
Identifying Equivalent Training Dynamics

William T. Redman∗

AIMdyn Inc.
UC Santa Barbara

Juan Bello-Rivas
Johns Hopkins University

Maria Fonoberova
AIMdyn Inc.

Ryan Mohr
AIMdyn Inc.

Yannis G. Kevrekidis
Johns Hopkins University

Igor Mezić†
AIMdyn Inc.

UC Santa Barbara

Abstract

Study of the nonlinear evolution deep neural network (DNN) parameters undergo
during training has uncovered regimes of distinct dynamical behavior. While a
detailed understanding of these phenomena has the potential to advance improve-
ments in training efficiency and robustness, the lack of methods for identifying
when DNN models have equivalent dynamics limits the insight that can be gained
from prior work. Topological conjugacy, a notion from dynamical systems theory,
provides a precise definition of dynamical equivalence, offering a possible route
to address this need. However, topological conjugacies have historically been
challenging to compute. By leveraging advances in Koopman operator theory,
we develop a framework for identifying conjugate and non-conjugate training
dynamics. To validate our approach, we demonstrate that comparing Koopman
eigenvalues can correctly identify a known equivalence between online mirror
descent and online gradient descent. We then utilize our approach to: (a) identify
non-conjugate training dynamics between shallow and wide fully connected neural
networks; (b) characterize the early phase of training dynamics in convolutional
neural networks; (c) uncover non-conjugate training dynamics in Transformers that
do and do not undergo grokking. Our results, across a range of DNN architectures,
illustrate the flexibility of our framework and highlight its potential for shedding
new light on training dynamics.

1 Introduction

The analysis and experimentation of deep neural network (DNN) training continues to uncover
new – and in some cases, surprising – phenomena. By changing the architecture, optimization
hyper-parameters, and/or initialization, it is possible to identify regimes in which DNN parameters
evolve along trajectories (in parameter space) with linear dynamics [1, 2], low-dimensional dynamics
[3], correlated dynamics [4], lazy/rich dynamics [5, 6], and oscillatory dynamics [7, 8]. In some
cases, the training dynamics have been linked with the performance of the trained model [7, 9, 10],
providing new insight in DNN generalization. Additionally, detailed understanding of the dynamics
has led to improvements in training efficiency [4, 11], demonstrating the practical implications such
work can provide.

To obtain a more complete picture of DNN training, it is necessary to have a method by which
equivalent dynamics can be identified and distinguished from other, non-equivalent dynamics. The
construction of equivalence classes, which has fundamentally shaped the study of complex systems

∗redmanw@aimdyn.com
†mezici@aimdyn.com

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

in other domains (e.g., phase transitions [12], bifurcations [13], defects in materials [14]), would
advance the understanding of how architecture, optimization hyper-parameters, and initialization
shape DNN training and could be leveraged to search for new phenomena. However, identifying
equivalent and non-equivalent training dynamics is challenged by the need for methods that:

• Go beyond the coarseness of loss. While useful as metrics, training and test loss can be
shaped by non-dynamical features of the training (e.g., different initializations, different
number of hidden units). Thus, different losses is neither necessary nor sufficient to conclude
non-equivalent training dynamics.

• Respect permutation symmetry. DNNs are invariant to the re-ordering, within layers, of
their hidden units [15]. Thus, identifying that DNN parameters evolve along trajectories
that occupy distinct parts of parameter space is not sufficient to conclude non-equivalent
dynamics [16, 17].

We propose to use topological conjugacy [18], a notion of dynamical equivalence developed in the
field of dynamical systems theory (Sec. 3.1), to address these limitations. Historically, topological
conjugacy has been difficult to compute [19], especially when the equations governing the dynamical
systems under study are not known. However, recent advances in Koopman operator theory [20, 21,
22] (Sec. 3.2) have enabled the identification of topological conjugacies from data [23] (Sec. 3.3).
We explore the potential of this Koopman-based approach for identifying topological conjugacies in
the domain of DNN training, finding that it is able to:

• Recover a known nonlinear topological conjugacy between the training dynamics of online
mirror descent and online gradient descent [24, 25, 26] (Sec. 4.1);

• Identify non-conjugate training dynamics between narrow and wide fully connected neural
networks (FCNs) (Sec. 4.2);

• Demonstrate the existence of conjugate training dynamics across different random initializa-
tions of FCNs [16] (Appendix C.4);

• Characterize the early phase of training dynamics [27] in convolutional neural networks
(CNNs) (Sec. 4.3);

• Uncover non-conjugate training dynamics across Transformers that do, and that do not
undergo delayed generalization (i.e., “grokking”) [28, 29] (Sec. 4.4).

That the same framework can be used across a number of DNN architectures to study a variety of
dynamical phenomena during training demonstrates the generality of the approach. We conclude by
discussing how it can be further improved to enable greater resolution of equivalent dynamics, and
how it can be used to shed greater light on DNN training (Sec. 5).

2 Related work

2.1 Identification of DNN training dynamics phenomena

Analytical results have been obtained for the DNN training dynamics of shallow student-teacher
[30, 31] and infinite width [1, 2] networks. For modern architectures (e.g. CNNs, Transformers),
the training dynamics have been probed via analysis of computational experiments. Application
of dimensionality reduction has led to the observation that parameters are quickly constrained to
being optimized along low-dimensional subspaces of the high-dimensional parameter space [3, 4].
Inspection of losses, parameter and gradient magnitudes, etc. led to the identification of several
transitions in the training dynamics of CNNs during the initial few epochs [27]. While insightful, this
prior work cannot – except at a coarse-grained level – be used to determine whether the dynamics
associated with training different DNN models (or training the same DNN model with different
choices in hyper-parameters or initialization) are equivalent.

2.2 Koopman operator theory applied to DNN training

Data-driven implementations of Koopman operator theory have been used to model the dynamics
of DNN training [32, 33, 34]. Because of the linearity of the learned Koopman models (Sec. 3.2),

2

using them in place of standard gradient-based methods has led to reductions in computational costs
associated with DNN training. Koopman-based methods have additionally been used to meta-learn
optimizers for DNNs [35, 36]. The ability of Koopman models to capture features of training
dynamics has been leveraged to develop new methods for pruning DNN parameters [37, 38] and
new adaptive training methods [39]. While this prior work has demonstrated that accurate Koopman
operator representations of the nonlinear training dynamics can be extracted, none have utilized the
theory to identify topological conjugacies.

3 Identifying equivalent training dynamics

3.1 Topological conjugacy

Given two discrete-time dynamical maps3 T1 : X → X and T2 : Y → Y , a natural question to ask
is whether they induce equivalent dynamical behavior. There are various possibilities for defining
equivalence, but dynamical systems theory has made use of the notion of topological conjugacy [18]
to identify when a smooth invertible mapping can be used to transform trajectories of T1 to those
of T2 (and vice versa). Formally, T1 and T2 are said to be topologically conjugate if there exists a
homeomorphism, h : X → Y , such that

h ◦ T1 = T2 ◦ h. (1)

It is straightforward to identify and construct conjugacies for linear systems. Let X = Y = Rn,
and let T1 = A and T2 = B, where A,B ∈ Rn×n. These describe linear dynamical systems, as
x(t + 1) = Ax(t) and y(t + 1) = By(t). In this setting, A and B are conjugate if there exists
an H ∈ Rn×n, such that y(t) = Hx(t) and A = H−1BH . This can happen if and only if the
eigenvalues of A are the same as the eigenvalues of B. Thus, for linear systems, topological conjugacy
can be used to construct equivalence classes, partitioning the space of dynamical systems into families
of matrices that have the same spectra. However, for nonlinear systems, it is challenging to prove the
existence or non-existence of conjugacies [19], limiting its use as a tool. In addition, historically it
has not been possible to compute topological conjugacies for systems where the underlying dynamics
are not analytically known.

3.2 Koopman mode decomposition

Over the past two decades, Koopman operator theory has emerged as a powerful framework for study-
ing nonlinear dynamical systems [20, 21, 22]. The Koopman operator, U , is an infinite dimensional
linear operator that describes the time evolution of observables (i.e. functions of the underlying
state-space variables, x ∈ X) that live in an appropriately defined function space, F (Fig. 1A). That
is, the observable g ∈ F evolves as

Ug[x(t)] = g[Tx(t)], (2)

where t ∈ N and T : X → X is the underlying dynamical map on the state-space X .

The linearity of U enables a mode decomposition [termed “Koopman Mode Decomposition” (KMD)].
The KMD is similar to the mode decomposition used for linear systems analysis, except that it is
defined in F , instead of X . In particular, the KMD is defined as

U tg(x) =

∞∑
i=1

λt
iϕi(x)vi, (3)

where the triplet (λi, ϕi, vi) describes the Koopman eigenvalues, eigenfunctions, and modes, respec-
tively. If there exists a subspace F ⊂ F of finite dimension, N ∈ N, that is invariant to the action of
the Koopman operator, then a finite dimensional representation of the KMD can constructed,

U tg(x) =

N∑
i=1

λt
iϕi(x)vi. (4)

3For the sake of space, we describe only discrete-time dynamical systems, but the theory extends to continuous
time dynamical systems.

