diagnoses to be predicted
are also selected from a list of all ICD-10 codes.

We show the data statistics of the training and evaluation data used in our experiments in Table 5.

Dataset MIMIC-III MIMIC-IV

# unique patients 7493 10000
Train/valid/test splits 6000/493/1000 8000/1000/1000
Max. # visit 42 55
Avg. # visit 2.66 3.66
# unique diagnosis codes 4880 6102
Max. # codes per visit 39 50
Avg. # codes per visit 13.06 13.38

Table 5: Data statistics.

B.4 Baseline Details

RNN/CNN and attention-based models. RETAIN [10] employs two attention mechanisms to
model two-way visit-disease mapping. Dipole [28] proposes a bidirectional RNN to address the
issue of lengthy medical visit records. Timeline [2] designs an attention mechanism that combines
time intervals and attention weights of each entity. HiTANet [27] employs a hierarchical temporal
attention mechanism. Deepr [36] predicts future risks from medical records by converting records
into discrete element sequences and using a CNN to detect predictive local clinical patterns.

Graph-based models. GRAM [9] employs the structure of medical ontologies. G-BERT [47]
integrates pretrained language models and considers the hierarchical information of ICD codes.
CGL [26] introduces a collaborative graph learning model. Chet [25] computes the diagnosis
neighbor and global neighbor for each disease. MCDP [20] uses hyperbolic space to preserve the
hierarchical structure of diagnostic codes. KGxDP [60] formulates each patient as a personalized
medical KG, combining medical KGs with patient admission history. Note that additional medical
notes are used by CGL, and additional Unified Medical Language System resource [3] is used as
external knowledge by KGxDP.

We cannot reproduce MCDP [20], so we only report results in the paper.

B.5 Computational Complexity

We perform full parameter supervised fine-tuning without using any parameter-efficient training
techniques as we observe that full parameter tuning leads to better performance. We use 4 A6000
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GPUs for an average of 53 hours to train our model (line 15 of Table 1) until the validation F1 score
does not improve.

C Complete Prompt Example

We show an exemplar input and output for the diagnosis prediction task. The green background
segment is the output sequence. All the token that starts with “ICD9_” are special tokens that would
map to a unique token representation. EOV is also a special token representing the end of a hospital
visit.

The task is to predict the diagnosis codes for the next patient visit given the patient diagnosis history.
### Patient history: Diagnosis codes for the visit: ICD9_443.9 ICD9_785.4 ICD9_585.9
ICD9_584.9 ICD9_250.70 ICD9_250.60 ICD9_357.2 ICD9_369.4 ICD9_403.90 ICD9_V58.67
ICD9_V12.59 EOV Diagnosis codes for the visit: ICD9_584.9 ICD9_427.5 ICD9_348.30
ICD9_276.2 ICD9_403.11 ICD9_428.22 ICD9_250.80 ICD9_428.0 ICD9_585.6 ICD9_790.4
ICD9_787.01 ICD9_285.21 ICD9_272.4 ICD9_782.3 ICD9_786.6 ICD9_794.31 ICD9_607.9
ICD9_608.9 ICD9_564.00 ICD9_V58.67 ICD9_E932.3 ICD9_V02.54 EOV
### Diagnosis for the next visit:

ICD9_038.9 ICD9_585.6 ICD9_403.91 ICD9_428.20 ICD9_276.2 ICD9_995.91
ICD9_608.83 ICD9_428.0 EOV

D Limitations

We would like to raise awareness that there might be miscoded diagnosis codes in the patient records.
The billing ICD diagnosis codes are used as “ground-truth” diagnosis decisions to train our model
and evaluate the performance for diagnosis prediction. We acknowledge that the diagnosis code
extracted from the EHR dataset should not be considered the best/perfect diagnosis decision. We
also raise the potential data distribution issue as the training and evaluation data used in this work is
largely collected for patients with ICU stay history. Thus, the evaluation result does not represent
the generalized diagnosis prediction capability, and the trained model may yield compromised
performance when different kinds of patient records are queried.

E Ethical Statement

While MERA demonstrates improved performance in diagnostic prediction tasks, the trained model
may incorporate biases from multiple sources, including the pre-training corpus or the medical records
distribution utilized for fine-tuning, and more. Therefore, the model necessitates comprehensive
evaluation prior to its consideration for real-world clinical application. Additionally, the outcomes
of the diagnostic prediction model may not be utilized to attribute discriminatory labels to specific
diseases. Healthcare institutions and insurance entities may not use the predictive diagnoses of MERA
as a basis for changing patient services.

F Broader Impact Statement

MERA contributes to the potential improvement of healthcare delivery and patient outcomes. By
aiming to accurately predict diseases based on patient medical histories, these models offer a
possibility for earlier detection and intervention, which might lead to better patient outcomes over
time. Given the challenges associated with limited patient data and the complexity of diagnosing
a wide range of diseases, MERA’s approach, which leverages Large Language Models (LLMs)
and hierarchical contrastive learning, represents a step towards addressing these issues. While its
performance on the MIMIC datasets indicates promising results in diagnosis prediction, the real-world
application of such models underscores the cautious optimism for AI’s role in enhancing clinical
decisions and healthcare efficiency. These developments suggest a direction where AI could support
more informed clinical decisions, potentially improving patient care and management, albeit with
ongoing evaluation and validation needed to fully realize these benefits.
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