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Abstract

Bold claims about AI’s role in science—from “AGI will cure all diseases” to1

promises of radically accelerated discovery—raise a central epistemic question: do2

large language models (LLMs) truly generate new knowledge, or do they merely3

remix memorized fragments? We propose unlearning-as-ablation as a falsifiable4

probe of constructive scientific discovery. The idea is to systematically removes a5

target result together with its forget-closure (supporting lemmas, paraphrases, and6

multi-hop entailments) and then evaluate whether the model can re-derive the result7

from only permitted axioms and tools. Success would indicate generative capability8

beyond recall; failure would expose current limits. Unlike prevailing motivations9

for unlearning—privacy, copyright, or safety—our framing repositions it as an10

epistemic probe for AI-for-Science. We outline a minimal pilot in mathematics and11

algorithms to illustrate feasibility, and sketch how the same approach could later12

be extended to domains such as physics or chemistry. This is a position paper: our13

contribution is conceptual and methodological, not empirical. We aim to stimulate14

discussion on how principled ablation tests could help distinguish models that15

reconstruct knowledge from those that merely retrieve it, and how such probes16

might guide the next generation of AI-for-Science benchmarks.17

1 Introduction18

Recent breakthroughs in foundation models have fueled bold claims—from predictions that “AGI19

will cure all diseases” to assertions that scientific progress will soon accelerate far beyond historical20

rates. These visions reflect real excitement, but they obscure a fundamental epistemic question: do21

large language models (LLMs) genuinely generate new knowledge, or do they merely remix22

what was already present in their training data?23

This distinction matters deeply for AI-for-Science. Without a falsifiable test of constructive knowledge24

generation, claims of “discovery” remain philosophically ambiguous and scientifically ungrounded.25

If AI systems are to be trusted as collaborators in science, we must know whether they can derive26

new results from principles, rather than retrieve or interpolate memorized fragments.27

We propose a new perspective: unlearning-as-ablation. The idea is straightforward. Select a28

scientific result T (e.g., a theorem or algorithm), identify its entire forget-closure F(T )—all lemmas,29

paraphrases, aliases, and multi-hop entailments that lead to T—and perform strong unlearning over30

F(T ). Afterward, provide the model only with permitted axioms and tools, and test whether it can31

re-derive T in a verifiable form. Success constitutes positive evidence of constructive generation,32

whereas failure or leakage exposes the boundaries of current capabilities.33

This framing departs from prevailing motivations for unlearning. Surveys emphasize privacy, copy-34

right, and safety as primary rationales [12, 13], with evaluation focused on removal fidelity rather35
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than generative ability. Recent work highlights the difficulty of faithfully removing multi-hop or36

entangled knowledge [1, 11, 10], while other studies show that forgotten content can often be “re-37

learned” through small finetunes or prompting [10]. In the safety and compliance setting, these38

phenomena are treated as risks. In our setting, they define the frontier: as unlearning methods39

improve in addressing leakage and robustness, the resulting ablations become more faithful, and the40

corresponding rediscovery benchmarks more stringent. In this way, progress in unlearning directly41

strengthens our ability to test whether models are capable of constructive scientific generation.42

By reframing unlearning as an experimental probe, we aim to bridge AI-for-Science and safety43

communities. The result is a concrete, falsifiable methodology for testing the limits of LLMs:44

whether they are capable of genuine discovery, or whether their advances remain bounded by retrieval45

and interpolation. As a position paper, our contribution is primarily conceptual: we propose a46

methodological framework and outline pilot domains, leaving systematic empirical validation to47

future work.48

2 Background: Unlearning Today49

The study of unlearning in machine learning and large language models (LLMs) has grown rapidly50

in recent years, motivated largely by external constraints such as law, safety, or ethics rather than51

by epistemic goals. We briefly review the dominant rationales, common methodologies, and key52

evaluation challenges.53

2.1 Motivations for Unlearning54

Three primary motivations recur across surveys and frameworks:55

(1) Privacy and compliance. Regulations such as the General Data Protection Regulation (GDPR)56

enshrine a “right to be forgotten,” requiring that models support the removal of sensitive or personally57

identifiable data. Surveys on digital forgetting in LLMs emphasize compliance with privacy law as a58

central driver of research in this area [13].59

(2) Copyright and intellectual property. LLMs trained on large web scrapes may inadvertently60

memorize copyrighted text, code, or images. Several works argue that machine unlearning is61

necessary to respect intellectual property claims and to support takedown requests from rights-holders62

