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Abstract

Bold claims about AI’s role in science—from “AGI will cure all diseases” to
promises of radically accelerated discovery—raise a central epistemic question: do
large language models (LLMs) truly generate new knowledge, or do they merely
remix memorized fragments? We propose unlearning-as-ablation as a falsifiable
probe of constructive scientific discovery. The idea is to systematically removes a
target result together with its forget-closure (supporting lemmas, paraphrases, and
multi-hop entailments) and then evaluate whether the model can re-derive the result
from only permitted axioms and tools. Success would indicate generative capability
beyond recall; failure would expose current limits. Unlike prevailing motivations
for unlearning—privacy, copyright, or safety—our framing repositions it as an
epistemic probe for AI-for-Science. We outline a minimal pilot in mathematics and
algorithms to illustrate feasibility, and sketch how the same approach could later
be extended to domains such as physics or chemistry. This is a position paper: our
contribution is conceptual and methodological, not empirical. We aim to stimulate
discussion on how principled ablation tests could help distinguish models that
reconstruct knowledge from those that merely retrieve it, and how such probes
might guide the next generation of AI-for-Science benchmarks.

1 Introduction

Recent breakthroughs in foundation models have fueled bold claims—from predictions that “AGI
will cure all diseases” to assertions that scientific progress will soon accelerate far beyond historical
rates. These visions reflect real excitement, but they obscure a fundamental epistemic question: do
large language models (LLMs) genuinely generate new knowledge, or do they merely remix
what was already present in their training data?

This distinction matters deeply for AI-for-Science. Without a falsifiable test of constructive knowledge
generation, claims of “discovery” remain philosophically ambiguous and scientifically ungrounded.
If AI systems are to be trusted as collaborators in science, we must know whether they can derive
new results from principles, rather than retrieve or interpolate memorized fragments.

We propose a new perspective: unlearning-as-ablation. The idea is straightforward. Select a
scientific result T (e.g., a theorem or algorithm), identify its entire forget-closure F(T )—all lemmas,
paraphrases, aliases, and multi-hop entailments that lead to T—and perform strong unlearning over
F(T ). Afterward, provide the model only with permitted axioms and tools, and test whether it can
re-derive T in a verifiable form. Success constitutes positive evidence of constructive generation,
whereas failure or leakage exposes the boundaries of current capabilities.

This framing departs from prevailing motivations for unlearning. Surveys emphasize privacy, copy-
right, and safety as primary rationales [Xu et al., 2023, 2024], with evaluation focused on removal
fidelity rather than generative ability. Recent work highlights the difficulty of faithfully removing
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multi-hop or entangled knowledge [Choi et al., 2024, Wang et al., 2025, Shah et al., 2025], while other
studies show that forgotten content can often be “relearned” through small finetunes or prompting
[Shah et al., 2025]. In the safety and compliance setting, these phenomena are treated as risks. In our
setting, they define the frontier: as unlearning methods improve in addressing leakage and robustness,
the resulting ablations become more faithful, and the corresponding rediscovery benchmarks more
stringent. In this way, progress in unlearning directly strengthens our ability to test whether models
are capable of constructive scientific generation.

By reframing unlearning as an experimental probe, we aim to bridge AI-for-Science and safety
communities. The result is a concrete, falsifiable methodology for testing the limits of LLMs:
whether they are capable of genuine discovery, or whether their advances remain bounded by retrieval
and interpolation. As a position paper, our contribution is primarily conceptual: we propose a
methodological framework and outline pilot domains, leaving systematic empirical validation to
future work.

2 Background: Unlearning Today

The study of unlearning in machine learning and large language models (LLMs) has grown rapidly
in recent years, motivated largely by external constraints such as law, safety, or ethics rather than
by epistemic goals. We briefly review the dominant rationales, common methodologies, and key
evaluation challenges.

2.1 Motivations for Unlearning

Three primary motivations recur across surveys and frameworks:

(1) Privacy and compliance. Regulations such as the General Data Protection Regulation (GDPR)
enshrine a “right to be forgotten,” requiring that models support the removal of sensitive or personally
identifiable data. Surveys on digital forgetting in LLMs emphasize compliance with privacy law as a
central driver of research in this area [Xu et al., 2024].

(2) Copyright and intellectual property. LLMs trained on large web scrapes may inadvertently
memorize copyrighted text, code, or images. Several works argue that machine unlearning is
necessary to respect intellectual property claims and to support takedown requests from rights-holders
[Karamolegkou et al., 2023, Dou et al., 2025, Xu et al., 2024, Ren et al., 2025, Yao et al., 2024].

(3) Safety and dual-use knowledge. A third line of work focuses on removing hazardous content: for
example, step-by-step instructions for synthesizing explosives or pathogens. Recent benchmarks such
as WMDP [Li et al., 2024] evaluate whether unlearning can reduce dual-use risks while maintaining
general utility.