3

Figure 1: Schematic of Koopman operator theory-based identification of conjugate dynamical systems.
(A) By lifting nonlinear dynamics from a finite dimensional state-space to an infinite dimensional function space,
a linear representation can be achieved (from which a finite dimensional approximation can be obtained). (B)
The linearity of the Koopman operator enables a mode decomposition, which includes Koopman eigenvalues
(orange), eigenfunctions (green), and modes (blue). (C) Dynamical systems with the same Koopman eigenvalues
are topologically conjugate.

In cases of chaotic dynamics, a representation by a finite number of Koopman modes is not achievable.
Such systems are said to have continuous spectra. In order for a DNN training algorithm to be useful,
it likely must avoid chaotic behavior. Therefore, we focus on training dynamics where Eq. 4 is
assumed to be valid.

From Eq. 4, it can be seen that the evolution of observable functions is described as a sum of Koopman
modes, each evolving at a specific time-scale (which is determined by the Koopman eigenvalues)
(Fig. 1B). The Koopman eigenvalues and their associated Koopman modes and eigenfunctions can
be connected to the state-space geometry of the underlying dynamical system [40].

An important feature of the Koopman eigenvalues is that they are invariant to permutations of the
ordering of state-space variables. Let x = [x1, ..., xn] and x̃ = [xσ(1), ..., xσ(n)], where
σ : {1, ..., n} → {1, ..., n} is a permutation and ρσ : x → x̃ is the permutation mapping. That is, x̃
is equivalent to x via a re-ordering of its labels. In this case, the action of the Koopman operator is

U tg̃(x̃) =

N∑
i=1

λt
iϕ̃i(x̃)vi, (5)

where g̃(x̃) = g[ρ−1
σ (x̃)] and ϕ̃(x̃) = ϕ[ρ−1

σ (x̃)]. Thus, the Koopman eigenvalues are the same
as they were for the non-permuted system. We note that the Koopman spectrum is the same for
other invariances that are known to exist in DNNs, such as rescaling (of cascaded linear layers) and
rotations (of query and key projections used in attention in Transformers) [41]. This makes it a
generally powerful approach for studying DNN training dynamics.

While Eq. 4 is true for deterministic dynamical systems and does not hold for training via stochastic
gradient descent (SGD), we believe it is still to appropriate to compute the KMD from weight
trajectories for two reasons. First, theoretical work has expanded the notion of Koopman operator
theory to stochastic dynamical systems [42] and defined Eq. 4 in terms of the expectation of the
dynamics. This suggests that the KMD associated with SGD training will be able to inform us
of the “average” dynamics during training. This will be useful to comparing different network
behaviors. And second, prior work computing KMD on DNN training has found it able to sufficiently
approximate the training dynamics so as to allow for the Koopman operator to be used to optimize
[32, 34] and sparsify [38] DNNs. This suggests KMD can capture important aspects of the training.

Many numerical methods have been developed for approximating the KMD from data. This has
enabled its successful application as a tool for spatio-temporal decomposition in providing insight
into complex, real-world dynamical systems [43, 44, 45, 46, 47]. Dynamic mode decomposition
(DMD) [48, 49], the most popular of these methods, has spawned many variants [50, 51, 52, 53, 54].
In general, DMD-based approaches collect T + 1 snapshots of data x ∈ Rn, construct data matrices

4

Z = [x(0), ..., x(T −1)] and Z ′ = [x(1), ..., x(T)], where Z,Z ′ ∈ Rn×(T+1), and then approximate
the Koopman operator by

U = Z ′Z†, (6)

where † denotes the pseudo-inverse. Utilizing dictionaries with nonlinear functions [50] has led to
improved results, demonstrating how usage of the underlying Koopman operator theory can enhance
the capture of complex dynamics. In addition, leveraging Takens’ Embedding Theorem [55] and
using time-delayed observables has proved to be a generally powerful approach for approximating
Koopman eigenvalues [44, 45, 51], an approach we make use of (Sec. 4).

3.3 Equivalent Koopman spectra implies topological conjugacy

Given that KMD provides a linear representation of nonlinear dynamical systems, identifying
topological conjugacies through matching eigenvalues (Sec. 3.1) again becomes viable. Indeed, it
has been proven that two discrete-time dynamical maps T1 and T2, each in the basin of attraction
of a stable fixed point, are topologically conjugate if and only if the Koopman eigenvalues of the
associated Koopman operators, U1 and U2, are the same [23] (Fig. 1C). That is, a topological
conjugacy exists if and only if

λ
(1)
i = λ

(2)
i , ∀i = 1, ..., N (7)

where λ(1) and λ(2) correspond to the eigenvalues associated with U1 and U2, respectively, and N is
the number of Koopman modes. When the dynamical systems under study have continuous spectra,
Eq. 7 does not imply topological conjugacy. As noted earlier, we do not believe this to be a major
limitation when studying meaningful training dynamics. However, recent work has suggested that
topological conjugacies may still be identifiable in the case of continuous spectra by using extensions
of Koopman operator theory [56]. We believe this will be a fruitful direction for future work.

When the number of Koopman eigenvalues of U1 is larger than the number of Koopman eigenvalues
of U2, the strict equivalence of Eq. 7 cannot be satisfied. However, there may exist a smooth, but
non-invertible mapping h from X onto Y . In such a case, T1 and T2 are said to be semi-conjugate,
and this can be identified when {λ(2)

i }N2
i=1 ⊂ {λ(1)

j }N1
j=1, where N2 < N1 are the number of Koopman

eigenvalues of U1 and U2, respectively.

Computing the KMD from data is unlikely to yield the same exact Koopman eigenvalues for conjugate
dynamical systems, due to the presence of noise and finite sampling. Therefore, a method for
computing the distance between eigenvalues is necessary when making comparisons. Here, we make
use of the Wasserstein distance [57, 58], a metric developed in the context of optimal transport that
quantifies how much one distribution must be changed to match another. This notion of “distance” is
important as the Koopman eigenvalues correspond to time-scales and we expect dynamical systems
with increasingly large differences between their eigenvalues will have increasingly large differences
in their dynamical behavior4. In the case where a small, finite number of Koopman eigenvalues
are computed (which can be achieved, even for systems with a large number of observables, by
performing dimensionality reduction or residual based pruning of modes [53]), the Wasserstein
distance can be efficiently computed by using linear sum assignment.

4 Results

4.1 Identifying conjugate optimizers

We begin by validating that numerical approximations of KMD can indeed correctly identify conjuga-
cies in settings relevant to DNN training. To do this, we consider a recently discovered nonlinear
topological conjugacy between the optimization dynamics of Online Mirror Descent (OMD) and
Online Gradient Descent (OGD) [24, 25, 26] (Appendix A.1). This work has been of particular
interest as OMD occurs on a convex loss landscape and OGD occurs on a non-convex loss landscape,
suggesting a potential route for studying behavior of OGD in a simpler setting.

The conjugacy between OMD and OGD relies on a reparametrization of the loss function. Without
prior knowledge of this reparametrization, it is challenging to identify the conjugacy by looking at only

4Note that other metrics, such as the KL-divergence, may not capture this distinction.

5

Figure 2: Conjugacy between online mirror descent and online gradient descent is identifiable from
Koopman spectra. (A) Comparing example trajectories of variables optimized via OMD (x1, x2), OGD
(u1, u2), and BM (z1, z2), the existence of a conjugacy between OMD and OGD is not obvious. (B) Similarly,
the existence of a conjugacy is not apparent when looking at the loss incurred by using OMD and OGD. (C)
Comparing the Koopman eigenvalues associated with optimizing using OMD, OGD, and BM correctly identifies
the existence of a conjugacy between OMD and OGD, and the lack of a conjugacy between OMD/OGD and
BM. The function optimized is in all subfigures is f(x) =

∑
tan(x).

the training trajectories or the losses (Fig. 2A, B – see Appendix A.3 for details on implementation
of OGD and OMD). This highlights some of the current challenges present in identifying dynamical
equivalence from data.

We compute the KMD associated with optimization using OMD and OGD by considering trajectories
of both, from many initial conditions, and compare the resulting Koopman eigenvalues (Appendix
A.4). We find high overlap between the two spectra (Fig. 2C, red and black dots). Additionally,
the two sets of eigenvalues have the same structure. Namely, they consist only of real, positive
eigenvalues. In contrast, the bisection method (BM), another optimization algorithm that is not
conjugate to OMD or OGD (Appendix A.2), has associated spectra that are complex (Fig. 2C, light
blue dots). Performing a randomized shuffle of the eigenvalues between algorithms (Appendix B),
we find that 25% of the shuffles between OMD and OGD eigenvalues result in Wasserstein distance
greater than or equal the true Wasserstein distance. This suggests the distributions are not statistically
significantly distinct. However, 0% of the shuffles have Wasserstein distance greater than or equal
to the true Wasserstein distance for OMD and BM, and OGD and BM, respectively. This provides
evidence that the spectra of OMD/OGD and BM are statistically significantly distinct.

