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Abstract

Score-based generative modelling (SGM) has proven to be a very effective method
for modelling densities on finite-dimensional spaces. In this work we propose to
extend this methodology to learn generative models over functional spaces. To do
so, we represent functional data in spectral space to dissociate the stochastic part of
the processes from their space-time part. Using dimensionality reduction techniques
we then sample from their stochastic component using finite dimensional SGM. We
demonstrate our method’s effectiveness for modelling various multimodal datasets.

1 Introduction

Score-based Generative Models (SGMs) (Song and Ermon, 2019; Song et al., 2021; Ho et al., 2020;
Dhariwal and Nichol, 2021) are a powerful class of generative models. Noise is progressively added
to data following a Stochastic Differential Equation (SDE)—the forward noising process—until it
is approximately Gaussian. The generative model is given by an approximation of the associated
time-reversed process called the backward denoising process. This process is an SDE whose drift
depends on the gradient of the logarithm of the densities of the forward process. The drift is estimated
by leveraging techniques from deep learning and score matching (Hyvärinen, 2005; Vincent, 2011).

Probabilistic modelling over functional spaces is of high importance in the physical sciences where
objects of interest are often fields, mapping (space-time) inputs to tensors like scalars or vectors.
Aleatoric and epistemic uncertainties motivate for a probabilistic treatment of these phenomena, like
weather forecasting (Ravuri et al., 2021) or electric potential prediction (Yang et al., 2020).

A well-established framework to model distributions over functions are Gaussian processes
(GPs) (Rasmussen, 2003). To alleviate their scalability and flexibility limitations, neural processes
(NPs) have been introduced and successfully applied on a wide variety of probabilistic prediction
tasks. Yet, their Gaussian likelihood assumption limits their flexibility.

Figure 1: Illustration of our methodology. SGM is performed in a spectral space.
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In this work, we circumvent this problem by casting the modelling problem in a spectral space.
Doing so, we decouple the stochastic part of the process from its space-time part. This approach
turns an uncountable dimensional problem into a countable dimensional one, which is turned into a
finite dimensional one by truncation. Finally, we deal with this last problem using standard SGM
techniques. Our methodology is illustrated in Fig. 1 and presented in more detail in Sec. 3.

2 Background
Score-based generative modelling. We briefly recall the concepts behind SGMs on the Euclidean
space Rd. Let (Yt)t≥0 be a noising process defined by the following SDE

dYt = −Ytdt+
√
2dBt, Y0 ∼ p0,

with (Bt)t≥0 a d-dimensional Brownian motion and p0 the data distribution on Rd. This process
converges towards the unit Gaussian distribution N(0, Id). Under conditions on p0, the time-reversal
(Ȳt)t∈[0,T ] = (YT−t)t∈[0,T ] is given by (Cattiaux et al., 2021; Haussmann and Pardoux, 1986)

dȲt = {Ȳt + 2∇ log pT−t(Ȳt)}dt+
√
2dBt, Ȳ0 ∼ pT , (1)

with pt the density of Yt. Denoising diffusion models are defined to sample approximately from (1).
First, we replace pT by N(0, Id). Then ∇ log pt is approximated by a parametric function sθ(t, ·)
so as to minimise ℓt(s) = E[∥sθ(t,Yt) − ∇yt

log pt|0(Yt|Y0)∥2] (Hyvärinen, 2005). Finally, an
Euler–Maruyama discretisation of Eq. (1) is considered using a discretisation step γ and N = T/γ

Ȳn+1 = Ȳn + γ{Ȳn + 2sθ(T − nγ, Ȳn)}+
√

2γGn+1, Ȳ0 ∼ N(0, Id), Gn+1
i.i.d.∼ N(0, Id).

