
Learning Discrete Concepts in Latent Hierarchical
Models

Lingjing Kong1, Guangyi Chen1,2, Biwei Huang3, Eric P. Xing1,2, Yuejie Chi1, and Kun Zhang1,2

1Carnegie Mellon University
2Mohamed bin Zayed University of Artificial Intelligence

3University of California San Diego

Abstract

Learning concepts from natural high-dimensional data (e.g., images) holds potential
in building human-aligned and interpretable machine learning models. Despite
its encouraging prospect, formalization and theoretical insights into this crucial
task are still lacking. In this work, we formalize concepts as discrete latent causal
variables that are related via a hierarchical causal model that encodes different
abstraction levels of concepts embedded in high-dimensional data (e.g., a dog breed
and its eye shapes in natural images). We formulate conditions to facilitate the
identification of the proposed causal model, which reveals when learning such
concepts from unsupervised data is possible. Our conditions permit complex causal
hierarchical structures beyond latent trees and multi-level directed acyclic graphs in
prior work and can handle high-dimensional, continuous observed variables, which
is well-suited for unstructured data modalities such as images. We substantiate our
theoretical claims with synthetic data experiments. Further, we discuss our theory’s
implications for understanding the underlying mechanisms of latent diffusion
models and provide corresponding empirical evidence for our theoretical insights.

1 Introduction

Learning semantic discrete concepts from unstructured high-dimensional data, such as images
and text, is crucial to building machine learning models with interpretability, transferability, and
compositionality, as empirically demonstrated by extensive existing work [1–11]. Despite these
empirical successes, limited work is devoted to the theoretical front: the notions of concepts and
their relations are often heuristically defined. For example, concept bottleneck models [12, 13] use
human-specified annotations and recent methods [14–16] employ pretrained multimodal models like
CLIP [17] to explain features with neural language. This lack of rigorous characterization impedes a
deeper understanding of this task and the development of principled learning algorithms.

In natural images, the degree/extent of certain attributes (e.g., position, lighting) is often presented in
a continuous form and main concepts of practical concern are often discrete in nature (e.g., object
classes and shapes). Moreover, these concepts are often statistically dependent, with the dependence
potentially resulting from some higher-level concepts. For example, the correlation between a
specific dog’s eye features and fur features may arise from a high-level concept for breeds (Figure 1).
Similarly, even higher-level concepts may exist and induce dependence between high-level concepts,
giving rise to a hierarchical model that characterizes all discrete concepts at different abstraction
levels underlying high-dimensional data distributions. In this work, we focus on concepts that can be
defined as discrete latent variables and related via a hierarchical model. Under this formalization,
the query on the recoverability of concepts and their relations from unstructured high-dimensional
distribution (e.g., images) amounts to the following causal identification problem:

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Under what conditions is the discrete latent hierarchical causal model identifiable from
high-dimensional continuous data distributions?

Identification theory for latent hierarchical causal models has been a topic of sustained interest.
Recent work [18–20] investigates identification conditions of latent hierarchical structures under the
assumption that the latent variables are continuous and influence each other through linear functions.
The linearity assumption fails to handle the general nonlinear influences among discrete variables.
Another line of work focuses on discrete latent models. Pearl [21], Choi et al. [22] study latent trees
with discrete observed variables. The tree structure can be over-simplified to capture the complex
interactions among concepts from distinct abstract levels (e.g., multiple high-level concepts can
jointly influence a lower-level one). Gu and Dunson [23] assume that binary latent variables can be
exactly grouped into levels and causal edges often appear between adjacent levels, which can also be
restrictive. Moreover, these papers assume observed variables are discrete, falling short of modeling
the continuous distribution like images as the observed variables. Similar to our goal, Kivva et al.
[24] show the discrete latent variables adjacent to the potentially continuous observed variables can
be identified. However, their theory assumes the absence of higher-level latent variables and thus
cannot handle latent hierarchical structures.

In this work, we show identification guarantees for the discrete hierarchical model under mild
conditions on the generating function and causal structures. Specifically, we first show that when
continuous observed variables (i.e., the leaves of the hierarchy) preserve the information of their
adjacent discrete latent variables (i.e., direct parents in the graph), we can extract the discrete
information from the continuous observations and further identify each discrete variable up to
permutation indeterminacy. Given these “low-level” discrete latent variables, we establish graphical
conditions to identify the discrete hierarchical model that fully explains the statistical dependence
among the identified “low-level” discrete latent variables. Our conditions permit multiple paths
within latent variable pairs and flexible locations of latent variables , encompassing a large family
of graph structures including as special cases non-hierarchical structures [24], trees [21, 22, 25, 26]
and multi-level directed acyclic graphs (DAGs) [23, 27] (see example graphs in Figure 2). Taken
together, our work establishes theoretical results for identifying the discrete latent hierarchical model
governing high-dimensional continuous observed variables, which to the best of our knowledge is the
first effort in this direction. We corroborate our theoretical results with synthetic data experiments.

As an implication of our theorems, we discuss a novel interpretation of the state-of-the-art latent
diffusion (LD) models [28] through the lens of a hierarchical concept model. We interpret the
denoising objective at different noise levels as estimating latent concept embeddings at corresponding
hierarchical levels in the causal model, where a higher noise level corresponds to high-level concepts.
This perspective explains and unifies these seemingly orthogonal threads of empirical insights and
gives rise to insights for potential empirical improvements. We deduce several insights from our
theoretical results and verify them empirically. In summary, our main contributions are as follows.

• We formalize the framework of learning concepts from high-dimensional data as a latent-variable
identification problem, capturing concepts at different abstraction levels and their interactions.

• We present identification theories for the discrete latent hierarchical model. To the best of our
knowledge, our result is the first to address discrete latent hierarchical model beyond trees [21, 26]
and multi-level DAGs [23] while capable of handling high-dimensional observed variables.

• We provide an interpretation of latent diffusion models as hierarchical concept learners. We supply
empirical results to illustrate our interpretation and showcase its potential benefits in practice.

2 Related Work

Concept learning. In recent years, a significant strand of research has focused on employing labeled
data to learn concepts in generative models’ latent space for image editing and manipulation [1–6].
Concurrently, another independent research trajectory has been exploring unsupervised concept
discovery and its potential to learn more compositional and transferable models [7–11]. Concurrently,
a plethora of work has been dedicated to extracting interpretable concepts from high-dimensional
data such as images. Concept-bottleneck [12] first predicts a set of human-annotated concepts as an
intermediate stage and then predicts the task labels from these intermediate concepts. This paradigm
has attracted a large amount of follow-up work [13, 29–33]. A recent surge of pre-trained multimodal
models (e.g., CLIP [17]) can explain the image concepts through text directly [14–16].

2

Latent variable identification. Complex real-world data distributions often possess a hierarchical
structure among their underlying latent variables. The identification conditions of latent hierarchical
structures are investigated under the assumption that the latent variables are continuous and influence
each other through linear functions [18–20] and nonlinear functions [34]. In addition, prior work [21,
26, 22, 23] studies fully discrete cases and thus falls short of modeling the continuous observed
variables like images. To identify latent variables under nonlinear transformations, a line of work [35–
38] assumes the availability of auxiliary information (e.g., domain/class labels) and that the latent
variables’ probability density functions have sufficiently different derivatives over domains/classes.
Another line of studies [39, 40] refrains from the auxiliary information by assuming sparsity and
mechanistic independence, disregarding causal structures among the latent variables.

Please refer to Section A1 for more extensive related work and discussion.

3 Discrete Hierarchical Models

Data-generating process. We formulate the data-generating process as the following latent-variable
model. Let x denote the continuous observed variables x := [x1, · · · , xn] ∈ X ⊂ Rdx which
represents the high-dimension data we work with in practice (e.g., images). 1 Let d := [d1, · · · , dnd

]
be discrete latent variables that are direct parents to x (as shown in Figure 1(b)) and take on values
from finite sets, i.e., di ∈ Ω

(d)
i for all i ∈ [di] and 2 ≤

∣∣∣Ω(d)
i

∣∣∣ < ∞. We denote the joint domain as

Ω(d) := Ω
(d)
1 × · · · × Ω

(d)
nd . These discrete variables are potentially related to each other causally

(e.g., d4 and d5 in Figure 1(c)) or via higher-level latent variables (e.g., d1 and d2 in Figure 1(c)).
Let c := [c1, · · · , cnc

] ∈ C ⊂ Rdc be continuous latent variables that represent the continuous
information conveyed in observed variables x. The generating process is defined in Equation 1 and
illustrated in Figure 1(a).

x := g(d, c), (1)
where we denote the generating function with g : [d, c] 7→ x. We denote the resultant bipartite graph
from [d, c] to x as Γ. In this context of image generation, the discrete subspace d gives a description
of concepts present in the image x (e.g., a dog’s appearance, background objects), and the continuous
subspace c controls extents/degrees of specific attributes (e.g., sizes, lighting, and angles).

(a) Subspaces (b) The “bottom” level

High-level concepts:
dog breeds, outdoor, …

Low-level concepts:
eyes, fur, grass, …

(c) The discrete hierarchical model

Figure 1: Latent hierarchical graphs. The dashed circle in (a) in-
dicates that the continuous variable c can be viewed as an exogenous
variable. Dashed edges in (b) indicate potential statistical dependence.

Discrete hierarchical models.
As discussed above, discrete vari-
ables d1, . . . , dnd

represent dis-
tinct concepts that may be de-
pendent either causally or purely
statistically via higher-level con-
cepts, as visualized in Figure 1(c).
For instance, the dog’s eye fea-
tures and nose features are de-
pendent, which a higher-level
concept “breeds” could explain.
We denote such higher-level la-
tent discrete variables as z :=
[z1, · · · , znz], where zi ∈ Ω

(z)
i

for all i ∈ [zi] and 2 ≤
∣∣∣Ω(z)

i

∣∣∣ <
∞ and Ω(z) := Ω

(z)
1 ×· · ·×Ω

(z)
nz .

Graphically, these variables z are
not directly adjacent to observed
variables x (Figure 1(c)). High-level discrete variables z may constitute a hierarchical structure until
the dependence in the system is fully explained. Since the discrete variables encode major semantic
concepts in the data, this work primarily concerns discrete variables d and its underlying causal
structure. The continuous subspace c can be viewed as exogenous variables and is often omitted in
the causal graph (e.g., Figure 1(b)). We leave identifying continuous attributes in c as future work.

1We use the unbolded symbol xi to distinguish each observed variable xi from the collection x. Our theory
allows xi to be multi-dimensional.

3

Given this, we define the discrete hierarchical model as follows. The discrete hierarchical model
(Figure 1(c)) G := (E,V) is a DAG that comprises discrete latent variables d1, · · · , dnd

, z1, · · · , znz .
We denote that directed edge set with E and the collection of all variables with V := {D,Z},
where D and Z are vectors d and z in a set form and all leaf variables in G belong to D. We
assume the distribution over all variables V respects the Markov property with respect to the graph
G. We denote all parents and children of a variable with Ch(·) and Pa(·) respectively and define
the neighbors as ne(·) := Ch(·) ∪ Pa(·). We say a variable set A are pure children of B, iff
PaG(A) = ∪Ai∈APaG(Ai) = B and A ∩B = ∅. As shown in Figure 1(c), x1 is a pure child of d1.

Objectives. Formally, given only the observed distribution p(x), we aim to:

1. identify discrete variables d and the bipartite graph Γ;
2. identify the hierarchical causal structure G.

4 Identification of Discrete Latent Hierarchical Models

We present our theoretical results on the identifiability of discrete latent variables d and the bipartite
graph Γ in Section 4.2 (i.e., Objective 1) and the hierarchical model G in Section 4.3 (i.e., Objective 2).

Additional notations. We denote the set containing components of x with X, the set of all variables
with V∗ := V ∪ X, the entire edge set with E∗ := E ∪ Γ, and the entire causal model with
G∗ := (V∗,E∗). As the true generating process involves d, c, g, Γ, and G (defined in Section 3), we
define their statistical estimates with d̂, ĉ, ĝ, and Γ̂ through maximum likelihood estimation over the
full population p(x) while respecting conditions on the true generating process. We use |Supp(L)|
for the cardinality of a discrete variable set L’s support (all joint states) and PA,B for the joint
probability table whose two dimensions are the states of discrete variable sets A and B respectively.

