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Abstract
Exceptional text-to-image (T2I) generation re-
sults of Stable Diffusion models (SDMs) come
with substantial computational demands. To
resolve this issue, recent research on efficient
SDMs has prioritized enabling fewer sampling
steps and utilizing network quantization. Or-
thogonal to these directions, this study highlights
the power of classical architectural compression
for general-purpose T2I synthesis by introducing
block-removed knowledge-distilled SDMs (BK-
SDMs). We eliminate several residual and atten-
tion blocks from the U-Net of SDMs, obtaining
over a 30% reduction in the number of parame-
ters, MACs per sampling step, and latency. We
conduct distillation-based pretraining with only
0.22M LAION pairs (fewer than 0.1% of the full
training pairs) on a single A100 GPU. Despite
being trained with limited resources, our compact
models can imitate the original SDM by bene-
fiting from transferred knowledge and achieve
competitive results against larger multi-billion
parameter models on the zero-shot MS-COCO
benchmark. Moreover, we show the applicability
of our lightweight pretrained models in personal-
ized generation with DreamBooth finetuning.

1. Introduction
Stable Diffusion models (SDMs) (Rombach & Esser, 2022;
Rombach et al., 2022) are one of the most renowned open-
source models for text-to-image (T2I) synthesis, and their
exceptional capability has begun to be leveraged as a back-
bone in several text-guided vision applications (Brooks et al.,
2023; Blattmann et al., 2023). SDMs are T2I-specialized
latent diffusion models (LDMs) (Rombach et al., 2022),
which employ diffusion operations (Ho & Salimans, 2021;
Song et al., 2021) in a latent space to improve compute
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Figure 1. Computation of the major components in SDM-v1. The
denoising U-Net is the main processing bottleneck. THOP (Zhu,
2018) is used to measure MACs in generating a 512×512 image.

efficiency. Within a SDM, a U-Net (Ronneberger et al.,
2015) conducts an iterative sampling procedure to gradually
eliminate noise from random latents and is assisted by a
text encoder (Radford et al., 2021) and an image decoder
(Van Den Oord et al., 2017) to produce text-aligned images.
This process still involves excessive computational demands
(see Figure 1), which often hinder the utilization of SDMs
despite their rapidly growing usage.

To tackle this issue, numerous studies toward efficient SDMs
have been introduced (see Appendix A for details). Meng
et al. (2023; 2022) reduce the number of denoising steps
by distilling a pretrained diffusion model to guide an iden-
tically architectured model with fewer sampling steps. Li
et al. (2023); Hou & Asghar (2023) employ post-training
quantization. Chen et al. (2023) enhance the implementa-
tion of SDMs for better compatibility with GPUs. However,
the removal of architectural elements in diffusion models
has not been investigated despite the established efficacy of
structured pruning (Li et al., 2017; Liu et al., 2021).

This study unlocks the immense potential of classical archi-
tectural compression in attaining smaller and faster diffusion
models. We eliminate multiple residual and attention blocks
from the U-Net of a SDM and pretrain it with feature-level
knowledge distillation (KD) (Romero et al., 2015; Heo et al.,
2019) for general-purpose T2I. Despite being trained with
only 0.22M LAION pairs (less than 0.1% of the entire train-
ing pairs) (Schuhmann & Beaumont, 2022) on a single A100
GPU, our compact models can mimic the original SDM by
leveraging transferred knowledge. Our work effectively re-
duces the computation of SDM-v1 and attains competitive
zero-shot results on par with multi-billion parameter models
(Ramesh et al., 2021; Ding et al., 2021; 2022). Moreover,
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Table 1. Minor impact of eliminating the mid-stage from the U-Net
of SDM-v1.4 (Rombach & Esser, 2022) on zero-shot MS-COCO
performance. Any retraining is not performed for the mid-stage
removed model. For evaluation details, see Section 3.1.

Model Performance # Params
FID ↓ IS ↑ U-Net Whole

SDM-v1.4 13.05 36.76 859.5M 1032.1M
No Mid-Stage 15.60 32.33 762.5M (-11.3%) 935.1M (-9.4%)

we present the application of our light pretrained models in
customized T2I with DreamBooth (Ruiz et al., 2023).

2. Compression Method
Our primary focus is the U-Net (Ronneberger et al., 2015;
Dhariwal & Nichol, 2021), the most compute-heavy com-
ponent in SDMs. Conditioned on the text and time-step
embeddings, the U-Net performs multiple denoising steps
on latent representations. At each step, the U-Net produces
the noise residual to compute the latent for the next step (see
Figure 3). We reduce this per-step computation, leading to
block-removed knowledge-distilled SDMs (BK-SDMs).