Stochastic processes. Here we are interested in modelling distributions over functions. Given a
compact input space X , a Rd-valued stochastic process (Yx)x∈X is a collection of random vari-
ables Yx

5. Most existing methods which model stochastic processes rely on the parametrisation
of finite dimensional marginals {Yxi : i ∈ {1, . . . , n}, xi ∈ X} for every n ∈ N. However, it
is not clear a priori that a collection of probability distributions S = {πx1,...,xn : (x1, . . . , xn) ∈
Xn, n ∈ N} defines a distribution π ∈ P((Rd)X )6. This is the focus of the Kolmogorov ex-
tension theorem (Charalambos and Aliprantis, 2013, Thm 15.26) which ensures the existence
of such a distribution under a set of conditions. The conditions required of the system are ex-
changeability and consistency. A system S is exchangeable, if for any n ∈ N, n-permutation
σ ∈ Sn, x1, . . . , xn ∈ X and continuous and bounded function f ∈ Cb((Rd)n), we have∫
f(yσ−1(1), . . . , yσ−1(n))dπxσ(1),...,xσ(n)

(y1, . . . , yn) =
∫
f(y1, . . . , yn)dπx1,...,xn

(y1, . . . , yn). A
system S is consistent, if for any n1 ≤ n2, x1, . . . , xn2

∈ X and f ∈ Cb((Rd)n1) we have∫
f(y1, . . . , yn1

)dπx1,...,xn1
(y1, . . . , yn1

) =
∫
f(y1, . . . , yn1

)dπx1,...,xn2
(y1, . . . , yn2

). Existing
generative modelling approaches often satisfy the exchangeability criterion but fall short on the
consistency. In this work we aim at bridging this gap by developing a spectral method which
immediately yields the consistency of the obtained system.

3 Spectral Score-Based Processes
Karhunen-Loève theorem. In order to derive a consistent method, our key insight is to dissociate
the stochastic part of the process from its space-time component using a spectral decomposition. This
approach stems from the Karhunen-Loève theorem which we recall below.
Theorem 1. Let X be a compact space and (Yx)x∈X a continuous stochastic process such that for
any x ∈ X , E[Yx] = 0 and E[∥Yx∥2] < +∞. For any x1, x2 ∈ X , we denote the covariance kernel
as KY(x1, x2) = E[⟨Yx1

,Yx2
⟩] and define a L2(X ) operator TKY

given for any f ∈ L2(X ) by
TKY

f(x2) =
∫
X KY(x1, x2)f(x1)dx1. Denoting by (em)m∈N ∈ (L2(X ))N, (λm)m∈N ∈ RN the

eigenfunctions and eigenvalues of TKY
, we have

limM→+∞ E[supx∈X ∥Yx −
∑M

m=0 λm
1/2Zmem(x)∥2] = 0,

where for any m ∈ N, Zm = λ
−1/2
m

∫
X ⟨Yx, em(x)⟩dx.

5In this work, we focus on continuous stochastic processes, i.e. any trajectory of (Yx)x∈X belongs to
C(X ,Rd). In that case ω 7→ (Yx(ω))x∈X is measurable and we denote π ∈ P(C(X ,Rd)) its distribution.

6P((Rd)X ) is the space of distributions over the product space (Rd)X .
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Therefore, a natural approximation of the process (Yx)x∈X
7 is given by FM ≜

∑M
m=0 λm

1/2Zmem.
In the previous theorem, we dissociated the stochastic part of the process—embedded in {Zm}Mm=0—
from its space-time part—embedded in {em}Mm=0. In fact, even though our approach is originally
based on the Karhunen-Loève theorem, in practice we consider arbitrary kernels K (not necessarily
based on the process Y) using Mercer’s theorem (Ferreira and Menegatto, 2009, Thm 1.1).

Proposition 2. We denote by πM the distribution of (
∑M

m=0 λm
1/2Zmem(x))x∈X and S =

{πM
x1,...,xn

: (x1, . . . , xn) ∈ Xn, n ∈ N}. Then we have that S is exchangeable and consistent.

In order to sample from (
∑M

m=0 λm
1/2Zmem(x))x∈X one only needs to sample {Zm}Mm=0, effec-

tively approximating the infinite dimensional modelling problem by a finite-dimensional one. We are
now ready to present our method: Spectral Process Score-Based Generative Modelling (SP-SGM).

