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Abstract

Existing benchmarks do not test Large Lan-
guage Models (LMMs) on their interactive
intelligence with human users which is vi-
tal for developing general-purpose Al assis-
tants. We design InterFeedback, an interac-
tive framework, which can be applied to any
LMM and dataset to assess this ability au-
tonomously. On top of this, we introduce
InterFeedback-Bench that evaluates interactive
intelligence using two representative datasets,
MMMU-Pro and MathVerse, to test 10 dif-
ferent open-source LMMs. Additionally, we
present InterFeedback-Human, a newly col-
lected dataset of 120 cases designed for man-
ually testing interactive performance in lead-
ing models such as OpenAl-ol and Claude-3.5-
Sonnet. Our evaluation results show that even
state-of-the-art LMM (like OpenAl-o1) can cor-
rect their results through human feedback less
than 50%. Our findings point to the need for
methods that can enhance the LMMs’ capabil-
ity to interpret and benefit from feedback.

1 Introduction

In this paper, we are curious about the question
“How do Large Multimodal Models perform with hu-
man feedback?” 1t is central to developing general-
purpose Al assistants with Large Multimodal Mod-
els (LMMs). While these models are increasingly
used to tackle multimodal tasks, their ability to in-
teract with humans remains largely unknown. We
argue that an LMM functioning as the general assis-
tant should possess two capabilities: 1) exceptional
problem-solving skills and 2) the ability to improve
itself through feedback (e.g., human feedback, ex-
ecution results). In this work, we focus on the
latter capability, which has been rarely examined
in existing benchmarks.

Humans are remarkably adaptive, continuously
refining their skills by learning from feedback—a
process fundamental to acquiring knowledge and
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Figure 1: Illustration of an interactive feedback scenario.
When models generate incorrect responses, human users
provide pertinent feedback to interactive refine the an-
SWers.

solving problems. Similarly, advanced LMM mod-
els should also be capable of learning from feed-
back, thereby enhancing their problem-solving abil-
ities as illustrated in Figure 1.

A surge of large multimodal models
(LMMs) (OpenAl, 2023; Wang et al., 2024;
Deitke et al., 2024; Wang et al., 2023; Zhao et al.,
2024; Chen et al., 2024b) has emerged, designed
to handle various tasks, including general vision-
language understanding (Liu et al., 2023b; Li et al.,
2023), expert-level multimodal understanding (Yue
et al., 2024a,b), and scientific reasoning (Lu
et al., 2022, 2024; Zhang et al., 2024). However,
these LMMs are tested in a static way (Zhang
et al., 2024; Yue et al., 2024a), overlooking their
great potential in human-Al interaction (HAI).
Consequently, a standard benchmark to test
these LMMs for HAI problem-solving remains



underexplored.

The key challenge in evaluating this interactive
intelligence of LMMs is the automatic model tests.
In practice, for the same query, different LMMs
often produce varied responses, necessitating that
humans offer tailored feedback for each conver-
sation round. To address this issue, we propose
InterFeedback a straightforward problem-solving
framework that enables any LMM to tackle multi-
modal tasks interactively by leveraging the leading
models such as GPT-40 (OpenAl, 2023) to simu-
late humans, inspired in previous studies (Yao et al.,
2025; Chen et al., 2024a; Yoon et al., 2024).

On top of this framework, we present
InterFeedback-Bench, a benchmark designed to
comprehensively evaluate LMMs for two purposes:
1) the ability to interactively solve problems and
2) the capability of interpreting the feedback
to improve themselves. We demonstrate with
two challenging pre-existing datasets: MMMU-
Pro (Yue et al., 2024b) and Mathverse (Zhang
et al., 2024). Additionally, for a more in-depth in-
vestigation, we conduct human evaluation on four
closed-source leading models: GPT-4o0 (OpenAl,
2023), OpenAl-ol (OpenAl, 2024), Claude-3.5-
Sonnet (Anthropic, 2024), and Gemini-2.0 (Gem-
ini, 2025) with a trained user acting as the feedback
provider. Finally, we manually collected a dataset
InterFeedback-Human containing 120 samples
for this assessment.

Our experimental results reveal several com-
pelling insights: 1) Interactive process could im-
prove the performance of most LMMs in solving
challenging problems; 2) Existing LMMs exhibit
suboptimal performance in interpreting and incor-
porating feedback; 3) Engaging in additional itera-
tions does not necessarily guarantee the derivation
of correct solutions; 4) High-quality feedback is
essential, as subpar feedback can degrade perfor-
mance even more than a simple binary (0/1) correct-
ness signal; 5) LMM may not truly reasoning, we
find out that LMMs resort to guessing answer even
on a simple question according to human. These
findings point to the need for methods that can en-
hance the LMM'’s capability to interpret and benefit
from feedback. In summary, our contributions can
be summarized as:

* We take the first step toward exploring the
interactive intelligence of LMMs in improving
themselves through human feedback.

* We propose a straightforward and extensible

framework InterFeedback which allows any
LMM to interactively solve problems.

* We construct InterFeedback-Bench, a novel
and universal benchmark for assessing the
ability of interactive problem-solving of
LMMs.

* We conduct comprehensive evaluations and in-
depth analysis, providing several key insights
for future development.