2.2 Methodological Approaches

Most unlearning methods adapt techniques from model editing or fine-tuning. Examples include:

• Gradient-ascent or anti-training: adjusting model parameters to maximize loss on target
examples, thereby forgetting them.

• Representation-level interventions: e.g., Amnesic Probing [Elazar et al., 2021] removes
specific linguistic features from hidden states.

• Retrieval suppression: steering methods that block particular outputs without removing
underlying representations.

While diverse, these approaches generally aim at removal fidelity: ensuring that specific facts or
behaviors no longer appear in model outputs.

2.3 Evaluation Challenges

Evaluation is a persistent bottleneck. Several recent studies emphasize that:
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• Entangled knowledge is difficult to erase. Multi-hop unlearning benchmarks show that
even if intermediate nodes are removed, models can often reconstruct targets via alternative
reasoning chains [Choi et al., 2024, Wang et al., 2025, Shah et al., 2025].

• Suppression vs. removal. SoK papers stress the importance of distinguishing true
parameter-level removal from surface-level suppression, where models appear to forget but
can be prompted to recall [Ren et al., 2025].

• Relearning and robustness. Empirical work demonstrates that forgotten content can often
be “jogged” back into use with minimal finetuning or prompting [Lee et al., 2025].

2.4 Gap for AI-for-Science

Notably, none of the above rationales frame unlearning as a tool for scientific epistemology. Un-
learning has been motivated by compliance and safety, not by the question of whether a model can
reconstruct forgotten knowledge from first principles. This gap opens an opportunity: by treating
unlearning as ablation, we can design falsifiable experiments to probe whether LLMs possess con-
structive generative capabilities, a perspective particularly urgent for AI-for-Science. Moreover,
the progress of unlearning research directly determines the strength of such benchmarks: the more
thorough and faithful the unlearning, the harder the rediscovery task becomes, and the more reliable
the test of whether models can generate knowledge rather than recall it.

3 Proposal: Unlearning-as-Ablation

We propose to repurpose unlearning from its conventional role in privacy or safety into an experimental
ablation method for probing constructive knowledge generation. The central idea is to remove not
only a target result T , but also all of the supporting knowledge that directly enables it, and then ask the
model to re-derive T from only axioms and tools that remain accessible. If the model succeeds under
these conditions, we gain falsifiable evidence that it is not merely retrieving memorized fragments
but genuinely generating knowledge.

3.1 Defining the Forget-Closure

The first step is to formally define the forget-closure F(T ) of a target T . This closure includes:

• All direct statements of T (canonical forms, proofs, code).
• Paraphrases and rephrasings that preserve semantic equivalence.
• Intermediate lemmas or building blocks that entail T .
• Multi-hop reasoning chains where T can be reconstructed indirectly [Choi et al., 2024,

Wang et al., 2025, Shah et al., 2025].
• Same-answer sets where multiple formulations yield equivalent outputs.

By removing the entire F(T ), we close off not only surface forms but also indirect reasoning paths
that would otherwise allow reconstruction through entanglement.

3.2 Performing Strong Unlearning

The second step is to apply removal-oriented unlearning across F(T ). Unlike suppression methods
that steer generation away from target outputs, removal aims to eliminate relevant information from
the parameterization itself. Candidate techniques include gradient-ascent unlearning, targeted fine-
tuning, or optimization-based methods evaluated in recent surveys [Ren et al., 2025]. To confirm
removal, we propose adopting multi-faceted audits:

• Leakage checks on paraphrase, multi-hop, and same-answer sets.
• Counterfactual activation probes (inspired by Amnesic Probing) to test whether T -related

features still reside in hidden states [Elazar et al., 2021].
• Robustness tests against “jogging” attacks, where small finetunes or prompting can restore

forgotten knowledge [Lee et al., 2025].
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These checks ensure that the unlearning process produces a genuine epistemic blank slate with respect
to F(T ).

3.3 Re-Derivation as a Falsifiable Test

Finally, we design a re-derivation trial. After unlearning, the model is provided with:

1. A set of axioms, primitives, or base tools that are not part of F(T ).
2. A prompt or environment that permits constructive reasoning (e.g., a proof assistant or a

test-driven code synthesis framework).

The task is to derive T in a form that can be verified by an external oracle: for example, a formal
proof accepted by Lean or Isabelle, or a program passing a hidden test suite. Importantly, success is
only counted if T is re-derived without leakage from F(T ).

This yields a falsifiable criterion: if the model can re-derive T despite rigorous unlearning of all
prerequisite paths, we have positive evidence for constructive generation. If it cannot, or if leakage
audits reveal dependence on residual memory, then the claim of “scientific discovery” remains
unsubstantiated.