Spectral Process Score-Based Generative modelling. SP-SGM works by first choosing a kernel K
and computing the associated system of orthonormal eigenfunctions {em}m∈N—see Appendix B.3.
We assume we have access to a dataset D = {Yi}Li=1 of functions8 from the target distribution π. We
set M ∈ N and compute a new M + 1-dimensional dataset DM = {{Zi

m}Mm=0 : i ∈ {1, . . . , L}}
where Zi

m = λ
−1/2
m

∫
X ⟨Yi

x, em(x)⟩dx. Then, we train a M + 1-dimensional standard SGM using
DM . The SGM model is initialised with {Z̄m,0}Mm=0 ∼ N(0, Id) and outputs {Z̄m}Mm=0 which
is approximately distributed as {Zm}Mm=0. Finally, SP-SGM outputs the functional model F̄M =∑M

m=0 λ
1/2
m Z̄mem. We remark that standard SGMs would only be able to deal with finite input

space. Note that F̄M,0 =
∑M

m=0 λ
1/2
m Z̄m,0em is a Gaussian process (GP) and in particular—when

K = KY— it is the closest GP to the target distribution π in the following sense.

Proposition 3. Let π0 be the distribution of
∑+∞

m=0 λ
1/2
m Z̄m,0em and π the target distribution.

Denote GP(X ) the space of Gaussian processes on X and assume that K is the covariance kernel.
Then, π0 ∈ argminπGP∈GP(X ) KL (π|πGP). In addition,

∑M
m=0 λ

1/2
m Z̄m,0em is the projection of∑+∞

m=0 λ
1/2
m Z̄m,0em on the subspace of L2(X ) spanned by {em}Mm=0.

4 Related work
Gaussian processes and the Neural processes family. One standard and powerful framework to
construct distributions over functional spaces are Gaussian processes (Rasmussen, 2003). However,
they scale badly with the number of datapoints and are restricted in their modelling capacity. These
problems can be partially alleviated by using neural processes (Kim et al., 2019; Garnelo et al.,
2018b,a; Jha et al., 2022; Louizos et al., 2019; Singh et al., 2019), although they also assume a
Gaussian likelihood and only satisfy predictive consistency, meaning one must condition on a context
set to achieve consistency. Recently, denoising diffusion models have been combined with attention
network architectures to build consistent models of stochastic processes (Dutordoir et al., 2022).
Finally, Dupont et al. (2022) model weights of implicit neural representation using SGM.

Spectral approaches. Another possibility to circumvent the consistency problem is to consider
spectral decompositions—such as the Karhunen-Loéve one— which shows that stochastic processes
can be represented over a functional basis with random coefficients. Some prior works have explored
this avenue using variational auto-encoders to model these coefficients (Mishra et al., 2020) whereas
Lim et al. (2022) considered energy-based models. Another related line of work is ‘inter-domain
Gaussian processes’ (Lázaro-Gredilla and Figueiras-Vidal, 2009), which rely on inducing variables
that are obtained via inducing functions such as elements of a Fourier basis (Hensman et al., 2018).

Spatial structure in score-based generative models A variety of approaches have also been
proposed to incorporate spatial correlation in the noising process of finite-dimensional diffusion
models leveraging the multiscale structure of data (Jing et al., 2022; Guth et al., 2022; Ho et al., 2022;
Saharia et al., 2021; Hoogeboom and Salimans, 2022; Rissanen et al., 2022). Our methodology can
also be seen as a principled way to modify the forward dynamics in classical denoising diffusion
models. Indeed by applying the diffusion in the spectral space the destruction process blurs the
samples instead of noising them, see Fig. 3 for an illustration. Therefore, our contribution can be

7We assume that E[∥Yx∥2] < +∞ and w.l.o.g. E[Yx] = 0 as the mean can be subtracted otherwise.
8In practice we have access to these functions via a finite number of observations.
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Figure 2: Samples from the Quadratic dataset
(orange), and from a trained NP [Left, blue] and
a trained SP-SGM [Right, blue].

