
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENETIC-EVOLUTIONARY GRAPH NEURAL NET-
WORKS: A PARADIGM FOR IMPROVED GRAPH REPRE-
SENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Message-passing graph neural networks have become the dominant framework for
learning over graphs. However, empirical studies continually show that message-
passing graph neural networks tend to generate over-smoothed representations for
nodes after iteratively applying message passing. This over-smoothing problem
is a core issue that limits the representational capacity of message-passing graph
neural networks. We argue that the fundamental problem with over-smoothing is
a lack of diversity in the generated embeddings, and the problem could be reduced
by enhancing the embedding diversity in the embedding generation process. To
this end, we propose genetic-evolutionary graph neural networks, a new paradigm
for graph representation learning inspired by genetic algorithms. We view each
layer of a graph neural network as an evolutionary process and develop operations
based on crossover and mutation to prevent embeddings from becoming similar to
one another, thus enabling the model to generate improved graph representations.
The proposed framework has good interpretablility, as it directly draws inspiration
from genetic algorithms for preserving population diversity. We experimentally
validate the proposed framework on six benchmark datasets on different tasks.
The results show that our method significant advances the performance current
graph neural networks, resulting in new state-of-the-art results for graph represen-
tation learning on these datasets.

1 INTRODUCTION

Graphs are a general data structure for representing and analyzing complex relationships among
entities. Many real-word systems, such as social networks, molecular structures, communication
networks, can be modeled using graphs. It is essential to develop intelligent models for uncovering
the underlying patterns and interactions within these graph-structured systems. Recent years have
seen an enormous body of studies on learning over graphs. The studies include graph foundation
models, geometry processing and deep graph embedding. These advances have produced new state-
of-the-art or human-level results in various domains, including recommender systems, chemical
synthesis, and 2D and 3D vision tasks (Zhang et al., 2024; Xie et al., 2024; Chen et al., 2024; Kim
et al., 2023).

Graph neural networks have emerged as a dominant framework for learning from graph-structured
data. The development of graph neural network models can motivated from different approaches.
The fundamental graph neural network was been derived as a generalization of convolutions to
non-Euclidean data (Bruna et al., 2014), as well as by analogy to classic graph isomorphism tests
(Hamilton et al., 2017). Regardless of the motivations, the defining feature of the graph neural
network framework is that it utilizes a form of message passing wherein messages are exchanged
between nodes and updated using neural networks (Hamilton, 2020). During each graph neural
network layer, the model aggregates features from a node’s local neighbourhood and then updates
the node’s representation according to the aggregated information.

Message passing is at the heart of current graph neural networks. However, this paradigm of mes-
sage passing also has major limitations. Theoretically, it is connected to the Weisfeiler-Lehman
(WL) isomorphism test as well as to simple graph convolutions. The representational capacity of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

message-passing graph neural networks is inherently bounded by the WL isomorphism test. Empir-
ical studies continually find that massage-passing graph neural networks suffer from the problem of
over-smoothing. That is, the representations for all nodes can become very similar to one another
after too many message passing iterations. These core limitations prevent graph neural networks
from more meaningful representations from graphs. In recent years, increasing studies have been
devoted to addressing the bottlenecks, such as normalization and regularization techniques (?), and
combining the global self-attention mechanism (Rampasek et al., 2022), exploring generalized mes-
sage passing (Barceló et al., 2020). Regardless of these advances, improving the capability of graph
neural network models still remains a fundamental challenge in learning from graph-structured data.

To learn meaningful graph representations, it is crucial to generate embeddings for all nodes that
depend on both the graph structure and node attributes. However, when the over-smoothing phe-
nomenon occurs, the representations for all nodes begin to look identical to each other. The conse-
quence is that the information from node-specific features becomes lost. To prevent this issue, it is
important to perserve the diversity of generated embeddings throughout their layerwisely generation
process. In this paper, we propose genetic-evolutionary graph neural networks, a new paradigm
for graph representation learning that integrates the idea from genetic algorithms for maintaining
population diversity into the message-passing graph neural network framework.

Genetic algorithms, inspired by the Charles Darwin’s theory of natural evolution, emulate the pro-
cess of natural selection, wherein the fittest individuals are selected to reproduce and generate the
next generation of offspring. Genetic algorithms employ a set of evolution-inspired operations, in-
cluding mutation, crossover, and selection (Mitchell, 1998). Over multiple generations, biological
organisms evolve based on the principle of natural selection, or “survival of the fittest”, enabling
them to accomplish target tasks. Genetic algorithms have been successfully applied in solving com-
plex optimization and search problems. In machine learning, genetic algorithms have also been
used for feature selection (Babatunde et al., 2014) and hyperparameter tuning for models like neural
networks and support vector machines (Alibrahim & Ludwig, 2021).

In genetic algorithms, the crossover and mutation operations play a key role in generating diverse
individuals for selection, preventing the algorithms from premature convergence (Gupta & Ghafir,
2012). Crossover introduces variety by combining genetic information from different parents, and
mutation introduces small random changes in genetic information. In this work, we view the itera-
tive node embedding process as an evolutionary process, in which each layer of message passing
produces a new generation of embeddings. We introduce two crossover operations, i.e., cross-
generation crossover and sibling crossover, and a mutation operation, and we develop two graph
neural network building blocks based on the operations. At each layer of a graph neural network,
we first use message passing to update node representations and then apply crossover and muta-
tion to prevent embeddings from becoming similar to one another, thus enabling the model to learn
improved graph representations.