3.4 Why This Matters

This approach connects progress in unlearning directly to progress in measuring scientific discovery.
In the safety and compliance literature, challenges such as entanglement, multi-hop reasoning, and
relearning are treated as failure modes because they undermine removal fidelity [Dou et al., 2025,
Choi et al., 2024, Wang et al., 2025, Shah et al., 2025]. In our framing, they set the difficulty
of the benchmark: the more effectively unlearning methods address these challenges, the more
thoroughly the target knowledge is ablated, and the more demanding the rediscovery task becomes.
Thus, advances in unlearning translate into sharper tests of whether LLMs truly possess constructive
generative capability. Rather than turning flaws into benefits, we highlight that solving these long-
standing problems in unlearning is what enables rigorous epistemic evaluation in AI-for-Science.

4 Minimal Pilot Study

While the long-term vision is to apply unlearning-as-ablation to scientific hypotheses in physics,
chemistry, or biology, we propose beginning with domains where verification is automatic and
unambiguous. This allows us to isolate the epistemic question—can a model re-derive knowledge
once its closure has been forgotten?—without relying on subjective human judgment.

4.1 Mathematics: Formal Proofs

Mathematics provides an ideal testbed because results can be verified by proof assistants such as
Lean or Isabelle. A minimal pilot could proceed as follows:

1. Select a mid-tier theorem (e.g., in number theory or combinatorics) that has a clear depen-
dency structure.

2. Construct its forget-closure F(T ), including canonical statements, paraphrased variants,
and prerequisite lemmas.

3. Apply strong unlearning over F(T ).
4. Task the model with re-proving T using only base axioms and allowed rules of inference.

Success is defined as producing a proof accepted by the proof assistant. Failure or leakage (e.g.,
shortcut recall of a forgotten lemma) falsifies the claim of rediscovery.

4.2 Algorithms: Verified Implementations

Algorithms provide another tractable domain, where correctness can be checked against hidden test
suites. For example:
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1. Forget the Knuth–Morris–Pratt (KMP) string matching algorithm, along with all prerequisite
explanations, code templates, and paraphrases.

2. After unlearning, ask the model to derive an efficient string-matching procedure from first
principles (e.g., reasoning about prefix functions).

3. Validate correctness using adversarial test cases and runtime complexity checks.

As in mathematics, the evaluation is binary: either the model reconstructs a working implementation,
or it does not.

4.3 Evaluation Metrics

To assess the outcome of such pilots, we propose three classes of metrics:

• Success rate. Fraction of trials where the model re-derives T in a verifiable form (proof
acceptance, program passes test suite).

• Leakage audits. Performance on paraphrase, multi-hop, and same-answer sets drawn from
F(T ), ensuring the model is not recalling forgotten material [Choi et al., 2024, Wang et al.,
2025, Shah et al., 2025].

• Utility retention. Accuracy on unrelated benchmarks (e.g., a subset of MMLU) to confirm
that unlearning did not degrade general capability [Ren et al., 2025, Yao et al., 2024].

4.4 Why a Minimal Pilot is Valuable

Even small-scale pilots can decisively answer whether LLMs exhibit generative capability under
ablation. If a model successfully re-derives a theorem or algorithm after strong unlearning of its
closure, we obtain falsifiable evidence that it constructs knowledge rather than merely retrieving it.
Conversely, if models fail under such controlled conditions, this highlights a concrete epistemic limit
of current systems. Either outcome offers high-value insight for AI-for-Science, where claims of
accelerated discovery remain both enticing and contested.

5 Implications for AI-for-Science

The proposed unlearning-as-ablation framework has direct consequences for how we understand the
promise and limits of AI-for-Science.

5.1 Epistemic Clarity in Scientific Discovery

The central value of this approach is that it provides a falsifiable test of discovery. Today, when an
LLM proposes a hypothesis, proves a theorem, or writes an algorithm, it remains unclear whether
this is a product of genuine reasoning or of subtle retrieval from training data. By first removing
all accessible pathways to a result and then testing for re-derivation, we create a clean epistemic
separation: success implies constructive generation, while failure implies dependence on stored
fragments. This reframing allows the AI-for-Science community to move beyond speculation about
“discovery” and instead ground claims in falsifiable evidence.

5.2 Turning Failure Modes into Probes

Unlearning research has traditionally cast entanglement, multi-hop reasoning, and relearning as
obstacles [Choi et al., 2024, Wang et al., 2025, Shah et al., 2025]. In our setting, these challenges
become useful stress tests. If a model cannot succeed once closure paths are blocked, it indicates that
the relevant knowledge was never truly generative. If it can succeed, it demonstrates robustness and
constructive capacity. Either way, phenomena previously treated as evaluation headaches become
diagnostic instruments for probing the depth of model reasoning.

5.3 Broader AI-for-Science Roadmap

Although we highlight mathematics and algorithms as tractable pilot domains, the methodology
generalizes. In physics, one could remove an established equation and test whether the model can
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re-derive it from fundamental laws. In chemistry, one could unlearn a well-known synthesis route
and test whether the model can rediscover it from reaction rules. In biology, one could unlearn a
canonical protein interaction and test for re-derivation from structural principles. These extensions
would demand careful closure construction and domain-specific verification, but they illustrate how
the same ablation logic scales to real scientific practice.