Similar results are obtained when applying KMD to OMD and OGD optimization of a different func-
tion (Fig. S1). Collectively, these results demonstrate that the Koopman-based spectral identification
of topological conjugacies can successfully recover a known equivalence and provide support that it
can be used more broadly in uncovering equivalences in DNN training dynamics.

4.2 Identifying the effect of width on fully connected neural network training

To start exploring the potential of our framework for identifying topological conjugacies in DNN
training, we begin with a small-scale example. Namely, we consider a fully connected neural network
(FCN) with only a single hidden layer, trained on MNIST (Appendix C.1). Consistent with other
architectures, we find that the wider the FCN (i.e., the more units in the hidden layer), the better the
performance and the lower the loss (Fig. 3A). Whether this is due to an increase in capacity, with
more hidden units enabling a more refined solution, or whether this is due to a change in the training
dynamics, leading to a better traversal of the loss landscape, is – at this point – unclear.

Computing the Koopman eigenvalues associated with training FCNs of varying width (Fig. 3D –
see Appendix C.2 for details), we find that narrow (h = 5) and wide (h = 40) FCNs have training
dynamics that are non-conjugate, as their Koopman spectra are non-overlapping (Fig. 3E, F). This
suggests that the training dynamics undergo a fundamental change as width increases. However,
for FCNs with intermediate width (h = 10), the training dynamics are more aligned with the wide
FCNs (Fig. 3E, F), suggesting conjugate dynamical behavior. The dynamical difference in training
narrow and wide FCNs is also supported by performing the eigenvalue shuffle analysis (Appendix B).

6

Figure 3: Narrow and wide fully connected neural networks have non-conjugate training dynamics. (A)
Training loss curves for FCNs with hidden layer widths h = 5, 10, and 40. Solid line is mean and shaded
area is ± standard deviation across 25 independently trained networks. (B), (C) Example weight trajectories,
across training iterations, for narrow, intermediate, and wide FCNs. (D) Koopman eigenvalues associated with
training FCNs of varying width. (E) Same as (D), but zoomed out and with the eigenvalues associated with
h = 5 and h = 10 compared to those associated with h = 40. Dashed line in (D) and (E) denotes unit circle.
(F) Wasserstein distance between Koopman eigenvalues associated with training FCNs of varying width. Error
bars are ± standard deviation across 25 independently trained FCNs. Kolmogorov–Smirnov (KS) tests were
performed to assess statistical significance of distance: ∗ denotes p < 0.01 and ∗ ∗ ∗ denotes p < 0.0001.

In particular, a much larger number of the shuffles between h = 10 and h = 40 eigenvalues have
Wasserstein distance greater than or equal to the true Wasserstein distance than between h = 5 and
h = 40 (81% vs. 55%), although significance is not reached. Similar results were found when using
the GeLU instead of ReLU activations [59] (Fig. S3), demonstrating that our results are consistent
across FCNs with similar activation functions. Thus, we conclude that the additional improvement
in performance observed when increasing the network width from h = 10 to h = 40 comes more
from an increase in capacity, than from a change in training dynamics. Identifying this was not
possible by solely comparing the loss or weights (Fig. 3A–C), demonstrating the advantage of the
Koopman-based approach for identifying equivalent and non-equivalent DNN training dynamics.

To further study the behavior of FCN training dynamics, we also compared the computed Koopman
spectra of h = 40 networks trained from different random initial conditions (Appendix C.4). Prior
work has proven that different random initializations of sufficiently wide FCNs converge to local
minima that have no loss barrier along the linear interpolation between them, when taking into
account permutation symmetry [16]. This suggests conjugate training dynamics, although this has
not been explicitly shown. In support of this hypothesis, we find examples of FCNs, trained from
different random initializations, with nearly identical Koopman spectra (Fig. S4A).

4.3 Identifying dynamical transitions in convolutional neural network training

Prior work has argued that CNNs undergo transitions in their training dynamics during the early part
of training (i.e. the first several epochs), and that these transitions are similar across different CNN
architectures [27]. However, dynamical systems based methods were not used for analysis. Instead,
this observation relied on coarse-grained observables (e.g., training loss, magnitude of gradients) to
define the transitions and to determine when they occur.

To understand whether such results hold when considering the training dynamics at a finer-scale, we
utilize our Koopman-based framework. To do this, we split the first epoch of training into windows of
100 training iterations. We compute the Koopman eigenvalues associated with dynamics that occur
in each window and denote them by λt1:t2 , where t1 < t2 are the first and last training iteration
in the window. We then measure the Wasserstein distance between all combinations of pairs of
eigenvalues. This enables us to quantitatively assess transient dynamical behavior and identify when

7

Figure 4: Koopman-based framework enables identification of transitions in dynamics during the early
phase of training for LeNet and ResNet-20. (A) Log10 Wasserstein distance between Koopman eigenvalues
associated with LeNet training over windows of 100 training iterations during epoch 1. (B) Same as (A), but for
ResNet-20 training. (C) Koopman eigenvalues associated with the dynamics that occur during training iterations
intervals 0–99, 400–499, and 600–699. Dashed line denotes the unit circle.

in the early phase of training the dynamics transition from one equivalence class to another. We
apply our approach to LeNet [60], a simple CNN trained on MNIST, and ResNet-20 [61], trained on
CIFAR-10 (see Appendix D.1 for details).

We find that, for both LeNet and ResNet-20, the first 100 training iterations have the most distinct
Koopman eigenvalues, as the Wasserstein distance between λ0:99 and all other eigenvalues is large
(Fig. 4A, B – bright yellow first column and row). In addition, for both LeNet and ResNet-20, the
training dynamics become similar after 700 training iterations, as the Wasserstein distance between
λ600:699 and λ700:799 is small (Fig. 4A, B – dark blue square around diagonal in lower righthand
corner). This is in agreement with the timeline found by Frankle et al. (2020) [27]. However,
we additionally find that the dynamics that occur between 100 and 700 training iterations exhibit
greater change for ResNet-20 than for LeNet, as there is a larger Wasserstein distance between
Koopman eigenvalues. This suggests a difference in dynamical behavior between the architectures.
By examining the Koopman eigenvalues associated with different training iteration windows, we find
non-overlapping spectra (Fig. 4C). Performing the eigenvalue shuffle analysis (Appendix B), we find
evidence that the first 4 splits of 100 training steps have statistically significant different associated
Koopman eigenvalues, as the 2%, 2%, 0%, and 4% of the shuffles had Koopman eigenvalues greater
than or equal to the true Wasserstein distance. This suggests a lack of topological conjugacy between
the earliest training dynamics of ResNet-20 and LeNet, despite the fact that the general timeline in
transitions in dynamics is similar between the architectures.

To understand how the training dynamics change over a larger span of training time, we perform
the same analysis, but computing the Koopman eigenvalues from the dynamics that occur during
each epoch (Appendix D.3). We find that, at this coarser grain scale, both architectures see a similar
evolution of their training dynamics. In particular, we find that the first epoch has the most distinct
dynamics (Fig. S5A, B – yellow first column and row), and the subsequent epochs have dynamics
that become increasingly more similar (Fig. S5A, B – increasing size of dark blue blocks centered on
the diagonal).

Taken together, our Koopman-based analysis supports prior decomposition of the early phase of
CNN training dynamics into regimes separated by transitions that occur after a similar number of
training iterations across architectures [27]. However, with a finer-scale resolution of the dynamics,
we additionally find that LeNet and ResNet-20 have non-conjugate training, demonstrating that the
exact training dynamics are architecture-specific.

8

Figure 5: Transformers that do, and that do not undergo grokking have early training dynamics that are
not conjugate. (A) Train and test loss, as a function of training steps, for a Transformer model that undergoes
grokking. (B) Same as (A), but for a Transformer whose training is constrained to have a constant weight norm
[62]. In this case, no grokking is observed. (C) In the first 100 training steps, little difference is seen between the
test loss of Transformers with and without constrained training. Lines are mean and shaded area is ± standard
deviation across 20 independently trained networks. (D) Koopman eigenvalues associated with the dynamics
that occur over the first 100 training iterations for Transformers that do, and that not undergo grokking.

4.4 Identifying non-conjugate training dynamics for Transformers that do and do not grok

Since the discovery that Transformers trained on algorithmic data (e.g., modular addition) undergo de-
layed generalization (“grokking” – Fig. 5A) [28], considerable effort has been invested to understand
how this arises. One particularly influential theory is that the norm of the weights at initialization
plays a large role. In particular, it was shown that single layer Transformers, initialized at weights
with a sufficiently small norm, have training and test loss landscapes that are “aligned”, while the
same single layer Transformers, initialized at weights with a sufficiently large norm, have training
and test loss landscapes that are “mis-aligned” [62]. Constraining the norm of the weights to be small
prevents grokking, with train and test accuracy increasing at similar training iterations (Fig. 5B) [62].