4.1 General Conditions for Discrete Latent Models

It is well known that causal structures cannot be identified without proper assumptions. For instance,
one may merge two adjacent discrete variables d1 ∈ Ω

(d)
1 and d2 ∈ Ω

(d)
2 into a single variable

d̃ ∈ Ω
(d)
1 × Ω

(d)
2 while preserving the observed distribution p(x). We introduce the following basic

conditions on the discrete latent model to eliminate such ill-posed situations.
Condition 4.1 (General Latent Model Conditions).

i [Non-degeneracy]: P (d = k1, z = k2) > 0, for all (k1, k2) ∈ Ω(d) × Ω(z); for all variable
v ∈ V∗, P (v|Pa(v) = k1) ̸= P (v|Pa(v) = k2) if k1 ̸= k2.

ii [No-twins]: Distinct latent variables have distinct neighbors ne(v1) ̸= ne(v2), if v1 ̸= v2 ∈ V.

iii [Maximality]: There is no DAG G̃∗ := (Ṽ∗, Ẽ∗) resulting from splitting a latent variable in G∗

(i.e., turning zi into z̃i,1 and z̃i,2 with identical neighbors and cardinality |Ωz
i | = |Ω̃z

i,1|+ |Ω̃z
i,2|

), such that P
(
Ṽ∗

)
is Markov w.r.t. G̃∗ and G̃∗ satisfies ii.

Discussion. Condition 4.1 is a necessary set of conditions for identifying latent discrete models,
which is employed and discussed extensively [24, 41]. Intuitively, Condition 4.1-i excludes dummy
discrete states and graph edges that exert no influence on the observed variables x. Condition 4.1-ii,iii
constrain the latent model to be the most informative graph without introducing redundant latent
variables, thus forbidding arbitrary merging and splitting over latent variables.

4.2 Discrete Component Identification

We show with access to only the observed data x, we can identify each discrete component di up to
permutation indeterminacy (Definition 4.2) and a corresponding bipartite graph equivalent to Γ.

Definition 4.2 (Component-wise Identifiability). Variables d ∈ Nnd and d̂ ∈ Nnd are identified
component-wise if there exists a permutation π, such that d̂i = hi(dπ(i)) with invertible function hi.

That is, our estimation d̂i captures full information of dπ(i) and no information from dj such that
j ̸= π(i). 2 The permutation is a fundamental indeterminacy for disentanglement [37, 38, 36, 24].

2We use “components” to refer to individual discrete variables di in the vector d.

4

Remarks on the problem. A large body of prior work [37, 35, 42] requires continuous or even
differentiable density function over all latent variables and domain/class labels or counterfactual
counterparts to generate variation. Thus, their techniques do not transfer naturally to our latent space
with both continuous and discrete parts [c,d] and no supervision of any form. With a similar goal,
Kivva et al. [24] assumes access to an oracle (Definition A2.1) to the mixture distribution over p(x),
which is not directly available in the general case here. Kivva et al. [41] assumes a specific parametric
generating process, whereas we focus on a generic non-parametric generative model (Equation 1).

High-level description of our proposed approach. We decompose the problem into two tractable
subproblems: 1) extracting the global discrete state d from the mixing with the continuous variable c;
2) further identifying each discrete component di from the mixing with other discrete components dj
(i ̸= j) and the causal graph Γ. For 1), we show that, perhaps surprisingly, minimal conditions on the
generating function g suffice to remove the information of c and thus identify the global state of d.
For 2), we observe that the identification results in 1) can be viewed as a mixture oracle over p(x),
which enables us to employ techniques from Kivva et al. [24] to solve the problem.

We introduce key conditions and formal theoretical statements as follows.

Condition 4.3 (Discrete Components Identification).

i [Connected Spaces] The continuous support C ⊂ Rnc is closed and connected.

ii [Invertibility & Continuity]: The generating function g in equation 1 is invertible, and for any
fixed d, g(d, ·) and its inverse are continuous.

iii [Non-Subset Observed Children]: For any pair di and dj , one’s observed children are not the
subset of the other’s, ChΓ(di) ̸⊂ ChΓ(dj).

Discussion on the conditions. Condition 4.3-i requires the continuous support C to be regular in
contrast with the discrete variable’s support. Intuitively, the continuous variable c often controls the
extents/degrees of specific attributes (e.g., sizes, lighting, and angles) and takes values from connected
spaces. For instance, “lightning” ranges from the lowest to the highest intensity continuously.
Condition 4.3-ii ensures the generating process preserves latent variables’ information [37, 35, 42, 43].
Thanks to the high dimensionality, images often have adequate capacity to meet this condition. For
instance, the image of a dog contains a detailed description of the dog’s breed, shape, color, lighting
intensity, and angles, all of which are decodable from the image. Condition 4.3-iii ensures that each
latent component should exhibit sufficiently distinguishable influences on the observed variable x.
Practically, this condition indicates that the lowest-level concepts influence diverse parts of the image.
These concepts are often atomic, such as a dog’s ear, eyes, or even finer, which often don’t overlap.
This condition is adopted in prior work [24, 41] and related to the notation of sparsity. Along this
line, prior work [44–46] assumes pure observed children for each discrete variable, which is strictly
stronger. Recent work [47] assumes each latent variable is connected to a unique set of observed
variables. This condition implies Condition 4.3-iii because if z0’s children form a subset of z1’s
children, then one cannot find a subset of observed variables whose parent is z0 alone.

Theorem 4.4 (Discrete Component Identification). Under the generating process in Equation 1 and
Condition 4.3-ii, the estimated discrete variable d̂ and the true discrete variable d are equivalent
up to an invertible function, i.e., d̂ = h(d) with h(·) invertible. Moreover, if Condition 4.1 and
Condition 4.3-iii further hold, we attain component-wise identifiability (Definition 4.2) and the
bipartite graph Γ up to permutation of component indices.

Proof sketch. Intuitively, each state of the discrete subspace d indexes a manifold g(d, ·) : c 7→ x
that maps the continuous subspace c to the observed variable x. These manifolds do not intersect
in the observed variable space X regardless of however close they may be to each other, thanks to
the invertibility of the generating function g (Condition 4.3-ii). This leaves a sufficient footprint in
x for us to uniquely identify the manifold it resides in, giving rise to the identifiability of d. This
reveals the discrete state of each realization of x and equivalently the joint distribution p(d̃,x) where
we merge all components in d into a discrete variable d̃. Identifying this joint distribution enables the
application of tensor decomposition techniques [24] to disentangle the global state d̂ into individual
discrete components di and the causal graph Γ, under Condition 4.1 and Condition 4.3-iii.

5

4.3 Hierarchical Model Identification

We show that we can identify the underlying hierarchical causal structure G that explains the depen-
dence among low-level discrete components di that we identify in Theorem 4.4.

z1

z2 z3

z4 z5 z6 z7

d1 d2 d3 d4 d5 d6 d7 d8

(a) Trees.

z1

z2 z3

z4 z5 z6 z7

d1 d2 d3 d4 d5 d6 d7 d8

(b) Multi-level DAGs.

z1

z2 d1

d2 z3 z4 d3

d4 d5 d6 d7 d8 d9

(c) Ours.
Figure 2: Graphical comparison. Tree Structures permit one undirected path
between any two variables. Multi-level DAGs require partitioning variables into
levels with edges only between adjacent levels. Our conditions allow multiple
paths between variables across levels and include non-leaf observed variables.

Remarks on the prob-
lem. Benefiting from the
identified discrete com-
ponents in Theorem 4.4,
we employ d as observed
variables to identify the
discrete latent hierarchi-
cal model G. Although
discrete latent hierarchi-
cal models have been un-
der investigation for an ex-
tensive period, existing re-
sults mostly assume rela-
tively strong graphical conditions – the causal structures are either trees [26, 21, 22] or multi-level
DAGs [23, 48], which can be restrictive in capturing the complex interactions among latent variables
among different hierarchical levels. Separately, recent work [19, 20] has exhibited more flexible
graphical conditions for linear, continuous latent hierarchical models. For instance, prior work [20]
allows for multiple directed paths of disparate edge numbers within a variable pair and potential
non-leaf observed variables. Unfortunately, their techniques hinge on linearity and cannot directly
apply to discrete models of high nonlinearity.

High-level description of our approach. The central machinery in prior work [19, 20] is The-
orem A2 [49], which builds a connection between easily computable statistical quantities (i.e.,
sub-covariance matrix ranks) and local latent graph information. Dong et al. [20] utilize a graph
search algorithm to piece together these local latent graph structures to identify the entire hierarchical
model. Ideally, if we can access these local latent structures in the discrete model, we can apply the
same graph search procedure and theorems to identify the discrete model. Nevertheless, Theorem A2
relies on linearity (i.e., each causal edge represents a linear function), which doesn’t hold in the
discrete case. We show that interestingly, Theorem A2 can find a counterpart in the discrete case
(Theorem 4.8), despite the absence of linearity. Since given the graphical information from Theo-
rem A2, the theory in Dong et al. [20] is independent of statistical properties, we can utilize flexible
conditions and algorithm therein by obtaining the same graphical information with Theorem 4.8.

To present Theorem 4.8, we introduce non-negative rank rank+(·) [50] (Definition 4.5), and t-
separation [51] (Definition 4.7) as follows.

Definition 4.5 (Non-negative Rank). The non-negative rank of non-negative A ∈ Rm×n
+ is equal to

the smallest p for which there exist B ∈ Rm×p
+ and C ∈ Rp×n

+ such that A = BC.

Definition 4.6 (Treks). A trek Ti,j in a DAG from vertex i to j consists of a directed path Pki from k
to i and a direct path Pkj from k to j, where we refer to Pki as the i side and Pkj as the j side.

Definition 4.7 (T-separation). Let A, B, CA, and CB be subsets (not necessarily disjoint) of vertices
in a DAG. Then (CA,CB) t-separates A and B if every trek from A to B passes through either a
vertex in CA on the A side of the trek or a vertex CB on the B side of the trek.

Intuitively, a trek is a path containing at most one fork structure and no collider structures. It is
known that one can formulate d-separation as a special form of t-separation (see Theorem A1). Thus,
t-separation is at least as informative as d-separation. As detailed in Dong et al. [20], t-separation can
provide more information when latent variables are involved, benefiting from Theorem A2 [49].

Theorem 4.8 (Implication of Rank Information on Latent Discrete Graphs). Given two sets of
variables A and B from a non-degenerate, faithful (Condition 4.1-i, Condition 4.10-i) discrete model
G, it follows that rank+(PA,B) = min{|Supp(L)| : a partition (L1,L2) t-separates A and B in G}.

Example. Suppose every variable in Figure 2(a) is binary, then for A = {d1, d2, d3}, B =
{d3, . . . , d8}, rank+(PA,B) = 4 since A and B are t-separated by {d3, z4} with 4 states.

6

Discussion. Parallel to Theorem A2 [49] for linear models, Theorem 4.8 acts as an oracle to reveal
the minimal t-separation set’s cardinality between any two variable sets in discrete models beyond
linearity. This enables us to infer the latent graph structure from only the observed variables’ statistical
information. To the best of our knowledge, Theorem 4.8 is the first to establish this connection
and can be of independent interest for learning latent discrete models in future work. Although the
computation of non-negative ranks can be expensive [50], existing work [52, 53] demonstrates that
regular rank tests are decent substitutes, we observe in our synthetic data experiments (Section 5).

We present the identification conditions for discrete models as follows (Condition 4.10).
Definition 4.9 (Atomic Covers). Let A ⊂ V be a set of variables in G with |Supp(A)| = k, where t
of the k states belong to observed variables di, and the remaining k − t are from latent variables zj .
A is an atomic cover if A contains a single observed variable, or if the following conditions hold:

(i) There exists a set of atomic covers C, with |Supp(C)| ≥ k+1−t, such that ∪C∈CC ⊆ PChG(A)
and ∀C1,C2 ∈ C,C1 ∩C2 = ∅.

(ii) There exists a set of covers N , with |Supp(N)| ≥ k+1− t, such that every element in ∪N∈NN
is a neighbour of V and (∪N∈NN) ∩ (∪C∈CC) = ∅.

(iii) There does not exist a partition of A = A1 ∪A2 such that both A1 and A2 are atomic covers.