2 Related Work

2.1 Large Multimodal Models

The LLaVA-series works (Liu et al.,, 2023a,
2024a,b; Li et al., 2024a) demonstrate that training
with supervised fine-tuning (SFT) multimodal data
and expand the vision lens would produce compat-
ible multimodal reasoning ability. By adopting a
large-scale image-text corpus for instruction tuning,
Qwen2-VL (Wang et al., 2024), CogVLM (Wang
et al., 2023), InternVL2 (OpenGVLab, 2024) have
achieved exceptional performance on various mul-
timodal abilities. Moreover, Molmo (Deitke et al.,
2024) proposes to train an LMM from scratch
with only the human-annotated data. Unlike these
large models, MiniCPM-V (Yao et al., 2024) and
Phi-3.5-Vision (Abdin et al., 2024) propose to
train lightweight yet SOTA LMMs. Despite these
LMMs have demonstrated their understanding and
reasoning ability on various difficulty-level multi-
modal benchmarks such as MMMU-Pro (Yue et al.,
2024b) and MathVista (Lu et al., 2024), it is still
unknown how well the interactive intelligence in
an Human-AI Interaction scenario. In this paper,
we conduct the evaluation of these LMMs to ex-
plore this basic yet vital capability (i.e., improving
themselves from human feedback).

2.2 Multimodal Benchmarks

Traditional vision-language benchmarks focus on
visual question answering (Goyal et al., 2017),
image captioning (Chen et al., 2015; Plummer
et al., 2015; Agrawal et al., 2019), as well as other
benchmarks for specialized scenarios such as scene
text understanding (Singh et al., 2019; Sidorov
et al., 2020), commonsense reasoning (Zellers et al.,
2019), outside knowledge (Marino et al., 2019;
Schwenk et al., 2022). The recent development
of LMM posts a strong need for modernized mul-
timodal benchmarks (Fu et al., 2023; Liu et al.,
2023b; Li et al., 2023; Yu et al., 2023; Yue et al.,
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Figure 2: Overview of the test data construction process for InterFeedback-Bench. For each LMM serving as the
feedback receiver, we process each instance from a target dataset (e.g., MathVerse) and collect the error cases to
form a negative set. The feedback provider then processes the same instances to build a positive set. Finally, we
curate the test data by selecting the intersection of both sets.

2024a; Lu et al., 2024; Zhang et al., 2024) such as
MMBench (Liu et al., 2023b), MMMU-pro (Yue
et al., 2024b), and MathVerse (Zhang et al., 2024)
which involve comprehensively evaluating current
LMMs on various multimodal abilities. However,
these benchmarks primarily focus on static testing
processes, overlooking the interactive testing pro-
cess that is vital in human-Al interaction scenarios.

2.3 Human-AlI Interaction

Investigating how humans and Al systems commu-
nicate and collaborate is critical for shaping applica-
tions such as virtual assistants (Virvou, 2022), per-
sonalized recommendations (Dodeja et al., 2024),
autonomous vehicles (Zhang et al., 2021), and
healthcare diagnostics (McKinney et al., 2020).
Recent LLMs-driven techniques such as mem-
ory (Park et al., 2023) and iterative (Zhang et al.,
2023) mechanisms offer expert-level collabora-
tion. While LMMs excel in multimodal tasks
(Deitke et al., 2024; Wang et al., 2024), their po-
tential for HAI problem-solving remains underex-
plored. By offering a unified framework and metic-
ulously curated data, our InterFeedback-Bench en-
ables evaluation of LMMs on these capabilities and
lays a foundation for advancing multimodal HAI
problem-solving.

3 InterFeedback-Bench

In this section, we begin by introducing the
interactive benchmarking component of our
InterFeedback-Bench in Section 3.1. Here, we
propose an interactive human-Al framework, In-
terFeedback, designed as the evaluation tool for
assessing LMM performance with feedback. Next,

in Section 3.2, we detail the human benchmark-
ing aspect of our benchmark, including the data
sources and testing standards.

3.1 Interactive Benchmarking
3.1.1 Formulation

The InterFeedback-Bench formalizes the interac-
tive problem-solving process with feedback in
a partially observable Markov decision process
(POMDP) (S, 0, A, T,R) with state space S, ob-
servation O, action space A, transition function 7
S x A — S, and reward function R: S x A — R.
In our setting, given a natural language question
q (eg., Please select the sitting camel that is be-
ing led and facing right) and the input image v,
the model first gets the observation o; € O from
the state s; € S in the execution environment and
then generate the action a; € A. The a; is the
response from models in natural language. The
reward function R: S x A — [0, 1] here returns a
binary integer indicating the task correctness status.
It is implemented by the exact match that compares
the ground-truth answer and the predicted answer.
The observation o; includes both the correctness
signal from the reward function and the feedback
from the humans.

3.1.2 Data Sources

To ensure the quality and difficulty of multimodal
tasks, inspired by previous benchmarks demon-
strated on pre-existing datasets (Yang et al., 2023;
Li et al., 2024c), we choose to test LMMSs on
two challenging datasets: MathVerse (Zhang et al.,
2024) and MMMU-Pro (Yue et al., 2024b). Math-
Verse is a visual math benchmark that includes
various mathematic problems, and 3,940 samples



were used in our work. MMMU-Pro is a compre-
hensive multimodal benchmark with 1,730 expert-
level questions. Both datasets are challenging even
for the model GPT-40 (i.e., 64.7% accuracy).

3.1.3 Data Construction Process

We choose to use leading LMMs, such as GPT-
40, for stimulating the humans to give feedback
mimicking human-Al interactions. The primary
challenge, however, is ensuring that the feedback
generated by these models is reliable as even the
SOTA LMM like GPT-40 and Claude-3.5-Sonnet
perform not all correctly on all test samples. There-
fore, we construct the test data by selecting the
intersection set that feedback provider M, solves
correctly while M, does not as shown in Figure 2.
Specifically, the pipeline includes three parts: 1)
feedback receiver LMM locally-running; 2) feed-
back provider LMM API-calling; and 3) Intersec-
tion set selection. Such a data construction process
leads to each tested LMM having a different test
data set.

Given a test dataset D, we begin by having the
feedback receiver model M, process every instance
in D to produce a negative set U,, consisting of
tasks it fails to solve correctly. Next, the feedback
provider model M, processes the same dataset to
generate a positive set U, comprising tasks it solves
correctly. We then define Uy as the intersection
of Uy, and Up, i.e.,

Utest = Un N Up7

which means that Ul contains tasks that M),
solves correctly but M, does not. This approach
ensures that the feedback generated by M), is both
relevant and reliable.