2.1. Compressed U-Net Architecture

We compress the 1.04B-parameter SDM-v1, and the pro-
posed models are referred to as (see Appendix B for the
detailed architectures):

◦ BK-SDM-Base (0.76B parameters) obtained with Section
2.1.1 (fewer blocks in outer stages).

◦ BK-SDM-Small (0.66B) with Sections 2.1.1 and 2.1.2 (mid-
stage removal).

◦ BK-SDM-Tiny (0.50B) with Sections 2.1.1, 2.1.2, and 2.1.3
(further inner-stage removal).

2.1.1. FEWER BLOCKS IN THE DOWN AND UP STAGES

This approach is closely aligned with DistilBERT (Sanh
et al., 2019) which halves the number of layers for improved
compute efficiency and initializes the compact model with
the original weights by benefiting from the shared dimen-
sionality. In the original U-Net, each stage with a common
spatial size consists of multiple blocks, and most stages con-
tain pairs of residual (R) (He et al., 2016) and cross-attention
(A) (Vaswani et al., 2017; Jaegle et al., 2021) blocks. We
hypothesize the existence of some unnecessary pairs and
use the following removal strategies, as shown in Figure 3.

For the down stages, we maintain the first R-A pairs while
eliminating the second pairs, because the first pairs process
the changed spatial information and would be more impor-
tant than the second pairs. This design choice does not harm

Candles and flowers 
neatly placed on a table.

SDM-v1.4 No Mid-Stage

Two stuffed bears are 
dressed in astronaut suits.

SDM-v1.4 No Mid-Stage

A room is furnished with couches, 
rugs, and fancy paintings.

SDM-v1.4 No Mid-Stage

Figure 2. Visual results of the mid-stage removed U-Net without
retraining. See Figure 11 for an enlarged version.

the dimensionality of the original U-Net, enabling the use
of the corresponding pretrained weights for initialization.

For the up stages, while adhering to the aforementioned
scheme, we retain the third R-A pairs. This allows us to
utilize the output feature maps at the end of each down stage
and the corresponding skip connections between the down
and up stages. The same process is applied to the innermost
down and up stages that contain only R blocks.

2.1.2. REMOVAL OF THE ENTIRE MID-STAGE

Surprisingly, removing the entire mid-stage from the origi-
nal U-Net (marked with red in Figure 3) does not noticeably
degrade the generation quality for many text prompts while
effectively reducing the number of parameters (see Table 1
and Figure 2). This is consistent with the minor role of inner
layers in the U-Net generator of GANs (Kim et al., 2022).

Integrating the mid-stage removal with fewer blocks in Sec-
tion 2.1.1 further decreases computational burdens (Table
3) at the cost of a slight decline in performance (Table 2).
Therefore, we offer this mid-stage elimination as an option,
depending on the priority between compute efficiency (using
BK-SDM-Small) and generation quality (BK-SDM-Base).

2.1.3. FURTHER REMOVAL OF THE INNERMOST STAGES

For additional compression, the innermost down and up
stages can also be pruned from BK-SDM-Small (see Ap-
pendix B), leading to our lightest model BK-SDM-Tiny.
This implies that outer stages with larger spatial dimensions
and their skip connections play a crucial role in the U-Net.

2.2. Distillation Pretraining for General-purpose T2I

We train the compact U-Net to mimic the behavior of the
original U-Net. We use the pretrained-and-frozen encoders
to obtain the inputs of the U-Net. Given the latent represen-
tation z of an image and its paired text embedding y, the
task loss for the reverse denoising process (Ho et al., 2020;
Rombach et al., 2022) is computed as:

LTask = Ez,ϵ,y,t

[
||ϵ− ϵS(zt, y, t)||22

]
, (1)

where ϵ∼N(0, I) and t∼Uniform(1, T ) denote the noise
and time step sampled from the diffusion process, respec-
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Figure 3. U-Net architectures and KD-based pretraining process. The compact U-Net student is built by eliminating several residual and
attention blocks from the original U-Net teacher. Through the feature and output distillation from the teacher, the student can be trained
effectively yet rapidly. See Appendix B for other architectures of BK-SDMs and Appendix C for the block details.

tively, and ϵS(◦) indicates the output of our compact U-Net
student. For brevity, we omit the subscripts of Ez,ϵ,y,t[◦] in
the following notations.