Example. In Figure 2 (c), {z2} is an atomic cover if its pure child {d2} and its neighbors {z1, z3, z4}
possess more than Supp(z2) + 1 states separately. Otherwise, {z2, d1} can be an atomic cover if
(some of) pure children {z3, z4} and neighbors {z1, d2, d3} possess Supp(z2) + 1 states separately.
Condition 4.10 (Discrete Hierarchical Model Conditions).

i [Faithfulness] All the conditional independence relations are entailed by the DAG.

ii [Basic Graphical Conditions] Each latent variable z ∈ Z corresponds to a unique atomic cover
in G and no z is involved in any triangle structure (i.e., three mutually adjacent variables).

iii [Graphical Condition on Colliders] In a latent graph G, if (i) there exists a set of variables C
such that every variable in C is a collider of two atomic covers L1, L2, and denote by A the
minimal set of variables that d-separates L1 from L2, (ii) there is a latent variable in L1,L2,C
or A, then we must have |Supp(C)|+ |Supp(A)| ≥ |Supp(L1)|+ |Supp(L2)|.

Discussion on the conditions. Condition 4.10-i is known as the faithfulness condition widely adopted
for causal discovery [51, 24, 54, 18], which attributes statistical independence to graph structures
rather than unlikely coincidence [55, 51]. In linear models, Dong et al. [20] introduce atomic covers
(Definition 4.9) to represent a group of indistinguishable variables. In the discrete case, an atomic
cover consists of indistinguishable latent states, which we merge into a single latent discrete variable
(Condition 4.1-ii). Intuitively, we treat each state as a separate variable and merge those belonging to
the same atomic cover at the end of the identification procedure. This handles discrete variables of
arbitrary state numbers, in contrast with the binary or identical support assumptions [22, 23], which
we use as an alternative condition in Theorem A12. Condition 4.10-ii requires each atomic cover to
possess sufficiently many children and neighbors to preserve its influence while avoiding problematic
triangle structures to ensure the uniqueness of its influence. In contrast, existing work [23] assumes at
least three pure children for each latent variable, amounting to six times more states. Condition 4.10-
iii ensures adequate side information (large |A|) to discover latent colliders C, admitting graphs more
general than tree structures [21, 26, 22] (i.e., no colliders). Overall, our model encompasses a rich
class of latent structures more complex than tree structures and multi-level DAGs [23] (Figure 2).

Following Dong et al. [20], we introduce the minimal-graph operator Omin (Definition 4.11 and
Figure A1), which merges certain redundancy structures that rank information cannot distinguish.
Definition 4.11 (Minimal-graph Operator [19, 20]). We can merge atomic covers L into P in G if (i)
L is a pure child of P, (ii) all elements of L and P are latent and |Supp(L)| = |Supp(P)|, and (iii)
the pure children of L form a single atomic cover, or the siblings of L form a single atomic cover.
We denote such an operator as the minimal-graph operator Omin(G).
Theorem 4.12 (Discrete Hierarchical Identification). Suppose the causal model G satisfies Condi-
tion 4.1 and Condition 4.10 We can identify G up to the Markov equivalence class of Omin(G).

Proof sketch. As discussed above, Theorem 4.8 gives a graph structure oracle equivalent to The-
orem A2, which we leverage to prove Theorem 4.12. Besides the rank test, the major distinction

7

Table 1: F1 scores for our method and the baseline Kivva et al. [24] . Figure A2 exhibits the graphs.
Graph 1 Graph 2 Graph 3 Graph 4 Graph 5 Graph 6 Graph 7 Graph 8 Graph 9

Baseline 0.67 ± 0.0 0.69 ± 0.1 0.67 ± 0.0 0.67 ± 0.2 0.63 ± 0.0 0.65 ± 0.0 0.67 ± 0.0 0.65 ± 0.0 0.63 ± 0.0
Ours 0.94 ± 0.1 0.98 ± 0.1 0.94 ± 0.0 0.98 ± 0.2 0.94 ± 0.1 0.93 ± 0.0 0.93 ± 0.1 0.96 ± 0.0 0.93 ± 0.1

Table 2: F1 scores for our method and the baseline Dong et al. [20]. Figure A3 exhibits the graphs.
Graph 1 Graph 2 Graph 3 Graph 4 Graph 5 Graph 6 Graph 7

Baseline 0.24 ± 0.3 0.48 ± 0.0 0.33 ± 0.2 0.63 ± 0.1 0.0 ± 0.0 0.55 ± 0.1 0.0 ± 0.0
Ours 1.0 ± 0.0 1.0 ± 0.0 0.73 ± 0.0 0.73 ± 0.0 0.75 ± 0.0 0.95 ± 0.0 1.0 ± 0.0

between Theorem A2 and Theorem 4.8 is that the former returns the number of variables in the
minimal t-separation set whereas the latter returns the number of states. Applying the search algorithm
from Dong et al. [20] alongside our rank test from Theorem 4.8 to a discrete model G results in a
graph G̃. In G̃, each latent variable z in G is split into a set of variables z̃(1), . . . , z̃(|Supp(z)|) as an
atomic cover, with the set size equal to the state number of z. We can then reconstruct the original
graph G from G̃ by merging these atomic covers into discrete variables. We present our algorithm in
Algorithm 1 and highlight the differences from that in Dong et al. [20].

Our techniques can also utilize the identical support condition (e.g., binary latent variables) [23, 22]
for identification under slightly different conditions. We present the results in Theorem A12.

5 Synthetic Data Experiments

Experimental setup. We generate the hierarchical model G with randomly sampled parameters, and
follow [24] to build the generating process from d to the observed variables x (i.e., graph Γ) by a
Gaussian mixture model. The graphs are exhibited in Figure A2 and Figure A3 in Appendix A4. We
follow Dong et al. [20] to use F1 score for evaluation. More details can be found in Appendix A4.

Results and discussion. We choose Kivva et al. [24] as our baseline because it is the only method
we know designed to learn a non-parametric, discrete latent model from continuous observations.
We evaluate both methods on graphs in Figure A2. As shown in Table 1 and Table 2, our method
consistently achieves near-perfect scores, while the baseline, despite correctly identifying Γ and
directing edges among d components, cannot handle higher-level latent variables.

To verify Theorem 4.8, we evaluate Algorithm 1 and a baseline [20] on graphs satisfying the
conditions on G (i.e., purely discrete models in Figure A3). Our method performs well on graphs that
meet conditions of Theorem A12 and achieves decent scores on graphs that do not (Figure A3 (c) and
(e)). The significant margins over the baseline validate Theorem 4.8 and Theorem A12.

6 Interpretations of Latent Diffusion

In this section, we present a novel interpretation of latent diffusion (LD) [28] from the perspective
of our hierarchical concept learning framework. Concretely, the diffusion training objective can
be viewed as performing denoising autoencoding at different noise levels [56, 57]. Denoising
autoencoders [58, 59] and variants [60, 61] have shown the capability of extracting high-level,
semantic representations as their encoder output. In the following, we adopt this perspective to
interpret the diffusion model’s representation (i.e., the UNet encoder output) through our hierarchical
model, which connects the noise level and the hierarchical level of the latent representation in our
causal model. For brevity, we refer to the diffusion model encoder’s output as diffusion representation.

Discrete variables and representation embeddings. In practice, discrete variables are often
modeled as embedding vectors from a finite dictionary (e.g., wording embeddings). Therefore,
although diffusion representation is not discrete, we can interpret it as an ensemble of embeddings of
involved discrete variables. Park et al. [62] empirically demonstrates that one can indeed decompose
the diffusion representation into a finite set of basis vectors that carry distinct semantic information,
which can be viewed as the concept embedding vectors.

Vector-quantization. Given an image x, LD first discretizes it with a vector-quantization generative
adversarial network (VQ-GAN) [63]:d = fVQ(x). Through the lens of our framework, VQ-GAN
represents the image with a rich but finite set of embeddings of bottom-level concepts d and discards
nuances in the continuous representation c, inverting the generation process in Equation 1.

8

Figure 3: Diffusion models estimate the latent hier-
archical model. Different noise levels correspond to
different concept levels. To avoid cluttering, we leave
out vector quantization.

Denoising objectives. As discussed, diffusion
training can be viewed as denoising the cor-
rupted embedding d̃ to restore noiseless d [57–
59, 64] for a designated denoising model ft at
noise level t:
argmax

ft

Ed,d̃t∼Qt(d̃t|d)

[
Pft(d|d̃t,y)

]
, (2)

where y denotes the text prompt. Under this
objective, the model is supposed to compress
the noisy view d̃t to extract a clean, high-level
representation, together with additional informa-
tion from the text y, to reconstruct the original
embedding d. Formally, the denoising model
ft := fdec,t ◦ fenc,t performs auto-encoding
zS(t) = fenc,t(d̃t) and d̂ = fdec,t(zS(t),y), where we use S(t) to indicate the dependence on
the noise level t. We can view the compressed representation zS(t) as a set of high-level latent
variables in the hierarchical model: the encoder fenc,t maps the noisy view d̃t to high-level latent
variables zSt

and the decoder fdec,t assimilates the text information y and reconstructs the original
view d. In practice, ft is implemented as a single model (e.g., UNets) paired with time embeddings.
We visualize this process in Figure 3.

Noise levels and hierarchical levels. Intuitively, the noise level controls the amount of semantic
information remaining in d̃t. For instance, a high noise level t drowns the bulk of the low-level
concepts in d, leaving only sparse high-level concepts in d̃t. In this case, the diffusion representation
zS(t) estimates a high concept level in the hierarchical model. In Figure 3, a high noise level may
destroy low-level concepts, such as the sand texture and the waveforms, while preserving high-level
concepts, such as the beach and the sunrise. In Section 7.1, we follow Park et al. [62] to demonstrate
diffusion representation’s semantic levels under different noise levels.

Theory and practice. We connect LD training and estimating latent variables in the hierarchical
model in an intuitive sense. Our theory focuses on the fundamental conditions of the data-generating
process and does not directly translate to guarantees for LD. That said, our conditions naturally have
implications on the algorithm design. For instance, a sparsity constraint on the decoding model may
facilitate the identification condition that variables influence each other sparsely (e.g., pure children
in Condition 4.10). In Section 7.3, we show such constraints are beneficial for concept extraction. We
hope that our new perspective can provide more novel insights into advancing practical algorithms.

7 Real-world Experiments

7.1 Discovering Hierarchical Concept Structures from Diffusion Models

In Figure 4, we extract concepts and their relationships from LD through our hierarchical model
interpretation. Our recovery involves two stages: determining the concept level and identifying causal
links. We add a textual concept, like “dog”, into the prompt and identify the latest diffusion step
that would render this concept properly. If “dog” appears in the image only when added at step 0
and “eye” appears when added from step 5, it indicates that “dog” is a higher-level concept than
“eyes”. After determining the levels of concepts, we intervene on a high-level concept and observe
changes in low-level ones. No significant changes indicate no direct causal relationship. We explore
the relationships among the concepts “dog”, “tree”, “eyes”, “ears”, “branch”, and “leaf”. Figure 4
presents the final recovered graph and intermediate results. See Section A5.3 for more investigation.

7.2 Diffusion Representation as Concept Embeddings

We support our interpretations in Section 6 that diffusion representation can be viewed as concept
embeddings, and it corresponds to high-level concepts for high noise levels. Following Park et al.
[62], we modify the diffusion representation along certain directions found unsupervisedly. We can
observe that this manipulation gives rise to semantic concept changes rather than entangled corruption
Figure 5. Editing the latent representation at early steps corresponds to shifting global concepts.

9

Step 0 Step 5 Step 15 Reference Step 0 Step 5 Step 15 Reference

Inject
dog

Inject
dog and

ear

Inject
pointy

ear
Inject
wide
eye

Inject
Tree

Inject
tree and
leaves

Inject
brown
leaves

Inject
thick

branch

(c) Identify the concept level by the last effective diffusion step (red dotted lines).

(b) Identify the causal link by “intervention”.

Intervene: dog Intervene: treeReference

(a) The recovered concept graph.

TreeDog

Branch Ear Eye Leaf

Figure 4: Recovering concepts and their relationships from LD. (a) The final recovered concept graph among
concepts “dog”, “tree”, “eyes”, “ears”, “branch”, and “leaf”. (b) Identifying causal links through “interventions”.
For example, we compare two prompts that vary in “dog”: “a dog with wide eyes and a wilting tree with short
branches, in a cartoon style” and “a big dog with wide eyes and a wilting tree with short branches, in a cartoon
style”. We observe significant changes in “eyes” but not in “branch”, indicating a causal link between “dog” and
“eyes” but not between “dog” and “branch”. (c) Identifying concept levels by the last effective diffusion step. For
example, we use the base prompt “a tree with long branches, in a cartoon style” and prepend “dog” at steps 0,
5, and 15. Only injecting “dog” at step 0 works. Similarly, injecting “wide eyes” works at both steps 0 and 5,
indicating that “dog” is a higher-level concept than “eyes”. Original T 0.6T

Figure 5: Semantic latent space. We
modify the diffusion model’s representa-
tion (UNet encoder’s output) along prin-
cipal directions at steps T and 0.6T .
Structure changes indicate the semantics
of the representation and manipulation
at the early time T induces global shifts.
See more examples in Figure A9.