[5, 3, 13, 9, 14].63

(3) Safety and dual-use knowledge. A third line of work focuses on removing hazardous content:64

for example, step-by-step instructions for synthesizing explosives or pathogens. Recent benchmarks65

such as WMDP [7] evaluate whether unlearning can reduce dual-use risks while maintaining general66

utility.67

2.2 Methodological Approaches68

Most unlearning methods adapt techniques from model editing or fine-tuning. Examples include:69

• Gradient-ascent or anti-training: adjusting model parameters to maximize loss on target70

examples, thereby forgetting them.71

• Representation-level interventions: e.g., Amnesic Probing [4] removes specific linguistic72

features from hidden states.73

• Retrieval suppression: steering methods that block particular outputs without removing74

underlying representations.75

While diverse, these approaches generally aim at removal fidelity: ensuring that specific facts or76

behaviors no longer appear in model outputs.77

2.3 Evaluation Challenges78

Evaluation is a persistent bottleneck. Several recent studies emphasize that:79
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• Entangled knowledge is difficult to erase. Multi-hop unlearning benchmarks show that80

even if intermediate nodes are removed, models can often reconstruct targets via alternative81

reasoning chains [1, 11, 10].82

• Suppression vs. removal. SoK papers stress the importance of distinguishing true83

parameter-level removal from surface-level suppression, where models appear to forget but84

can be prompted to recall [9].85

• Relearning and robustness. Empirical work demonstrates that forgotten content can often86

be “jogged” back into use with minimal finetuning or prompting [6].87

2.4 Gap for AI-for-Science88

Notably, none of the above rationales frame unlearning as a tool for scientific epistemology. Un-89

learning has been motivated by compliance and safety, not by the question of whether a model can90

reconstruct forgotten knowledge from first principles. This gap opens an opportunity: by treating91

unlearning as ablation, we can design falsifiable experiments to probe whether LLMs possess con-92

structive generative capabilities, a perspective particularly urgent for AI-for-Science. Moreover,93

the progress of unlearning research directly determines the strength of such benchmarks: the more94

thorough and faithful the unlearning, the harder the rediscovery task becomes, and the more reliable95

the test of whether models can generate knowledge rather than recall it.96

3 Proposal: Unlearning-as-Ablation97

We propose to repurpose unlearning from its conventional role in privacy or safety into an experimental98

ablation method for probing constructive knowledge generation. The central idea is to remove not99

only a target result T , but also all of the supporting knowledge that directly enables it, and then ask the100

model to re-derive T from only axioms and tools that remain accessible. If the model succeeds under101

these conditions, we gain falsifiable evidence that it is not merely retrieving memorized fragments102

but genuinely generating knowledge.103

3.1 Defining the Forget-Closure104

The first step is to formally define the forget-closure F(T ) of a target T . This closure includes:105

• All direct statements of T (canonical forms, proofs, code).106

• Paraphrases and rephrasings that preserve semantic equivalence.107

• Intermediate lemmas or building blocks that entail T .108

• Multi-hop reasoning chains where T can be reconstructed indirectly [1, 11, 10].109

• Same-answer sets where multiple formulations yield equivalent outputs.110

By removing the entire F(T ), we close off not only surface forms but also indirect reasoning paths111

that would otherwise allow reconstruction through entanglement.112

3.2 Performing Strong Unlearning113

The second step is to apply removal-oriented unlearning across F(T ). Unlike suppression methods114

that steer generation away from target outputs, removal aims to eliminate relevant information from115

the parameterization itself. Candidate techniques include gradient-ascent unlearning, targeted fine-116

tuning, or optimization-based methods evaluated in recent surveys [9]. To confirm removal, we117

propose adopting multi-faceted audits:118

• Leakage checks on paraphrase, multi-hop, and same-answer sets.119

• Counterfactual activation probes (inspired by Amnesic Probing) to test whether T -related120

features still reside in hidden states [4].121

• Robustness tests against “jogging” attacks, where small finetunes or prompting can restore122

forgotten knowledge [6].123

These checks ensure that the unlearning process produces a genuine epistemic blank slate with respect124

to F(T ).125
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3.3 Re-Derivation as a Falsifiable Test126