The compact student is also trained to imitate the outputs
of the original U-Net teacher, ϵT(◦), with the following
output-level KD objective (Hinton et al., 2014):

LOutKD = E
[
||ϵT(zt, y, t)− ϵS(zt, y, t)||22

]
. (2)

A key to our approach is the utilization of feature-level
KD (Romero et al., 2015; Heo et al., 2019) that provides
abundant guidance for the student’s training:

LFeatKD = E
[∑

l

||f l
T(zt, y, t)− f l

S(zt, y, t)||22
]
, (3)

where f l
T(◦) and f l

S(◦) represent the feature maps of the
l-th layer in a predefined set of distilled layers from the
teacher and the student, respectively.

The final objective is formalized as below. We simply set the
loss weights λOutKD and λFeatKD as 1, which is effective
in empirical validation without hyperparameter tuning.

L = LTask + λOutKDLOutKD + λFeatKDLFeatKD. (4)

2.3. Application: Smaller Personalized SDMs

To emphasize the benefit of our lightweight pretrained
SDMs, we use a popular finetuning scenario for person-
alized generation. DreamBooth (Ruiz et al., 2023) enables
T2I diffusion models to create contents about a particular
subject using just a few input images. Our compact mod-
els reduce finetuning cost and produce high-quality images
based on the inherited capability of the original SDM.

Table 2. Zero-shot results on 30K prompts from MS-COCO vali-
dation set (Lin et al., 2014) at 256×256 resolution. For our models,
the results with the minimum FID and the final 50K-th iteration
are reported (see Appendix E.2 for detailed analysis).

Model FID ↓ IS ↑ # Params Data Size
SDM-v1.4 (Rombach et al., 2022) 13.05 36.76 1.04B 600M
Small Stable Diffusion (Pinkney, 2023) 12.76 32.33 0.76B 229M
BK-SDM-Base (Ours) @ Min FID 13.57 29.22 0.76B 0.22M
BK-SDM-Base (Ours) @ Final Iter 15.76 33.79 0.76B 0.22M
BK-SDM-Small (Ours) @ Min FID 15.93 29.61 0.66B 0.22M
BK-SDM-Small (Ours) @ Final Iter 16.98 31.68 0.66B 0.22M
BK-SDM-Tiny (Ours) @ Min FID 16.54 29.84 0.50B 0.22M
BK-SDM-Tiny (Ours) @ Final Iter 17.12 30.09 0.50B 0.22M
DALL·E†⋆ (Ramesh et al., 2021) 27.5 17.9 12B 250M
CogView‡⋆ (Ding et al., 2021) 27.1 18.2 4B 30M
CogView2†⋆ (Ding et al., 2022) 24.0 22.4 6B 30M
Make-A-Scene‡ (Gafni et al., 2022) 11.84 - 4B 35M
LAFITE‡♯ (Zhou et al., 2022) 26.94 26.02 0.23B 3M
GALIP (CC3M)† (Tao et al., 2023) 16.12 - 0.32B 3M
GALIP (CC12M)† (Tao et al., 2023) 12.54 - 0.32B 12M
GLIDE‡ (Nichol et al., 2022) 12.24 - 5B 250M
LDM-KL-8-G‡♯ (Rombach et al., 2022) 12.63 30.29 1.45B 400M
DALL·E-2† (Ramesh et al., 2022) 10.39 - 5.2B 250M

† and ‡: FID from (Tao et al., 2023) and (Rombach et al., 2022), respectively. ⋆ and ♯: IS from
(Ding et al., 2022) and (Rombach et al., 2022), respectively.

3. Experiments
This section presents key results of BK-SDMs. Appendix
D provides detailed experimental setups, and Appendix E
presents in-depth analyses and additional results.

3.1. General-purpose T2I Generation

Table 2 shows the zero-shot T2I results on 30K samples
from the MS-COCO 256×256 validation set. Despite being
trained with only 0.22M samples and having fewer than
1B parameters, our compressed models demonstrate com-
petitive performance on par with previous large pretrained
models. Despite the absence of a paper support, we include
the model (Pinkney, 2023) that is identical in structure to
BK-SDM-Base for comparison. This model benefits from
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Table 3. The impact of per-step compute reduction of the U-Net on the entire SDM. The number of sampling steps is indicated with the
parentheses, e.g., U-Net (1) for one step. The full computation (denoted by “Whole”) covers the text encoder, U-Net, and image decoder.
All corresponding values are obtained on the generation of a single 512×512 image with 25 denoising steps. The latency was measured on
Xeon Silver 4210R CPU 2.40GHz and NVIDIA GeForce RTX 3090 GPU.