In Figure 5, the latent representation in earlier steps (step T)
determines breeds (the top row), species (the middle row), and
gender (the bottom row). In contrast, the latent representation
in later steps (step 0.6T) correlates with the dog collar, cat
eyes, and shirt patterns. Implementation details and additional
results are provided in Appendix A5.

7.3 Causal Sparsity for Concept Extraction

Recent work [65] shows that concepts can be extracted as low-
rank parameter subspaces of LD models via LoRA [66]. This
low-rankness limits the complexity of text-induced changes,
resembling sparse influences from latent concepts to their de-
scendants. Our theory suggests that different levels of concepts
may require varying sparsity levels to capture. We present em-
pirical evidence in Section A5.4. Motivated by this, we design
an adaptive sparsity selection mechanism for capturing con-
cepts at different levels. Inspired by Ding et al. [67], we imple-
ment a sparsity constraint on the LoRA dimensionality for the
model to select the LoRA rank at each module automatically,
benefiting concept extraction (see Appendix A5.4).

8 Conclusion

In this work, we cast the task of learning concepts as the identification problem of a discrete latent
hierarchical model. Our theory provides conditions to guarantee the recoverability of discrete
concepts. Limitations: Although our theoretical framework provides a lens for interpretation, our
conditions do not directly guarantee diffusion’s success, which would require nontrivial assumptions.
Also, Algorithm 1 can be expensive for large graphs due to the dependency on the state count. We
leave giving guarantees to diffusion models and efficient graph learning algorithms as future work.

10

Acknowledgments. We thank the anonymous reviewers for their valuable insights and recommenda-
tions, which have greatly improved our work. The work of L. Kong and Y. Chi is supported in part
by NSF DMS-2134080. This material is based upon work supported by NSF Award No. 2229881,
AI Institute for Societal Decision Making (AI-SDM), the National Institutes of Health (NIH) under
Contract R01HL159805, and grants from Salesforce, Apple Inc., Quris AI, and Florin Court Capital.
This research has been graciously funded by the National Science Foundation (NSF) CNS2414087,
NSF BCS2040381, NSF IIS2123952, NSF IIS1955532, NSF IIS2123952; NSF IIS2311990; the Na-
tional Institutes of Health (NIH) R01GM140467; the National Geospatial Intelligence Agency (NGA)
HM04762010002; the Semiconductor Research Corporation (SRC) AIHW award 2024AH3210;
the National Institute of General Medical Sciences (NIGMS) R01GM140467; and the Defense
Advanced Research Projects Agency (DARPA) ECOLE HR00112390063. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation, the National Institutes of Health,
the National Geospatial Intelligence Agency, the Semiconductor Research Corporation, the National
Institute of General Medical Sciences, and the Defense Advanced Research Projects Agency.

References

[1] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and
Daniel Cohen-or. An image is worth one word: Personalizing text-to-image generation using
textual inversion. In The Eleventh International Conference on Learning Representations, 2022.

[2] Ali Jahanian, Lucy Chai, and Phillip Isola. On the" steerability" of generative adversarial
networks. In International Conference on Learning Representations, 2019.

[3] Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. Ganspace: Discovering
interpretable gan controls. Advances in neural information processing systems, 33:9841–9850,
2020.

[4] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of gans for
semantic face editing. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9243–9252, 2020.

[5] Zongze Wu, Dani Lischinski, and Eli Shechtman. Stylespace analysis: Disentangled controls
for stylegan image generation. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 12863–12872, 2021.

[6] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
22500–22510, 2023.

[7] Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt
Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition and representa-
tion. arXiv preprint arXiv:1901.11390, 2019.

[8] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg
Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with
slot attention. In Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020.

[9] Yilun Du, Shuang Li, Yash Sharma, Joshua B. Tenenbaum, and Igor Mordatch. Unsupervised
learning of compositional energy concepts. In Proceedings of the International Conference on
Learning Representations (ICLR 2022), 2022.

[10] Yilun Du, Kevin Smith, Tomer Ulman, Joshua Tenenbaum, and Jiajun Wu. Unsupervised
discovery of 3d physical objects from video. In Conference on Computer Vision and Pattern
Recognition (CVPR 2022), 2022.

[11] Nan Liu, Yilun Du, Shuang Li, Joshua B. Tenenbaum, and Antonio Torralba. Unsupervised
compositional concepts discovery with text-to-image generative models. In Proceedings of the
2023 Conference on Neural Information Processing Systems (NeurIPS 2023), 2023.

11

[12] Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim,
and Percy Liang. Concept bottleneck models. In International conference on machine learning,
pages 5338–5348. PMLR, 2020.

[13] Mateo Espinosa Zarlenga, Pietro Barbiero, Gabriele Ciravegna, Giuseppe Marra, Francesco
Giannini, Michelangelo Diligenti, Frederic Precioso, Stefano Melacci, Adrian Weller, Pietro Lio,
et al. Concept embedding models. In NeurIPS 2022-36th Conference on Neural Information
Processing Systems, 2022.

[14] Tuomas Oikarinen and Tsui-Wei Weng. Clip-dissect: Automatic description of neuron represen-
tations in deep vision networks. In ICLR 2022 Workshop on PAIR {\textasciicircum} 2Struct:
Privacy, Accountability, Interpretability, Robustness, Reasoning on Structured Data, 2022.

[15] Mazda Moayeri, Keivan Rezaei, Maziar Sanjabi, and Soheil Feizi. Text-to-concept (and
back) via cross-model alignment. In International Conference on Machine Learning, pages
25037–25060. PMLR, 2023.

[16] Mazda Moayeri, Keivan Rezaei, Maziar Sanjabi, and Soheil Feizi. Text2concept: Concept
activation vectors directly from text. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3743–3748, 2023.

[17] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[18] Feng Xie, Biwei Huang, Zhengming Chen, Yangbo He, Zhi Geng, and Kun Zhang. Identification
of linear non-gaussian latent hierarchical structure. In International Conference on Machine
Learning, pages 24370–24387. PMLR, 2022.

[19] Biwei Huang, Charles Jia Han Low, Feng Xie, Clark Glymour, and Kun Zhang. Latent
hierarchical causal structure discovery with rank constraints. Advances in Neural Information
Processing Systems, 35:5549–5561, 2022.

[20] Xinshuai Dong, Biwei Huang, Ignavier Ng, Xiangchen Song, Yujia Zheng, Songyao Jin,
Roberto Legaspi, Peter Spirtes, and Kun Zhang. A versatile causal discovery framework to
allow causally-related hidden variables. In The Twelfth International Conference on Learning
Representations, 2023.

[21] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1988.

[22] Myung Jin Choi, Vincent YF Tan, Animashree Anandkumar, and Alan S Willsky. Learning
latent tree graphical models. Journal of Machine Learning Research, 12:1771–1812, 2011.

[23] Yuqi Gu and David B. Dunson. Bayesian pyramids: Identifiable multilayer discrete latent
structure models for discrete data. In Journal of the Royal Statistical Society Series B: Statistical
Methodology, 2023.

[24] Bohdan Kivva, Goutham Rajendran, Pradeep Ravikumar, and Bryon Aragam. Learning latent
causal graphs via mixture oracles. Advances in Neural Information Processing Systems, 34:
18087–18101, 2021.

[25] Mathias Drton, Shaowei Lin, Luca Weihs, and Piotr Zwiernik. Marginal likelihood and model
selection for gaussian latent tree and forest models. Bernoulli, pages 1202–1232, 2017.

[26] Nevin L Zhang. Hierarchical latent class models for cluster analysis. The Journal of Machine
Learning Research, 5:697–723, 2004.

[27] Animashree Anandkumar, Daniel Hsu, Adel Javanmard, and Sham Kakade. Learning linear
bayesian networks with latent variables. In Sanjoy Dasgupta and David McAllester, editors,
Proceedings of the 30th International Conference on Machine Learning, volume 28 of Proceed-
ings of Machine Learning Research, pages 249–257, Atlanta, Georgia, USA, 17–19 Jun 2013.
PMLR. URL https://proceedings.mlr.press/v28/anandkumar13.html.

12

https://proceedings.mlr.press/v28/anandkumar13.html

[28] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR 2022), 2022.

[29] Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. In The
Eleventh International Conference on Learning Representations, 2023.

[30] Eunji Kim, Dahuin Jung, Sangha Park, Siwon Kim, and Sungroh Yoon. Probabilistic concept
bottleneck models. In International Conference on Machine Learning, pages 16521–16540.
PMLR, 2023.

[31] Marton Havasi, Sonali Parbhoo, and Finale Doshi-Velez. Addressing leakage in concept
bottleneck models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, editors, Advances in Neural Information Processing Systems, 2022. URL https://
openreview.net/forum?id=tglniD_fn9.

[32] Chenming Shang, Shiji Zhou, Hengyuan Zhang, Xinzhe Ni, Yujiu Yang, and Yuwang Wang.
Incremental residual concept bottleneck models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11030–11040, 2024.

[33] Kushal Chauhan, Rishabh Tiwari, Jan Freyberg, Pradeep Shenoy, and Krishnamurthy Dvijotham.
Interactive concept bottleneck models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 5948–5955, 2023.

[34] Lingjing Kong, Biwei Huang, Feng Xie, Eric Xing, Yuejie Chi, and Kun Zhang. Identification
of nonlinear latent hierarchical models. Advances in Neural Information Processing Systems,
36, 2023.

[35] Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvarinen. Variational au-
toencoders and nonlinear ica: A unifying framework. In International Conference on Artificial
Intelligence and Statistics, pages 2207–2217. PMLR, 2020.

[36] Ilyes Khemakhem, Ricardo Monti, Diederik Kingma, and Aapo Hyvarinen. Ice-beem: Iden-
tifiable conditional energy-based deep models based on nonlinear ica. Advances in Neural
Information Processing Systems, 33:12768–12778, 2020.

[37] Aapo Hyvarinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive
learning and nonlinear ica. Advances in neural information processing systems, 29, 2016.

[38] Aapo Hyvarinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ica using auxiliary variables
and generalized contrastive learning. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 859–868. PMLR, 2019.

[39] Jack Brady, Roland S. Zimmermann, Yash Sharma, Bernhard Schölkopf, Julius von Kügelgen,
and Wieland Brendel. Provably learning object-centric representations. In International
Conference on Learning Representations (ICLR 2024), 2024.

[40] Sébastien Lachapelle, Divyat Mahajan, Ioannis Mitliagkas, and Simon Lacoste-Julien. Additive
decoders for latent variables identification and cartesian-product extrapolation. Advances in
Neural Information Processing Systems, 36, 2024.

[41] Bohdan Kivva, Goutham Rajendran, Pradeep Ravikumar, and Bryon Aragam. Identifiability
of deep generative models without auxiliary information. Advances in Neural Information
Processing Systems, 35:15687–15701, 2022.

[42] Julius Von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf,
Michel Besserve, and Francesco Locatello. Self-supervised learning with data augmentations
provably isolates content from style. Advances in neural information processing systems, 34:
16451–16467, 2021.

[43] Lingjing Kong, Shaoan Xie, Weiran Yao, Yujia Zheng, Guangyi Chen, Petar Stojanov, Victor
Akinwande, and Kun Zhang. Partial disentanglement for domain adaptation. In International
Conference on Machine Learning, pages 11455–11472. PMLR, 2022.

13

https://openreview.net/forum?id=tglniD_fn9
https://openreview.net/forum?id=tglniD_fn9

[44] Sanjeev Arora, Rong Ge, and Ankur Moitra. Learning topic models–going beyond svd. In 2012
IEEE 53rd annual symposium on foundations of computer science, pages 1–10. IEEE, 2012.

[45] Sanjeev Arora, Rong Ge, Yonatan Halpern, David Mimno, Ankur Moitra, David Sontag, Yichen
Wu, and Michael Zhu. A practical algorithm for topic modeling with provable guarantees. In
International conference on machine learning, pages 280–288. PMLR, 2013.

[46] Gemma E Moran, Dhanya Sridhar, Yixin Wang, and David M Blei. Identifiable variational
autoencoders via sparse decoding. arXiv preprint arXiv:2110.10804, 2021.