What role the training dynamics play in grokking remains less understood. In particular, the extent to
which constraining the weight norm changes the training dynamics (which could shed additional light
on grokking) has yet to be explored. We therefore compute the Koopman eigenvalues associated with
the training of constrained and unconstrained Transformers on modular addition (Appendix E). We
use the dynamics from the earliest part of training, namely the first 100 training iterations (Fig. 5C).
We do this to avoid trivially seeing a difference, given the small weight changes that Transformers
which undergo grokking make when the training accuracy is high.

We find that the Koopman eigenvalues are distinct (Fig. 5D). In addition to a gap between the
computed eigenvalues, we find that the dynamics associated with training the constrained Transformer
has a pair of complex conjugate eigenvalues that lie along the unit circle, whereas the dynamics
associated with training the unconstrained Transformer has a pair of complex conjugate eigenvalues
outside of the unit circle. This suggests a difference in stability properties, as Koopman eigenvalues
with magnitude greater than 1 (i.e. those that lie outside the unit circle) correspond to unstable
dynamics. Similar results were found when computing the Koopman eigenvalues associated with the
training of the unconstrained Transformer over a longer training time window (Fig. S6).

These results suggest a non-conjugacy in the training dynamics of Transformers that do, and those
that do not undergo grokking. In particular, constraining the weight norm appears to lead to more
stable training dynamics, which may be due to the selection of a better subnetwork to train [63].
Additionally, these results suggest that it may be possible to identify grokking before it happens [64].

9

5 Discussion

Motivated by the need for quantitative methods that can determine when the training dynamics of
DNN parameter trajectories are equivalent, we utilized advances in Koopman operator theory to
develop a framework that can identify topological conjugacies. This Koopman based identification of
conjugate training dynamics is invariant to permutations of DNN parameters (Eq. 5), a necessary
feature for methods used to study DNN training dynamics [15, 16, 17]. By applying our approach
to the dynamics associated with optimization using OMD and OGD, we were able to validate that
numerical implementations of KMD can identify conjugacies which are known to exist [24, 25, 26]
(Fig. 2C). Additionally, this example demonstrates challenges existing approaches for comparing
DNN training dynamics face, as comparing the losses and the parameter evolutions of OMD and
OGD does not lead to a clear indication of the underlying equivalence (Fig. 2A, B).

Leveraging our Koopman-based approach on the training dynamics of DNNs of varying architectures
led to several insights. First, we found evidence that shallow and wide FCNs have non-conjugate
training dynamics (Fig. 3). This is consistent with theoretical and experimental work showing that
FCN width can lead to lazy and rich training regimes [6]. This provides further evidence that our
Koopman-based approach can correctly identify equivalent and non-equivalent training dynamics. In
addition, we find that FCNs of intermediate width have Koopman eigenvalues that are more similar
to those of wide FCNs (Fig. 3), demonstrating that our approach can provide insight beyond the
wide and shallow regimes. Second, applying our framework to the dynamics of CNNs, we found
transitions in the dynamics during the early phase of training, consistent with prior work [27] (Fig.
4). However, by closely examining the Koopman eigenvalues, we found non-conjugate dynamics
between different CNN architectures, suggesting fundamental differences in training. These distinct
dynamical features are aligned with previous observations of different behaviors when training sparse
CNNs [11, 38]. And third, we found that Transformers that do, and that do not undergo grokking have
non-conjugate training dynamics (Fig. 5). By focusing on the early phase of Transformer training, we
avoid trivially finding this due to differences in the training loss. Additionally, this provides evidence
for the ability to anticipate grokking before it happens [64].

Our framework is similar in spirit to an approach that categorizes iterative algorithms from a controlled
dynamical systems perspective [65, 66]. However, such an approach requires access to the underlying
equations to identify equivalence classes, which our data-driven, Koopman based framework does not
[67, 68]. Work concurrent to ours has leveraged a similar approach to study the dynamics of recurrent
neural networks [69]. However, Ostrow et al. (2023) [69] studied the dynamics of the activations and
not the dynamics of network parameters, which is the focus of this paper.

Limitations. Numerical implementations that compute the KMD are only approximations to the
action of the true Koopman operator. As such, they are subject to the same difficulties as other data-
driven approaches. These include the selection of hyper-parameters associated with the construction
of the Koopman operator, the choice of observable functions, and the number of modes considered.
To mitigate the effect these limitations might have on our analysis, we used DMD-RRR, a state-of-
the-art numerical approach for KMD [53], and time-delayed observables, which have been found
to provide robust results across a range of domains [44, 45, 51]. Determining the existence of a
topological conjugacy between two dynamical systems requires assessing whether their associated
Koopman eigenvalues are sufficiently similar. While in some cases this is clear (e.g. identical
Koopman eigenvalues associated with optimization using OMD and OGD – Fig. 2, distinct Koopman
eigenvalues associated with training LeNet and ResNet-20 – Fig. 4), in other cases it is less apparent.
To quantify these differences, we made use of the Wasserstein distance and attempted to compute
significance with a randomized shuffle control. While a natural choice, additional work remains to
connect the magnitude of the Wasserstein distance to the divergence of the dynamical properties
associated with training DNN models.

Future directions. The ability of our Koopman-based approach to identify conjugacies between
iterative optimization algorithms suggests its potential for data-driven discovery and generation of
new classes of algorithms [70, 71, 72]. By identifying equivalent training dynamics of DNNs, it may
be possible to use our approach for learning mappings that transform one DNN model to another
[73]. Finally, the characterization of the Koopman eigenvalues associated with training a wide range
of DNN models varying in architecture, optimization hyper-parameters, and initialization will enable
a detailed understanding of how these properties shape DNN training. Leveraging this understanding
may lead to improved methods for DNN training and model development.

10

Acknowledgments

We thank members of AIMdyn Inc., Mitchell Ostrow, Adam Eisen, Ila Fiete, and members of the Fiete
Group for helpful discussion surrounding this work. We thank the anonymous NeurIPS reviewers for
their thorough and detailed feedback, which strengthened or work. This material is based upon work
supported by the Air Force Office of Scientific Research under award number FA9550-22-1-0531.

References
[1] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization

in neural networks. Advances in neural information processing systems, 31, 2018.

[2] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein,
and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under gradient descent.
Advances in neural information processing systems, 32, 2019.

[3] Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754, 2018.

[4] Jonathan Brokman, Roy Betser, Rotem Turjeman, Tom Berkov, Ido Cohen, and Guy Gilboa. Enhancing
neural training via a correlated dynamics model. In The Twelfth International Conference on Learning
Representations, 2024.

[5] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in neural information processing systems, 32, 2019.

[6] Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan, Daniel
Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In Conference on
Learning Theory, pages 3635–3673. PMLR, 2020.

[7] Nisha Chandramoorthy, Andreas Loukas, Khashayar Gatmiry, and Stefanie Jegelka. On the generalization
of learning algorithms that do not converge. Advances in Neural Information Processing Systems, 35:34241–
34257, 2022.

[8] Daniel Kunin, Javier Sagastuy-Brena, Lauren Gillespie, Eshed Margalit, Hidenori Tanaka, Surya Ganguli,
and Daniel LK Yamins. The limiting dynamics of sgd: Modified loss, phase-space oscillations, and
anomalous diffusion. Neural Computation, 36(1):151–174, 2023.

[9] Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep networks. In
International Conference on Learning Representations, 2019.

[10] Julian Zilly, Alessandro Achille, Andrea Censi, and Emilio Frazzoli. On plasticity, invariance, and
mutually frozen weights in sequential task learning. Advances in Neural Information Processing Systems,
34:12386–12399, 2021.

[11] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode connectivity
and the lottery ticket hypothesis. In International Conference on Machine Learning, pages 3259–3269.
PMLR, 2020.

[12] Kenneth G Wilson. The renormalization group and critical phenomena. Reviews of Modern Physics,
55(3):583, 1983.

[13] John Guckenheimer and Philip Holmes. Nonlinear oscillations, dynamical systems, and bifurcations of
vector fields, volume 42. Springer Science & Business Media, 2013.

[14] N David Mermin. The topological theory of defects in ordered media. Reviews of Modern Physics,
51(3):591, 1979.

[15] Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In Advanced
Neural Computers, pages 129–135. Elsevier, 1990.

[16] Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation invariance
in linear mode connectivity of neural networks. In International Conference on Learning Representations,
2022.

[17] Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo
permutation symmetries. In The Eleventh International Conference on Learning Representations, 2023.

11

[18] Stephen Wiggins. Introduction to applied nonlinear dynamical systems and Chaos. Springer, 1996.

[19] Joseph D Skufca and Erik M Bollt. A concept of homeomorphic defect for defining mostly conjugate
dynamical systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(1), 2008.