Unlike previous methods, such as residual connections (He et al., 2016), SSFG (Zhang et al., 2022)
and PairNorm (Zhao & Akoglu, 2020), this work proposes operations by drawing inspiration from
genetic algorithms for addressing the over-smoothing problem in graph neural network. Our frame-
work has good interpretablilty as it views the layerwisely node embedding process as analogous to
the genetic evolutionary process.. It is a general paradigm that can be integrated into different graph
neural network models. We conduct experiments on six benchmark datasets on different graph
tasks. We show that the use of our framework significantly improves the performance of the base-
line graph neural networks, advancing the state-of-the-art results for graph representation learning
on the datasets.

The main contributions of this paper can be summarized as follows. (1) This paper proposes a new
framework named genetic-evolutionary graph neural networks for learning from graph-structured
data. The core idea behind the proposed framework is to model each layer of a graph neural network
as an evolutionary process. We develop three key operations inspired by crossover and mutation
from genetic algorithms to enhance the diversity of generated embeddings at each layer. (2) The
proposed framework offers good interpretability, as it is directly inspired by biogenetics. It is a
general paradigm which can be integrated into current message-passing graph neural networks. Em-
pirical evaluations are conducted on six popular datasets on different graph tasks, and the results
demonstrate that the proposed framework significantly improves the performance of the baseline
graph neural networks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS

Most current graph neural networks can be categorized into spectral approaches and spatial ap-
proaches (Veličković et al., 2018). The spectral approaches are developed based on spectral graph
theory. The key idea of spectral graph neural networks is that convolutions are defined in the spectral
domain through an extension of the Fourier transform to graphs. In contrast, spatial graph neural
networks define convolutions in spatially localized neighbourhoods. The behaviour of the convolu-
tions is analogous to that of kernels in convolutional neural networks which aggregate features from
spatially-defined patches in an image.

Both spectral and spatial graph neural networks are essentially message-passing neural networks
that employ a paradigm of message passing wherein embeddings are exchanged between nodes and
updated using neural networks (Gilmer et al., 2017). A common issue with message-passing graph
neural networks is known as the over-smoothing problem. This issue of over-smoothing was first
identified by Li et al. (2018). It can also be viewed as a consequence of the neighbourhood aggrega-
tion operation in the message-passing update (Hamilton, 2020). The follow-up studies for limiting
over-smoothing include graph normalization and regularization techniques (Zhao & Akoglu, 2020;
Chen et al., 2022), combing the global self-attention with local message passing (Rampasek et al.,
2022), and improved graph attention approaches (Wu et al., 2024). Additionally, there have been
studies on uncovering over-smoothing in basic graph neural network models from theoretical analy-
sis (Oono & Suzuki, 2020). Luan et al. (2024) analyzed homophily by studying intra- and inter-class
node distinguishability and showed that graph neural network is capable of generating meaningful
representations regardless of homopiily levels.

2.2 GENETIC ALGORITHMS

Genetic algorithm methods are inspired by the mechanisms of evolution and natural genetics (Srini-
vas & Patnaik, 1994). Genetic algorithms were first introduced by Holland (1992) as a heuristic
method based on the principle of nature selection. Over the past years, genetic algorithms have
emerged as a powerful tool for solving complex optimization and search problems across numerous
fields such as scheduling, mathematics and networks (Alhijawi & Awajan, 2023).

In machine learning, genetic algorithms have been applied for optimizing neural networks (Miller
et al., 1989) and designing neural network architectures (Jones, 1993). Researchers have also used
genetic algorithms for optimizing hyperparameters in neural networks and support vector machines
(Alibrahim & Ludwig, 2021; Shanthi & Chethan, 2022). In object detection, hyperparameter evolu-
tion which uses a genetic algorithm was applied for optimizing hyperparameters in YOLO models
(Redmon, 2016). Sehgal et al. (2019) showed that evolving the weights of a deep nerual network
using a genetic algorithm was a competitive approach for training reinforcement learning models.

3 METHODOLOGY

3.1 GRAPH NEURAL NETWORKS

A graph G = (V, E) can be defined through a set of nodes V and a set of edges E between pairs of
these nodes. Each node u ∈ V is associated with a node-level feature xu. Graph neural networks
are a general framework for reorientation learning over the graph G and {xu,∀u ∈ V}. At its core,
the graph neural network framework iteratively updates the representation for every node using a
form of message passing. During each message-passing iteration, each node u ∈ V aggregates
the representations of the nodes in its neighborhood, and the representation for node u is then up-
dated according to the aggregated representation. Following Hamilton (2020), this message-passing
framework can be expressed as follows:

h(k)
u = Update(k)

(
h(k−1)
u , Aggregate(k)({h(k−1)

v ,∀v ∈ N (u)})
)
, (1)

where Update and Aggregate are neural networks, andN (u) is the set nodes in u’s neighbourhood.
The superscripts are used for distinguishing the embeddings and functions at different iterations. At

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0 1 1 1 0 1 0

1 0 0 1 0 1 1

0 1 0 1 0 1 1

Crossover

0 1 1 0 1 0 0

0 0 1 1 1 0 0

Mutation

Figure 1: Crossover recombines of the genetic information of parents to produce an offspring. Mu-
tation introduces small random changes in genetic information.

each iteration k, the Aggregate function takes the set of embeddings of nodes inN (u) as input and
generates an aggregated message m

(k)
N (u). The Update function then generates the updated embed-

ding for node u based on the message m(k)
N (u) and u’s previous embedding h

(k−1)
u . The embeddings

at k = 0 are initialized to the node-level features, i.e., h(0)
u = xu,∀u ∈ V . After K iterations of

message passing, every node embedding contains information from its K-hop neighborhood.