[47] Yujia Zheng, Ignavier Ng, and Kun Zhang. On the identifiability of nonlinear ica: Sparsity and
beyond. arXiv preprint arXiv:2206.07751, 2022.

[48] Yuqi Gu. Blessing of dependence: Identifiability and geometry of discrete models with multiple
binary latent variables. arXiv preprint arXiv:2203.04403, 2022.

[49] Seth Sullivant, Kelli Talaska, and Jan Draisma. Trek separation for gaussian graphical models.
The Annals of Statistics, 38(3), June 2010. ISSN 0090-5364. doi: 10.1214/09-aos760. URL
http://dx.doi.org/10.1214/09-AOS760.

[50] Joel E Cohen and Uriel G Rothblum. Nonnegative ranks, decompositions, and factorizations of
nonnegative matrices. Linear Algebra and its Applications, 190:149–168, 1993.

[51] Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, prediction, and search. MIT
press, 2001.

[52] A. Anandkumar, D. Hsu, F. Huang, and S. M. Kakade. Learning high-dimensional mixtures of
graphical models, 2012.

[53] Bijan Mazaheri, Spencer Gordon, Yuval Rabani, and Leonard Schulman. Causal discovery
under latent class confounding. arXiv preprint arXiv:2311.07454, 2023.

[54] Feng Xie, Ruichu Cai, Biwei Huang, Clark Glymour, Zhifeng Hao, and Kun Zhang. Generalized
independent noise condition for estimating latent variable causal graphs. Advances in Neural
Information Processing Systems, 33:14891–14902, 2020.

[55] Jan Lemeire and Dominik Janzing. Replacing causal faithfulness with algorithmic independence
of conditionals. Minds and Machines, 23:227–249, 2013.

[56] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661–1674, 2011.

[57] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019.

[58] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pages 1096–1103, 2008.

[59] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol,
and Léon Bottou. Stacked denoising autoencoders: Learning useful representations in a deep
network with a local denoising criterion. Journal of machine learning research, 11(12), 2010.

[60] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A. Efros. Context
encoders: Feature learning by inpainting, 2016.

[61] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners, 2021.

[62] Yong-Hyun Park, Mingi Kwon, Jaewoong Choi, Junghyo Jo, and Youngjung Uh. Understanding
the latent space of diffusion models through the lens of riemannian geometry. Advances in
Neural Information Processing Systems, 36:24129–24142, 2023.

14

http://dx.doi.org/10.1214/09-AOS760

[63] Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution
image synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR 2021), 2021.

[64] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
Baining Guo. Vector quantized diffusion model for text-to-image synthesis, 2022.

[65] Rohit Gandikota, Joanna Materzyńska, Tingrui Zhou, Antonio Torralba, and David Bau. Concept
sliders: Lora adaptors for precise control in diffusion models. arXiv preprint arXiv:2311.12092,
2023.

[66] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In
Proceedings of the 2021 International Conference on Learning Representations (ICLR 2021),
2021.

[67] Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and Maosong
Sun. Sparse low-rank adaptation of pre-trained language models. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing (EMNLP 2023), 2023.

[68] Animashree Anandkumar, Daniel Hsu, Adel Javanmard, and Sham Kakade. Learning linear
bayesian networks with latent variables. In International Conference on Machine Learning,
pages 249–257. PMLR, 2013.

[69] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther.
Ladder variational autoencoders. Advances in neural information processing systems, 29, 2016.

[70] Shengjia Zhao, Jiaming Song, and Stefano Ermon. Learning hierarchical features from deep
generative models. In International Conference on Machine Learning, pages 4091–4099.
PMLR, 2017.

[71] Xiaopeng Li, Zhourong Chen, Leonard KM Poon, and Nevin L Zhang. Learning latent
superstructures in variational autoencoders for deep multidimensional clustering. arXiv preprint
arXiv:1803.05206, 2018.

[72] Felix Leeb, Giulia Lanzillotta, Yashas Annadani, Michel Besserve, Stefan Bauer, and Bernhard
Schölkopf. Structure by architecture: Structured representations without regularization. In The
Eleventh International Conference on Learning Representations, 2022.

[73] Andrew Ross and Finale Doshi-Velez. Benchmarks, algorithms, and metrics for hierarchical
disentanglement. In International Conference on Machine Learning, pages 9084–9094. PMLR,
2021.

[74] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsu-
pervised learning using nonequilibrium thermodynamics. In Proceedings of the International
Conference on Machine Learning (ICML 2015), 2015.

[75] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020.

[76] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations (ICLR 2022), 2022.

[77] Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis. In Advances
in Neural Information Processing Systems 34 (NeurIPS 2021), 2021.

[78] Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In
Proceedings of the International Conference on Machine Learning (ICML 2021), 2021.

[79] Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion models already have a semantic
latent space. In The Eleventh International Conference on Learning Representations, 2022.

[80] Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon Kim, Hyunwoo Kim, and Sungroh
Yoon. Perception prioritized training of diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11472–11481, 2022.

15

[81] Giannis Daras and Alexandros G Dimakis. Multiresolution textual inversion. arXiv preprint
arXiv:2211.17115, 2022.

[82] Qiucheng Wu, Yujian Liu, Handong Zhao, Ajinkya Kale, Trung Bui, Tong Yu, Zhe Lin,
Yang Zhang, and Shiyu Chang. Uncovering the disentanglement capability in text-to-image
diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1900–1910, 2023.

[83] Antonio Sclocchi, Alessandro Favero, and Matthieu Wyart. A phase transition in diffusion
models reveals the hierarchical nature of data. arXiv preprint arXiv:2402.16991, 2024.

[84] Judea Pearl. Causality. Cambridge university press, 2009.

[85] Yanming Di. t-separation and d-separation for directed acyclic graphs. preprint, 2009.

16

Appendix for

“Learning Discrete Concepts in Latent Hierarchical Causal Models”

Table of Contents

A1 Related Work 18

A2 Proof for Theorem 4.4 19

A3 Proof for Theorem 4.12 20

A4 Synthetic Data Experiments 24

A5 Real-world Experiments 25

A5.1 Implementation Details . 25

A5.2 Sparsity in the Hierarchical Model . 26

A5.3 Discovering Hierarchical Orders from Diffusion Models 27

A5.4 Causal Sparsity for Concept Extraction . 29

A5.5 More Examples . 29

17

A1 Related Work

Concept learning. In recent years, a significant strand of research has focused on employing labeled
data to learn concepts in generative models’ latent space for image editing and manipulation [1–6].
Concurrently, another independent research trajectory has been exploring unsupervised concept
discovery and its potential to learn more compositional and transferable models, as shown in Burgess
et al. [7], Locatello et al. [8], Du et al. [9, 10], Liu et al. [11]. These prior works focus on the
empirical methodological development of concept learning by proposing novel neural network
architectures and training objectives, with limited discussion on the theoretical aspect. In contrast,
our work investigates the theoretical foundation of concept learning. Specifically, we formulate
concept learning as an identification problem for a discrete latent hierarchical model and provide
conditions under which extracting concepts is possible. Thus, the existing work and our work can
be viewed as two complementary lines of research for concept learning. Concurrently, a plethora
of work has been dedicated to extracting interpretable concepts from high-dimensional data such as
images. Concept-bottleneck [12] first predicts a set of human-annotated concepts as an intermediate
stage and then predicts the task labels from these intermediate concepts. This paradigm has attracted
a large amount of follow-up work [13, 29–33]. A recent surge of pre-trained multimodal models
(e.g., CLIP [17]) can explain the image concepts through text directly [14–16]. In contrast with these
successes, our work focuses on the formulation of concept learning and theoretical guarantees.

Latent hierarchical models. Complex real-world data distributions often possess a hierarchical
structure among their underlying latent variables. On the theoretical front, Xie et al. [18], Huang et al.
[19], Dong et al. [20] investigate identification conditions of latent hierarchical structures under the
assumption that the latent variables are continuous and influence each other through linear functions.
Kong et al. [34] extends the functional class to the nonlinear case over continuous variables. Pearl
[21], Zhang [26], Choi et al. [22], Gu and Dunson [23] study fully discrete cases and thus fall short
of modeling the continuous observed variables like images. Specifically, Pearl [21], Zhang [26], Choi
et al. [22] focus on the latent trees in which every pair of variables is connected through exactly
one undirected path. Gu and Dunson [23] assume a multi-level DAG [68] in which variables can be
partitioned into disjoint groups (i.e., levels), such that all edges are between adjacent levels, with
the observed variables as the bottom level (i.e., leaf nodes). In contrast, we show that we can not
only extract discrete components from continuous observed variables but also uncover higher-level
concepts and their interactions. Our graphical conditions admit multiple paths within each pair of
latent variables, flexible hierarchical structures that are not necessarily multi-level, and flat structures
in which all latent variables are adjacent to observed variables [24]. On the empirical side, prior
work [69] improves the inference model of vanilla VAEs by combining bottom-up data-dependent
likelihood terms with prior generative distribution parameters. Zhao et al. [70] assign more expressive
(deeper) neural modules to higher-level variables to learn a more disentangled generative model. Li
et al. [71] present a VAE/clustering approach to empirically estimating latent tree structures. Leeb
et al. [72] propose to feed latent variable partitions into different decoder neural network layers and
remove the prior regularization term to enable high-quality generation. Like our work, Ross and
Doshi-Velez [73] consider discrete latent variables. However, their focus is on empirical evaluation
benchmarks and metrics, without touching on the theoretical formulation of this task. Unlike these
efforts, our work concentrates on the formalization of the data-generating process and the theoretical
understanding. Thus, these two lines complement each other.

Latent variable identification. Identifying latent variables under nonlinear transformations is central
to representation learning on complex unstructured data. Khemakhem et al. [35, 36], Hyvarinen
and Morioka [37], Hyvarinen et al. [38] assume the availability of auxiliary information (e.g.,
domain/class labels) and that the latent variables’ probability density functions have sufficiently
different derivatives over domains/classes. However, many important concepts (e.g., object classes)
are inherently discrete. Since latent variables are not equipped with differentiable density functions,
identifying these concepts necessitates novel techniques. Our theory requires neither domain/class
labels nor differentiable density functions and can accommodate discrete variables readily. Another
line of studies [39, 40] refrains from the auxiliary information by making sparsity and mechanistic
independence assumptions over latent variables, disregarding causal structures among the latent
variables. Moreover, images may comprise abstract concepts and convey sophisticated interplay
among concepts at various levels of abstraction. In this work, we address these limitations by
formulating the concept space as a discrete hierarchical causal model, capturing concepts at distinct
levels and their causal relations.

18

Latent diffusion understanding. Diffusion probabilistic models [74, 75, 28, 76–78] have recently
become the workhorse for state-of-the-art image generation. Diffusion models’ empirical success
sparked a plethora of efforts to probe into their empirical properties. Kwon et al. [79], Park et al.
[62] discover that the UNet bottleneck representation exhibits highly structured semantic properties,
traversing over which manipulates the generated image in a meaningful manner. Choi et al. [80], Daras
and Dimakis [81], Wu et al. [82], Sclocchi et al. [83] realize that early/late diffusion steps at the
inference correlate with coarse/fine features in the output. Recently, Gandikota et al. [65] showcase
that concepts are encoded by low-rank influences in latent diffusion models. The theoretical insights
in our work consolidate these apparently separate strands of empirical observations and also lead to
new understandings that could enhance empirical methodologies.

A2 Proof for Theorem 4.4

Condition 4.3 (Discrete Components Identification).

i [Connected Spaces] The continuous support C ⊂ Rnc is closed and connected.

ii [Invertibility & Continuity]: The generating function g in equation 1 is invertible, and for any
fixed d, g(d, ·) and its inverse are continuous.

iii [Non-Subset Observed Children]: For any pair di and dj , one’s observed children are not the
subset of the other’s, ChΓ(di) ̸⊂ ChΓ(dj).

Theorem 4.4 (Discrete Component Identification). Under the generating process in Equation 1 and
Condition 4.3-ii, the estimated discrete variable d̂ and the true discrete variable d are equivalent
up to an invertible function, i.e., d̂ = h(d) with h(·) invertible. Moreover, if Condition 4.1 and
Condition 4.3-iii further hold, we attain component-wise identifiability (Definition 4.2) and the
bipartite graph Γ up to permutation of component indices.