[20] Bernard O Koopman. Hamiltonian systems and transformation in hilbert space. Proceedings of the
National Academy of Sciences, 17(5):315–318, 1931.

[21] Igor Mezić. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear
Dynamics, 41:309–325, 2005.

[22] Marko Budišić, Ryan Mohr, and Igor Mezić. Applied koopmanism. Chaos: An Interdisciplinary Journal
of Nonlinear Science, 22(4), 2012.

[23] Igor Mezić. Spectrum of the koopman operator, spectral expansions in functional spaces, and state-space
geometry. Journal of Nonlinear Science, 30(5):2091–2145, 2020.

[24] Ehsan Amid and Manfred KK Warmuth. Reparameterizing mirror descent as gradient descent. Advances
in Neural Information Processing Systems, 33:8430–8439, 2020.

[25] Ehsan Amid and Manfred K Warmuth. Winnowing with gradient descent. In Conference on Learning
Theory, pages 163–182. PMLR, 2020.

[26] Udaya Ghai, Zhou Lu, and Elad Hazan. Non-convex online learning via algorithmic equivalence. Advances
in Neural Information Processing Systems, 35:22161–22172, 2022.

[27] Jonathan Frankle, David J. Schwab, and Ari S. Morcos. The early phase of neural network training. In
International Conference on Learning Representations, 2020.

[28] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Generalization
beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177, 2022.

[29] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. In The Eleventh International Conference on Learning
Representations, 2022.

[30] David Saad and Sara A Solla. Exact solution for on-line learning in multilayer neural networks. Physical
Review Letters, 74(21):4337, 1995.

[31] Sebastian Goldt, Madhu Advani, Andrew M Saxe, Florent Krzakala, and Lenka Zdeborová. Dynamics of
stochastic gradient descent for two-layer neural networks in the teacher-student setup. Advances in neural
information processing systems, 32, 2019.

[32] Akshunna S Dogra and William T Redman. Optimizing neural networks via koopman operator theory.
Advances in Neural Information Processing Systems, 33:2087–2097, 2020.

[33] Mauricio E Tano, Gavin D Portwood, and Jean C Ragusa. Accelerating training in artificial neural networks
with dynamic mode decomposition. arXiv preprint arXiv:2006.14371, 2020.

[34] Di Luo, Jiayu Shen, Rumen Dangovski, and Marin Soljacic. Quack: Accelerating gradient-based quantum
optimization with koopman operator learning. Advances in Neural Information Processing Systems, 36,
2024.

[35] Petr Šimánek, Daniel Vašata, and Pavel Kordík. Learning to optimize with dynamic mode decomposition.
In 2022 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2022.

[36] Ryuichiro Hataya and Yoshinobu Kawahara. Glocal hypergradient estimation with koopman operator.
arXiv preprint arXiv:2402.02741, 2024.

[37] Ryan Mohr, Maria Fonoberova, Iva Manojlovic, Aleksandr Andrejcuk, Zlatko Drmac, Yannis G Kevrekidis,
and Igor Mezic. Applications of koopman mode analysis to neural networks. In AAAI Spring Symposium:
MLPS, 2021.

[38] William T Redman, Maria Fonoberova, Ryan Mohr, Yannis Kevrekidis, and Igor Mezic. An operator
theoretic view on pruning deep neural networks. In International Conference on Learning Representations,
2022.

[39] Fanqi Wang, Landon Harris, Weisheng Tang, Hairong Qi, Dan Wilson, and Igor Mezic. Dynamic training
guided by training dynamics. 2023.

12

[40] Alexandre Mauroy, Igor Mezić, and Jeff Moehlis. Isostables, isochrons, and koopman spectrum for the
action–angle representation of stable fixed point dynamics. Physica D: Nonlinear Phenomena, 261:19–30,
2013.

[41] Liu Ziyin. Symmetry leads to structured constraint of learning. arXiv preprint arXiv:2309.16932, 2023.

[42] Nelida Črnjarić-Žic, Senka Maćešić, and Igor Mezić. Koopman operator spectrum for random dynamical
systems. Journal of Nonlinear Science, 30:2007–2056, 2020.

[43] Bingni W Brunton, Lise A Johnson, Jeffrey G Ojemann, and J Nathan Kutz. Extracting spatial–temporal
coherent patterns in large-scale neural recordings using dynamic mode decomposition. Journal of neuro-
science methods, 258:1–15, 2016.

[44] Steven L Brunton, Bingni W Brunton, Joshua L Proctor, Eurika Kaiser, and J Nathan Kutz. Chaos as an
intermittently forced linear system. Nature communications, 8(1):19, 2017.

[45] Allan M Avila and Igor Mezić. Data-driven analysis and forecasting of highway traffic dynamics. Nature
Communications, 11(1):1–16, 2020.

[46] James Hogg, Maria Fonoberova, and Igor Mezić. Exponentially decaying modes and long-term prediction
of sea ice concentration using koopman mode decomposition. Scientific reports, 10(1):16313, 2020.

[47] Igor Mezić, Zlatko Drmač, Nelida Črnjarić, Senka Maćešić, Maria Fonoberova, Ryan Mohr, Allan M
Avila, Iva Manojlović, and Aleksandr Andrejčuk. A koopman operator-based prediction algorithm and its
application to covid-19 pandemic and influenza cases. Scientific reports, 14(1):5788, 2024.

[48] Peter J Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of fluid
mechanics, 656:5–28, 2010.

[49] Clarence W Rowley, Igor Mezić, Shervin Bagheri, Philipp Schlatter, and Dan S Henningson. Spectral
analysis of nonlinear flows. Journal of fluid mechanics, 641:115–127, 2009.

[50] Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–driven approximation of the
koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science, 25:1307–1346,
2015.

[51] Hassan Arbabi and Igor Mezic. Ergodic theory, dynamic mode decomposition, and computation of spectral
properties of the koopman operator. SIAM Journal on Applied Dynamical Systems, 16(4):2096–2126,
2017.

[52] Travis Askham and J Nathan Kutz. Variable projection methods for an optimized dynamic mode decompo-
sition. SIAM Journal on Applied Dynamical Systems, 17(1):380–416, 2018.

[53] Zlatko Drmac, Igor Mezic, and Ryan Mohr. Data driven modal decompositions: analysis and enhancements.
SIAM Journal on Scientific Computing, 40(4):A2253–A2285, 2018.

[54] Matthew J Colbrook and Alex Townsend. Rigorous data-driven computation of spectral properties of
koopman operators for dynamical systems. Communications on Pure and Applied Mathematics, 77(1):221–
283, 2024.

[55] Floris Takens. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick
1980: proceedings of a symposium held at the University of Warwick 1979/80, pages 366–381. Springer,
2006.

[56] Allan M Avila and Igor Mezić. Spectral properties of pullback operators on vector bundles of a dynamical
system. SIAM Journal on Applied Dynamical Systems, 22(4):3059–3092, 2023.

[57] Leonid V Kantorovich. Mathematical methods of organizing and planning production. Management
science, 6(4):366–422, 1960.

[58] Leonid Nisonovich Vaserstein. Markov processes over denumerable products of spaces, describing large
systems of automata. Problemy Peredachi Informatsii, 5(3):64–72, 1969.

[59] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

[60] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

13

[61] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[62] Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data. In The
Eleventh International Conference on Learning Representations, 2022.

[63] Gouki Minegishi, Yusuke Iwasawa, and Yutaka Matsuo. Grokking tickets: Lottery tickets accelerate
grokking. arXiv preprint arXiv:2310.19470, 2023.

[64] Pascal Notsawo Jr, Hattie Zhou, Mohammad Pezeshki, Irina Rish, Guillaume Dumas, et al. Predicting
grokking long before it happens: A look into the loss landscape of models which grok. arXiv preprint
arXiv:2306.13253, 2023.

[65] Laurent Lessard, Benjamin Recht, and Andrew Packard. Analysis and design of optimization algorithms
via integral quadratic constraints. SIAM Journal on Optimization, 26(1):57–95, 2016.

[66] Shipu Zhao, Laurent Lessard, and Madeleine Udell. An automatic system to detect equivalence between
iterative algorithms. arXiv preprint arXiv:2105.04684, 2021.

[67] Felix Dietrich, Thomas N Thiem, and Ioannis G Kevrekidis. On the koopman operator of algorithms.
SIAM Journal on Applied Dynamical Systems, 19(2):860–885, 2020.

[68] William T Redman, Maria Fonoberova, Ryan Mohr, Ioannis G Kevrekidis, and Igor Mezić. Algorithmic
(semi-) conjugacy via koopman operator theory. In 2022 IEEE 61st Conference on Decision and Control
(CDC), pages 6006–6011. IEEE, 2022.

[69] Mitchell Ostrow, Adam Eisen, Leo Kozachkov, and Ila Fiete. Beyond geometry: Comparing the temporal
structure of computation in neural circuits with dynamical similarity analysis. Advances in Neural
Information Processing Systems, 36, 2024.