This message passing formalism is currently the dominant framework for learning over graphs.
However, a common issue with message-passing graph neural networks is over-smoothing. The idea
of over-smoothing is that the embeddings for all nodes begin to become similar and are relatively
uninformative after too many rounds of message passing. This issue of over-smoothing can be
viewed as a consequence of the neighborhood aggregation operation. Li et al. (2018) showed that
the graph convolution of the basic graph convolutional network model (Kipf & Welling, 2016) can be
seen as a special form of Laplacian smoothing that generates the representation for every node using
the weighted average of a node’s itself and its neighbours’ embeddings. But after applying too many
rounds of Laplacian smoothing, the representations for all nodes will become indistinguishable from
each other. From the graph signal processing perspective, multiplying a signal by high powers of the
symmetric normalized adjacency matrix Asym = D− 1

2AD
1
2 , which corresponds to a convolutional

filter the lowest eigenvalues, or frequencies, of the symmetric normalized Laplacian Lsym = 1 −
Asym. Thus, the simple graph neural network that stacks multiple rounds of graph convolution
converges all the node representations to constant values within connected components on the graph,
i.e., the “zero-frequency” of the Laplacian (Hamilton, 2020).

3.2 GENETIC-REVOLUTIONARY GRAPH NEURAL NETWORKS

3.2.1 MOTIVATION

In the above, we discussed the over-smoothing problem in message-passing graph neural network.
We see that the fundamental issue is the loss of diversity of embeddings at each layer throughout
the generation process. Thus, we can view the trade-off between model performance and depth of
popular graph neural network models from this perspective. Graph neural networks need to model
complex relationships and long-term dependencies using more layers to improve the performance.
However, using using too many layers will eliminate node-specific features, which leads to signifi-
cantly reduced model performance.

Graph neural networks generate embeddings for nodes through an iterative message-passing pro-
cess. At each message-passing iteration, the representation for every node is updated according to
the information information aggregated from the node’s graph neighbourhood. We can view this
iterative process as an genetic evolutionary process, wherein graph nodes are individuals of a pop-
ulation, and the model is to evolve a population of nodes over multiple generations to obtain their
expressive representations for graph tasks.

In genetic algorithms, a very homogeneous population, i.e., little population diversity, is considered
as the major reason for premature converging to suboptimal solutions (Whitley, 2001). Therefore,
it is crucial to preserve the diversity of population during the evolutionary process. Similarly, we

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

need to maintain the diversity of generated embedding in their generation to prevent the model from
converging to a local optimum in optimization.

To preserve the population diversity, genetic algorithms use the operators of crossover and mutation
to generate diverse individuals and select those best fit the environment to evolve over successive
generations. The crossover operation recombines of the characteristics of each ancestor of an off-
spring, and the mutation operation randomly changes the genetic information to increase the vari-
ability (see Figure 1). In a similar manner, we can generalize the mechanisms to the embedding
generation process. By integrating crossover and mutation methods within the message-passing
framework, we can prevent generated embeddings from becoming too similar to each other. This
ultimately would enhance the model representational capacity.

3.2.2 IMPROVING GRAPH NEURAL NETWORKS WITH GENETIC OPERATIONS

We view each layer of a graph neural network as a genetic evolution process, in which the nodes
represent individuals of a population and their embeddings represent chromosomes that store ge-
netic information. During each graph neural network layer, we first use message passing to update
the embeddings for all nodes and then use genetic operations to increase the diversity of gener-
ated embeddings. We propose three operations inspired by genetic algorhtms: (1) cross-generation
crossover, (2) sibling crossover, and (3) mutation.

Genetically, crossover is a process in which the genetic information of two parents is recombined to
produce new offspring, resulting in the exchange of genetic material between parental chromosomes.
This mechanism forms the basis for driving biological variation, shaping differences in traits within
species and introducing novel traits previously unseen in a population. It basically helps promote
the evolutionary process by enabling novel gene combinations to emerge and spread across gener-
ations. Fundamentally, this process creates diversity at the level of genes that reflects difference in
chromosomes of different individuals.

Cross-generation crossover. Similar to crossover in genetics, the cross-generation operation in
our framework recombines the embedding for a node generated by message-passing and the node’s
previous layer embedding. For h

(k)

u = (h
(k)

u,1, ...,h
(k)

u,d) and h
(k−1)
u = (h

(k−1)
u,1 , ...,h

(k−1)
u,d) which

represent the embedding for node u generated by message passing and u’s previous layer embedding,
cross-generation crossover can be expressed as follows:

h(k)
u = Crossover(h

(k)

u ,h(k−1)
u)

where h
(k)
u,i =

{
h
(k)
u,i if λi < p

h
(k)

u,i else
,

(2)

and λi ∼ U(0, 1) and p is a probability indicating information from the previous layer embedding.
At each dimension, the feature is randomly selected from the embedding generated using mes-
sage passing or from the embeding inputted to this layer. Because each round of message passing
generates a smoothed version of the input, recombining information from a node’s previous layer
embedding reduces the smoothness of the generated embeddings. This operation is a parameter-free
method and can be integrated into current graph nerual networks.