# Params MACs CPU Latency GPU LatencyModel U-Net Whole U-Net (1) U-Net (25) Whole U-Net (1) U-Net (25) Whole U-Net (1) U-Net (25) Whole
SDM-v1.4 860M 1033M 339G 8469G 9716G 5.63s 146.28s 153.00s 0.049s 1.28s 1.41s
BK-SDM-

Base (Ours)
580M

(-32.6%)
752M

(-27.1%)
224G

(-33.9%)
5594G

(-33.9%)
6841G

(-29.5%)
3.84s

(-31.8%)
99.95s

(-31.7%)
106.67s
(-30.3%)

0.032s
(-34.6%)

0.83s
(-35.2%)

0.96s
(-31.9%)

BK-SDM-
Small (Ours)

483M
(-43.9%)

655M
(-36.5%)

218G
(-35.7%)

5444G
(-35.7%)

6690G
(-31.1%)

3.45s
(-38.7%)

89.78s
(-38.6%)

96.50s
(-36.9%)

0.030s
(-38.7%)

0.77s
(-39.8%)

0.90s
(-36.1%)

BK-SDM-
Tiny (Ours)

324M
(-62.4%)

496M
(-51.9%)

206G
(-39.5%)

5126G
(-39.5%)

6373G
(-34.4%)

3.03s
(-46.2%)

78.77s
(-46.1%)

85.49s
(-44.1%)

0.026s
(-46.9%)

0.67s
(-47.7%)

0.80s
(-43.2%)

Table 4. Personalized generation with finetuning over different
pretrained models. Our compact models can preserve subject
fidelity (CLIP-I) and prompt fidelity (CLIP-T) of the original SDM
with reduced finetuning (FT) cost and fewer parameters. See Table
6 for additional results with DINO scores.

Pretrained Model CLIP-I ↑ CLIP-T ↑ FT Time† FT Mem‡ # Params
SDM v1.4 0.725 0.263 881.3s 23.0GB 1.04B
BK-SDM-Base (Ours) 0.717 0.260 622.3s 18.7GB 0.76B
BK-SDM-Small (Ours) 0.705 0.259 603.6s 17.2GB 0.66B
BK-SDM-Tiny (Ours) 0.693 0.261 559.3s 13.1GB 0.50B
Ours-Base, Batch Size 64 0.708 0.262 622.3s 18.7GB 0.76B
- No KD & Random Init. 0.465 0.191 622.3s 18.7GB 0.76B
- No KD & Pretrained Init. 0.669 0.258 622.3s 18.7GB 0.76B

Per-subject FT time† and GPU memory‡ for 800 iterations with a batch size of 1 on NVIDIA RTX 3090.

(1)

(2)

GALIP-CC12M

(Tao, 2023)

LAFITE

(Zhou, 2022)

CogView2

(Ding, 2022)

BK-SDM-Base

(Ours)

BK-SDM-Small

(Ours)

SDM-v1.4

(Rombach, 2022)

BK-SDM-Tiny

(Ours)

Text prompt: (1) A bowl that has vegetables inside of it.; (2) A brown and white cat staring off with pretty green eyes.

Figure 4. Visual comparison with Ding et al. (2022); Zhou et al.
(2022); Tao et al. (2023) on zero-shot MS-COCO benchmark. See
Figure 12 for an enlarged version with additional results.

far more training resources, i.e., two-stage KD relying on
two teachers (SDM-v1.4 and v1.5) and a much larger vol-
ume of data with significantly longer iterations.

Figures 4 and 12 depict synthesized images of different mod-
els with some MS-COCO captions. Our compressed models
inherit the superior ability of SDM and produce more pho-
torealistic images compared to the AR-based (Ding et al.,
2022) and GAN-based (Zhou et al., 2022; Tao et al., 2023)
baselines. Noticeably, the same latent code results in a
shared visual style between the original and our compact
SDMs (4th–7th columns in Figure 4), similar to the obser-
vation in transfer learning for GANs (Mo et al., 2020).

Table 3 shows how the compute reduction for each sampling
step of the U-Net affects the overall compute of the SDM.
The per-step reduction effectively decreases MACs and in-

SDM-v1.4

(Rombach, 2022)

Input

Subject

BK-SDM-Base

Batch Size 64

(1)

(2)

BK-SDM-Base

(Ours)

Without KD &

Random Init.

BK-SDM-Small

(Ours)

Without KD &

Pretrained Init.

Text prompt: (1) A [V] dog in the jungle; (2) A [V] stuffed animal with the Eiffel Tower in the background

Figure 5. Visual results of personalized generation. Each subject
is marked as “a [identifier] [class noun]” (e.g., “a [V] dog”). See
Figure 13 for an enlarged version with additional results.

ference time by more than 30%. Notably, BK-SDM-Tiny
has 50% fewer parameters compared to the original SDM.