3.1.4 InterFeedback Framework

To make the problem-solving process in an interac-
tive way, we propose a new straightforward frame-
work InterFeedback. It includes two roles: feed-
back receiver M, and feedback provider M, as
shown in Figure 3. The feedback receiver is the
candidate LMMs (e.g., Qwen2-VL) ready for the
benchmark and the feedback provider is the SOTA
LMM (e.g., GPT-40) for providing the pertinent
feedback in each time step in place of a human.
Consider in time t, the output of M, is a;, and
the feedback provider M), has to follow the policy
that provides the feedback f; from the mapping
: F(at,s¢) — fi. The s; denotes the correctness
signal from the verification process via the reward
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Figure 3: Overview of the proposed framework Inter-
Feedback for assessing an LMM’s ability to improve
itself through feedback. The model interacts with hu-
mans to progressively solve a problem, and after each
conversation round, we verify the correctness of the an-
swer. If the answer is incorrect, an LMM-stimulated
human will provide constructive feedback. The model’s
output is recorded, and its performance is evaluated af-
ter receiving the feedback.

function. We record the model outputs for the final
evaluation.

3.2 Human Benchmarking

As use SOTA LMMs play the role of feedback
provider, how do these LMMs perform when they
are feedback receivers? We begin to assess the
SOTA LMMs with a human-in-the-loop process.
The feedback provider M), is a trained user who
fully understands all the questions in the newly cu-
rated dataset InterFeedback-Human. The feedback
receiver M, is the closed commercial LMM such
as OpenAl-ol, GPT-40, Gemini-2.0, and Claude-
3.5-Sonnet. This evaluation aims to assess how
effectively these leading models can serve as assis-
tants in a human-Al interaction system.

3.2.1 Data Sources

We gather the data with high difficulty and diversity
across the domains: visual logic, mathematics, and
coding. These were selected to probe the cognitive
depth of the models, especially when confronted
with complex reasoning problems. The visual logic
data we manually collected from publicly available
resources. The emphasis on visual logic tasks re-
flects the growing demand for models to handle
image-based reasoning challenges, such as pattern
recognition (Wei et al., 2025) (e.g., determining the
next shape in a sequence) and character-based logic
(e.g., interpreting transformations between sym-



bols). We also collect the multimodal mathematic
data from the existing dataset MathVerse (Zhang
et al., 2024) and the multimodal expert-level data
from MMMU-Pro (Yue et al., 2024b), following
their data license. Additionally, we also involve the
natural language task into InterFeedback-Human
to analyze such capability in the NLP area.

3.2.2 Data Statistics

In summary, InterFeedback-Human encompasses
a total of 120 tasks distributed across the five
task types: 80 visual logic tasks, 10 mathematical
logic tasks (sampled from NuminaMath (Li et al.,
2024b)), 10 coding tasks (sampled from CodeCom-
prehension (Imbue, 2024)), 10 MMMU-Pro tasks,
and 10 MathVerse tasks.

3.2.3 Hierachical Feedback

We design a hierarchical feedback generation
scheme to gradually increase the information in-
tensity. Specifically, we ask the human to give the
following three-level feedback:

* Level 1: Provide a basic and simple descrip-
tion that leads to the correct answer.

* Level 2: Provide an expanded explanation that
leads to the correct answer.

e Level 3: The correct answer is GT Answer.
Provide a comprehensive and detailed expla-
nation that leads to the correct answer.

Since most of our questions have four options,
giving more than three rounds of feedback might let
the model guess the answer by elimination rather
than by reasoning. For example, if the correct an-
swer is A and the model already gave B, C, and D,
a third round of feedback is unnecessary. There-
fore, we directly provide the GT Answer in Level
3 feedback prompts to test the models’ ability to
explain their thinking process.

3.2.4 Evaluation Integration

To ensure fairness and consistency in our evalua-
tion, we engaged only one experienced user. Since
human-in-the-loop feedback is inherently subjec-
tive, involving multiple participants could intro-
duce variability due to differences in background
and expertise. This approach helps maintain the
reliability of the relative performance comparisons
across candidate LMMs.

4 Experiments

4.1 Experiment Setup

Evaluation Models. We evaluate the performance
of foundation models served as the feedback
receiver M, across 10 representative LMMs:
LLaVA-1.5-7B (Liu et al., 2024a), LLaVA-1.6-7B
(Liu et al., 2024b) (Mistral-7B), LLaVa-OneVision-
7B (Li et al., 2024a) (Qwen2-7B (Yang et al.,
2024)), Qwen2-VL-7B (Wang et al., 2024),
GLM-4V-9B (Wang et al.,, 2023), InternVL2
(OpenGVLab, 2024), Molmo (Deitke et al., 2024),
MiniCPM-V (Yao et al., 2024), Phi-3.5-Vision
(Abdin et al., 2024), and Fuyu-8B (Bavishi et al.,
2023). The feedback provider M, includes the
three best available models from three model
families: OpenAl  (gpt-40-2024-08-06),
Gemini  (Gemini-1.5-Pro), and Claude
(Claude-3.5-Sonnet-2024-10-22).

Evaluation Metrics. In addition to the Accu-
racy metric, we leverage the Correction Rate, de-
fined as the percentage of corrected answers of all
erroneous samples. Let N denote the total number
of samples, N, the number of erroneous samples,
and NV, the number of samples that have been cor-
rected. The Accuracy and Correction Rate metrics
can be formulated as follows:

1— N,

Accuracy = % x 100%, (1)
N,

Correction Rate = ( NC) x 100%. ()

e

Implementation Details. We set the temper-
ature to O for all tested models and API models.
The image resolution of the Qwen2-VL model we
restrict to 512 x 512 to avoid the memory ex-
ceeded error. All evaluations were conducted on
two NVIDIA RTX A6000 GPUs. To ensure the
reliability of results, we obtain the intersection set
for both the feedback receiver and provider models
that are able to output the correct answer format.
Based on our preliminary experiments, we lim-
ited the interactive benchmarking to a single round.
This decision is driven by two observations: most
models fail to provide correct answers in subse-
quent rounds, and multiple rounds tend to lead to
answer guessing, which undermines the reliability
of quantitative evaluation.