Sibling crossover is an operation that randomly selects information from siblings. In our impelmen-
tation, we generate multi-head outputs using message passing as siblings and update the embedding
for a node by randomly selecting information from the multi-head outputs.

h(k)
u = Crossover(h

(k,head1)

u , ...,h
(k,headz)

u)

where h
(k)
u,i = h

(k,hij)

u,i ,
(3)

hij ∼ Categorical(1z , ...,
1
z), and z is the number of heads. Each h

(k,headh)

u in the multi-head
outputs represents a sibling generated using the same input. This operation also increases individual
diversity by randomly combining information from different siblings.

Mutation is the process in which some genes of individuals are randomly changed. In our frame-
work, the feature at each dimension is randomly replaced by a value sampled from a Gaus-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Pseudocode for cross-generation crossover in a PyTorch-like style.

h, h_in: representaton generated by message passing and the previous layer embedding
f_prob: probabilty of recombining information from parent
self.dist: a Bernoulli distribution defined by torch.distributions.Bernoulli(torch.tensor(

self.f_prob)):

def forward(self, h, h_in):

if self.training == True:
crossover_mask = self.dist.sample(h.shape) # generate crossover mask

crossover from h and h_in
h = h_in * crossover_mask + h * (1 - crossover_mask)

else:
h = h_in * self.f_prob + h * (1 - self.f_prob)

return h

Algorithm 2 Pseudocode for mutation in a PyTorch-like style.

self.running_mean: the mean of h over the training set
self.running_var: the variance of h over the training set
self.mutation_prob: probility of mutation

def forward(self, h):
if self.training == True:

mean = h.mean([0])
var = h.var([0])
n = h.numel() / h.size(1)

with torch.no_grad():
momentum update of running_mean and running_var
self.running_mean = self.momentum * mean + (1 - self.momentum) * self.running_mean
self.running_var = self.momentum * var * n / (n - 1) + (1 - self.momentum) * self.

running_var

generate mutatioin noise
gaussian_noise = torch.randn(h.shape)

if self.training == True:
mutation_mask = Bernoulli.sample(h.shape) # generate mutation mask
h = (gaussian_noise * self.running_var + self.running_mean) * mutation_mask + h * (1 -

mutation_mask)
else:

h = self.running_mean * self.mutation_prob + h * (1 - self.mutation_prob)

return h

sian distribution, wherein the statistics are calculated using batches. For a batch of m vectors
B = {h1

u,h
2
u, ...,h

m
u }, we calculate the mean µ and variance δ of the feature over the training

set as follows.
µ← EB(µB)

δ ← m

m− 1
EB(δ

2
B)

(4)

where µB and δ2B are the mean and variance of the batch B. Here we use the unbiased variance
estimate. Then we randomly sample a vector γ from a multivariate Gaussian distribution N(0, I)
and update the feature as follows:

h̃i
u = (γδ + µ)mask+ hi

u(1−mask) (5)

where the mask ∼ Bernoulli(mutation rate). The mutation operation is also a parameter-free
method. It basically introduces randomness to features as a regularization method, enabling the
model to explore new space for optimization.

3.3 MODEL ARCHITECTURE

Algorithm 1 and Algorithm 2 show our Pytorch-style pseudo-code for the cross-generation crossover
operation and mutation operation respectively. The code for sibling crossover can be easily adapted
from Algorithm 1. We design two building blocks based on the cross-generation crossover operaton
and sibling crossover operation (see Figure 2). The first building block applies the cross-generation

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Message-passing
Layer

{ℎ!
"#$ }

Cross-generation
Crossover

Mutation

{ℎ!
"#$ }

Sibling Crossover

Mutation

Multi-head Message-passing

MP
head!

MP
head"

MP
head#

(a) (b)

Figure 2: Building block architectures: Block (a) applies cross-generation to a node’s embedding
generated using message passing and the node’s previous layer embedding, and Block (b) applies
sibling crossover to a set of outputs generated using multi-head message passing.

Table 1: Classification accuracy (%) on MNIST and CIFAR10 on the superpixel graph classification
task. The cross-generation crossover and mutation operations are applied to the base GPS model.

Model MNIST CIFAR10

GCN (Kipf & Welling, 2016) 90.705±0.218 55.710±0.381
MoNet (Monti et al., 2017) 90.805±0.032 54.655±0.518
GraphSAGE (Hamilton et al., 2017) 97.312±0.097 65.767±0.308
GIN (Xu et al., 2019) 96.485±0.252 55.255±1.527
GCNII (Chen et al., 2020) 90.667±0.143 56.081±0.198
PNA (Corso et al., 2020) 97.94±0.12 70.35±0.63
DGN (Beaini et al., 2021) – 72.838±0.417
CRaWl (Toenshoff et al., 2021) 97.944±0.050 69.013±0.259
GIN-AK+ (Zhao et al., 2021) – 72.19±0.13
3WLGNN (Maron et al., 2019) 95.075±0.961 59.175±1.593
EGT (Hussain et al., 2022) 98.173±0.087 68.702±0.409
GatedGCN + SSFG (Zhang et al., 2022) 97.985±0.032 71.938±0.190
EdgeGCN (Zhang et al., 2023) 98.432±0.059 76.127±0.402
Exphormer (Shirzad et al., 2023) 98.550±0.039 74.754±0.194
TIGT (Choi et al., 2024) 98.230±0.133 73.955±0.360
RandAlign + GatedGCN (Zhang & Xu, 2024) 98.512±0.033 76.395±0.186