[70] Alexander Mitsos, Jaromił Najman, and Ioannis G Kevrekidis. Optimal deterministic algorithm generation.
Journal of Global Optimization, 71:891–913, 2018.

[71] Yue Guo, Felix Dietrich, Tom Bertalan, Danimir T Doncevic, Manuel Dahmen, Ioannis G Kevrekidis, and
Qianxiao Li. Personalized algorithm generation: A case study in learning ode integrators. SIAM Journal
on Scientific Computing, 44(4):A1911–A1933, 2022.

[72] Danimir T Doncevic, Alexander Mitsos, Yue Guo, Qianxiao Li, Felix Dietrich, Manuel Dahmen, and
Ioannis G Kevrekidis. A recursively recurrent neural network (r2n2) architecture for learning iterative
algorithms. SIAM Journal on Scientific Computing, 46(2):A719–A743, 2024.

[73] Tom Bertalan, Felix Dietrich, and Ioannis G Kevrekidis. Transformations between deep neural networks.
arXiv preprint arXiv:2007.05646, 2020.

[74] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of neural
network pruning? Proceedings of machine learning and systems, 2:129–146, 2020.

14

A Online mirror and online gradient descent

A.1 Conjugacy between OMD and OGD

Here we outline the conjugacy between Online Mirror Descent (OMD) and Online Gradient Descent (OGD).
We follow the notation and framing presented in Ghai et al. (2022) [26].

Let K be a convex set. OMD is applied to find a minimum of the function f on K, subject to a convex regularizer
R. For each iteration of OMD, the state of the algorithm (initialized at x(0) ∈ K), is updated by performing
(∇R)−1 (∇R[x(t)]− η∇f [x(t)]), where η is the learning rate. Because this step may not be in K, the Bregman
projection operator, ΠR

K(x) = arg miny∈KDR(y||x), is used. OGD, on the other hand, is applied to a (possibly)
non-convex set K′ and a (possibly) non-convex function f̃ . As with OMD, each iteration of OGD involves
updating the state (initialized at u(0) ∈ K′) and projecting the update back into the set K′. In this case, the
update is u(t) − η∇f̃ [u(t)], where again η is the learning rate and the projection is done via the Euclidean
projection operator, ΠK′(x) (see Algorithms 1 and 2 for pseudocode implementations of both algorithms).
When ∇f̃ [u(t)] = ∇f(q[u(t)]) and K′ = q−1(K), the outputs of the two algorithms are equivalent via the
mapping q (i.e., q is the topological conjugacy or reparameterization). A key theorem of [25] showed that, in
continuous-time, if x(t) = q([u(t)]), then ∂u

∂t
= −η∇f(q[u(t)]) [26].

Algorithm 1 Online Mirror Descent [26]
0: Input: x(0) ∈ K, R, η, f
0: for t = 0, ..., T − 1 do
0: y(t+1) = (∇R)−1(∇R[x(t)]−η∇f [x(t)])
0: x(t+ 1) = ΠR

K[y(t+ 1)]

Algorithm 2 Online Gradient Descent [26]
0: Input: u(0) ∈ K′, η, f̃
0: for t = 0, ..., T − 1 do
0: v(t+ 1) = u(t)− η∇f̃ [u(t)]
0: u(t+ 1) = ΠK′ [v(t+ 1)]

A.2 Bisection method

Let K′′ = [c, d]d where f(c) < 0, f(d) > 0, and there exists only one z∗ ∈ [c, d]d s.t f(z∗) = 0d. Let
a(0), b(0) ∈ K′′ s.t. f [a(0)] < 0 and f [b(0)] > 0. Define z(t) = [a(t) + b(t)]/2. For each iteration of the
Bisection Method (BM), if f [z(t)] < 0, then [a(t), b(t)] is updated to [z(t), b(t)]. Otherwise [a(t), b(t)] is
updated to [a(t), z(t)] (see Algorithm 3 for pseudocode implementation).

Because not one but three variables are being updated at each iteration of the BM, [a(t), b(t), z(t)], the BM
can exhibit several distinct properties from OMD and OGD. First, how much the updated z(t+ 1) differs from
z(t) depends on a(t) and b(t). Thus, ||z(t+ 1)− z(t)||2 can be much larger than the steps OMD and OGD
takes. This global property enables it to escape local minima that OMD/OGD get stuck in, but can also lead to
increases in loss. This behavior can be seen in Fig. 2B. Second, because f [a(t)] < 0 < f [b(t)] and because
z(t+ 1) is either a(t) or b(t), the outputs of the BM [i.e., z(t)] can flip sign. This kind of oscillatory behavior
can be seen in Fig. 2A. This would not happen with OMD or OGD, assuming a sufficiently small learning rate.
For these reasons, we expect that the bisection method is not conjugate to OMD or OGD. The distinct Koopman
spectra (Fig. 2C) demonstrate that our framework properly identifies this non-conjugacy.

Algorithm 3 Bisection Method
0: Input: f, a(0) ∈ K′′, b(0) ∈ K′′ s.t. f [a(0)] < 0 < f [a(b)]
0: for t = 0, ..., T − 1 do
0: z(t) = [a(t) + b(t)]/2
0: if f [z(t)] < 0 then
0: a(t+ 1) = z(t)
0: b(t+ 1) = b(t)
0: else
0: a(t+ 1) = a(t)
0: b(t+ 1) = z(t)

A.3 Numerical experiments

To validate that the numerically computed Koopman eigenvalues, corresponding to OMD and OGD applied to
specific problems, encode sufficient information to correctly identify the conjugacy, we chose to test them on the
example of log barrier regularization with exponential reparameterization, as presented in Ghai et al. (2022) [26].
In particular, we set R = −

∑d
i=1 log(xi), K = [0.01, 1.0]d, K′ = [−4.6, 0.0]d, and K′′ = [−4/3, 8/7]d

(with d = 2), and q(u) = exp(u). This is an example of a nonlinear conjugacy.

15

Figure S1: Conjugacy between online mirror descent and online gradient descent is identifiable from
Koopman spectra. (A) Comparing example trajectories of variables optimized via OMD (x1, x2) and OGD
(u1, u2), the existence of a conjugacy is not obvious. (B) Similarly, the existence of a conjugacy is not apparent
when looking at the loss incurred by using OMD and OGD. (C) Comparing the Koopman eigenvalues associated
with optimizing using OMD and OGD correctly identifies the existence of a conjugacy. The function optimized
is in all subfigures is f(x) =

∑
x4. Note that the BM was not used in this figure as f(x) is symmetric around

its minimum, which does not satisfy the assumption that f(a) < 0.

We applied OMD and OGD on f =
∑d

i=1 x
4
i (Fig. S1) and f =

∑d
i=1 tan(xi) (Fig. 2), for

T = 100 time steps, with a learning rate of η = 0.01. We evolved 25 initial conditions, with x(0) ∈
{0.1, 0.3, 0.5, 0.7, 0.9} × {0.1, 0.3, 0.5, 0.7, 0.9} and u(0) ∈ {−2.30,−1.75,−1.20,−0.65,−0.10} ×
{−2.30,−1.75,−1.20,−0.65,−0.10}. When we used the BM (Fig. 2), we sampled 25 initial conditions,
with a(0) ∈ {−16/12,−13/12,−10/12,−7/12,−4/12} × {−16/12,−13/12,−10/12,−7/12,−4/12}
and b(0) ∈ {1/7, 0.393, 0.643, 0.893, 8/7} × {1/7, 0.393, 0.643, 0.893, 8/7}. Note that, for simplic-
ity, we consider each a(0) and b(0) only once (leaving 25 initial conditions). Using the resulting tra-
jectories, we computed the KMD (see Appendix A.4). All experiments were run on a MacBook Air
with an Apple M1 chip, 1 CPU, and no GPUs. Code implementing our experiments can be found at
https://github.com/william-redman/Identifying_Equivalent_Training_Dynamics.

A.4 Computing the Koopman mode decomposition

To compute the KMD associated with optimization using OMD and OGD on f(x) =
∑d

i=1 tan(xi) (Fig.
2) and f(x) =

∑d
i=1 x

4
i (Fig. S1), we saved the values of x(t) and u(t) across the T = 100 training steps.

These were concatenated into tensors X,U ∈ R2×100×25. Four time-delays [44, 45, 51] were applied, and
the resulting tensors were flattened along the last dimension. This led to matrices ZX , ZU ∈ R10×2375. We
applied DMD-RRR [53] on these matrices to compute the Koopman eigenvalues. The same approach was used
to compute the KMD associated with optimization via BM.