Feeback Types. As introduced in Section 3.1,
we employ closed-source LMMs to stimulate the
human to provide pertinent feedback at each con-
versation round. Additionally, we propose a sim-



GPT-40

Gemini-1.5-Flash

Claude-3.5-Sonnet

Acc (%) #Neg #Test| Detail (%) Simple (%) | # Test | Detail (%) Simple (%) | # Test | Detail (%) Simple (%)

428
375
507
741
568
579
678
661
635
470

29.0
48.8
36.5
16.6
30.1
31.3
18.0
59
15.0
41.9

15.7
44.4
38.9
254
29.9
33.7
14.7
59
12.9
44.9

2953
376
597
772
603
616
816
617
755
505

4.1
43.4
37.4
18.7
30.0
26.8

8.3
335
14.0
50.5

24
40.2
40.0
27.1
26.4
29.1
11.2
332
11.5
52.7

Model

LLaVa-OneVision-7B 25.6 2933 373 36.2 18.0
InternVL2-8B 38.1 2440 379 49.6 41.2
Molmo-7B 25.6 2931 452 55.1 52.0
MiniCPM-V 16.2 3301 552 28.4 20.3
GLM-4V-9B 20.2 3146 440 38.6 28.2
Phi3.5-Vision-4.2B 19.0 3192 534 36.1 33.7
LLaVa-1.5-7B 13.5 3409 763 232 14.3
LLaVa-1.6-Mistral-7B 14.8 3357 549 41.0 359
Fuyu-8B 21.8 3083 582 24.1 19.8
Qwen2-VL-7B 22.5 3052 295 66.8 722

Table 1: Correction Rate Results of three Feedback Providers on MathVerse Dataset. Acc (%): The average
accuracy of MathVerse’s testmini set. The results are tested by ourselves. # Neg: The number of negative samples
produced by the model. # Test: The total number of test samples evaluated. Detail (%): correction rate of using
LMM-generated feedback. Simple (%): correction rate of using simple feedback (0 or 1).

‘ Gemini-1.5-Flash ‘ Claude-3.5-Sonnet

Acc (%) #Neg | # Test | Detail (%) Simple (%) # Test | Detail (%) Simple (%) | # Test | Detail (%) Simple (%)

Model | GPT-40

LLaVa-OneVision-7B  47.1 915 | 312 31.7 15.7
InternVL2-8B 457 939 | 343 50.1 414
Molmo-7B 438 973 | 362 51.7 489
MiniCPM-V 38.1 1071 | 410 273 23.7
GLM-4V-9B 460 935 | 327 38.8 30.0
Phi3.5-Vision-4.2B 432 983 | 366 443 2.3
LLaVa-1.5-7B 36.5 1099 | 506 31.9 12.3
LLaVa-1.6-Mistral-7B  38.8 1058 | 432 46.1 36.1
Fuyu-8B 341 1140 | 481 6.0 8.7
Qwen2-VL-7B 481 898 | 268 50.4 44.8

333 354 18.6 408 27.5 16.4
329 57.1 50.2 437 50.1 41.2
383 415 43.1 436 29.8 275
503 215 21.7 540 24.4 233
359 38.7 315 441 34.9 279
396 40.9 39.6 484 39.9 38.0
470 20.0 16.0 595 13.9 13.4
429 14.7 14.7 515 42.3 353
1140 3.7 35 612 9.5 6.9
322 394 37.6 389 429 37.3

Table 2: Correction Rate Results of three Feedback Providers on MMMU-Pro Dataset. We test models on a

single image setting of MMMU-Pro.

plified feedback mechanism that only indicates cor-
rectness (i.e., correct or incorrect), without a de-
tailed explanation. In summary, we evaluate the
models using two feedback types: Detail and Sim-
ple. The Detail feedback comprises both Simple
feedback and detailed LMM-generated feedback.

4.2 Experimental Analysis on Interactive
Benchmarking

To thoroughly investigate the ability of LMMs
to integrate feedback and improve their problem-
solving performance, we present evaluation results
for various models on two datasets—MathVerse
(Zhang et al., 2024) in Table 1 and MMMU-Pro
(Yue et al., 2024b) in Table 2, respectively. Below,
we provide a detailed discussion of key findings.
Interactive process could improve the perfor-
mance of most LMMs. As demonstrated in both
tables, integrating our proposed framework Inter-
Feedback enables most models to benefit from feed-
back provided by SOTA LMMs, such as GPT-40
and Claude-3.5-Sonnet. Notably, even the weaker
model Fuyu-8B sees 24.1% of its erroneous sam-
ples corrected through GPT-40’s feedback.
Current LMMs struggle to enhance perfor-

mance through feedback. As shown in the ta-
bles, most LMMs are unable to correct all erro-
neous samples, even when provided with feedback
from state-of-the-art closed-source models such as
Claude-3.5-Sonnet and GPT-40. For example, con-
sider the two leading open-source models, Qwen2-
VL-7B and Molmo. Qwen2-VL-7B achieves a
66.8% correction rate on the MathVerse dataset
with GPT-40’s feedback, but only a 50.4% correc-
tion rate on the MMMU-Pro dataset. Similarly,
Molmo-7B attains correction rates of 55.1% and
51.7% on the MathVerse and MMMU-Pro datasets,
respectively. Overall, the correction rates for the
rest models remain below 50%. This suggests that
even with constructive feedback from advanced
LMMs, current models struggle to enhance perfor-
mance through feedback generally.