SP-SGM NP GP

Quadratic 5.4±0.7 8.6±1.5 100.0±0.0

Melbourne 5.3±0.7 10.1±1.9 20.1±4.0

Gridwatch 4.7±0.5 51.8±15.1 29.2±5.5

Table 1: Power (percent) of a kernel two-sample
hypothesis test on 1D datasets. Lower is better.
Statistically significant best result is in bold.

Figure 3: Forward process in SP-SGM [Top] vs standard SGM [Bottom] on MNIST digits. Pixel-wise
mean and standard deviation of reference measure in rightmost columns respectively.

understood in the light of recent advances in generative modelling on cold and soft denoising diffusion
models (Daras et al., 2022; Bansal et al., 2022; Hoogeboom and Salimans, 2022).

5 Experimental results
First, we assess our method’s capacity to model bi-modality by qualitative comparison of samples on
the synthetic Quadratic dataset. Figure 2 shows that our method is capable of expressing bi-modality
while NPs are not. While SGMs alone exhibit multimodality, they only apply to finite input spaces,
hence expressing multimodality in stochastic processes is indeed a feature of our approach. To provide
a quantitative assessment we compute the power of a two-sample hypothesis test for functional data
(Wynne and Duncan, 2022) which tries to discriminate between samples from the model and the
dataset. Table 1 shows that our method outperforms GPs and NPs.

Then, we illustrate the behaviour of our proposed parametrisation of stochastic processes. We plot the
forward noising process of both SP-SGM (reconstructed in the original image space) and of a standard
SGM in Figure 3. We see that by performing the diffusion in the spectral space, we capture and
incorporate spatial correlations governed by the spatial component of the Karhunen-Loève theorem.

Finally we conduct ablation studies on the MNIST dataset. We consider the effect of the truncation
order M in Figure 5, where we find best performance for intermediate values of M . We decompose
this effect into the reconstruction between spectral and spatial domain, which improves with M , and
the quality of the stochastic model in the spectral domain, which decreases with M . These conflicting
objectives are also visualised in Figure 5. We also assess different kernels in Figure 4. Qualitatively,
eigenfunctions of the covariance kernel capture spatial correlations effectively and thus generates the
best samples, while the RBF kernel imposes a smoothness which tends to produce blurry samples.

Figure 4: Eigenfunctions [row
1, 3] and samples from SP-
SGM [row 2, 4] for covariance
and RBF kernels.

M = 20 M = 100 M = 200

Figure 5: On the left, functional MMD vs M . Lower is better.
On the right, Karhunen-Loève recompositions of MNIST samples
[top row] and the distribution of the first spectral component from
the dataset [orange] and from the SGM in spectral space [blue].
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A Introduction to the supplementary material
We provide details on the implementation of SP-SGM in Appendix B. The proof of Proposition 2
is presented in Appendix D. The proof of Proposition 3 is presented in Appendix E. The likelihood
computation is given in Appendix C. Experimental details are provided in Appendix F.

B SP-SGM in practice
B.1 SP-SGM algorithm

Algorithm 1 Spectral Process Score-Based Generative Model (SP-SGM)

Require: T,D, θ0, Niter, ε,K, {(λm, em)}Mm=0

1: /// TRAINING ///
2: Get DM from D ▷ Dataset projection
3: for n ∈ {0, . . . , Niter − 1} do
4: Get {Ym,0}Mm=0 mini-batch from DM

5: t ∼ U([ε, T ]) ▷ Uniform sampling between ε and T

6: Ym,t = e−tYm,0 + (1− e−2t)1/2G, G ∼ N(0, Id) ▷ Diffuse
7: Get DSM loss ℓ(θn) ▷ Compute score matching loss
8: θn+1 = optimiser_update(θn, ℓ(θn)) ▷ ADAM optimiser step
9: end for