B Randomized shuffle control

While the Wasserstein distance gives a natural way to quantify how similar the Koopman spectra associated
with two dynamical systems are, it remains an open question on how to best interpret the magnitude of the
computed distance. In particular, if Λ(1) = {λ(1)

1 , ..., λ
(1)
N } and Λ(2) = {λ(2)

1 , ..., λ
(2)
N }, what value of the

Wasserstein distance ω = W2

(
Λ(1),Λ(2)

)
is “sufficiently small” enough that we can confidently conclude the

two dynamical systems are topologically conjugate?

To help increase the transparency and interpretability of our results, we develop a randomized shuffle control
to act as a baseline to assess how significantly distinct Λ(1) and Λ(2) are. In particular, by comparing ω to
a distribution of Wasserstein distances computed from randomly shuffling Λ(1) and Λ(2), we may estimate
whether the true Koopman eigenvalues are more or less “distant” than would be expected by chance.

One challenge that emerges in creating a good randomized shuffle control is the fact that the Koopman eigenvalues
correspond to dynamical properties of the underlying system (e.g., decay rates, oscillations, fixed points).
Therefore, if we take the naive approach and randomly assign half of Λ = {Λ(1),Λ(2)} to Λ′(1) and the other
half to Λ′(2), then Λ′(1) and Λ′(2) could be “non-natural”, having only slow or fast decays modes, no fixed
points, etc. In such a case, we expect ω < ω′ = W2

(
Λ(1),Λ(2)

)
in general. This makes the naive approach a

poor baseline.

16

To attempt to construct a stronger and more informative baseline, we randomly assign eigenvalues to Λ′(1)

and Λ′(2) in the following manner. First, by computing W2

(
Λ(1),Λ(2)

)
we identify the “assignment” σ :

{1, ..., N} → {1, ..., N} that maps the order of Λ(2) to be as close to Λ(1) as possible. In particular, σ is defined
as

min
σ

N∑
i=1

||λ(1)
i − λ

(1)

σ(i)||2. (8)

To generate the shuffled eigenvalues, we then place λ
(1)
i in Λ′(1) with 50% probability and in Λ′(2) with 50%

probability. The eigenvalue in Λ(2) that is closest to λ
(1)
i via the assignment σ [i.e., λ(2)

σ(i)] is then placed in

whichever Λ′(1) or Λ′(2) that λ(1)
i is not. Performing nshuff = 100 shuffles, we get a distribution of Wasserstein

distances between the shuffled eigenvalues, {ω′
1, ..., ω

′
nshuff}. We report the number of shuffles that have a

Wasserstein distance greater than or equal to ω. In the case where the two sets of Koopman eigenvalues
are highly distinct, we expect there to be few shuffles that satisfy ω′ ≥ ω. In contrast, when the Koopman
eigenvalues are highly overlapping, we expect there to be more shuffles that satisfy ω′ ≥ ω. For this reason, we
report the percent of shuffles with ω′ ≥ ω in the main text.

This approach to defining the randomized shuffle control has two useful properties. First, Λ′(1) and Λ′(2) have
as similar magnitudes of eigenvalues to Λ(1) and Λ(2) as possible. And second, if λ(1)

i and λ
(1)
i+1 are complex

conjugate pair of eigenvalues, whose closest matches are λ
(2)

σ(i) and λ
(2)

σ(i+1) that are real only, then the complex

conjugate pair can be “split” when creating Λ′(1) and Λ′(2). This can lead to ω′ < ω. Thus, there is a “penalty”
when the number of complex conjugate eigenvalues does not match between Λ(1) and Λ(2).

We note that this randomized shuffle control is not a perfect construct and represents one possible way of gener-
ating significance. We hope that future work will enable rigorous comparison between Koopman eigenvalues by
developing computation schemes for estimating how much two dynamical systems diverge given the differences
in their approximate spectra.

C Fully connected neural networks

C.1 Training experiment details

FCNs with only a single hidden layer are trained on MNIST, for one epoch, using SGD. Training was performed
using PyTorch. All hyper-parameters used for training are presented in Table S1. All experiments were run on a
MacBook Air with an Apple M1 chip, 1 CPU, and no GPUs. Code implementing our experiments can be found
at https://github.com/william-redman/Identifying_Equivalent_Training_Dynamics.

Hyper-parameters Values
Learning rate (η) 0.1

Batch size (b) 60
Optimizer SGD

Epochs 1
Activation function ReLU

Table S1: Hyper-parameters used for FCN training in Sec. 4.2.

C.2 Computing the Koopman mode decomposition

A challenge in computing the KMD associated with training FCNs is that, in order to accurately approximate
the Koopman eigenvalues, multiple trajectories must be sampled. However, given that FCNs (and other DNN
models) can have loss landscapes with multiple local minima, training from different random initializations can
lead to different trajectories with different dynamical properties. To address this, we perform the following three
steps:

• We randomly sample an initialization for the network input and output weights. We use the standard
PyTorch initialization scheme, with weights being uniformly sampled in [−

√
k,

√
k], where k is the

number of input features. We denote this initialization by W0. We then train the FCN, from W0, for a
full epoch.

• We sample another ns − 1 initializations of the FCN, for ns ∈ N. Instead of randomly sampling
a new set of parameters, we consider a perturbation of W0. Namely, W0[1 + εN (0, 1)], where
N (0, 1) is a Gaussian distribution with zero mean and unit variance. The FCNs were then trained

17

from these initializations, using the same batch order as the one used to train the FCN from W0. In
our experiments, we set ns = 10 and ε = 0.001. To investigate whether training from the perturbed
initialization did indeed lead to dynamics that were in the same basin of attraction as training from
W0, we computed the ratio of their end test loss with the end test loss of the network initialized at W0.
We find that the ratio is centered around 1 (Fig. S2), providing evidence for that the training dynamics
are restricted to the basin of attraction of the same local minimum.

• We repeated the steps above nn − 1 times, for nn ∈ N. The weight evolutions, from each set of
networks, were saved separately and the KMD was computed on each one independently. In our
experiments, we set nn = 25.

Figure S2: Perturbing network weights leads to similar loss relative to original model. To evaluate whether
training the FCN from the perturbed initialization led to trajectories that lay within the same basin of attraction
as the unperturbed initialization, we compute the relative test loss (test loss for perturbed initialization divided
by test loss for unperturbed initialization). For all FCN widths, we see that the distribution of relative test
loss is peaked at 1, demonstrating that the perturbed FCNs converge to a similar test loss as the unperturbed
initialization. This provides evidence that the trajectories lie in the same local minimum basin.

To compute the KMD, we considered as observables the weights from the hidden layer to the output layer. This
choice was made because: 1) the values of these weights determine the weight evolution of the earlier layers
(due to backprop); 2) there are fewer weights from the hidden layer to the output layer, than there are from
the input layer to the hidden layer, enabling our approach to be more computationally tractable. To enrich our
observables, we considered time-delays [44, 45, 51]. Because we considered FCNs of differing width, using the
same number of time-delays leads to matrices of different dimension. Therefore, we fixed the ratio of d (number
of time-delays) to h (the number of units in the hidden layer), setting d = 64 for FCNs with h = 5, d = 32 for
FCNs with h = 10, and d = 8 for FCNs with h = 40.

We applied DMD-RRR [53] on these time-delayed observables. When principal component analysis (PCA) was
performed on these observables, it was found that a lower-dimensional subspace contained a large percentage of
the variance. This is in-line with previous work finding the weights of DNNs traverse low dimensional subspaces
[3]. Therefore, we considered only the top 10 Koopman modes, using a reduced singular value decomposition
(SVD).

C.3 GeLU FCNs

To understand how robust our conclusion that shallow and wide FCNs have non-conjugate training dynamics
is, we perform the same Koopman-based analysis on FCNs with GeLU activation functions [59]. Given the
similarity between ReLU and GeLU, we expect that they should have similar training dynamics behavior.
Computing the Koopman eigenvalues and comparing across FCNs of varying widths, we find very similar results
(compare Fig. S3 with Fig. 3). This demonstrates that our Koopman based framework is robust to (minor)
hyper-parameter differences. A full examination of how other choices of activation function (especially those
that introduce “squashing” – e.g., sigmoid) impact the training dynamics would be an interesting future direction
to pursue.

C.4 Conjugate training dynamics across random initializations of FCNs

Motivated by recent work arguing that different random initializations of DNNs converge to solutions with no
loss barrier in the linear interpolation between them [16], when taking into account the inherent permutation
symmetry of the parameters, we asked whether our Koopman-based framework identified conjugate training
dynamics for different initialized FCNs. We examine how similar the Koopman spectra for all 25 independently
trained FCNs of width h = 40 are. We chose this because Entezari et al. (2022) [16] proved their result for
sufficiently wide FCNs, but sufficiently narrow FCNs exhibited a loss barrier along the linear interpolation, when

18

Figure S3: Narrow and wide fully connected neural networks have non-conjugate training dynamics
when using GeLU activation functions. Same as Fig. 3D–F in the main text, but for FCNs using GeLU
activation functions. Error bars are ± standard deviation across 10 independently trained FCNs.