Accuracy result may not truly reflect the
model’s capability. As shown in Table 1, al-
though InternVL2-8B achieves a higher accuracy
(38.1%), its correction rate is only 49.6%. In con-
trast, Qwen2-VL-7B, with a lower accuracy of
22.5%, attains the highest correction rate of 66.8%
when using GPT-40’s feedback. Similarly, Molmo-



Model Visual Logic MMMU-Pro MathVerse Math™! Coding™*! | Average
Gemini-2.0 213 50.0 70.0 50.0 50.0 3255
Claude-3.5 37.5 60.0 80.0 70.0 70.0 48.3
OpenAl-ol 28.8 60.0 90.0 90.0 90.0 46.7
GPT-40 25.0 70.0 80.0 60.0 50.0 38.3

Table 3: Human Evaluation Results across LMMs on InterFeedback-Human. Math™ and Coding ™" represent
two text-only task categories. The scores represent the average percentage of correct samples among all samples.

Model ‘ # Round ‘ Visual Logic MMMU-Pro MathVerse Math™ Coding™* ‘ Average
1 38.1 20.0 333 0.0 80.0 37.0
Gemini-2.0 2 20.6 0.0 333 20.0 20.0 19.8
3 41.3 80.0 333 80.0 0.0 432
1 38.0 0.0 50.0 333 66.7 37.1
Claude-3.5 2 32.0 25.0 50.0 333 66.7 30.6
3 30.0 75.0 0.0 66.7 0.0 323
1 38.6 0.0 100.0 11.1 100.0 39.1
OpenAl-ol 2 21.1 0.0 0.0 0.0 0.0 18.8
3 40.4 100.0 0.0 0.0 0.0 42.2
1 41.7 333 100.0 25.0 40.0 41.9
GPT-40 2 31.7 0.0 0.0 0.0 0.0 25.7
3 26.7 66.7 0.0 75.0 60.0 324

Table 4: Correction Rate Results across various LMMs on InterFeedback-Human. Math™! and Coding ™
represent two text-only task categories. # Round denotes the number of interaction rounds. The correction rate is
the percentage of corrected samples among all erroneous samples.

7B surpasses InternVL2-8B in correction rate de-
spite having lower accuracy. On the MMMU-
Pro dataset (see Table 2), LLaVA-OneVision-7B
records the second-best accuracy (i.e., 47.1%) but
only a 31.7% correction rate, which is lower than
that of several models who have inferior accuracy
(e.g., InternVL2-8B, Molmo-7B, GLM-4v-9B, and
Phi3.5-Vision-4.2B). This inconsistency between
initial answering ability and self-improvement ca-
pability indicates that evaluating models solely on
accuracy may not fully capture their true potential.

Simple feedback also enhances performance.
In addition to using detailed LMM-generated feed-
back, we evaluated models with binary (0/1) feed-
back that simply indicates the correctness of their
current response. Surprisingly, the results show
that all models benefit from this simple feedback
mechanism. This suggests that while LMMs have
the inherent potential to generate correct answers,
they may require additional prompting techniques
to fully harness their problem-solving capabilities.

LMM-generated feedback is not always bet-
ter than simple feedback. By comparing the re-
sults obtained using Detail feedback from GPT-40
with those using Simple binary feedback, we ob-
serve that most models perform better with detailed
feedback. For example, on the MathVerse dataset,
LLaVA-OneVision-7B achieves 36.2% with de-
tailed feedback versus 18.0% with binary feedback;

InternVL2-8B increases from 41.2% to 49.6%; and
MiniCPM-V increases from 20.3% to 28.4%. The
only exception is Qwen2-VL, which scores 66.8%
with detailed feedback and 72.2% with simple feed-
back. Similarly, on the MMMU-Pro dataset, only
Fuyu-8B performs worse with detailed feedback
(6.0% vs. 8.7%).

The quality of feedback is crucial: low-quality
feedback can degrade performance more than
simply providing binary (0/1) feedback. We
compare the feedback provided by GPT-40 and
Gemini-1.5-Flash on the challenging MathVerse
dataset, where most models achieve accuracies be-
low 30%, highlighting the difficulty of its problem
instances. We find that leveraging a suboptimal
model (Gemini-1.5-Flash) to deliver simple binary
feedback—merely indicating the correctness of
the tested model’s output—can outperform LMM-
generated detailed feedback. Specifically, the cor-
rection rates using simple feedback exceed those
with detailed feedback for several models: Molmo-
7B (38.9% vs. 36.5%), MiniCPM-V (25.6% vs.
16.6%), Phi3.5-Vision-4.2B (33.7% vs. 31.3%),
and Qwen2-VL-7B (44.9% vs. 41.9%).

4.3 Experimental Analysis on Human
Benchmarking

In this section, we will introduce the human evalu-
ation results of several well-known closed-source
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Figure 5: Distribution of corrected samples across var-
ious task categories. Visual logic tasks are mostly re-
solved within the first two rounds, whereas Math (Text-
only) and MMMU-Pro tasks show little corrections in
rounds 1 and 2. In contrast, Coding (Text-only) and

MathVerse tasks exhibit corrections during rounds 1
and 2.

families: OpenAl (GPT-40, OpenAI-o1), Claude
(Claude-3.5-Sonnet-20241022), and Gemini
(Gemini-2.0-Flash-Exp).

Overall Results. In Table 3: (1) The best scores
for each subcategory in our InterFeedback-Human
are 37.5% (Claude-3.5-Sonnet), 70.0% (GPT-40),
90% (OpenAl-ol), and 90% (OpenAl-ol), respec-
tively. (2) Overall, Claude-3.5 achieves the highest
average accuracy at 48.3%.