Proof of Theorem 4.4 Part 1. The estimate d̂ and the true variable d are related through the map
[d̂, ĉ] = ĝ−1 ◦ g(d, c). In the following, we show that the induced relation between d and d̂ is
invertible under Condition 4.3-ii. The estimated generating process respects the conditions on the
true generating process.

We denote that support of the estimate d̂ as Ω̂(d). First, we show by contradiction that for each state
k ∈ Ω(d), k corresponds to at most one state k̂ ∈ Ω̂(d) of the estimate d̂.

Suppose that k corresponds to two distinct states k̂1 and k̂2. That is, there exist c1, c2 ∈ C and
ĉ1, ĉ2 ∈ Ĉ, such that ĝ−1 ◦g(k, c1) = [k̂1, ĉ1] and ĝ−1 ◦g(k, c2) = [k̂2, ĉ2]. On one hand, As g(k, ·)
is a continuous function and C is connected, the image I(k) := g(k, C) is a connected set. On the
other hand, Î(k1) := ĝ(k̂1, Ĉ) and Î(k̂2) := ĝ(k̂2, Ĉ) are two separate sets due to the invertibility
and continuity of ĝ and the closed-ness of Ĉ. To see this, invertibility implies that Î(k1) and Î(k2)
are disjoint. The fact that ĝ is continuous over ĉ and has a continuous inverse over ĉ implies that
Î(k1) and Î(k2) preserve the closed-ness of C. The space formed by two disjoint closed subspaces is
disconnected. Since k corresponds to k̂1 and k̂2, it follows that I(k) = Î1 ∪ Î2 where Î1 and Î2 are
nonempty subsets of Îk̂1

and Îk̂2
respectively and inherit their separability. As I(k) is a union of two

nonempty separated sets, it is disconnected. This contradicts the connectedness of I(k). Therefore,
for each state k ∈ Ω(d), k corresponds to at most one state k̂ ∈ Ω̂(d).

Having established that each state of d corresponds to at most one state of d̂, we now show that states
k̂1, k̂2 of d̂ corresponding to distinct states k1 ̸= k2 of d must also be distinct, i.e., k̂1 ̸= k̂2 if k1 ̸= k2.
Suppose that ∃k1 ̸= k2, such that the corresponding states k̂1 = k̂2. We denote k̂ := k̂1 = k̂2 and
two arbitrary points x1 := g(k1, c1) and x2 := g(k2, c2) from modes k1 and k2 respectively. As the
two estimated discrete states collapse at k̂, it follows that

x1 = g(k1, c1) = ĝ(k̂, ĉ1) (3)

x2 = g(k2, c2) = ĝ(k̂, ĉ2). (4)
Since ĝ(k̂, ·) is continuous and Ĉ is a connected set, the image ĝ(k̂, Ĉ) is path-connected. Thus, we
can find a path f : [0, 1] → X such that f(0) = x1 and f(1) = x2. Also, each point on the path

19

f has a positive probability density due to positive p̂(ĉ) and P
(
d̂ = k̂

)
. However, the two images

g(k1, C) and g(k2, C) are disconnected due to the invertibility of g and k1 ̸= k2. On any path from
x1 to x2, there exists points x0 such that the density is strictly zero due to the discrete structure of d.
Thus, we have arrived at a contradiction. We have shown that if k1 ̸= k2, the corresponding estimated
states are distinct k̂1 ̸= k̂2.

Since for for each k ∈ Ω(d), k corresponds to at most one state k̂ and distinct states k1, k2 give rise to
distinct states k̂1, k̂2, we have proven that for each k ∈ Ω(d), k corresponds to exactly one estimated
state k̂ ∈ Ω̂(d).

Definition A2.1 (Mixture Oracles). Let x be a set of observed variables and d ∈ Ω(d) be a discrete
latent variable. The mixture model is defined as P (x) =

∑
k∈Ω(d) P (d = k)P (x|d = k). A mixture

oracle MixOracle(x) takes P (x) as input and returns the number of components
∣∣Ω(d)

∣∣, the weights
P (d = k) and the component P (x|d = k) for k ∈ Ω(d). 3

Theorem A2 (Kivva et al. [24]). Under Condition 4.1 and Condition 4.3-iii, on can reconstruct the
bipartite graph Γ between d and x, and the joint distribution P (d1 = k1, . . . , dnd

= knd
) from P (x)

and MixOracle(x).

Proof of Theorem 4.4 Part 2. Step 1: Given the first result in Theorem 4.4, we can identify the
discrete state index k for each realization of x (up to permutations). Since we can do this to all
realizations of x and we are given P (x), we can compute the cardinality of the discrete subspace
|Ω(d)|, the marginal distribution of each latent state P (d = k), and the conditional distribution
P (x|d = k) for k ∈ Ω(d).

Step 2: Step 1 shows the availability of the mixture oracle MixOracle (i.e., |Ω|, P (d = k), and
P (x|d = k)) as defined in Definition A2.1. Now, all conditions employed in Theorem A2 are ready,
namely Condition 4.1, Condition 4.3 iii, and MixOracle (the consequence of step 1). The derivation
in Kivva et al. [24] entails identifying a map from the discrete subspace state index d = k where
k ∈ Ω(d) to all discrete components’ state indices [d1, . . . , dnd

] = [k1, . . . , knd
] where ki ∈ Ω

(d)
i is

the state index of the i-th component di. Thus, we can utilize this map to identify the state index for
each individual discrete variable di from the global index k.

Step 3: As stated in Step 2, all conditions in Theorem A2 hold in our problem. Since Theorem Theo-
rem A2 additionally identifies the bipartite graph Γ between {x1, x2, x3, . . . } and{d1, d2, d3, . . . },
the same follows in our case.

A3 Proof for Theorem 4.12

In this section, we present a proof for Theorem 4.12. Since all variables are discrete for this proof,
for a set of variables A, we adopt the notation A = i to indicate the joint state of all variables in A.

As outlined in Section 4, we will derive Theorem 4.8 which serves as the bridge between the distribu-
tional information and the graphical information, equivalent to the role of Theorem A2 Sullivant et al.
[49] in Dong et al. [20], Huang et al. [19].

To familiarize the reader with the context, we introduce Theorem A2 and the involved graphical
definitions treks 4.6, t-separation 4.7, and its connection between d-separation [84].

Definition 4.6 (Treks). A trek Ti,j in a DAG from vertex i to j consists of a directed path Pki from k
to i and a direct path Pkj from k to j, where we refer to Pki as the i side and Pkj as the j side.

Intuitively, a trek is a path containing at most one fork structure and no collider structures. Given this
definition, a notion of t-separation is introduced [51], reminiscent of the classic d-separation.

3We abuse the notation P (·) to denote probability density functions for continuous variables and mass
functions for discrete variables.

20

Definition 4.7 (T-separation). Let A, B, CA, and CB be subsets (not necessarily disjoint) of vertices
in a DAG. Then (CA,CB) t-separates A and B if every trek from A to B passes through either a
vertex in CA on the A side of the trek or a vertex CB on the B side of the trek.

Theorem A1 (Equivalence between d-separation and t-separation [85]). Suppose we have disjoint
vertex sets A, B, and C in a DAG. Set C d-separates set A and set B if and only if there exists a
partition C := CA ∪CB such that (CA,CB) t-separates A ∪C and B ∪C.

Theorem A1 shows that one can reformulate d-separation with a special form of t-separation. Thus,
t-separation is at least as informative as d-separation. Further, as detailed in Dong et al. [20],
t-separation can provide more information when latent variables are involved, benefiting from
Theorem A2 [49].

Theorem A2 (Covariance Matrices and Graph Structures [49]). Given two sets of variables
A and B from a linear model with graph G, it follows that rank(ΣA,B) = min{|L| :
L t-separates A from B in G}, where ΣA,B denotes the generic covariance matrix between A
and B.

Theorem A2 reveals that one can access local latent graph structures, i.e., the cardinality of the
minimal separation set between two subsets of observed variables, through computable statistical
quantities, e.g., covariance matrix ranks. Dong et al. [20] utilize these local latent graph structures,
together with graphical conditions, to develop their identification theory for linear hierarchical models.
Ideally, if we can access such local latent structures in the discrete hierarchical model, we can apply
the same graph search procedure and theorems in Dong et al. [20] to identify the discrete model.
Nevertheless, Theorem A2 relies on the linearity of the causal model (i.e., each causal edge represents
a linear function), which doesn’t hold in the discrete case. This motivates us to derive a counterpart
of Theorem A2 for discrete causal models.

To this end, we introduce a classic theorem (Theorem A3) that connects the non-negative rank of a
joint probability table with latent variable states.

Definition 4.5 (Non-negative Rank). The non-negative rank of non-negative A ∈ Rm×n
+ is equal to

the smallest p for which there exist B ∈ Rm×p
+ and C ∈ Rp×n

+ such that A = BC.

Theorem A3 (Non-negative Rank and Probability Matrix Decomposition [50]). Let P ∈ Rm×n be
a bi-variate probability matrix. Then its non-negative rank rank+(P) is the smallest non-negative
integer p such that P can be expressed as a convex combination of p rank-one bi-variate probability
matrices.

Given this machinery, we now derive Theorem 4.8 which provides equivalent information in discrete
models as Theorem A2 in linear models.

Theorem 4.8 (Implication of Rank Information on Latent Discrete Graphs). Given two sets of
variables A and B from a non-degenerate, faithful (Condition 4.1-i, Condition 4.10-i) discrete model
G, it follows that rank+(PA,B) = min{|Supp(L)| : a partition (L1,L2) t-separates A and B in G}.

Proof. We express the joint distribution table PA,B as
P(A = i,B = j) =

∑
r∈[R]

P(A = i|L = r)P(B = j|L = r)P(L = r), (5)

where R ∈ N+ is the smallest possible value. This is always possible since we can assign L as either
A or B and obtain a trivial expression.

We note that A \ L, B \ L, and L are disjoint because if A ∩B is nonempty, it must be a subset of
L. Since the graph G is non-degenerate (Condition 4.1-i) and faithful (Condition 4.10-i), Equation 5
implies the graphical condition that A \ L and B \ L are d-separate given L.

The equivalence relation in Theorem A1 implies that a partition of L t-separates A and B. Thus, the
minimal cardinality R is equal to the smallest number of discrete states of L that t-separates A and
B. Moreover, Theorem A3 implies that the minimal number of states is equal to the non-negative
rank of PA,B, i.e., R = rank+(PA,B), which concludes our proof.

With Theorem 4.8 in hand, we leverage existing structural identification results on linear hierarchical
models (Theorem A10) to obtain the identification results of desire (Theorem 4.12).

21

We introduce formal definitions of linear models, pure children, and the minimal graph operator,
which we refer to in the main text.
Definition A3.4 (Linear Causal Models [20, 19]). A linear causal model is a DAG with variable set
V and an edge set E, where each causal variables v is generated by its parents Pa(v) through a linear
function:

vi :=
∑

vj∈Pa(v)

ai,jvj + ϵi, (6)

where ai,j is the causal strength and ϵi is the exogenous variable associated with vi.
Definition A3.5 (Pure Children). A variable set Y are pure children of variables X in graph G,
iff PaG(Y) = ∪Yi∈YPaG(Yi) = X and X ∩ Y = ∅. We denote the pure children of X in G by
PChG(X).

Basically, the definition dictates that variable Y has no other parents than X.
Definition 4.11 (Minimal-graph Operator [19, 20]). We can merge atomic covers L into P in G if (i)
L is a pure child of P, (ii) all elements of L and P are latent and |Supp(L)| = |Supp(P)|, and (iii)
the pure children of L form a single atomic cover, or the siblings of L form a single atomic cover.
We denote such an operator as the minimal-graph operator Omin(G).

This operator merges certain structural redundancies not detectable from rank information [19, 20]
(Lemma A9). Please refer to Figure A1 for an example.
Definition A3.6 (Atomic Covers (Linear Models)). Let A be a set of variables in G with |A| = k,
where t of the k variables are observed variables, and the remaining k − t are latent variables. A is
an atomic cover if A contains a single observed variable, or if the following conditions hold:

(i) There exists a set of atomic covers C, with |C| ≥ k + 1− t, such that ∪C∈CC ⊆ PChG(V) and
∀C1,C2 ∈ C,C1 ∩C2 = ∅.

(ii) There exists a set of covers N , with |N | ≥ k + 1− t, such that every element in ∪N∈NN is a
neighbour of V and (∪N∈NN) ∩ (∪C∈CC) = ∅.