5.4 Redefining the Boundary of AI Progress

Finally, this framework speaks directly to the theme of this workshop: the reach and limits of AI
in scientific discovery. If unlearning-as-ablation pilots reveal that models can re-derive knowledge
under strong ablation, this strengthens the case that AI can generate truly novel insights. If they reveal
consistent failures, it delineates a boundary condition: LLMs may accelerate retrieval, interpolation,
and synthesis, but fall short of independent knowledge generation. In both outcomes, the methodology
provides a principled way to map the contours of what AI can and cannot do for science.

5.5 Toward the Next Major Benchmark

A final implication is that unlearning-as-ablation offers a clear path toward the next generation of
benchmarks for AI progress. Just as ImageNet catalyzed advances in computer vision by providing
a well-defined task on which algorithms could be compared [Deng et al., 2009], a benchmark
grounded in constructive re-derivation after unlearning could serve as a lodestar for AI-for-Science.
Existing evaluations of knowledge regurgitation and short-form reasoning are increasingly saturated—
as highlighted by works such as Humanity’s Last Exam [Phan et al., 2025]—suggesting that the
next frontier must measure whether models can move beyond retrieval and interpolation to genuine
discovery. We believe that such an “unlearning-as-ablation” benchmark could become a distinguishing
test of model strength, separating systems that can merely recall from those that can constructively
generate new scientific knowledge.

Importantly, the strength of such a benchmark is coupled to the progress of unlearning research itself.
As unlearning methods become more faithful and thorough, the corresponding benchmarks become
more stringent: rediscovery requires deeper reasoning, and successful re-derivation provides stronger
evidence of constructive capability. In this way, advances in unlearning directly drive advances in our
ability to measure—and eventually to achieve—genuine AI scientific discovery.

6 Conclusion

We have proposed unlearning-as-ablation as a new lens on large language models, reframing
unlearning from a tool of compliance and safety into a falsifiable probe of scientific discovery. By
systematically removing a target result and its forget-closure, and then testing whether the model can
re-derive the result from permitted axioms and tools, we obtain an experimental method to separate
retrieval from constructive generation. This approach directly addresses one of the most pressing
open questions in AI-for-Science: can AI systems truly generate new knowledge? Even minimal
pilots in mathematics or algorithms provide decisive evidence either way, while extensions to physics,
chemistry, and biology can delineate the boundaries of future AI scientific progress. Whether the
outcome is success or failure, unlearning-as-ablation offers the community a principled framework to
move beyond speculation and anchor claims of discovery in falsifiable tests.

7 Call to Action

We are seeking collaborators to help turn this conceptual framework into a practical evaluation
pipeline. We aim to release an initial benchmark prototype in the coming months and ultimately
work towards a full benchmark paper. Contributions from researchers in unlearning, model editing,
verification, and evaluation design are warmly welcomed.
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A Workshop Discussion: Alternative Views and Benchmark Versioning

This appendix distills key objections and design refinements raised during workshop discussion. Two
themes recurred: (i) rediscovery must be operationalized with external verification (proof assistants,
hidden test suites), and (ii) the community benefits from a static, comparable benchmark whose
validity does not depend on a moving "past cutoff date" heuristic, as is common in ad hoc evaluations
of AI-scientist systems. Unlearning-as-ablation is intended to provide such a fixed substrate: models
and frameworks can be compared across years because tasks, ablations, and verifiers remain stable,
rather than shifting as the calendar advances.

A.1 Alternative views

(a) Tradeoff: strict unlearning vs. retained capability. A natural concern is that stronger unlearn-
ing of F(T ) may induce greater collateral damage, degrading general capabilities and confounding
rediscovery outcomes. This motivates treating ablation quality as part of the benchmark report, not a
hidden implementation detail.

(b) "Unlearning is not yet mature enough." A related concern is that current unlearning methods
may not reliably remove entangled multi-hop knowledge without either (i) leaving residual leakage or
(ii) degrading unrelated competence. In this view, the benchmark risks measuring unlearning artifacts
rather than constructive generation.

Benchmark versioning as a response to (a)–(b). To address both concerns, workshop discussion
suggested versioning the benchmark by measured ablation quality. Concretely, the benchmark
reports three metrics:

• Rediscovery success rate (the hill-climb target for models/systems): verifier pass@k on T
(e.g., proof acceptance or hidden test-suite pass).

• Leakage audits (benchmark introspection): performance on probes drawn from F(T )
(paraphrase / multi-hop / same-answer), where lower indicates stronger forgetting.

• Utility retention (benchmark introspection): performance on an unrelated capability suite,
where higher indicates less collateral degradation.

The key proposal is that leakage and utility should be surfaced as first-class identifiers of a benchmark
release. For example, one could label a release as A2D-L40-U80 to indicate empirically measured
leakage score 40 and utility retention 80 (illustrative numbers). As unlearning improves, new releases
would naturally shift toward lower leakage and higher utility (e.g., A2D-L20-U90), making progress
in unlearning transparently reflected in the benchmark itself.