Correction rate results analysis. Comparing
the correction rates across rounds in Table 4 re-
veals that GPT-40 benefits the most from human
feedback in the first round, correcting 41.9% of
erroneous samples, while Claude-3.5 exhibits its
strongest correction performance in the second
round, with 30.6% of erroneous samples corrected.
Given that the ground truth answer is provided in
the third round, all LMMs are able to supply their
reasoning steps for selecting the correct answer.

Distribution of Tasks Corrected Across
Rounds. Figure 4 illustrates the distribution of

tasks solved by each LMM across the interaction
rounds. Round O represents the initial accuracy be-
fore beginning human-Al interactions. For exam-
ple, GPT-40 solved 38.3% of instances in Round 0,
25.8% in Round 1, and 20% in Round 2. Addition-
ally, during the first two rounds, both OpenAl-ol
and Claude-3.5-Sonnet solved the same number of
samples, achieving a performance of 67.5%.

Distribution of corrected samples across vari-
ous task categories. As shown in Figure 5, Visual
logic tasks are mostly resolved within the first two
rounds, whereas Math (Text-only) and MMMU-
Pro tasks show little corrections in rounds 1 and
2. In contrast, Coding (Text-only) and MathVerse
tasks exhibit corrections during rounds 1 and 2.

Summarization. The closed-source SOTA
LMMs demonstrate enhanced problem-solving ca-
pabilities when provided with human feedback.
Most models show improvement after the first
round of feedback, with over 55% of samples being
successfully addressed.

5 Conclusion

In this work, we introduced InterFeedback-Bench,
the first solution to concern the critical importance
of evaluating the interactive intelligence of current
LMMs. We build an interactive framework Inter-
Feedback which can be applied to any LMM and
dataset to bootstrap the testing in an interactive way.
We conduct the comprehensive evaluations on 10
open-source LMMs by demonstrating with two rep-
resentative datasets MathVerse and MMMU-Pro.
Additionally, we present InterFeedback-Human, a
new benchmark for manually testing the leading
models such as OpenAl-ol and Claude-3.5 with
120 curated samples. Our evaluation results show
that even the SOTA LMM (like OpenAl-ol) can
only correct their results through human feedback
with less than 50%. Several findings point to the es-
sential need for methods that improve the LMM’s
ability to receive feedback to improve themselves.



6 Limitations

Our method is not without limitations. First, as
an initial attempt in the field, this work proposes
a straightforward method to bootstrap the LMMs
in an interactive way. We use the leading LMM
to stimulate the humans mimicking the human-Al
interaction process. Due to the difficulty of existing
benchmarks, the leading LMMSs may not fully pro-
vide all pertinent feedback though we propose two
strategies: 1) select the intersection set for testing
and 2) record the valid output only. Second, due
to the testing limits of using Deepseek-R1 on its
website, we cannot test its interactive intelligence
in this version. Moreover, since the Gemini-2.0-
Flash API calling function (pay-as-you-go) was
only made available after February 6, 2025, we did
not have sufficient time to integrate it as a feedback
provider.
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A Model Sources.

For different LMMSs, we select their latest mod-
els with sizes around 7B for evaluation. Table
5 presents the release time and model sources of
LMMs used in InterFeedback-Bench.

B Qualitative Examples.

Interactive process could improve the perfor-
mance of leading LMMs. In Figure 6, we provide
the qualitative results of different models. For the
same question, Claude-3.5-Sonnet gives the cor-
rect answer C without human feedback, Gemini-
2.0-Flash uses two rounds while OpenAl-ol uses
three rounds. It indicates that 1) even the SOTA
models like OpenAl-ol can not fully address the
visual logic problem which is worse than Claude-
3.5-Sonnet, 2) the responses can be corrected by
human feedback which shows that the models have
the capability of interpreting and incorporating the
feedback into their reasoning, 3) Different models
shows a different level of this capability. Addition-
ally, we provide another example in Figure 7.
LMMs may not truly reasoning-They guess
answers by elimination. In Figure 8, we find that
the model will guess the answer when we only have
four options, the model tends to guess answers. For
the same question, we conduct twice runs and find
that OpenAl-ol could not solve this problem at the
beginning, but two different answers were given in
these two runs. In the first run, the model outputs D
at the beginning while in the second run, the model
outputs the A at the beginning. In the following
rounds, we provide the same prompts to ensure the
fairness comparison, one can see that based on the
same prompt, it outputs the same answer C in the
second round. The left run in the figure shows the
correct answer in the third round while the right
run in the figure shows the incorrect answer D. We
continue to give the third feedback for round 4, and
the right run finally gives answer B. It is obvious
that when a problem cannot solved by a model, it
will 1) outcome answer randomly, and 2) outcome
the answer through an elimination approach. These
results may indicate that LMMSs may not always
truly reason they may give the answer by guessing.
Additionally, we provide another example in Figure
9 to illustrate that LMMs may guess answers when
they can not solve the challenging problems.
LMMs still fail when the GT answer is not
provided in the level 3 feedback. As discussed in
Section 3.2, we include the GT answer in the level
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3 feedback prompt to examine whether the model
can generate the correct reasoning procedure that
leads to the correct answer. When we remove the
GT answer as in Figure 10, the model still fails to
produce the correct answer, indicating its limited
capability in solving challenging problems even
when detailed feedback is provided as guidance.