(iii) There does not exist a partition of A = A1 ∪A2 such that both A1 and A2 are atomic covers.
Theorem A7 (Linear Hierarchical Model Conditions).

i [Rank Faithfulness]: All the rank constraints on the covariance matrices are entailed by the
DAG.

ii [Basic Graphical Conditions] For any L ∈ V, L belongs to at least one atomic cover (Defi-
nition A3.6) in the linear model G (Definition A3.4) and no latent variable is involved in any
triangle structure (i.e., three mutually adjacent variables).

iii [Graphical Condition on Colliders] In a latent graph G, if (i) there exists a set of variables C
such that every variable in C is a collider of two atomic covers L1, L2, and denote by A the
minimal set of variables that d-separates L1 from L2, (ii) there is a latent variable in L1,L2,C
or A, then we must have |C|+ |A| ≥ |L1|+ |L2|.

Definition A3.8 (Skeleton Operator [19, 20]). Given an atomic cover A in a graph G, for all a ∈ A,
a is latent, and all c ∈ PCh(A), such that a and c are not adjacent, we can draw an edge from a to c.
We denote such an operator as skeleton operator Os(G).

The skeleton operator introduces additional edges to fully connect atomic clusters [19, 20], which are
indistinguishable from the rank information (Lemma A9). Please refer to Figure A1 for an example.
Lemma A9 (Rank Invariance Huang et al. [19]). The rank constraints are invariant with the minimal-
graph operator and the skeleton operator; that is, G and Os(Omin(G)) are rank equivalent.
Theorem A10 (Linear Hierarchical Model Identification [20]). Suppose the G is a linear latent
causal model (Definition A3.4) that satisfies Condition A7. Then the hierarchical causal model G is
identifiable up to the Markov equivalent class of Os(Omin(G)).

We note that linear model conditions (Condition A7) and discrete model conditions (Condition 4.10)
differ mainly in the substitutes of variables in the linear models with states in the discrete models.
This originates from the local graph structures we can access, i.e., states in Theorem 4.8 and variables
in Theorem A2. The skeleton operator Omin (Definition A3.8 is not necessary under Condition 4.10
since each cover represents a discrete variable whose states must all be connected to its neighbors.

22

We now present Theorem 4.12 and its proof.
Condition 4.10 (Discrete Hierarchical Model Conditions).

i [Faithfulness] All the conditional independence relations are entailed by the DAG.

ii [Basic Graphical Conditions] Each latent variable z ∈ Z corresponds to a unique atomic cover
in G and no z is involved in any triangle structure (i.e., three mutually adjacent variables).

iii [Graphical Condition on Colliders] In a latent graph G, if (i) there exists a set of variables C
such that every variable in C is a collider of two atomic covers L1, L2, and denote by A the
minimal set of variables that d-separates L1 from L2, (ii) there is a latent variable in L1,L2,C
or A, then we must have |Supp(C)|+ |Supp(A)| ≥ |Supp(L1)|+ |Supp(L2)|.

Theorem 4.12 (Discrete Hierarchical Identification). Suppose the causal model G satisfies Condi-
tion 4.1 and Condition 4.10 We can identify G up to the Markov equivalence class of Omin(G).

Proof. We observe that the linearity condition (Definition A3.4) in Theorem A10 is only utilized to
invoke Theorem A2 to access the cardinality of the smallest t-separation set between any two sets of
observed variables in the linear model. Through this, the graph identification results in Theorem A10
are derived based on a graph search algorithm repeatedly querying partial graph structures under
Condition A7.

For discrete models (Condition 4.1), Theorem 4.8 supplies partial graph structures equivalent to
Theorem A2. The difference is that Theorem A2 returns the number of variables in the smallest
t-separation set while Theorem 4.8 returns the number of states in the smallest t-separation set. Thus,
running Algorithm 1 up to Step 9 (i.e., the original search algorithm Dong et al. [20] with a different
rank oracle in Theorem 4.8 highlighted in blue) will return a graph with latent nodes representing
discrete states. Algorithm 1 is guaranteed to correctly discover all the atomic covers (Theorem A10)
and each atomic cover corresponds to a latent discrete variable (Condition 4.10-ii). Thus, we can
obtain each true latent variable by merging all the latent nodes AL in each atomic cover A into a
discrete latent variable z whose support cardinality |Supp(z)| equals to the number of latent nodes
|AL|. We highlight this procedure (Step 9 in Algorithm 1). Moreover, as all latent nodes (i.e., latent
states) in an atomic cover belong to one discrete variable, these latent nodes in adjacent atomic
covers must be fully connected. Thus, we do not need the skeleton operator Os as for linear models
(Theorem A10). This concludes our proof for Theorem 4.12.

Theorem A12 follows the same reasoning as in Theorem 4.12, with the main difference in organizing
latent nodes/states into latent discrete variables.
Condition A3.11 (Discrete Hierarchical Model Conditions for Identical Supports).

i [Faithfulness]: All the conditional independence relations are entailed by the DAG.

ii [Basic Graphical Conditions]: Each latent variable z ∈ Z belongs to at least one atomic cover
in G and no z is involved in any triangle structure (i.e., three mutually adjacent variables).

iii [Graphical Condition on Colliders]: In a latent graph G, if (i) there exists a set of variables C
such that every variable in C is a collider of two atomic covers L1, L2, and denote by A the
minimal set of variables that d-separates L1 from L2, (ii) there is a latent variable in L1,L2,C
or A, then we must have |Supp(C)|+ |Supp(A)| ≥ |Supp(L1)|+ |Supp(L2)|.

We introduce the skeleton operator Os [19, 20] (Definition A3.8) that include edges between adjacent
covers indistinguishable to rank information.
Theorem A12 (Discrete Hierarchical Identification on Identical Supports). Suppose the causal model
G satisfies Condition 4.1-i, Condition A3.11, and |Supp(z)| = K ≥ 2 for all z ∈ Z. We can identify
G up to the Markov equivalence class of Os(Omin(G)).

Proof. The bulk of the proof overlaps with the proof of Theorem 4.12. Following the same reasoning
of the proof of Theorem 4.12, we can obtain a graph with latent nodes representing discrete states
before Step 9 and Step 10 in Algorithm 1. Under the identical support condition in Theorem A12, we

23

z5

z4 d8 d9 d10

z1 z2 z3

d1 d2 d3 d4 d5 d6 d7

(a) G

z5

d8 d9 d10z1 z2 z3

d1 d2 d3 d4 d5 d6 d7

(b) Omin(G)

z5

d8 d9 d10z1 z2 z3

d1 d2 d3 d4 d5 d6 d7

(c) Os(Omin(G))

Figure A1: The discrete graph G satisfies conditions in Theorem A12 (i.e., identical supports).
After applying the minimal-graph operator to the graph G, z4 is merged to its parent z5, and the rank
constraints do not change. After applying the skeleton operator to the graph in (b), z1 has an edge to
d7 and z3 has an edge to d1. We adopt this example from Huang et al. [19].

can directly group K states in an atomic cover into a latent variable as in Algorithm 1-Step 10. Since
the true latent variable cardinality is known to be identical, we don’t need Condition 4.1-ii, iii to
ensure the structure is well defined. Under Condition A3.11, each atomic cover may contain multiple
discrete latent variables, depending on the cover size. It could be possible that one latent variable is
not connected to all latent variables in an adjacent atomic cover, as in the linear model case. However,
this difference cannot be detected from the rank information (Lemma A9). Thus, we need to retain the
skeleton operator Os inherited from Theorem A10 This concludes our proof for Theorem A12.

Algorithm 1: The overall procedure for Rank-based Discrete Latent Causal Model Discov-
ery. [20] We denote the latent nodes in an atomic cover A as AL and all observed nodes in the
model G as XG . We use blue color to highlight our modifications needed for Theorem 4.12 and
Theorem A12 respectively.
Input :Samples from all n observed variables XG
Output :Markov equivalence class G′

1 def LatentVariableCausalDiscovery(XG):
2 Phase 1: G′ = FindCISkeleton(XG) (Algorithm 2);
3 for EachQ, a group of overlapping maximal cliques, in G′ do
4 Set an empty graph G′′, XQ = ∪Q∈QQ, NQ = {N : ∃X ∈ XQ s.t. N,X are adjacent in G′};
5 Phase 2: G′′ = FindCausalClusters(G′′, XQ ∪NQ) (Algorithm 3);
6 Phase 3: G′′ = RefineCausalClusters(G′′, XQ ∪NQ) (Algorithm 5);
7 Transfer the estimated DAG G′′ to the Markov equivalence class and update G′ by G′′;
8 Orient remaining causal directions that can be inferred from v structures;
9 Theorem 4.12: replace each cover A to a discrete variable z with |Supp(z)| := |AL| & update G′ ;

10 Theorem A12: convert each cover A to logK(|AL|) discrete variables of cardinality K & update G′ ;
11 return G′

A4 Synthetic Data Experiments

Data-generating processes. For the hierarchical model G, we randomly sample the parameters for
each causal module, i.e., conditional distributions p(zi|Parents(zi)), according to a Dirichlet distribu-
tion over the states of zi with coefficient 1. For simplicity, we follow conditions in Theorem A12 and
set the support size of latent variables to 2. Like Kivva et al. [24], we build the generating process
from d to the observed variables x (i.e., graph Γ) by a Gaussian mixture model where each state of
the discrete subspace corresponds to one component/mode in the mixture model. We truncate the
support of each component to improve the invertibility (Condition 4.3-ii). The graphs are exhibited in
Figure A2 and Figure A3.

Metrics. We adopt F1 score (i.e., 2Precision·Recall
Precision+Recall) to assess the graph learning results [20]. We

compute recall and precision by checking whether the estimated model correctly retrieves edges in
the true causal graph. Ranging between 0 to 1, high F1 scores indicate the search algorithm can
recover ground-truth causal graphs. We repeat each experiment over at least 5 random seeds.

24

Algorithm 2: Phase1: FindCISkeleton [20] (Stage 1 of PC [51]). We denote the joint
probability table between two sets A and B as PA,B, the adjacent nodes as Adj,the non-negative
rank with rank+, and the collection of d-separation sets as Sepset. We use blue color to highlight
our modifications.
Input :Samples from observed variables XG
Output :CI skeleton G′

1 def Stage1PC(XG):
2 Initialize a complete undirected graph G′ on XG ;
3 repeat
4 repeat
5 Select an ordered pair X,Y that are adjacent in G′, s.t., |AdjG′(X)\{Y}| ≥ n;
6 Select a subset S ⊆ AdjG′(X)\{Y} s.t., |S| = n;
7 If rank+(P{X}∪S,{Y}∪S) = |S|, delete the edge between X and Y from G′ and record S in

Sepset(X,Y) and Sepset(Y,X).;
8 until all X,Y s.t., |AdjG′(X)\{Y}| ≥ n and all S ⊆ AdjG′(X)\{Y}, |S| = n, tested.;
9 n:=n+1;

10 until no adjacent X,Y s.t., |AdjG′(X)\{Y}| < n;
11 return G′

Implementation details. Our method comprises two stages: 1) learning the bottom-level discrete
variable d and the bipartite graph Γ from the observed variable x; 2) learning the latent hierarchical
model G given the bottom-level discrete variable d discovered in 1). For stage 1), we follow the
clustering implementation in Kivva et al. [24] under the same hyper-parameter setup as in the original
implementation. For stage 2), we apply Algorithm 1 to learn the hierarchical model G. We opt
for Step 10 in Algorithm 1 because we evaluate graphs with binary latent variables that meet the
conditions of Theorem A12. Following Anandkumar et al. [52], Mazaheri et al. [53], we perform
conventional rank computation rather than non-negative rank computation and find this replacement
satisfactory. We conduct our experiments on a cluster of 64 CPUs. All experiments can be finished
within half an hour. The search algorithm implementation is adapted from Dong et al. [20].

Graphical structures. Table 1 and Table 2 correspond to Figure A2 and Figure A3 respectively. As
mentioned above, the graphs meet the conditions of Theorem A12 with the latent variable cardinality
equal to two (binary variables).

A5 Real-world Experiments

A5.1 Implementation Details

We employ the pre-trained latent diffusion model [28] SD v1.4 across all our experiments. The
inference process consists of 50 steps.