Optionally, the discussion suggested a third axis to define difficulty tiers within the same time
period: a closure-depth or hop budget indicator (e.g., the maximum multi-hop depth included in
F(T )). This enables benchmarks that differ in logical entanglement even under the same unlearning
technology (e.g., shallow vs. deeper closure ablations), while remaining comparable through explicit
reporting.

Note on expected maturity. Workshop discussion also raised the possibility that "good-enough"
unlearning may arrive soon enough to make this benchmark practical. As an example of rapidly
evolving techniques in this area, methods released immediately after the workshop (e.g., approaches
aimed at shaping training-time behavior) suggest directions that could plausibly transfer to post-hoc
unlearning, albeit currently at high cost. This motivates designing the benchmark so it can start with
imperfect ablations (explicitly labeled by leakage/utility) and become more stringent as unlearning
advances.

(c) Discipline-specific inductive biases. A final objection is that "rediscovery" is not uniform
across domains: mathematics, algorithms, physics, chemistry, and biology differ in what consti-
tutes a legitimate derivation, what tools are permissible, and what inductive biases are required.
Workshop discussion therefore favored a family of benchmarks, one per discipline, each with
domain-appropriate: (i) target types T , (ii) closure specifications F(T ), and (iii) verification oracles
V(T ). This preserves the core epistemic logic of ablation-to-rediscovery while respecting that the
notion of "first principles" and verification differs across fields.
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B Benchmark Specification

We propose Ablation-to-Discovery (A2D), a benchmark that frames unlearning as ablation to test
whether large language models can reconstruct systematically removed knowledge from first princi-
ples. By defining rediscovery tasks with verifiable outcomes, A2D probes constructive generative
ability—can models re-derive what was excised? This offers a falsifiable substrate for evaluating
knowledge generation beyond memorization. Just as ImageNet galvanized computer vision, we
envision A2D as the “ImageNet of knowledge generation”—a shared testbed for measuring and
accelerating AI-for-Science progress.

B.1 Dataset Rationale — Why an Ablation-Coupled Benchmark?

LLMs are saturated on recall-heavy tasks but under-tested on constructive generation. A2D provides
a controlled falsifiable test: remove structured knowledge T , then evaluate if models can rebuild it
without rote recall.

Unlearning is typically framed as a risk mitigation strategy (safety, privacy) [Huang et al., 2024, Xu
et al., 2024, Ren et al., 2025]. Here, we reframe it as a methodological opportunity: each advance in
unlearning methods strengthens ablations, raising the difficulty of reconstructive discovery. Thus,
progress in unlearning directly drives progress in A2D benchmarks.

These are our key rationales:

• Scientific falsifiability: A2D enables yes/no tests of generative capability.
• Reproducibility: Each task ships as a containerized config.
• Benchmark trajectory: Initial domains (math, algorithms), then expansion into physics,

chemistry, biology, and other basic sciences.
• Community role: A2D can serve as a battleground for AI Scientist frameworks, providing

the first quantitative ground for comparing systems like Google’s biotech discovery AI
[Gottweis et al., 2025] or Sakana’s automated CS paper generation [Lu et al., 2024, Yamada
et al., 2025].

B.2 AI Task Definition

Traditional benchmarks equate “dataset” with a static collection of labeled examples—ImageNet,
GLUE, and many others embody this paradigm [Deng et al., 2009, Wang et al., 2018]. Our proposal
expands this definition. In the unlearning-as-ablation setting, the benchmark is not merely the data
but the procedure by which knowledge is systematically removed. In some cases, it also encompasses
a standardized reference model that undergoes ablation. In this view, a dataset is no longer just an
archive of examples, but a dynamic specification of data, process, and model.

This redefinition is essential. By treating ablation as part of the benchmark, we can directly test
whether models or systems can reconstruct algorithmic rules, scientific knowledge, or cross-domain
mappings that have been deliberately removed. Without embedding the ablation protocol (and in some
cases, the model artifact) into the benchmark, such generative reconstruction cannot be meaningfully
evaluated. Thus, our task definition is broader than “predict labels for examples.” It is: given a
systematically ablated knowledge space, recover the missing structure with scientific fidelity.

B.3 Tracks and Modes

Our proposal separates evaluation along two orthogonal dimensions: tracks and modes.

(1) Tracks (what is reconstructed):

• Algorithmic Re-derivation – rediscovering hidden formal rules or procedures.
• Scientific Knowledge Reconstruction – restoring ablated domain-specific knowledge (e.g.,

molecular pathways, physics laws) by reasoning from foundational laws and experimental
constraints?

• Cross-Domain Generalization – leveraging one domain to recover knowledge in another.
For example, can a model, after relevant results are removed, re-derive a computational
biology method by combining algorithmic and biochemical principles?
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(2) Evaluation Modes (how the test is administered):

• BYOM Capability Test – the benchmark specifies only the ablation protocol, with models
tested directly (no discovery frameworks), to isolate capability.