GCN (Rampasek et al., 2022) 90.705±0.218 55.710±0.381
Ours + GCN 95.926±0.031 59.157±0.130
GPS (Rampasek et al., 2022) 98.051±0.126 72.298±0.356
Finetuned GPS 98.186±0.107 75.680±0.188
Ours + Finetuned GPS 98.685±0.029 80.636±0.195

crossover after message passing, followed by the mutation operation. Note that this building block
is compatible with different graph neural network models and it does not introduce additional train-
able parameters. The other building block applies sibling crossover to a set of multi-head outputs,
followed by the mutation operation. This method requires the model to generate multiple siblings
using a multi-head message passing.

The embedding generation process takes the graph G = (V, E) and features for all nodes xu,∀u ∈ V ,
as input. This is followed by K building blocks that generate hidden embeddings. Finally, a readout
function is applied to the output of the last block to generate the graph representation. For node-level
tasks, the embeddings generated by the last block are directly used.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Results on PascalVOC-SP and COCO-SP on the node classification task. The cross-
generation crossover and mutation operations are applied to the base GPS model.

Model PascalVOC-SP COCO-SP
(F1) (F1)

GCN Kipf & Welling (2016) 0.1268±0.0060 0.0841±0.0010
GINE Hu et al. (2019) 0.1265±0.0076 0.1339±0.0044
GCNII Chen et al. (2020) 0.1698±0.0080 0.1404±0.0011
GatedGCN Bresson & Laurent (2017) 0.2873±0.0219 0.2641±0.0045
GatedGCN + RWSE (Rampasek et al., 2022) 0.2860±0.0085 0.2574±0.0034
Transformer + LapPE Dwivedi et al. (2022) 0.2694±0.0098 0.2618±0.0031
SAN + LapPE Dwivedi et al. (2022) 0.3230±0.0039 0.2592±0.0158
SAN + RWSE Dwivedi et al. (2022) 0.3216±0.0027 0.2434±0.0156
Exphormer Shirzad et al. (2023) 0.3975±0.0037 0.3455±0.0009
RandAlign + GPS (Zhang & Xu, 2024) 0.4242±0.0011 0.3567±0.0026

Fine-tuned GCN (Tönshoff et al., 2023) 0.2078±0.0031 –
Ours + Finetuned GCN 0.2241±0.0020 –

GPS (Rampasek et al., 2022) 0.3748±0.0109 0.3412±0.0044
Fine-tuned GPS (Tönshoff et al., 2023) 0.4440±0.0065 0.3884±0.0055
Ours + Finetuned GPS 0.4832±0.0031 0.4002±0.0019

Table 3: Results on Pepti-func and Pepti-struct. The sibling crossover and mutation operations are
applied to the base GCN model.

Model Peptides-func Peptides-struct
(AP ↑) (MAE ↓)

GCN 0.5930±0.0023 0.3496±0.0013
GINE 0.5498±0.0079 0.3547±0.0045
GCNII (Chen et al., 2020) 0.5543±0.0078 –
GatedGCN 0.5864±0.0077 0.3420±0.0013
Gated + RWSE 0.6069±0.0035 0.3357±0.0006
Transformer+LapPE 0.6326±0.0126 0.2529±0.0016
SAN+LapPE 0.6384±0.0121 0.2683±0.0043
SAN+RWSE 0.6439±0.0075 0.2545±0.0012
Exphormer (Shirzad et al., 2023) 0.6527±0.0043 0.2481±0.0007
GPS (Rampasek et al., 2022) 0.6535±0.0041 0.2500±0.0005
Finetuned GPS (Tönshoff et al., 2023) 0.6534±0.0091 0.2509±0.0014

Finetuned GCN (Tönshoff et al., 2023) 0.6860±0.0050 0.2460±0.0007
Ours + Finetuned GCN 0.7021±0.0034 0.2426±0.0014

4 EMPIRICAL EVALUATION

4.1 DATASETS AND SETUP

The experiments are conducted on six benchmark datasets, i.e., MNIST, CIFAR10, PascalVOC-SP,
COCO-SP, Peptides-func and Peptides-struct (Dwivedi et al., 2020; 2022) on three graph tasks,
graph classification, node classification, and graph regression. We closely follow the setup as
Dwivedi et al. (2020; 2022) for training and evaluating the models. The details of the datasets
and evaluation metrics are provided in the appendix section.

4.2 RESULTS

CIFAR10 and MNIST. Table 1 reports the results on the two datasets on the superpixel classifica-
tion task. We use the GPS (Rampasek et al., 2022) as the base model. The GPS model is a hybrid of
local aggregation and global aggregation architecture. It uses GatedGCN for local aggregation and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Ablation study: Importance of crossover and mutation on the model performance on CI-
FAR10 and PascalVOC-SP.