For experiments in Section 7.1, we inject concepts by appending keywords to the original prompt.
For instance, we inject the concept pair (“sketch”, “wide eyes”) in Figure A5 as follows. For the
inference steps 0− 10, we feed the text prompt “A picture of a person”, for steps 10− 20, “a photo of
a person, in a sketch style”, and for steps 20− 50, “a photo of a person, in a sketch style, with wide
eyes”. For the reverse injection order (injecting “wide eyes” before “sketch”), we inject the following
prompts at the three-step stages: “A picture of a person”, “a photo of a person, with wide eyes”, and
“a photo of a person, with wide eyes, in a sketch style".

For experiments understanding the UNet’s latent presentation (Figure 5), we adopt the open-sourced
code of Park et al. [62].

For the attention sparsity experiment (Figure A4), we randomly generate images with the pre-train
latent diffusion model and record their attention score across layers. To compute the relative sparsity,
we select the threshold as 1/4096 and compute the proportion of the attention scores over this
threshold. For the attention visualization, we randomly select a head from the last attention module
in the UNet architecture.

We follow the implementation of Gandikota et al. [65] to train concept sliders of various ranks. We
adopt their evaluation protocol to obtain CLIP and LPIPS scores over 20 randomly sampled images
for each rank, concept, and scale combination. We evaluate ranks in {2, 4, 8} and scales {1, 2, 3, 4, 5}.

25

Algorithm 3: Phase2: FindCausalClusters [20]. We use || · || to denote the number of all
elements in a set of sets. We use the term "nodes" to refer to dummy variables that represent
states rather than causal variables in the intermediate graph. We use blue color to highlight our
modifications.
Input :Samples from n observed variables XG
Output :Graph G′

1 def FindCausalClusters(G′, XG):
2 Active set S ← XG = {{X1}, ..., {Xn}}, k ← 1 ; // S is a set of covers
3 repeat
4 G′, S, found = Search(G′, S, XG , k) ; // Only when nothing can be found
5 If found = 1 then k ← 1 else k ← k + 1 ; // udner current k do we add k by 1
6 until k is sufficiently large;
7 return G′;
8 def Search(G′, S, XG , k):
9 Rank deficiency set D = {} ; // To store rank deficient combinations

10 for T ∈ PowerSet(S) (from S to ∅) do
11 S ′ ← (S\T) ∪ (∪T∈T PChG′(T)) ; // Unfold S to get S ′

12 for t = k to 0 do
13 repeat
14 Draw a set of t observed covers X ⊂ S ′ ∩ XG ;
15 repeat
16 Draw a set of covers C ⊂ S ′\X , s.t., ||C|| = k − t+ 1 and getN ← S ′\(X ∪ C);
17 if rank+(PC∪X ,N∪X) = k and NoCollider(C, X ,N) then Add C to D ;
18 until all C exhausted;
19 if D ̸= ∅ then
20 for Di ∈ D do
21 if |PaG′(Di) ∪X| = k then P← PaG′(Di) ∪X ;
22 else Create new latent nodes L, s.t., P← L ∪ PaG′(Di) ∪X and

|L| = k − |PaG′(Di) ∪X| ;
23 Update G′ by taking elements of Di as the pure children of P;
24 if P is atomic then Update S ← (S\Di) ∪P ;
25 return G′, S, True ; // Return to search with k = 1
26 until all X exhausted;
27 return G′, S, False ; // Return to search with k ← k + 1

Algorithm 4: NoCollider [20]. We use blue color to highlight our modifications.
Input :C, X ,N
Output :Whether there exists O ∈ C s.t., O is a collider of C\{O} andN

1 def NoCollider(C, X ,N):
2 for c = 1 to |C| − 1 do
3 Draw C′ ⊂ C s.t., |C′| = c;
4 repeat
5 if rank+(PC′∪X ,N∪X) < ||C′ ∪ X|| then return False ;
6 until all C′ exhausted;
7 return True

The rank selection technique, inspired by Ding et al. [67], involves multiplying each LoRA’s inner
dimension with a scalar parameter and imposing ℓ0 penalty on these scalar parameters. The weight
on the ℓ0 penalty is selected from {1e− 1, 1e− 2, 1e− 3, 1e− 4, 1e− 5}. We repeat each run for at
least three random seeds. The code can be found here.

We conduct all our experiments on 2 Nvidia L40 GPUs. Each image inference takes the same time as
in standard SD v1.4 (i.e., within two minutes). Each concept slider in Figure A7 takes around half an
hour to train.

A5.2 Sparsity in the Hierarchical Model

To verify the sparse structure condition in Theorem 4.12, we view the attention sparsity in the LD
model as an indicator of the connectivity between a specific hierarchical level and the bottom concept
level. Figure A4 visualizes the attention sparsity of an LD model over diffusion steps and specific

26

https://github.com/Lingjing-Kong/sparsity_diffusion_editing.git

Algorithm 5: Phase3: RefineCausalClusters
Input :Graph G′
Output :Refined graph G′

1 def RefineCausalCLusters(G′, XG):
2 repeat
3 Draw an atomic cover V from G′;
4 Delete V, neighbours of V that are latent, and all relating edges from G′ to get Ĝ;
5 G′ = FindCausalClusters(Ĝ,XG);
6 until No more V found and all V exhausted;
7 return G′

(a) Graph 1 (b) Graph 2 (c) Graph 3

(e) Graph 5(d) Graph 4

(g) Graph 7

(f) Graph 6

(h) Graph 8 (i) Graph 9

Figure A2: Causal graphs evaluated in Table 1. We denote the observed variables with x, the
bottom-level latent discrete variables with d, and the high-level latent discrete variables with z.

attention patterns in the model. We observe that the sparsity increases as the generative process
progresses, which reflects that the connectivity between the hierarchical level (zd,St) and the bottom
level variable (d) becomes sparse and more local as we march down the hierarchical structure, which
indicates a gradual localization of the concept.

A5.3 Discovering Hierarchical Orders from Diffusion Models

We provide further evidence that latent representations at different diffusion steps correspond to
different levels of the hierarchical causal model. We select concept pairs, each with higher-level
and lower-level concepts. For example, in (“sketch,” “wide eyes”), “sketch” is more global, while
“wide eyes” is more local. We alter the text prompt during diffusion generation for concept injection,
appending “in a sketch style” to inject “sketch” (see Appendix A5 for prompts). In Figure A5, global
concepts are successfully injected at early diffusion steps and local ones at late steps (top row).
Reversing this order fails, as shown in the bottom row. For example, injecting “sketch” early and
“wide eyes” late renders both correctly, but the global concept “sketch” is absent under the reverse

27

(a) Graph 1 (b) Graph 2

(c) Graph 3 (d) Graph 4

(e) Graph 5 (f) Graph 6

(g) Graph 7

Figure A3: Causal graphs evaluated in Table 2. We denote the bottom-level latent discrete variables
with d, and high-level latent discrete variables with z. Since baselines cannot extract discrete
subspaces, we directly feed the algorithms the bottom-level discrete variables and test their structure
learning performances.

981 881 781 681 581 481 381 281 181 81
Diffusion Step Number

0.55

0.60

0.65

0.70

0.75

0.80

Re
la

tiv
e

Sp
ar

sit
y

(a) Attention sparsity.

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

(b) Early step (index 1).

0.005

0.010

0.015

0.020

0.025

0.030

0.035

(c) Middle step (index 481).

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(d) Late step (index 981).

Figure A4: Sparsity patterns in latent diffusion models’ attention. We compute the proportions
of the attention scores lower than a fixed threshold over the entire model. We can observe that the
sparsity increases greatly towards small timesteps, i.e., the lower levels of the hierarchical model,
which verifies our theory.

28

(sketch, wide eyes) (pink bricks, flowers) (anime, cat) (messy, flowers) (female, disinterested)

Figure A5: Hierarchical Concept Ordering. We inject concepts of distinct abstraction levels into the
generating process at different time steps. In the top row, the concept injection follows the hierarchical
order, which renders injected concepts faithfully. The bottom row reverses the hierarchical order and
cannot incorporate concepts properly. More examples in Figure A8.

injection order. This supports our theory that concepts are hierarchically organized, with higher-level
concepts related to earlier diffusion steps.

A5.4 Causal Sparsity for Concept Extraction

Figure A6 shows that indeed concepts at different abstraction levels have desirable representations at
different ranks. For instance, the concept of bright weather is appropriately conveyed by a rank-2
LoRA and higher-rank LoRAs alter the background. The same observation occurs to other concepts,
where inadequate ranks fail to capture the concept faithfully and unnecessary ranks entangle the
target concept with other attributes.

Figure A7 presents the CLIP and LPIPS evaluation for the baseline and our approach, where the
CLIP score evaluates the alignment between the image and the target description and the LPIPS score
measures the structure change between the edited image and the original image. We can observe that
under the sparsity constraint, our approach attains the highest CLIP score and the lowest LPIPS score
when compared with the baselines of several ranks, indicating a higher level of alignment and a lower
level of undesirable entanglement.

A5.5 More Examples

29

Bright weather

Snow

Castle

Dogs

Rank 2 Rank 4 Rank 8Original

Figure A6: Concepts have varying levels of sparsity. We show that concepts of various abstraction
levels correspond to different sparsity levels. For instance, bright weather is appropriately conveyed
by a rank-2 LoRA and higher-rank LoRAs alter the background. Inadequate ranks fail to capture the
concept faithfully and unnecessary ranks entangle the target concept with other attributes.

30

ca
stl

e

br
igh

t_w
ea

th
er

sn
ow ag

e

fin
ed

ini
ng

_fo
od

ab
str

ac
t_a

rt
do

gs

Concepts

0

5

10

15

20

25

30

35

CL
IP

 S
co

re
s

sparse_rank4_scale3
castle opt: rank4_scale3
bright opt: rank4_scale4
snow/finedining/dogs opt: rank2_scale3
age opt: rank8_scale3
abstract opt: rank8_scale5

(a) CLIP scores.

ca
stl

e

br
igh

t_w
ea

th
er

sn
ow ag

e

fin
ed

ini
ng

_fo
od

ab
str

ac
t_a

rt
do

gs

Concepts

0.0

0.1

0.2

0.3

0.4

LP
IP

S
Sc

or
es

sparse_rank4_scale3
castle opt: rank4_scale3
bright opt: rank4_scale4
snow/finedining/dogs opt: rank2_scale3
age opt: rank8_scale3
abstract opt: rank8_scale5

(b) LPIPS scores.

Figure A7: CLIP/LPIPS evaluation. We evaluate our approach and baselines at individual rank
constraints. A high CLIP score is favorable as it indicates semantic alignment. A low LPIPS score is
more favorable as it indicates minimal excessive changes. We compare our method “sparse” with
the optimal fixed rank setting on each concept. For instance, “castle opt: rank4_scale3” indicates
that the optimal setting for the concept “castle” is the LoRA of rank 4 and scale 3. With a adaptive
rank selection, our approach outperforms or keeps up with the optimal fixed setting across different
concepts. We repeat each training over three random seeds.

31

Cyberpunk
High

Church style
With tree

Young
White hair

Crowd people
Excavator

Kitchen
With flowers

Figure A8: More examples for Figure A5.

Original OriginalT 0.6T T 0.6T

Figure A9: More examples for Figure 5.

32

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 4, Section 6, and Section 8.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

33

Justification: All proofs are in Appendix A2 and Appendix A3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Appendix A4 and Appendix A5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

34

Answer: [Yes]
Justification: We provide an URL in the appendix.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Appendix A4 and Appendix A5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Experiments in Table 1 and Table 2 are averaged over five seeds. Experi-
ments in Figure A7 are computed over at least twenty images and over three seeds for the
computation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

35

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix A4 for synthetic experiments and Appendix A5 for diffusion experi-
ments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is theoretical in nature and does not have directly social impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

36

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We mainly use existing codebases, as acknowledged in Appendix A4 and
Appendix A5.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

37

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

38

	Introduction
	Related Work
	Discrete Hierarchical Models
	Identification of Discrete Latent Hierarchical Models
	General Conditions for Discrete Latent Models
	Discrete Component Identification
	Hierarchical Model Identification

	Synthetic Data Experiments
	Interpretations of Latent Diffusion
	Real-world Experiments
	Discovering Hierarchical Concept Structures from Diffusion Models
	Diffusion Representation as Concept Embeddings
	Causal Sparsity for Concept Extraction

	Conclusion
	Related Work
	Proof for Theorem 4.4
	Proof for Theorem 4.12
	Synthetic Data Experiments
	Real-world Experiments
	Implementation Details
	Sparsity in the Hierarchical Model
	Discovering Hierarchical Orders from Diffusion Models
	Causal Sparsity for Concept Extraction
	More Examples