3.2. Personalized T2I Generation with DreamBooth

Tables 4 and 6 compare the results of DreamBooth fine-
tuning (Ruiz et al., 2023) with different pretrained models.
BK-SDMs can preserve 95%∼99% performance of the orig-
inal SDM with the reduced finetuning cost and number of
parameters. Figures 5 and 13 depict that our models can
accurately capture the subject details and generate various
scenes. Over the models pretrained with a batch size of 64,
we observe the impact of KD pretraining on personalized
synthesis. The baselines without KD fail to generate the
subjects entirely or cannot maintain the identity details.

4. Conclusion
We uncover the potential of architectural compression for
general-purpose text-to-image synthesis with a renowned
model, Stable Diffusion. Our block-removed lightweight
models are effective for zero-shot generation, achieving
competitive results against large-scale baselines. Distillation
is a key of our method, leading to powerful pretraining even
under very constrained resources. Our work is orthogonal to
previous works for efficient diffusion models, e.g., enabling
fewer sampling steps, and can be readily combined with
them. We hope our study can facilitate future research on
structural compression of large diffusion models.
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Appendix

A. Related Work
Large T2I diffusion models. By gradually removing noise from corrupted data, diffusion-based generative models (Ho et al.,
2020; Song et al., 2021; Dhariwal & Nichol, 2021) enable high-fidelity synthesis with broad mode coverage. Integrating
these merits with the advancement of pretrained language models (Radford et al., 2021; 2019; Devlin et al., 2019) has
significantly improved the quality of T2I synthesis. In GLIDE (Nichol et al., 2022) and Imagen (Saharia et al., 2022), a
text-conditional diffusion model generates a 64×64 image, which is upsampled via super-resolution modules. In DALL·E-2
(Ramesh et al., 2022), a text-conditional prior network produces an image embedding, which is transformed into a 64×64
image via a diffusion decoder and further upscaled into higher resolutions. SDMs (Rombach & Esser, 2022; Rombach et al.,
2022) perform the diffusion modeling in a 64×64 latent space constructed through a pixel-space autoencoder. We use a
SDM as our baseline because of its open-access and gaining popularity over numerous downstream tasks (Brooks et al.,
2023; Wang et al., 2023; Blattmann et al., 2023; Ruiz et al., 2023).

Efficient diffusion models. Several studies have addressed the slow sampling process of diffusion models. Diffusion-
tailored distillation approaches (Meng et al., 2023; 2022; Salimans & Ho, 2022) progressively transfer knowledge from a
pretrained diffusion model to a fewer-step model with the same architecture. Fast high-order solvers (Lu et al., 2022a;b;
Zhang & Chen, 2023) for diffusion ordinary differential equations boost the sampling speed. Orthogonal to these directions
for less sampling steps, our network compression approach reduces per-step computation and can be easily integrated with
them. Leveraging quantization techniques (Li et al., 2023; Hou & Asghar, 2023; Shen et al., 2022) and implementation
optimizations (Chen et al., 2023) has been applied for SDMs and also can be combined with our models for further efficiency
gains.

Distillation-based compression. KD enhances the performance of small-size models by exploiting output-level (Hinton
et al., 2014; Park et al., 2019) and feature-level (Romero et al., 2015; Heo et al., 2019; Zagoruyko & Komodakis, 2017)
information of large source models. Although this classical distillation has been actively used toward efficient GANs (Li
et al., 2020; Ren et al., 2021; Liu et al., 2021; Jin et al., 2021; Zhang et al., 2022), its power has not been explored for
structurally compressed diffusion models. Distillation-based pretraining enables small yet capable general-purpose language
models (Sanh et al., 2019; Sun et al., 2020; Jiao et al., 2020) and vision transformers (Touvron et al., 2021; Hao et al.,
2022). Beyond such models, we show that its success can be extended to diffusion models with iterative sampling steps.
Concurrently with our study, a recently released small SDM without paper evidence (Pinkney, 2023) similarly utilizes KD
pretraining for a block-eliminated architecture, but it relies on significantly more training resources along with multi-stage
distillation. In contrast, our lighter models achieve further reduced computation, and we show that competitive results can
be obtained even with much less data and single-stage distillation.