Base Model Crossover Mutation CIFAR10 PascalVOC-SP

Finetuned GPS
× × 75.680±0.188 0.4440±0.0065
✓ × 79.434±0.228 0.4952±0.0098

(Tönshoff et al., 2023) × ✓ 77.029±0.203 0.4554±0.0077
✓ ✓ 80.636±0.195 0.4832±0.0031

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Crossover rate

0.7

0.72

0.74

0.76

0.78

0.8

0.82

Ac
cu

ra
cy

CIFAR10

0.4 0.5 0.6 0.7 0.8 0.9 1
Crossover rate

0.25

0.3

0.35

0.4

0.45

0.5

F1

PascaVOC-SP

Figure 3: Impact of the crossover rate p on the model performance on CIFAR10 and PascalVOC-SP.

0 4 8 12 16
Layer number

55

60

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

CIFAR10

GPS w/o our method -Training
GPS w/o our method -Test
GPS + our method -Training
GPS + our method -Test

0 4 8 12
Layer number

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F1

PascalVOC-SP

GPS w/o our method -Training
GPS w/o our method -Test
GPS + our method -Training
GPS + our method -Test

Figure 4: Results of our method on the base Finetuned GPS model with different layers on CIFAR10
and PascalVOC-SP.

uses Transformer for global aggregation. We apply cross-generation and mutation (i.e., block (a) in
Figure 2) to the base GatedGCN model. The crossover rate is set to 0.5 and mutation rate is set to
0.1. We see from Table 1 that our method improves the performance of the base model by a large
margin, with a relative improvement of 0.648% and 11.53% on MNIST and CIFAR10 respectively.
It simultaneously outperforms both Exphormer (Shirzad et al., 2023) and RandAlign (Zhang & Xu,
2024), which previously achieved the best performance on MNIST and CIFAR10 respectively.

PascalVOC-SP and COCO-SP. The two datasets are long-range prediction datasets compared to
MNIST and CIFAR10. The task is to predict if a node corresponds to a region of an image which
belongs to a particular class. We use Finetuned GPS (Tönshoff et al., 2023) as the base model.
The Finetuned GPS is also a hybrid of GatedGCN and Transformer architecture. We apply cross-
generation and mutation to the base GatedGCN model. The crossover rate is set to 0.9 and mutation
rate is set to 0.05. The results are reported in Table 2. Previously, Finetuned GPS achieved the best
performance among the baseline models on the two datasets. As compared to Finetuned GPS, the
use of our method results in a relative improvement of 8.83% and 3.04% respectively without using
additional model parameters. Once again, our framework achieves new state-of-the-art performance
on the two datasets.

Peptides-func and Peptides-struct. We use Finetuned GCN (Tönshoff et al., 2023) as the base
model on the two datasets. We use sibling crossover and mutation to the base model. The number

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Comparison of our method with the basic GCN, wherein residual connections and batch
normalizations (BN) are not used.

Model MNIST CIFAR10

GCN (w/o residual connections and BN) 87.590±0.336 48.810±1.045
GCN (with residual connections and BN) 90.705±0.218 55.710±0.381

GCN (with residual connections and BN) + Ours 95.926±0.031 59.157±0.130

of siblings is set to 2 and mutation rate is set to 0.1. The results are reported in Table 3. Finetuned
GCN is a strong baseline model in previous work. We see from Table 3 that the use of framework
further improve the model performance.

Ablation Study. We conduct an ablation study on CIFAR10 and PascalVOC-SP to analyse the
importance of crossover and mutation on the model performance. Table 5 shows the ablation study
results. It can be seen from Table 5 that the crossover operation plays a major role in improving
the model performance. The mutation operation helps further improve the model performance as a
regularization method.

We further analyzed the impact of the crossover rate p on model performance on CIFAR10 and
PascalVOC-SP. Figure 3 shows the experimental results. We see that the best performance is
achieved when p is set to different values on the two datasets. When p is set to 0, it is equiva-
lent to not using crossover. A recommended strategy for tuning p is starting from 0.9 or 0.95 and
then gradually decreasing it to find the optimal value.

We conducted experiments to analysis the performance of our method on the base Finetuned GPS
model with different layers on CIFAR10 and PascalVOC-SP. The results are shown in Figure 4. We
also analyzed the the performance of our method on the base Finetuned GPS model with different
layers on CIFAR10, and the results are reported in Figure 5 in the appendix section. It can be
seen from Figure 4 and Figure 5 that the use of our method improves the model generalization
performance on the base models.

We further compared our method with the basic GCN in which residual connections and batch
normalizations are not used on MNIST and CIFAR10. The results are shown in Table 5. We see that
the model performance drops without using these techniques and that the joint use of our method
with residual connections and batch normalizations yields the best task perforamnce.

5 CONCLUSIONS

This paper presents a new framework called genetic-evolutionary graph neural networks for graph
representation learning. The key idea of our approach is to view each layer of a graph neural net-
work as a genetic evolutionary process and use biogenetics-inspired operations to prevent the over-
smoothing problem in graph neural networks. We developed three operations, i.e., cross-generation
crossover, sibling crossover and mutation, inspired by genetic algorithms and presented two build-
ing blocks based on the the operations for graph representation learning. An important advantage
of the proposed framework lies in its interpretability, as it frames layerwisely graph representation
learning as an evolutionary process. The experimental evaluations were conducted on six popular
datasets on different graph tasks. The results showed that the use of our framework significantly
improves the performance of the base graph neural networks, achieving new state-of-the-art per-
formance for graph representation learning on these datasets. We also presented ablations of our
framework, showing the importance of each operation on the overall model performance.