10: θ⋆ = θNiter

11: /// SAMPLING ///
12: {Ȳm,0}Mm=0 ∼ N(0, Id) ▷ Sample from Gaussian distribution
13: b⋆θ(t, y) = sθ⋆(T − t, ȳ) for any t ∈ [0, T ], ȳ ∈ RM+1 ▷ Reverse process drift
14: {Ȳm,n}M,N

m=0,n=0 Euler-Maruyama with drift b⋆θ ▷ Approximate reverse diffusion
15: return θ⋆, x 7→

∑M
m=0 λ

1/2
m Ȳm,Nem(x)

B.2 Karhunen-Loève coefficients

In this section we show that the random coefficients from the KL basis expansion, given for any
m ∈ N by

Zm = ⟨Y, λ
−1/2
m em⟩L2(X ) =

∫
X ⟨(Y(x)− µ(x)), λ

−1/2
m em(x)⟩dx,

satisfy E[Zm] = 0 and furthermore if K = KY then E[ZmZm′ ] = δm,m′ . First, we have that for any
m ∈ N

E[Zm] =
∫
X ⟨E[Y(x)− µ(x)], λ

−1/2
m em(x)⟩dx = 0.

Then, we have for any m,m′ ∈ N

E[ZmZm′ ] = E[
∫
X ⟨(Y(x)− µ(x)), λ

−1/2
m em(x)⟩dx

∫
X ⟨(Y(x′)− µ(x′)), λ

−1/2
m′ em′(x′)⟩dx′]

= λ−1/2
m λ

−1/2
m′

∫
X
∫
X Tr(E[(Y(x)− µ(x))(Y(x′)− µ(x′))⊤]em(x)e⊤m′(x′))dxdx′

= λ−1/2
m λ

−1/2
m′

∫
X em(x)⊤KY(x, x′)em′(x′)dxdx′

= λ−1/2
m λ

−1/2
m′

∫
X λm⟨em(x′), em′(x′)⟩dx′ = λ

−1/2
m λ

−1/2
m′ λmδm,m′ = δm,m′ .

B.3 Computation of eigenfunctions

We focus on the case where Y takes values in R but the computations can be extended to the
case where Y takes values in Rd with d ∈ N. Recall from Theorem 1 the L2(X ) operator TK

associated with kernel K, given by TKf(x2) =
∫
X K(x1, x2)f(x1)dx1. In the following we describe

how we approximate the orthonormal system of eigenfunctions {em}m∈N of TK from a dataset
D = {Yi}Li=1.

Firstly, we note that in practice we have access to the functions in our dataset at a finite set of
query points, that is D = {{Yi

xi,n
}Ni
n=1}Li=1. For ease of notation, in the following we denote

{xs}Ss=1 = {xi,n : i ∈ {1, . . . , L}, n ∈ {1, . . . Ni}}, with s =
∑L

i=1 Ni.
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The eigensystem {em}m∈N satisfies TKem(x) = λmem(x) for all x ∈ X , which we approximate by

λmem(x) = TKem(x) ≈ 1
S

∑S
s=1 K(x, xs)em(xs). (3)

Evaluating the above at the entire set of evaluation points x = {xs}Ss=1 results in the matrix
eigenproblem

1
SKum = λmat

m um,

where K is an S × S matrix and has entries Ki,j = K(xi, xj), λmat
m ∈ R is the matrix eigenvalue and

um ∈ RS is the corresponding matrix eigenvector, normalised such that u⊤
mum = 1. By Baker’s

theorem (Baker, 1979, Theorem 3.4), λmat
m → λm as S → ∞. Note that if we take em(xs) = (um)s

then we have ∫
X em(x)em(x)p(x)dx ≈ 1

S

∑S
s=1 em(xs)em(xs) =

1
Su

⊤
mum = 1

S

where p(x) is the density of observation points on X . So, in order to have an orthonormal eigensystem∫
X em(x)em′(x)p(x)dx = δmm′ we must rescale according to em(xs) =

√
S(um)s. Finally,

rearranging (3) we get

êj(x) ≈ (Sλmat
j )−1

∑S
s=1 k(x, xs)ej(xs) ≈ (

√
Sλmat

j )−1
∑S

s=1 k(x, xs)uj(xs).