B. U-Net Architectures of BK-SDMs
Figure 6 depicts the U-Net architectures. Compared to the 1.04B-parameter original SDM (with 0.86B-parameter U-Net),
our models are smaller and lighter: 0.76B-parameter BK-SDM-Base (with 0.58B-parameter U-Net), 0.66B BK-SDM-Small
(0.49B U-Net), and 0.50B BK-SDM-Tiny (0.33B U-Net). Section C describes the details of block components.

C. Details of Block Components in SDM’s U-Net
Figure 7 shows the details of architectural blocks (depicted in Figures 3 and 6). Each residual block (ResBlock) contains
two 3-by-3 convolutional layers and is conditioned on the time-step embedding. Each attention block (AttnBlock) contains
a self-attention module, a cross-attention module, and a feed-forward network. The text embedding is merged via the
cross-attention module. Within the attention block, the feature spatial dimensions H and W are flattened into a sequence
length of HW. The number of channels C is considered as an embedding size, processed with 8 attention heads. The number
of groups for the group normalization is set to 32. Except the down-sizing part, all the convolutional layers maintain the
spatial dimensions by adjusting the stride and padding.
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Figure 6. U-Net architectures of the original SDM-v1 and our BK-SDMs.

D. Experimental Setup
D.1. Datasets and Evaluation Metrics

Pretraining. We train our compact SDMs with only 0.22M image-text pairs from LAION-Aesthetics V2 6.5+ (Schuhmann
& Beaumont, 2022; Schuhmann et al., 2022), which are significantly fewer than the original training data used for SDM-v1.4
(Rombach & Esser, 2022) (i.e., 600M pairs of LAION-Aesthetics V2 5+ for the resumed training).

Zero-shot T2I evaluation. Following the popular protocol (Ramesh et al., 2021; Rombach et al., 2022; Saharia et al., 2022)
to assess general-purpose T2I with pretrained models, we use 30K prompts from the MS-COCO validation split (Lin et al.,
2014) and compare the generated images to the whole validation set. We compute Fréchet Inception Distance (FID) (Heusel
et al., 2017) and Inception Score (IS) (Salimans et al., 2016) to assess visual quality. Moreover, we measure CLIP score
(Radford et al., 2021; Hessel et al., 2021) with CLIP-ViT-g/14 model to assess text-image correspondence.

Finetuning for personalized generation. We use the DreamBooth dataset (Ruiz et al., 2023) that covers 30 subjects, each
of which is associated with 25 prompts and 4∼6 images. Through individual finetuning for each subject, 30 personalized
models are obtained. For evaluation, we follow the protocol of Ruiz et al. (2023) based on four synthesized images per
subject and per prompt. We consider CLIP-I and DINO scores to measure how well subject details are maintained in
generated images (i.e., subject fidelity) and CLIP-T scores to measure text-image alignment (i.e., text fidelity). We use
ViT-S/16 embeddings (Caron et al., 2021) for DINO scores and CLIP-ViT-g/14 embeddings for CLIP-I and CLIP-T.

D.2. Implementation

We use the released version v1.4 of SDM (Rombach & Esser, 2022) as our compression target. We remark that our approach
is also applicable to other versions in v1.1–v1.5 with the same architecture and to SDM-v2 with a similarly designed
architecture. We adjust the codes in Diffusers library (von Platen et al., 2022) for pretraining our models and those in PEFT
library (Mangrulkar et al., 2022) for DreamBooth-finetuning, both of which adopt the training process of DDPM (Ho et al.,
2020) in latent spaces.

Distillation-based pretraining. For augmentation, smaller edge of each image is resized to 512, and a center crop of size
512 is applied with random flip. We use a single NVIDIA A100 80G GPU for 50K-iteration pretraining with the AdamW
optimizer and a constant learning rate of 5e-5. With the gradient accumulation steps of 4, the total batch size is set to either
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64 or 256. With a batch size of 64 for training BK-SDM-Base, it takes about 60 hours for 50K iterations and 28GB GPU
memory. With a batch size of 256, it takes about 300 hours and 53GB GPU memory. Training smaller architectures results
in 5∼10% decrease in GPU memory usage.

DreamBooth finetuning. For augmentation, smaller edge of each image is resized to 512, and a random crop of size 512 is
applied. We use a single NVIDIA GeForce RTX 3090 GPU to finetune each personalized model for 800 iterations with the
AdamW optimizer and a constant learning rate of 1e-6. We jointly finetune the text encoder as well as the U-Net. For each
subject, 200 class images are generated by the original SDM. The weight of prior preservation loss is set to 1. With a batch
size of 1, the original SDM requires 23GB GPU memory for finetuning, whereas BK-SDMs require 13∼19GB memory.