Model Release Time Source

Closed-source Models
GPT-40 (OpenAl, 2023) 2024-08-26 https://openai.com/index/hello-gpt-40/
OpenAl-ol (OpenAl, 2024) 2024-12-17 https://openai.com/o1/
Gemini-1.5-Flash (Gemini, 2024) | 2024-09-24 https://deepmind.google/technologies/gemini/
Gemini-2.0-Flash 2025-01-21 https://deepmind.google/technologies/gemini/
Claude-3.5-Sonnet 2024-10-22 https://www.anthropic.com/claude/sonnet

Open-source Models
LLaVA-One-Vision 2024-08-05 https://1lava-vl.github.io/blog/2024-08-05-11ava-onevision/
InterVL2-8B 2024-07-04 https://internvl.github.io/blog/2024-07-02-InternVL-2.0/
Molmo-7B 2024-09-24 https://huggingface.co/allenai/Molmo-7B-D-0924
MiniCPM-V 2024-08-03 https://huggingface.co/openbmb/MiniCPM-V
GLM-4V-9B 2024-11-01 https://huggingface.co/THUDM/glm-4v-9b
Pih3.5-Vision-4.2B 2024-08-20 https://huggingface.co/microsoft/Phi-3.5-vision-instruct
LLaVA-1.5-7B 2023-10-05 https://huggingface.co/liuhaotian/llava-v1.5-7b
LLaVA-1.6-Mistral-7B 2024-01-30 https://huggingface.co/1llava-hf/1llava-v1.6-mistral-7b-hf
Fuyu-8B 2023-10-27 https://huggingface.co/adept/fuyu-8b
Qwen2-VL-7B 2024-08-30 https://huggingface.co/Qwen/Qwen2-VL-7B

Table 5: The release time and model source of LMMs used in our InterFeedback-Bench.

Question:

Select the most appropriate option from four
choices to complete a sequence or reveal a
pattern.

GT Answer: C.
(The key point of this question is that Figure 3
represents the common part of Figures T and

2)
ool BO >
A:A B:‘: C:(Q’D o

4

Claude 3.5 Sonnet

Select one answer from the options "A, B, C, D" to

@» complete the sequence.

In the first box, there are three shapes in squares:
circle, triangle, empty. In the second box, there are
two shapes: a triangle inside a circle, and a square
inside a circle.

The pattern appears to be: if a shape appears
alone in the first box, it becomes 'encased by a
circle in the second box ... the answer is C.

Gemini 2.0 Flash

Select one answer from the options "A, B, C, D" to
complete the sequence.

... the missing figure in the second row should have
the same shape as the missing figure in the first row.
Therefore, the missing figure in the second row
should be a square, which corresponds to option B.

Incorrect. I recommend reevaluating the task from
the perspective of “Relationships between graphs”.

The missing figure (Figure 3, Right) must contain the

shape that is common to both Figure 1 and Figure 2.
Common Shape: The circle is present in both figures.

The missing figure should be a circle. Therefore, the
correct answer is C.
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OpenAl-O1

Select one answer from the options “A, B, C, D" to
complete the sequence.

Following that same cycle, the next (sixth) frame
should be a circle enclosing a circle again. Among
the given choices (A-D), that corresponds to
choice D.

Incorrect. I recommend reevaluating the task from
the perspective of “Relationships between graphs"”.

... So, by that same repeating pattern of “triangle
— square” inside the circle, the missing sixth box
should be a circle containing a triangle again.
Hence, the best answer is A (triangle).

Incorrect. I suggest analyzing the problem from
the perspective of “Figure 3 is the common part of
Figures 1 and 2".

... Likewise, Figures 4 and 5 both use the same
circular container but hold different shapes
(triangle vs. square). So, Figure 6 should be just
that common circular container (an empty circle).
Among the choices, the empty circle is option C

Figure 6: Qualitative results on different LMMs.
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Question:

As shown in the figure, it is known that angle
A =80° angle B =60, DE parallel BC, then
the size of angle CED is __?

Choices: A: 40° B:60° C:120° D: 140°

GT Answer: D: 140°.

A

Question:

Select the most appropriate option from four
choices to complete a sequence or reveal a
pattern.

GT Answer: B.

(This question tests the concept of shape
overlay, with attention to the fact that the
obscured parts are not visible)

VANWARVAN

() ?

O .0 O o

Claude 3.5 Sonnet

Select one answer from the options "A, B, C, D" to
complete the sequence.

... Since we know 2 A = 80° and 2B =60 °, We can
find 2 Cin triangle ABC: £ C = 180°— 2 A — 2B,
42 C =180°—80°—60° = 40°.

Now, because DE is parallel to BC, « CED = 180° -
2C, £ CED = 180° - 40° = 140°.

Therefore, angle CED is 140°. The answer is D: 140°.

Gemini 2.0 Flash

Select one answer from the options "A, B, C, D" to
complete the sequence.

Since DE is parallel to BC, the corresponding
angles are equal. Angle CED is a corresponding
angle to angle C. ..., Therefore, ... The correct
answer is A: 40°.

Incorrect. I recommend reevaluating the task from
the perspective of thinking about the triangle as
180° and the parallel lines' properties.

Since DE is parallel to BC, the consecutive interior
angles on the same side of the transversal are
supplementary. Therefore, ... The correct answer is D:
140°.

e

@

OpenAl-O1

Select one answer from the options "A, B, C, D" to
complete the sequence.

Since DE || BC, triangle ADE is similar to triangle
ABC.

Line AC is a transversal of the parallel lines DE
and BC, so the angle formed at E by CE and
DB (i.e. £CED) corresponds to £ C in triangle ABC.

In triangle ABC, the angles are 80° (at A), 60° (at
B), and thus 40° (at C).

Therefore, 2CED = 40°.

Incorrect. I recommend reevaluating the task from
the perspective of thinking about the triangle as
180° and the parallel lines' properties.

... The angles £BCE (at C) and 2CED (at E) lie on the
same side of this transversal, so they are co-
interior angles and must sum to 180°.

£BCE is the same as £BCA = 40°. Hence, 2CED =
180° - 40° = 140°.

Figure 7: Qualitative results on different LMMs.
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OpenAI-O1

Select one answer from the options "A, B, C, D" to
complete the sequence.

... only D shows that same offset-overlap arrangement

of ellipse over rectangle, so D is the best fit.