Having obtained an approximate eigensystem as above, it is simple to obtain the spectral dataset
DM = {{Zi

m}Mm=0 : i ∈ {1, . . . , L}} using

Zi
m ≈ 1

Ni

∑Ni

n=1(Yxn
− µ(xn))(λ

mat
m )−1/2êm(xn).

where µ(x) = E[Yx] is the process mean.

B.4 Truncation order

For a given approximate eigensystem {(λ̂m, êm)}Lm=1, we define the truncation order M as

M = argminm∈N
∑m

j=1 λ̂j/
∑L

j=1 λ̂j ≥ η,

where η ∈ [0, 1] is a threshold parameter, fixed to η = 0.99 for our experimental results on the 1D
datasets. Alternatively, as we do on the MNIST dataset, one can treat the truncation order M as an
hyperparameter.

B.5 Eigenvalue weighted objective

We propose the following weighted DSM loss to train the score network sθ : [0, T ] × RM+1 →
RM+1:

Et

{
EZ0,Zt

[∥∥∥λ̃α ⊙ (sθ(Zt, t)−∇Zt log p(Zt|Z0))
∥∥∥2
2

]}
, (4)

with λ̃ = [λ0/Λ, . . . , λM/Λ]⊤9, Λ =
∑M

m=0 λm, the vector of normalised eigenvalues, α > 0 a
tuneable hyperparameter, t ∼ U([0, T ]), Z0 = {λ−1/2

m

∫
X ⟨Yx, em(x)⟩dx}Mm=0 and

dZt = −(1/2)Ztdt+ βtdBt,

where t 7→ βt is an hyperparameter. The motivation behind (4) is to put more importance
on fitting well the lower frequency (i.e. higher eigenvalue) components of the decomposition∑M

m=0 λm
1/2Zmem(x) since these matter the most in terms of quality of reconstruction as per

Theorem 1. With α = 0, we have that λα = 1, thus that all dimensions of the spectral space are
weighted equally and we recover the standard DSM loss.

C Likelihood evaluation
Let’s denote the Karhunen-Loeve expansion with ϕ : RM+1 → Rd such that (Z1, . . . , ZM ) 7→
µ(·) +

∑M
m=0 Zm

√
λmem(·). We have that ∂ϕ

∂Zm
=

√
λmem, hence with Jzϕ =

(
∂ϕ
∂z1

, . . . , ∂ϕ
∂zN

)
we get Jzϕ⊤Jzϕ =

(√
λm

√
λn⟨em, en⟩

)
mn

=
(√

λm

√
λnδmn

)
mn

= diag(λm). Hence, denoting
a realisation F = ϕ(Z), applying the change of variable formula we have

log p(F ) =
∑

m log p(Zm)− log |Jzϕ⊤Jzϕ|1/2 =
∑

m (log p(Zm)− 1/2 log λm) .
9The exponentiation in (4) is to be understood in a pointwise fashion.
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D Proof of Proposition 2
We recall Proposition 2.

Proposition 2. We denote by πM the distribution of (
∑M

m=0 λm
1/2Zmem(x))x∈X and S =

{πM
x1,...,xn

: (x1, . . . , xn) ∈ Xn, n ∈ N}. Then we have that S is exchangeable and consistent.

Proof. Note that this result is the trivial direction of the Kolmogorov extension theorem (Charalambos
and Aliprantis, 2013, Theorem 15.26) since FM is by definition a stochastic process. For complete-
ness, we provide a proof of this result in our setting. We denote Z = {Zm}Mm=0 and π the model
distribution on Z. For any n ∈ N and f ∈ Cb((Rd)n,R) we have∫
f(y1, . . . , yn)dπ

M
x1,...,xn

(y1, . . . , yn) =
∫ ∫

RM+1 f(y1, . . . , yn)dπ
M
x1,...,xn

(y1, . . . , yn, Z = z)dz

=
∫ ∫

RM+1 f(y1, . . . , yn)dπ
M
x1,...,xn

(y1, . . . , yn, |Z = z)dπ(z)

=
∫ ∫

RM+1 f(y1, . . . , yn)
∏n

i=1 dπ
M
xi
(yi|Z = z)dπ(z).