REFERENCES

Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine
Süsstrunk. Slic superpixels compared to state-of-the-art superpixel methods. IEEE transactions
on pattern analysis and machine intelligence, 34(11):2274–2282, 2012.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

B Alhijawi and A Awajan. Genetic algorithms: theory, genetic operators, solutions, and applications,
evol. intel., 2023, 2023.

Hussain Alibrahim and Simone A Ludwig. Hyperparameter optimization: Comparing genetic al-
gorithm against grid search and bayesian optimization. In 2021 IEEE Congress on Evolutionary
Computation (CEC), pp. 1551–1559. IEEE, 2021.

Oluleye H Babatunde, Leisa Armstrong, Jinsong Leng, and Dean Diepeveen. A genetic algorithm-
based feature selection. 2014.

Pablo Barceló, Egor V Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-Pablo Silva.
The logical expressiveness of graph neural networks. In 8th International Conference on Learning
Representations (ICLR 2020), 2020.

Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and Pietro
Liò. Directional graph networks. In International Conference on Machine Learning, pp. 748–
758. PMLR, 2021.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. International Conference on Learning Representations, 2014.

Chaoqi Chen, Yushuang Wu, Qiyuan Dai, Hong-Yu Zhou, Mutian Xu, Sibei Yang, Xiaoguang Han,
and Yizhou Yu. A survey on graph neural networks and graph transformers in computer vision:
A task-oriented perspective. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph con-
volutional networks. In International Conference on Machine Learning, pp. 1725–1735. PMLR,
2020.

Yihao Chen, Xin Tang, Xianbiao Qi, Chun-Guang Li, and Rong Xiao. Learning graph normalization
for graph neural networks. Neurocomputing, 493:613–625, 2022.

Yun Young Choi, Sun Woo Park, Minho Lee, and Youngho Woo. Topology-informed graph trans-
former. arXiv preprint arXiv:2402.02005, 2024.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260–13271, 2020.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Vijay Prakash Dwivedi, Ladislav Rampasek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. In Thirty-sixth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2022.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Deepti Gupta and Shabina Ghafir. An overview of methods maintaining diversity in genetic al-
gorithms. International journal of emerging technology and advanced engineering, 2(5):56–60,
2012.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems, pp. 1024–1034, 2017.

William L Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intelligence and
Machine Learning, 14(3):1–159, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

John H Holland. Adaptation in natural and artificial systems: an introductory analysis with appli-
cations to biology, control, and artificial intelligence. MIT press, 1992.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265,
2019.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-attention
as a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 655–665, 2022.

Antonia J Jones. Genetic algorithms and their applications to the design of neural networks. Neural
Computing and Applications, 1(1):32–45, 1993.

Sangwon Kim, Dasom Ahn, and Byoung Chul Ko. Cross-modal learning with 3d deformable atten-
tion for action recognition. In Proceedings of the IEEE/CVF international conference on com-
puter vision, pp. 10265–10275, 2023.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. AAAI Conference on Artificial Intelligence, 2018.

Sitao Luan, Chenqing Hua, Minkai Xu, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, Jie Fu, Jure
Leskovec, and Doina Precup. When do graph neural networks help with node classification?
investigating the homophily principle on node distinguishability. Advances in Neural Information
Processing Systems, 36, 2024.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. arXiv preprint arXiv:1905.11136, 2019.

Geoffrey F Miller, Peter M Todd, and Shailesh U Hegde. Designing neural networks using genetic
algorithms. In ICGA, volume 89, pp. 379–384, 1989.

Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5115–5124,
2017.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. International Conference on Learning Representation (ICLR), 2020.

Ladislav Rampasek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022.

J Redmon. You only look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Adarsh Sehgal, Hung La, Sushil Louis, and Hai Nguyen. Deep reinforcement learning using genetic
algorithm for parameter optimization. In 2019 Third IEEE International Conference on Robotic
Computing (IRC), pp. 596–601. IEEE, 2019.

DL Shanthi and N Chethan. Genetic algorithm based hyper-parameter tuning to improve the perfor-
mance of machine learning models. SN Computer Science, 4(2):119, 2022.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. In International Conference on Machine
Learning, 2023.

Mandavilli Srinivas and Lalit M Patnaik. Genetic algorithms: A survey. computer, 27(6):17–26,
1994.

Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph learning with 1d convolu-
tions on random walks. arXiv preprint arXiv:2102.08786, 2021.

Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassess-
ing the long-range graph benchmark. The Second Learning on Graphs Conference (LoG 2023),
2023.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations,
2018.

Darrell Whitley. An overview of evolutionary algorithms: practical issues and common pitfalls.
Information and software technology, 43(14):817–831, 2001.

Xinyi Wu, Amir Ajorlou, Zihui Wu, and Ali Jadbabaie. Demystifying oversmoothing in attention-
based graph neural networks. Advances in Neural Information Processing Systems, 36, 2024.

Jiancong Xie, Yi Wang, Jiahua Rao, Shuangjia Zheng, and Yuedong Yang. Self-supervised con-
trastive molecular representation learning with a chemical synthesis knowledge graph. Journal of
Chemical Information and Modeling, 64(6):1945–1954, 2024.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? 2019.