• System Capability Test – the benchmark includes both the ablation protocol and a stan-
dardized reference model artifact. Here, the comparison is among discovery frameworks,
evaluating how orchestration, augmentation, or agentic processes recover knowledge.

By separating Task Tracks from Evaluation Modes, the benchmark distinguishes between what kind
of knowledge generation is being probed and whether the rediscovery is attributable to the model
alone or to a composite system.

B.4 Acceleration Potential — Unlocking Constructive AI-for-Science

Catalyzing a new benchmark frontier: As ImageNet did for vision [Deng et al., 2009], A2D
offers a single ground truth task for constructive scientific discovery.

Driving a virtuous cycle: Stronger unlearning leads to stronger ablations, meaning harder bench-
marks, which drives sharper evaluation of generative capacity.

Serving as battleground for AI Scientist frameworks: Recent “AI Scientist” efforts (e.g. Google’s
biotech discovery [Gottweis et al., 2025], Sakana AI’s paper generation [Lu et al., 2024, Yamada
et al., 2025]) demonstrate ambition but lack common evaluation. A2D provides the first quantifiable
arena for comparing them.

Impact: 1) Establishes a rigorous test for constructive generative ability; 2) Accelerates AI-for-
Science by standardizing falsifiable evaluation; 3) Offers rapid adoption via lightweight, containerized
tasks.

C Extended Benchmark Specification

C.1 Extended Draft on Dataset Rationale — Why an Ablation-Coupled Benchmark?

The bottleneck. AI has advanced in waves catalyzed by benchmarks: ImageNet for vision [Deng
et al., 2009], Common Crawl for pretraining [com], and MMLU or Humanity’s Last Exam for
reasoning [Phan et al., 2025]. Today, models already saturate benchmarks based on knowledge
regurgitation and short-form reasoning. What remains unmeasured is the ability to reconstruct
forgotten knowledge from first principles. Without such a test, claims that AI systems make genuine
scientific discoveries cannot be falsified. Thus, the bottleneck is not simply data volume, but the
absence of a dataset that (i) ensures controlled forgetting and (ii) provides automatic verification of
rediscovery.

What the dataset consists of. Our dataset proposal, Ablation-to-Discovery (A2D), is defined by
triplets of:

• Target specification (T ): a theorem, algorithm, or identity stated in a machine-checkable
form.

• Forget-closure (F(T )): a structured collection of all paraphrases, prerequisite lemmas,
aliases, and multi-hop derivations that entangle with T . Each closure comes with
paraphrase/multi-hop/same-answer probes to audit leakage.

• Ablation recipe (A(T )): a reproducible pipeline that, given a base checkpoint, produces an
ablated checkpoint in which F(T ) is unlearned to a specified fidelity.

Each instance also includes a verification oracle (V(T )) (proof assistant kernel, hidden program test
suite, or physics constraint checker) to determine whether the model’s output constitutes a valid
re-derivation.

Scale and scope.

• Initial release: 50–100 pilot instances across mathematics and algorithms, where verification
is automatic and the dependency graphs are tractable.
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• Growth path: community contributions of new T and F(T ) pairs in physics, chemistry,
and biology. These can scale into hundreds or thousands of benchmark items over time,
analogous to the growth of ImageNet categories [Deng et al., 2009].

• Resolution and metadata: each item is richly annotated with dependency graphs, paraphrase
sets, ablation configs, and verification schemas—making it reusable for both unlearning and
discovery research.

Why existing datasets are insufficient.

• Knowledge editing datasets (e.g., MEMIT [Meng et al., 2022], ROME [Zhou et al., 2023])
test whether models can adjust facts, but do not couple deletion with generative rediscovery.

• Safety benchmarks (e.g., WMDP [Li et al., 2024]) test suppression of hazardous knowledge,
but not constructive derivation.

• Reasoning benchmarks (MMLU [Hendrycks et al., 2020], GSM8K [Cobbe et al., 2021])
test regurgitation or short reasoning chains, but not reconstruction after ablation.

Why ablation must be part of the dataset. If only the target questions T were included, results
would be confounded by uncontrolled leakage from pretraining corpora. By including the ablation
recipes themselves as part of the dataset, every researcher can reproduce equivalent epistemic
conditions. In this way, the dataset defines not just the task, but the controlled epistemic starting
point for fair comparison across models and systems.

C.2 Extended Draft on AI Task Definition

Core scientific question. Can an AI system constructively re-derive a target scientific result T (e.g.,
theorem, algorithm, physical identity) after the model has been systematically unlearned of T and its
forget-closure F(T ) (all lemmas, paraphrases, templates, and multi-hop entailments that enable T )?
This is a generation task with external verification (formal proof acceptance or program/test-suite
pass), explicitly designed to distinguish retrieval/interpolation from genuine derivation.