Hence, for any n ∈ N, n-permutation σ ∈ Sn, x1, . . . , xn ∈ X , and continuous and bounded
function f ∈ Cb((Rd)n) we have∫

f(yσ−1(1), . . . , yσ−1(n)) dπ
M
xσ(1),...,xσ(n)

(y1, . . . , yn) =
∫
f(y1, . . . , yn) dπ

M
x1,...,xn

(y1, . . . , yn).

Similarly, for any n1 ≤ n2, x1, . . . , xn2
∈ X and f ∈ Cb((Rd)n1) we have∫

f(y1, . . . , yn1
) dπM

x1,...,xn2
(y1, . . . , yn2

)

=
∫
f(y1, . . . , yn1)

∫
RM+1 dπM

x1,...,xn2
(y1, . . . , yn2 |Z = z)dπ(z)

=
∫
f(y1, . . . , yn1

)
∫
RM+1

∏n2

i=1 dπ
M
xi
(yi|Z = z)dπ(z)

=
∫
f(y1, . . . , yn1)

∫
RM+1

∏n1

i=1 dπ
M
xi
(yi|Z = z)

(∏n2

i=n1+1 dπ
M
xi
(yi|Z = z)

)
dπ(z)

=
∫
f(y1, . . . , yn1)

∫
RM+1

∏n1

i=1 dπ
M
xi
(yi|Z = z)dπ(z)

=
∫
f(y1, . . . , yn1

) dπM
x1,...,xn1

(y1, . . . , yn1
).

In this setting, the random variable Z is finite dimensional as it is supported in RM , but more generally
this result is still true with an (infinite dimensional) process F .

E Proof of Proposition 3
In this section, we provide two proofs of Proposition 3.

E.1 Partition definition

We recall Proposition 3.

Proposition 4. Let π0 be the distribution of
∑+∞

m=0 λ
1/2
m Z̄m,0em and π the target distribution.

Denote GP(X ) the space of Gaussian processes on X and assume that K is the covariance kernel.
Then, π0 ∈ argminπGP∈GP(X ) KL (π|πGP). In addition,

∑M
m=0 λ

1/2
m Z̄m,0em is the projection of∑+∞

m=0 λ
1/2
m Z̄m,0em on the subspace of L2(X ) spanned by {em}Mm=0.

Note that in this first approach we do not assume any regularity on the samples of the process.
This proof is based on (Sun et al., 2019, Theorem 1) which considered a modified definition of the
Kullback-Leibler divergence. Namely, for any µ, ν probability measures over a probability space
(Ω,F) we define

KL (µ|ν) = sup{KL (µP |νP ) : P measurable finite partition of Ω},
where for any measurable finite partition P = {Ω1, . . . ,ΩN} we define µP = {µ(Ω1), . . . , µ(ΩN )},
similarly for νP . With that definition (Sun et al., 2019, Theorem 1) holds. Namely, for any µ, ν ∈
P((Rd)X )10, we have

KL (µ|ν) = sup{KL (µx1,...,xn |νx1,...,xn) : (x1, . . . , xn) ∈ Xn, n ∈ N}. (5)

10The product space (Rd)X is a measurable space with the cylindrical sigma algebra, see Sun et al. (2019) for
more details in that context.
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Let π be the target distribution of the stochastic process. We define GP(X ) the space of Gaussian
processes over the input space X . We have that

inf{sup{KL
(
πx1,...,xn

|π0
x1,...,xn

)
: (x1, . . . , xn) ∈ Xn, n ∈ N} : π0 ∈ GP(X )}

≥ sup{inf{KL
(
πx1,...,xn |π0

x1,...,xn

)
: π0 ∈ GP(X )} : (x1, . . . , xn) ∈ Xn, n ∈ N}.