Finally, we design a re-derivation trial. After unlearning, the model is provided with:127

1. A set of axioms, primitives, or base tools that are not part of F(T ).128

2. A prompt or environment that permits constructive reasoning (e.g., a proof assistant or a129

test-driven code synthesis framework).130

The task is to derive T in a form that can be verified by an external oracle: for example, a formal131

proof accepted by Lean or Isabelle, or a program passing a hidden test suite. Importantly, success is132

only counted if T is re-derived without leakage from F(T ).133

This yields a falsifiable criterion: if the model can re-derive T despite rigorous unlearning of all134

prerequisite paths, we have positive evidence for constructive generation. If it cannot, or if leakage135

audits reveal dependence on residual memory, then the claim of “scientific discovery” remains136

unsubstantiated.137

3.4 Why This Matters138

This approach connects progress in unlearning directly to progress in measuring scientific discovery.139

In the safety and compliance literature, challenges such as entanglement, multi-hop reasoning, and140

relearning are treated as failure modes because they undermine removal fidelity [3, 1, 11, 10]. In our141

framing, they set the difficulty of the benchmark: the more effectively unlearning methods address142

these challenges, the more thoroughly the target knowledge is ablated, and the more demanding the143

rediscovery task becomes. Thus, advances in unlearning translate into sharper tests of whether LLMs144

truly possess constructive generative capability. Rather than turning flaws into benefits, we highlight145

that solving these long-standing problems in unlearning is what enables rigorous epistemic evaluation146

in AI-for-Science.147

4 Minimal Pilot Study148

While the long-term vision is to apply unlearning-as-ablation to scientific hypotheses in physics,149

chemistry, or biology, we propose beginning with domains where verification is automatic and150

unambiguous. This allows us to isolate the epistemic question—can a model re-derive knowledge151

once its closure has been forgotten?—without relying on subjective human judgment.152

4.1 Mathematics: Formal Proofs153

Mathematics provides an ideal testbed because results can be verified by proof assistants such as154

Lean or Isabelle. A minimal pilot could proceed as follows:155

1. Select a mid-tier theorem (e.g., in number theory or combinatorics) that has a clear depen-156

dency structure.157

2. Construct its forget-closure F(T ), including canonical statements, paraphrased variants,158

and prerequisite lemmas.159

3. Apply strong unlearning over F(T ).160

4. Task the model with re-proving T using only base axioms and allowed rules of inference.161

Success is defined as producing a proof accepted by the proof assistant. Failure or leakage (e.g.,162

shortcut recall of a forgotten lemma) falsifies the claim of rediscovery.163

4.2 Algorithms: Verified Implementations164

Algorithms provide another tractable domain, where correctness can be checked against hidden test165

suites. For example:166

1. Forget the Knuth–Morris–Pratt (KMP) string matching algorithm, along with all prerequisite167

explanations, code templates, and paraphrases.168
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2. After unlearning, ask the model to derive an efficient string-matching procedure from first169

principles (e.g., reasoning about prefix functions).170

3. Validate correctness using adversarial test cases and runtime complexity checks.171

As in mathematics, the evaluation is binary: either the model reconstructs a working implementation,172

or it does not.173

4.3 Evaluation Metrics174

To assess the outcome of such pilots, we propose three classes of metrics:175

• Success rate. Fraction of trials where the model re-derives T in a verifiable form (proof176

acceptance, program passes test suite).177

• Leakage audits. Performance on paraphrase, multi-hop, and same-answer sets drawn from178

F(T ), ensuring the model is not recalling forgotten material [1, 11, 10].179

• Utility retention. Accuracy on unrelated benchmarks (e.g., a subset of MMLU) to confirm180

that unlearning did not degrade general capability [9, 14].181

4.4 Why a Minimal Pilot is Valuable182

Even small-scale pilots can decisively answer whether LLMs exhibit generative capability under183

ablation. If a model successfully re-derives a theorem or algorithm after strong unlearning of its184

closure, we obtain falsifiable evidence that it constructs knowledge rather than merely retrieving it.185

Conversely, if models fail under such controlled conditions, this highlights a concrete epistemic limit186

of current systems. Either outcome offers high-value insight for AI-for-Science, where claims of187

accelerated discovery remain both enticing and contested.188

5 Implications for AI-for-Science189

The proposed unlearning-as-ablation framework has direct consequences for how we understand the190

promise and limits of AI-for-Science.191

5.1 Epistemic Clarity in Scientific Discovery192

The central value of this approach is that it provides a falsifiable test of discovery. Today, when an193