Incorrect. Please focus on the graphic overlay.

... we want the ellipse in front with the rectangle
partly showing behind. Option C is the choice that
clearly shows the ellipse overlaid on the rectangle
with the rectangle partially visible behind, matching
the top-row overlay pattern.

Incorrect. Please focus on the graphics are super-
imposed and the obscured parts are invisible.

Among the answer choices, B clearly shows the
ellipse in front with the rectangle’s edges visible to
the sides, mirroring the top-row overlap pattern.

® & e B 6

&)

OpenAI-O1

Select one answer from the options "A, B, C, D" to
complete the sequence.

In both rows, there seems to be a progression of
shapes with different orientations or alterations ...
the answer is A.

Incorrect. Please focus on the graphic overlay.

... where the oval has an overlay in the middle, and
this time it should be a 3D-like effect similar to the
triangles in the first row. Option C has an oval with
an overlay in the center, matching the pattern.

Incorrect. Please focus on the graphics are super-
imposed and the obscured parts are invisible.

Option D fits this pattern perfectly. It shows an oval
with a new shape super-imposed, and the hidden
parts of the shape are not visible ...

Incorrect. The correct answer is B. The graphics are
layered on top of each other, which means that any
parts hidden underneath are not visible.

Option B features an oval with a different shape
inside it, continuing the pattern of a shape inside
an oval where parts of the shape are hidden.

Figure 8: An example that model tends to guess answers.
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Question:

Select the most appropriate option from four
choices to complete a sequence or reveal a
pattern.

GT Answer: A.
(This question examines the type of figures.

The first group of figures are all plane figures:

the second group of figures are three-
dimensional figures.)

ogdo] | oM ?]
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Claude 3.5 Sonnet

Select one answer from the options "A, B, C, D" to
complete the sequence.

The answer is B, as it shows an octagonal prism, which
is the 3D equivalent of the 2D octagon in the first box.

Incorrect. Please focus on the type of figures.

Therefore, the answer is C, as it shows a circle with a
line through it, which represents how an octagon
would appear when viewed at an angle.

This is similar to how a circle remains a circle, and a
square becomes a cube-like shape when viewed at
an angle.

Incorrect. Please focus on the type of figures. The
first group of figures are all plane figures, and the
second group of figures are solid figures.

... Therefore, the answer is D, as it represents the
circular view you would see when looking at an
octagonal solid from above or below.

Incorrect. Distinguish the solid and plane figures.
... Therefore, the answer must be B - the octagonal

prism. This maintains the pattern of converting 2D
shapes into their 3D equivalents.

D b @ )
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OpenAl-40

Select one answer from the options "A, B, C, D" to
complete the sequence.

The missing shape should be a 3D object that
corresponds to an octagon, similar to how the
cylinder corresponds to the circle and the cube
corresponds to the square. The correct answer is
the shape that represents an octagonal prism
(Option B).

Incorrect. Please focus on the type of figures.

The correct choice should be Option B, as it

represents an octagonal prism, matching the
pattern of transforming 2D shapes into their
corresponding 3D versions.

Incorrect. Please focus on the type of figures. The
first group of figures are all plane figures, and the
second group of figures are solid figures.

... Therefore, the answer is D, as it represents the
circular view you would see when looking at an
octagonal solid from above or below.

Incorrect. Distinguish the solid and plane figures.

... The correct choice is B, as it represents a solid
shape with an octagonal face, completing the
pattern.

Figure 9: An example that model tends to guess answers.

Question:

As shown in the figure, AB parallel EF, angle
BAC = 50°, then angle ACD = ()

Choices: A: 120° B: 130° C: 140° D: 150°

GT Answer: C.
A B
C
E D F
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GPT-40 with GT Answer

Select one answer from the options "A, B, C, D" to
complete the sequence.

Since AB || EF, BAC corresponding to 2ACD
through the supplementary relationship of the
interior angles. The sum of angles on a straight
line is 180°. £ACD = 180° — 50° = 30°.The
correct choice is B: 130°.

Incorrect. When parallel lines (AB and EF) are
intersected by a transversal (line AC), altemate
interior angles are equal ...

Since AB || EF and AC is a transversal, alternate
interior angles are equal. Therefore, ZACD =
£BAC = 50°. The sum of angles at point C along a
straight line is 180°. So, ZACD = 180° — 50° =
130°. correct choice is B: 130°.

Incorrect. Add a support straight horizontal line
through point C to help you solve it.

... use the Straight-Line Property: since angles on
a straight-line sum to 180°. LACD = 180° — 50° =
130°.

Incorrect. The correct answer is C. angle ACD = 140 ...

Using the straight-line property. 2ACD = 2£ACG +
£GCD = 50° + 90° = 140°. Correct choice is C.
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GPT-40 without GT Answer

Select one answer from the options "A, B, C, D" to
complete the sequence.

Since AB || EF, BAC corresponding to 2ACD
through the supplementary relationship of the
interior angles. The sum of angles on a straight
line is 180°. £ACD = 180° — 50° = 30°.The
correct choice is B: 130°.

Incorrect. When parallel lines (AB and EF) are
intersected by a transversal (line AC), alternate
interior angles are equal ...

Since AB || EF and AC is a transversal, alternate
interior angles are equal. Therefore, ZACD =
£BAC = 50°. The sum of angles at point C along a
straight line is 180°. So, ZACD = 180° — 50° =
130°. correct choice is B: 130°.

Incorrect. Add a support straight horizontal line
through point C to help you solve it.

... use the Straight-Line Property: Since angles on
a straight-line sum to 180°. ZACD = 180° — 50° =
130°.

Incorrect. Please reconsider your answer.

Using the straight-line property. 2ACD + 2DCF =
180°. Substituting known values: 50° + £ACD =
180°. Solving for ACD = 130°.

Figure 10: Qualitative results by removing GT answer in level 3 feedback.
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