Inference. Following the default inference setup, we use PNDM scheduler (Liu et al., 2022) for zero-shot T2I generation
and DPM-Solver (Lu et al., 2022a;b) for DreamBooth results. For compute efficiency, we always opt for 25 denoising steps
of the U-Net at the inference phase. The classifier-free guidance scale (Ho & Salimans, 2021; Saharia et al., 2022) is set to
the default value of 7.5, except the analysis in Figure 9.
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E. In-depth Analyses and Additional Results
E.1. Ablation Study

Table 5 presents the ablation study with the zero-shot MS-COCO benchmark dataset. The common default settings for the
models N1–N9 involve the usage of fewer blocks in the down and up stages (Section 2.1.1) and the denoising task loss (Eq.
1). All the models are drawn at the 50K-th training iteration. We made the following observations.

N1 vs. N2. Importing the pretrained weights for initialization clearly improves the performance of block-removed SDMs.
Transferring knowledge from well-trained models, a popularized practice in machine learning, is also beneficial for T2I
generation with SDMs.

N2 vs. N3 vs. N4. Exploiting output-level KD (Eq. 2) effectively boosts the generation quality compared to using only the
denoising task loss. Leveraging feature-level KD (Eq. 3) further improves the performance by offering sufficient guidance
over multiple stages in the student.

N4 vs. N5. An increased batch size leads to a better IS and CLIP score but with a minor drop in FID. We opt for a batch size
of 256 based on the premise that more samples per batch would enhance the model’s understanding ability.

N6, N7, N8, and N9. Despite slight performance drop, the models N6 and N7 with the mid-stage removal have fewer
parameters (0.66B) than N4 and N5 (0.76B), offering improved compute efficiency. The further removal of two innermost
stages leads to the lightest models N8 and N9 (0.50B).

Table 5. Ablation study on zero-shot MS-COCO 256×256 30K. The common settings include fewer blocks in the down and up stages and
the denoising task loss. N5, N7, and N9 correspond to BK-SDM-Base, BK-SDM-Small, and BK-SDM-Tiny, respectively

Model Performance

No.
Weight

Initialization
Output

KD
Feature

KD
Batch
Size

# Removed
Inner Stages FID ↓ IS ↑ CLIP

Score ↑
N1 Random ✗ ✗ 64 ✗ 43.80 13.61 0.1622
N2 Pretrained ✗ ✗ 64 ✗ 20.45 22.68 0.2444
N3 Pretrained ✓ ✗ 64 ✗ 16.48 27.30 0.2620
N4 Pretrained ✓ ✓ 64 ✗ 14.61 31.44 0.2826
N5 Pretrained ✓ ✓ 256 ✗ 15.76 33.79 0.2878
N6 Pretrained ✓ ✓ 64 1 16.87 29.51 0.2644
N7 Pretrained ✓ ✓ 256 1 16.98 31.68 0.2677
N8 Pretrained ✓ ✓ 64 3 17.28 28.33 0.2607
N9 Pretrained ✓ ✓ 256 3 17.12 30.09 0.2653
Original SDM-v1.4 (Rombach & Esser, 2022; Rombach et al., 2022) 13.05 36.76 0.2958

E.2. Impact of Distillation on Pretraining Phase

We further analyze the merits of transferred knowledge via distillation, with the models from the pretrained weight
initialization. Figure 8 shows zero-shot T2I performance over training iterations. Without KD, training compact models
solely with the denoising task loss causes fluctuations or sudden drops in performance (indicated with green and cyan).
Compared to the absence of KD, distillation (purple and pink) stabilizes and accelerates the training process, improving
generation scores. This clearly demonstrates the benefits of providing sufficient hints for training guidance.

Notably, our small-size and tiny-size models trained with KD (yellow and red) outperform the bigger base-size models
without KD (green and cyan). Additionally, while the best FID score is observed early on for our models, IS and CLIP score
exhibit ongoing improvement, implying that judging models solely with FID may be suboptimal.

Figure 9 shows the trade-off curves from different classifier-free guidance scales (Ho & Salimans, 2021; Saharia et al., 2022)
{2.0, 2.5, 3.0, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5}. For the analysis, we use 5K samples from the MS-COCO validation set and
our base-size models from the 50K-th iteration. Higher guidance scales lead to better text-aligned images at the cost of less
diversity. Compared to the baseline trained only with the denoising task loss, distillation-based pretraining achieves much
better trade-off curves.
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Figure 8. Results on zero-shot MS-COCO 256×256 30K over training progress. The architecture size, usage of KD, and batch size are
denoted for our models.

Figure 9. Effect of different classifier-free guidance scales on MS-COCO 512×512 5K.