LLM proposes a hypothesis, proves a theorem, or writes an algorithm, it remains unclear whether194

this is a product of genuine reasoning or of subtle retrieval from training data. By first removing195

all accessible pathways to a result and then testing for re-derivation, we create a clean epistemic196

separation: success implies constructive generation, while failure implies dependence on stored197

fragments. This reframing allows the AI-for-Science community to move beyond speculation about198

“discovery” and instead ground claims in falsifiable evidence.199

5.2 Turning Failure Modes into Probes200

Unlearning research has traditionally cast entanglement, multi-hop reasoning, and relearning as201

obstacles [1, 11, 10]. In our setting, these challenges become useful stress tests. If a model cannot202

succeed once closure paths are blocked, it indicates that the relevant knowledge was never truly203

generative. If it can succeed, it demonstrates robustness and constructive capacity. Either way,204

phenomena previously treated as evaluation headaches become diagnostic instruments for probing205

the depth of model reasoning.206

5.3 Broader AI-for-Science Roadmap207

Although we highlight mathematics and algorithms as tractable pilot domains, the methodology208

generalizes. In physics, one could remove an established equation and test whether the model can209

re-derive it from fundamental laws. In chemistry, one could unlearn a well-known synthesis route210

and test whether the model can rediscover it from reaction rules. In biology, one could unlearn a211
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canonical protein interaction and test for re-derivation from structural principles. These extensions212

would demand careful closure construction and domain-specific verification, but they illustrate how213

the same ablation logic scales to real scientific practice.214

5.4 Redefining the Boundary of AI Progress215

Finally, this framework speaks directly to the theme of this workshop: the reach and limits of AI216

in scientific discovery. If unlearning-as-ablation pilots reveal that models can re-derive knowledge217

under strong ablation, this strengthens the case that AI can generate truly novel insights. If they reveal218

consistent failures, it delineates a boundary condition: LLMs may accelerate retrieval, interpolation,219

and synthesis, but fall short of independent knowledge generation. In both outcomes, the methodology220

provides a principled way to map the contours of what AI can and cannot do for science.221

5.5 Toward the Next Major Benchmark222

A final implication is that unlearning-as-ablation offers a clear path toward the next generation of223

benchmarks for AI progress. Just as ImageNet catalyzed advances in computer vision by providing a224

well-defined task on which algorithms could be compared [2], a benchmark grounded in constructive225

re-derivation after unlearning could serve as a lodestar for AI-for-Science. Existing evaluations of226

knowledge regurgitation and short-form reasoning are increasingly saturated—as highlighted by227

works such as Humanity’s Last Exam [8]—suggesting that the next frontier must measure whether228

models can move beyond retrieval and interpolation to genuine discovery. We believe that such an229

“unlearning-as-ablation” benchmark could become a distinguishing test of model strength, separating230

systems that can merely recall from those that can constructively generate new scientific knowledge.231

Importantly, the strength of such a benchmark is coupled to the progress of unlearning research itself.232

As unlearning methods become more faithful and thorough, the corresponding benchmarks become233

more stringent: rediscovery requires deeper reasoning, and successful re-derivation provides stronger234

evidence of constructive capability. In this way, advances in unlearning directly drive advances in our235

ability to measure—and eventually to achieve—genuine AI scientific discovery.236

6 Conclusion237

We have proposed unlearning-as-ablation as a new lens on large language models, reframing238

unlearning from a tool of compliance and safety into a falsifiable probe of scientific discovery. By239

systematically removing a target result and its forget-closure, and then testing whether the model can240

re-derive the result from permitted axioms and tools, we obtain an experimental method to separate241

retrieval from constructive generation. This approach directly addresses one of the most pressing242

open questions in AI-for-Science: can AI systems truly generate new knowledge? Even minimal243

pilots in mathematics or algorithms provide decisive evidence either way, while extensions to physics,244

chemistry, and biology can delineate the boundaries of future AI scientific progress. Whether the245

outcome is success or failure, unlearning-as-ablation offers the community a principled framework to246

move beyond speculation and anchor claims of discovery in falsifiable tests.247
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