Figure S4: Conjugate training dynamics across random initializations of FCNs. (A) Example Koopman
spectra associated with training FCNs, h = 40, from two different random seeds. (B) Distribution of Wasserstein
distance between the Koopman spectra of all possible pairs of 25 independently trained FCNs.

permutation symmetry was not taken into account [16]. Our h = 40 FCNs strike a balance between these two
points, making it a good point for analysis.

We find examples of different random initializations with nearly identical Koopman spectra (Fig. S4A). Across
all possible pairs of the 25 independently trained FCNs, we find that the Wasserstein distance between Koopman
spectra is centered around values similar to what was seen when comparing h = 10 and h = 40 FCNs. These
results support the hypothesis that, when taking into account permutation symmetry (which computation of the
Koopman eigenvalues naturally does), at least some random initializations have conjugate training dynamics.

D Convolutional neural network training phases

D.1 Training experiment details

LeNet [60] and ResNet-20 [61] models were trained on MNIST and CIFAR-10 (respectively), for 20 epochs.
Training was performed using the ShrinkBench framework [74], which makes use of PyTorch. The open source
code can be found here: https://github.com/JJGO/shrinkbench/tree/master. All hyper-parameters
used for training are presented in Table S2. They were chosen to be the same between the two architectures
to make the comparison between the two fair and were selected to match the hyper-parameters that were
previously used to study LeNet’s training dynamics [11]. Three independent seeds were trained (nn = 3),
each of which was initialized from 10 perturbed initializations (ns = 10). All experiments were run on a
MacBook Air with an Apple M1 chip, 1 CPU, and no GPUs. Code implementing our experiments can be found
at https://github.com/william-redman/Identifying_Equivalent_Training_Dynamics.

D.2 Computing Koopman mode decomposition

As with the FCNs (Sec. C.2), the observables used to construct the Koopman operator were time-delays of the
weights going from the last hidden layer to the output layer. Eight time-delays, d = 8, were used and the top 10
Koopman modes were considered, based on a reduced SVD. The appropriateness of this was again verified by
examining the amount of variance captured by the first 10 principal components.

19

Hyper-parameters Value
Learning rate (η) 0.0012

Batch size (b) 60
Optimizer Adam

Epochs 20
Activation function ReLU

Table S2: Hyper-parameters used for CNN training in Sec. 4.3.

Figure S5: Koopman-based framework enables identification of transitions in dynamics across the
training of LeNet and ResNet-20. (A)–(B) Same as Fig. 4A–B, but for dynamics computed over individual
epochs.

D.3 Evaluating CNN training phases at a coarser timescale

In addition to studying the earliest part of CNN training, which was the focus of previous work [27], we examined
how CNN training dynamics evolved across the first 20 epochs of training. To reduce the computational cost
associated with computing and comparing Koopman spectra, we computed the Koopman mode decomposition
across all training iterations within a single epoch.

At this coarser timescale, we find that LeNet, trained on MNIST, and ResNet-20, trained on CIFAR-10, exhibit
very similar evolutions in training dynamics (Fig. S5). Indeed, both see a continual reduction in Wasserstein
distance between neighboring epochs as training time goes on. Interestingly, in both cases, there is a growing
block diagonal of dark blue, that becomes especially strong at training epoch 13. This supports the general
similarity in the evolution of training dynamics between different CNN architectures, as was previously observed
[27].

E Transformer grokking

E.1 Training experiment details

Single hidden layer Transformers, with four attention heads, were trained on modular arithmetic us-
ing open source code [62]: https://github.com/KindXiaoming/Omnigrok/tree/main. As noted
in the repository, this is a modified version of previously developed code [29]. We keep all hyper-
parameters the same. Therefore, we refer the interested reader to the details presented in the repos-
itory and related papers. 20 independent seeds were trained (nn = 20), each of which was ini-
tialized from 10 perturbed initializations (ns = 10). All experiments were run on a MacBook Air
with an Apple M1 chip, 1 CPU, and no GPUs. Code implementing our experiments can be found at
https://github.com/william-redman/Identifying_Equivalent_Training_Dynamics.

E.2 Computing Koopman mode decomposition

As with the FCNs (Appendix C.2) and CNNs (Appendix D.2), we use as observables time-delays of the weights
from the last hidden layer to the output. d = 32 time-delays were used. Because the number of weights was
> 65000, before performing the time-delays and flattening the tensor that stored all the weights, we performed
dimensionality reduction. This was achieved by applying PCA to the flattened tensor that contained all weights
(without time-delays), and then projecting the weight trajectories corresponding to the training of each perturbed
initialization onto the top 10 principal components. These dimensionally reduced weights were then time-delayed
and used to construct the KMD. The top 10 Koopman modes were considered, based on a reduced SVD. The

20

Figure S6: Distinct Koopman eigenvalues between Transformers that do and do not undergo grokking is
consistent when considering windows of training time that have more similar training loss. (A) As in Fig.
5C, we train Transformers with unconstrained weight norm for T = 100 (thin vertical black line) iterations and
use the associated weight trajectories to approximate the KMD. In contrast, here we train Transformers with
constrained weight norm for T = 200 iterations (thin vertical red line) and use the associated weight trajectories
to approximate the KMD. This enables the two networks to reach more comparable (although not perfectly
matching) training losses. Lines are mean across 20 indepedently trained Transformers and shaded area is ±
one standard deviation. (B) Same as Fig. 5D, but with the Koopman eigenvalues associated with training the
constrained Transformer for T = 200 iterations.

appropriateness of this was again verified by examining the amount of variance captured by the first 10 principal
components.

We found in Sec. 4.4 that the Transformers trained with constrained weight norm (that do not undergo grokking)
have non-conjugate dynamics with the Transformers trained with unconstrained weight norm (that do undergo
grokking). To ensure that this was not due to the fact that training loss over the window of training time used
for computing the Koopman eigenvalues (the first T = 100 training iterations) was distinct between the two
Transformers, we performed the following control experiment. Namely, we performed the same analysis, but we
considered the weight trajectories of Transformers with constrained weight norm over twice as long a training
time interval (T = 200). In this case, the constrained Transformer reaches a training loss that is closer to that of
the unconstrained Transformer (Fig. S6A – compare solid red and black lines), although there is more variability
between independent seeds (Fig. S6A – shaded red area). However, in this case we again find that the Koopman
eigenvalues associated with unconstrained and constrained training are distinct (Fig. S6B). In particular, the
constrained Transformer again has a pair of complex conjugate Koopman eigenvalues that lie along the unit
circle, while the unconstrained Transformer has a pair of complex conjugate Koopman eigenvalues outside of
the unit circle. This suggests distinct stability properties, and further emphasizes the absence of a conjugacy.

21

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction are grounded in experimental results discussed
in detail in Sec. 4 and Figs. 2–5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the developed framework at discussed in the Limitations subsection in
Sec. 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: No new theoretical results were achieved. References are made to relevant work that
proved theorems that are used.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

22

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Details on all the numerical experiments, DNN training, and computation of KMD are
reported in the corresponding sections of the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The Github repository where our code is available is referenced in the Appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: In Appendix A.3, the parameters used for numerically evaluating online mirror descent
and online gradient are reported. In Tables S1–S2, the hyper-parameters used for training FCNs and
CNNs are reported. In Appendix E.1, the code used for training is linked. As no changes were made
to the code, this serves as a direct way to identify all training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: All error bars in figures are described and the statistical test performed in Fig. 3 is
reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: The computing resource used for all experiments is reported in the corresponding
Appendix subsections.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Potential harm and negative societal impact were mitigated.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: There is no significant negative societal impact of this work. The positive societal impact
of this work was discussed in Secs. 1, 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

25

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Open source code that was used for training and developing upon is cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: The Github repository where general code for identifying conjugate training dynamics is
available is referenced in the Appendix.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing nor research with human subjects was performed.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

26

paperswithcode.com/datasets

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: No human or animal work was performed in this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

27

	Introduction
	Related work
	Identification of DNN training dynamics phenomena
	Koopman operator theory applied to DNN training

	Identifying equivalent training dynamics
	Topological conjugacy
	Koopman mode decomposition
	Equivalent Koopman spectra implies topological conjugacy

	Results
	Identifying conjugate optimizers
	Identifying the effect of width on fully connected neural network training
	Identifying dynamical transitions in convolutional neural network training
	Identifying non-conjugate training dynamics for Transformers that do and do not grok

	Discussion
	Online mirror and online gradient descent
	Conjugacy between OMD and OGD
	Bisection method
	Numerical experiments
	Computing the Koopman mode decomposition

	Randomized shuffle control
	Fully connected neural networks
	Training experiment details
	Computing the Koopman mode decomposition
	GeLU FCNs
	Conjugate training dynamics across random initializations of FCNs

	Convolutional neural network training phases
	Training experiment details
	Computing Koopman mode decomposition
	Evaluating CNN training phases at a coarser timescale

	Transformer grokking
	Training experiment details
	Computing Koopman mode decomposition