Benchmark instances (“tasks”). Each instance packages four components:

• Target spec T : a formally stated goal (e.g., Lean theorem, algorithmic spec, physics identity).
• Closure spec F(T ): machine-readable lists/patterns for direct statements, paraphrases,

prerequisite lemmas, multi-hop chains, and same-answer sets.
• Ablation recipe A(T ): a reproducible unlearning pipeline (config + seed) that takes a

base model checkpoint and outputs an ablated checkpoint in which F(T ) is removed to a
specified fidelity threshold.

• Verification oracle V(T ): an automatic checker (e.g., Lean/Isabelle kernel; hidden program
tests; executable physics constraints) that returns accept/reject and auxiliary traces.

Task input. An ablated model (produced by running A(T ) on a supported base model), the allowed
axioms/tools (e.g., proof-assistant primitives, standard libraries specified by the task), and the target
spec T (no examples or templates from F(T )).

Task output. A candidate derivation of T : a formal proof that V(T ) accepts (math/logic tracks),
or an artifact (program/spec) that V(T ) validates against hidden tests (algorithms/physics/chemistry
tracks).

Why the ablation is part of the benchmark. Model comparisons are only fair if knowledge
leakage is controlled. Treating the ablation pipeline as first-class data ensures every submission is
evaluated under equivalent epistemic conditions. (We will also provide reference ablated checkpoints
for popular base models to enable system-level, apples-to-apples comparisons.)

Modes (two complementary comparison modes).

• Mode A - Model/Agent Mode (Bring-Your-Own Model). Participants run the provided
A(T ) on their model, then attempt re-derivation using only allowed tools. This mode is
used to compare model performance.
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• Mode B - System/Framework Mode (Standardized Model). Participants use provided,
fixed ablated checkpoints (e.g., "A2D-Llama-X-Ablated-v1") to compare science-discovery
frameworks (planners, tool-use agents, proof searchers) independent of pretraining.

Primary metric. Pass@k on V(T ) (e.g., proof acceptance or full test pass) with strict time/compute
budgets per instance.

Secondary diagnostics.

• Leakage audits (paraphrase/multi-hop/same-answer probes defined in F(T ));
• Robustness (success stability under small prompt/seed changes);
• Efficiency (wall-clock, tool calls) under fixed budgets.

Roadmap

• Initial domains: Mathematics (Lean/Isabelle-verifiable theorems); Algorithms (spec-
driven implementations with hidden adversarial tests).

• Road-map domains (as community contributions mature): Physics identities/constraints,
chemical synthesis steps, and biology mechanisms with simulators or curated oracles.

Reproducibility and shareability.

• All instances ship as containers with A(T ), V(T ), and JSON schemas for T /F(T );
• Seeded runs; deterministic configs; checksum’d ablated checkpoints for Mode B;
• Licensing and redistribution policies aligned with base-model terms.

C.3 Extended Draft on Acceleration Potential — Unlocking Constructive AI-for-Science

Catalyzing a new benchmark frontier. The Ablation-to-Discovery (A2D) dataset would establish
the first falsifiable benchmark for constructive scientific generation. Just as ImageNet provided
a hill-climbable substrate that fueled deep learning in vision [Deng et al., 2009], A2D would let
researchers systematically compare models and architectures on their ability to re-derive knowledge
once its closure has been forgotten. By defining both the targets and the ablation process, A2D
transforms “scientific discovery” from a vague aspiration into a concrete, measurable capability.

Driving unlearning and discovery in tandem. Progress in unlearning directly amplifies the
challenge of A2D: the more faithfully F(T ) is removed, the harder the rediscovery task becomes,
and the more diagnostic success becomes. This coupling ensures a virtuous cycle: advances in
unlearning sharpen the benchmark, which in turn forces advances in reasoning, derivation, and
discovery frameworks.

Impact on model development.

• For foundation model developers, A2D provides a rigorous testbed for epistemic capability:
beyond pass rates on factual recall, can a model constructively rebuild forgotten results?

• For system builders (e.g., AI scientists, tool-augmented agents), A2D offers a standardized
arena where strategies for exploration, reasoning, and tool use can be fairly compared—either
by running ablation on their own models or by using standardized ablated checkpoints.

• For evaluation researchers, A2D creates a new class of benchmarks that integrate unlearning
fidelity, rediscovery performance, leakage audits, and utility retention.

Cross-domain acceleration. While the initial release focuses on mathematics and algorithms
(where verification is strict and automatic), the same paradigm extends naturally:

• Physics: unlearn an equation, test rediscovery from fundamental laws.
• Chemistry: unlearn a synthesis pathway, test rediscovery from reaction rules.
• Biology: unlearn a canonical interaction, test rediscovery from structural constraints.