Haimin Zhang and Min Xu. Randalign: A parameter-free method for regularizing graph convolu-
tional networks. arXiv preprint arXiv:2404.09774, 2024.

Haimin Zhang, Min Xu, Guoqiang Zhang, and Kenta Niwa. Ssfg: Stochastically scaling features and
gradients for regularizing graph convolutional networks. IEEE Transactions on Neural Networks
and Learning Systems, 2022.

Haimin Zhang, Jiahao Xia, Guoqiang Zhang, and Min Xu. Learning graph representations through
learning and propagating edge features. IEEE Transactions on Neural Networks and Learning
Systems, 2023.

Jiahao Zhang, Rui Xue, Wenqi Fan, Xin Xu, Qing Li, Jian Pei, and Xiaorui Liu. Linear-time graph
neural networks for scalable recommendations. In Proceedings of the ACM on Web Conference
2024, pp. 3533–3544, 2024.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In International
Conference on Learning Representations, 2020.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any gnn
with local structure awareness. arXiv preprint arXiv:2110.03753, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

Datasets. The experiments were conducted on the following six benchmark datasets.

• MNIST and CIFAR10 are two datasets for superpixel graph classification (Dwivedi et al.,
2020). The superpixels are converted from original images in MNIST (LeCun et al., 1998)
and CIFAR10 (Krizhevsky et al., 2009) using the SLIC algorithm (Achanta et al., 2012).

• PascalVOC-SP and COCO-SP are two datasets of superpiexels (Dwivedi et al., 2022),
which are converted from images in original PascalVOC and COCO datasets. The task on
the two datasets is to predict if a node corresponds to a region of an image which belongs
to a particular class.

• Peptides-func and Peptides-Struct (Dwivedi et al., 2022) are two datasets of peptides
molecular graphs. The nodes in the graphs represent heavy (non-hydrogen) atoms of the
peptides, and the edges represent the bonds between these atoms. The graphs are catego-
rized into 10 classes based on the peptide functions, e.g., antibacterial, antiviral, cell-cell
communication. The two datasets are used for evaluating the model’s performance for
multi-label graph classification and multi-label graph regression.

The statistics of the benchmark datasets used in the experiments are shown in below Table 6.

Table 6: Statistics of the six benchmark datasets used in the experiments.
Dataset Graphs Nodes Avg. nodes/graph #Training #Validation #Test #Categories

MNIST 70K – 40-75 55,000 5000 10,000 10
CIFAR10 60K – 85-150 45,000 5000 10,000 10

PascalVOC-SP 11,355 5,443,545 479.40 8,489 1,428 1,429 20
COCO-SP 123,286 58,793,216 476.88 113,286 5,000 5,000 81

Peptides-func 15,535 2,344,859 150.94 70% 15% 15% 10
Peptides-struct 15,535 2,344,859 150.94 70% 15% 15 –

Evaluation Metrics. Following Dwivedi et al. (2020) and Rampasek et al. (2022), the following
metrics are used evaluation on different tasks. The performance on MNIST and CIFAR10 on graph
classification is evaluated using the classification accuracy. The performance on PascalVOC-SP and
COCO-SP on node classification is evaluated using the macro weighted F1 score. The performance
on Peptides-func on multi-label graph classification is evaluated using average precision (AP) across
the categories. The performance on Peptides-struct on multi-label graph regression is evaluated
using mean absolute error (MAE).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 4 8 12 16
Layer number

45

50

55

60

65

70

75

80

85

90

95

Ac
cu

ra
cy

CIFAR10

GCN w/o our method -Training
GCN w/o our method -Test
GCN + our method -Training
GCN + our method -Test

Figure 5: Results of our method on the base Finetuned GCN model with different layers on CI-
FAR10.

Figure 6: Implementation of the crossover operation in Pytorch.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 7: Implementation of the mutation operation in Pytorch.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 3 Pseudo for the cross-generation crossover operation.
Input: Crossover probability p, h, h in // embeddings generated by the current layer and the

previous layer
Output: h crossover // Crossover of h and h in

1: if model.training == True then
2: crossover mask = Bernoulli.sample(prob=p) // each element in crossover mask

is sampled from the Bernoulli distribution with probability p
3: h crossover = h in ∗ crossover mask+ h ∗ (1− crossover mask)
4: else
5: h crossover = h in ∗ p+ h ∗ (1− p)
6: end if

Algorithm 4 Pseudo for the mutation operation.
Input: Node embedding h, mutatiion probability r
Output: h mutation // Mutation output of h
1: running mean, running var = Update(h) // update running mean and var
2: gaussian noise = Gaussian.Sample() //the reparameterization trick
3: if model.training == True then
4: mutation mask = Bernoulli.sample(prob=r) // each element in mutation mask

is sampled from the Bernoulli distribution with probability p
5: h mutation = (gaussian noise ∗ running var+ running mean) ∗

mutation mask+ h ∗ (1−mutation mask)
6: else
7: h mutation = running mean ∗ r + h ∗ (1− r)
8: end if

17

	Introduction
	Related Work
	Graph Neural Networks
	Genetic Algorithms

	Methodology
	Graph Neural Networks
	Genetic-Revolutionary Graph Neural Networks
	Motivation
	Improving Graph Neural Networks with Genetic Operations

	Model Architecture

	Empirical Evaluation
	Datasets and Setup
	Results

	Conclusions
	Appendix