E.3. Additional DreamBooth Results with DINO Scores

Table 6 shows the results of DreamBooth finetuning (Ruiz et al., 2023) with different pretrained models. BK-SDMs can
preserve 95%∼99% performance of the original SDM with the reduced finetuning cost and number of parameters.

Table 6. Personalized generation with finetuning over different pretrained models. Our compact models can preserve subject fidelity
(DINO and CLIP-I) and prompt fidelity (CLIP-T) of the original SDM with reduced finetuning (FT) cost and fewer parameters.

Pretrained Model DINO ↑ CLIP-I ↑ CLIP-T ↑ FT Time† FT Mem‡ # Params
SDM v1.4 (Rombach & Esser, 2022) 0.728 0.725 0.263 881.3s 23.0GB 1.04B
BK-SDM-Base (Ours) 0.723 0.717 0.260 622.3s 18.7GB 0.76B
BK-SDM-Small (Ours) 0.720 0.705 0.259 603.6s 17.2GB 0.66B
BK-SDM-Tiny (Ours) 0.715 0.693 0.261 559.3s 13.1GB 0.50B
BK-SDM-Base, Batch Size 64 0.718 0.708 0.262 622.3s 18.7GB 0.76B

- Without KD & Random Init. 0.594 0.465 0.191 622.3s 18.7GB 0.76B
- Without KD & Pretrained Init. 0.716 0.669 0.258 622.3s 18.7GB 0.76B

Per-subject finetuning time† and GPU memory‡ for 800 iterations with a batch size of 1 on NVIDIA RTX 3090.
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E.4. More Visual Examples

Figure 10 summarizes the capability of BK-SDMs. Figure 11 depicts visual results of the mid-stage removed U-Net
without retraining. Figure 12 shows additional visual comparison on the zero-shot MS-COCO benchmark. Figure 13 shows
personalized generation results with DreamBooth.

(a) Efficient General-purpose T2I (b) Efficient Personalized T2I

Input 

Subject

Figure 10. Our compressed Stable Diffusion enables efficient (a) zero-shot general-purpose text-to-image generation and (b) personalized
synthesis. Selected samples from BK-SDM-Small with 36% reduced parameters and latency are shown.
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Figure 11. Visual results of removing the mid-stage from the U-Net of SDM-v1.4 (Rombach & Esser, 2022). Without retraining, the
mid-stage removal can preserve generation quality for many text prompts.
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A bowl that 
has vegetables 
inside of it.

There are 
many 
decorative 
umbrellas 
hanging up.

A brown and 
white cat 
staring off with 
pretty green 
eyes.

GALIP-CC12M

(Tao, 2023)

LAFITE

(Zhou, 2022)

CogView2

(Ding, 2022)

BK-SDM-Base

(Ours)

BK-SDM-Small

(Ours)

SDM-v1.4

(Rombach, 2022)

A man staring 
ahead at the 
camera with a 
neutral 
expression.

BK-SDM-Tiny

(Ours)

A toy raccoon 
standing on a 
pile of broccoli.

An ornate 
living room set 
sits in a large 
house.

A small white 
dog looking 
into a camera.

An old historic 
tower located 
in the jungle.

A very close up 
picture of a 
pizza with 
several 
toppings.

Small green 
vase on 
counter with 
floral 
arrangement.

Figure 12. Additional zero-shot T2I results. The results of previous studies (Ding et al., 2022; Zhou et al., 2022; Tao et al., 2023) were
obtained with their official codes and released models. We do not apply any CLIP-based reranking for SDM and our models.
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SDM-v1.4

(Rombach, 2022)

Input

Subject

BK-SDM-Base

Batch Size 64

BK-SDM-Base

(Ours)
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Random Init.

BK-SDM-Small

(Ours)

Without KD &

Pretrained Init.

BK-SDM-Tiny

(Ours)

A [V] cat on 
the beach

A painting of 
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style of 
leonardo da 
vinci

A [V] stuffed 
animal with 
the Eiffel 
Tower in the 
background

A [V] stuffed 
animal with 
a mountain 
in the 
background

A [V] 
backpack in 
the snow

A [V] 
backpack 
with a tree 
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background

A [V] 
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around it

A [V] 
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top of a dirt 
road

A [V] dog
in the jungle

A [V] dog 
wearing a 
rainbow 
scarf

Figure 13. Additional results of personalized generation. Each subject is marked as “a [identifier] [class noun]” (e.g., “a [V] dog”). Similar
to the original SDM, our compact models can synthesize the images of input subjects in different backgrounds while preserving their
appearance.
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