Each new domain added to A2D increases its reach, creating a shared platform where diverse scientific
communities can evaluate constructive AI progress under consistent epistemic conditions.
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Rapid, widespread impact. Because A2D instances are modular and reproducible (target + closure
+ ablation recipe + oracle), the benchmark can be shared openly and extended collaboratively. New
models, architectures, and discovery frameworks can be stress-tested immediately. This positions
A2D to become a community-wide standard for measuring the one capability that matters most for
AI-for-Science: moving beyond retrieval to genuine discovery.

C.4 Extended Draft on Data-Creation Pathway

The core of A2D is not a single static dataset but a reproducible protocol: select a scientific target T ,
apply an ablation procedure A(T ) to a base model M , and record the model’s attempt to rediscover
T . This shifts the notion of “data creation” from raw collection to repeatable transformation.

Concretely, the pathway looks like this:

• Target selection: Curators provide a library of canonical scientific theorems, proofs, or
results (e.g., Euler’s formula, Mendel’s laws, Maxwell’s equations).

• Ablation recipes: For each target T , a documented recipe specifies how to apply an unlearn-
ing or fine-tuning procedure that removes T from M .

• Rediscovery logs: Researchers run their system on the ablated model, generating traces of
attempted rediscovery (reasoning chains, intermediate hypotheses, final answers). These
logs constitute the comparable benchmark outputs.

Because recipes and protocols are public, the pathway is scalable and decentralized. Researchers
can regenerate ablated models locally or use shared checkpoints for convenience. The “dataset” is
thus partly static (targets, configs, evaluation scripts) and partly dynamic (rediscovery logs generated
under standardized conditions).

Looking forward, we expect this pathway to become even more streamlined. Emerging infras-
tructures for model editing and unlearning—potentially delivered through “Ablation-as-a-Service”
platforms—could automate recipe application, verification, and distribution. In the longer term, agen-
tic pipelines might automatically curate new scientific targets, generate validated ablation configs,
and integrate them into the benchmark with minimal human oversight. This vision makes A2D not
just a dataset but a self-renewing ecosystem, capable of expanding alongside advances in both science
and AI.

C.5 Extended Draft on Cost and Scalability

The primary new cost introduced by A2D lies in generating ablated models. Unlike conventional
benchmarks, where fixed datasets can be distributed once, A2D requires creating model variants with
targeted unlearning. This raises the question of whether the benchmark is too expensive to scale.

In practice, the cost is modest. Producing an ablated model typically requires tens to hundreds
of GPU-hours of unlearning, orders of magnitude less than the millions of GPU-hours consumed
by foundation model pretraining. Moreover, the benchmark is defined by protocols rather than a
static zoo of checkpoints. Ablation recipes A(T ) can be published alongside base-model identifiers,
enabling any researcher to reproduce ablated variants locally. This shifts the cost structure from
centralized curation to distributed, on-demand regeneration.

For adoption, two models of distribution are possible. At minimum, benchmark curators can release
ablation configs and evaluation scripts, minimizing central cost. For convenience, reference ablated
checkpoints can also be shared, incurring modest additional compute and storage but lowering the
barrier to entry. Either way, the marginal cost of scaling A2D is low, with the community’s effort
concentrated not on compute but on validating that ablations are faithful and consistent.

Looking forward, the cost trajectory is favorable: as unlearning techniques become more efficient
and standardized, the marginal expense of producing ablations will fall. Emerging toolkits and
infrastructure—potentially “Unlearning-as-a-Service”—could make generating ablated models nearly
as routine as dataset preprocessing, further lowering barriers and enabling broader community
participation.
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D Author’s Final Remarks

Knowledge is a lottery ticket for technological advancement. In the book "Why Greatness Cannot Be
Planned" by Stanley and Lehman [2015], the authors conjecture that "[a]lmost no prerequisite to any
major invention was invented with that invention in mind". Rather, it is rather unclear how even to
assemble the prerequisites to great inventions before they are invented.

To increase the chances of the next major technological breakthrough happening within our lifetimes,
we therefore need to increase the volume at which "intellectual novelties" (knowledge) is being
generated. Artificial intelligence is one of the ways toward this goal; in a way, we can consider it as a
"lottery ticket printer"; it prints out the numbers and we just have to verify whether we have found
the jackpot.

Furthermore, interdisciplinary connectivity does not scale linearly with the amount of available
knowledge. As the number of distinct ideas, tools, and domains increases, the number of potential
cross-domain linkages grows on the order of the square of that number. Because many breakthroughs
arise from previously unanticipated combinations of concepts, this combinatorial expansion im-
plies that the probability of encountering a useful synthesis may grow superlinearly—potentially
polynomially rather than linearly—with the total volume of knowledge.

The remaining bottleneck is the reliability of the “lottery tickets” being generated. An unreliable
generator may propose nonexistent, incoherent, or systematically incomplete possibilities, limiting the
effective search space regardless of volume. The framework developed in this paper aims to eventually
produce the environment needed to shape the conditions under which knowledge-generation systems
produce increasingly faithful, comprehensive, and well-calibrated hypotheses. In doing so, it moves
these “lottery-ticket printers” toward scale and reliability.
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