In addition, we have

sup{inf{KL
(
πx1,...,xn

|π0
x1,...,xn

)
: π0 ∈ GP(X )} : (x1, . . . , xn) ∈ Xn, n ∈ N}

= sup{inf{KL
(
πx1,...,xn |π0

x1,...,xn

)
: π0

x1,...,xn
∈ GP({x1, . . . , xn})} : (x1, . . . , xn) ∈ Xn, n ∈ N},

where we emphasise that the set GP({x1, . . . , xn}) is simply the set of nd-dimensional Gaussian
probability measures. Hence, for any {x1, . . . , xn} ∈ Xn and n ∈ N, we have that

KL
(
πx1,...,xn |π0,⋆

x1,...,xn

)
= inf{KL

(
πx1,...,xn |π0

x1,...,xn

)
: π0

x1,...,xn
∈ GP({x1, . . . , xn})},

where π0,⋆
x1,...,xn

is the Gaussian measure with same mean and covariance matrix as πx1,...,xn . Using
the Kolmogorov extension theorem (Charalambos and Aliprantis, 2013, Theorem 15.26), there exists
π⋆ ∈ P((Rd)X ) such that for any {x1, . . . , xn} ∈ Xn and n ∈ N, π⋆

x1,...,xn
= π0,⋆

x1,...,xn
. Therefore,

we have that

KL
(
πx1,...,xn

|π⋆
x1,...,xn

)
= inf{KL

(
πx1,...,xn

|π0
x1,...,xn

)
: πx1,...,xn

∈ GP(X )}.

Hence, using (6) we get that

sup{inf{KL
(
πx1,...,xn |π0

x1,...,xn

)
: π0 ∈ GP(X )} : (x1, . . . , xn) ∈ Xn, n ∈ N}

= sup{KL
(
πx1,...,xn

|π⋆
x1,...,xn

)
: {x1, . . . , xn} ∈ Xn} = KL (π|π⋆) .

Therefore, we have that

inf{sup{KL
(
πx1,...,xn

|π0
x1,...,xn

)
: (x1, . . . , xn) ∈ Xn, n ∈ N} : π0 ∈ GP(X )} ≥ KL (π|π⋆) ,

which implies using (6) that

KL (π|π⋆) ≤ inf{KL
(
π|π0

)
: π0 ∈ GP(X )}.

The equality holds since π⋆ ∈ GP(X ). Finally, since π⋆ and π have the same covariance kernels,
they have the same Karhunen-Loève eigensystems. Therefore, there exists {Zm}m∈N such that
Y⋆ =

∑
m∈N λ

1/2
m Zmem has distribution π⋆, which concludes the proof.

E.2 Sample continuous

In our second approach, we restrict ourselves to the case of sample continuous processes. Namely,
we now longer consider µ ∈ P((Rd)X ) but µ ∈ P(C(X ,Rd)).

Proposition 5. Assume that π ∈ C(X ,Rd) and that there exists ϕ : [0,+∞) such that for any
x1, x2 ∈ X ,

E[∥Yx1 −Yx2∥2] ≤ ϕ(∥x1 − x2∥),

such that
∫ +∞
0

ϕ(exp[−t2])dt < +∞. Let π0 be the distribution of
∑+∞

m=0 λ
1/2
m Z̄m,0em. De-

note GP(X ) the space of Gaussian processes on X and assume that K is the covariance kernel.
Then, π0 ∈ argminπGP∈GP(X ) KL (π|πGP). In addition,

∑M
m=0 λ

1/2
m Z̄m,0em is the projection of∑+∞

m=0 λ
1/2
m Z̄m,0em on the subspace of L2(X ) spanned by {em}Mm=0.

In that case, we show that

KL (µ|ν) = sup{KL (µx1,...,xn
|νx1,...,xn

) : (x1, . . . , xn) ∈ Xn, n ∈ N}. (6)

More precisely, we have the following proposition.

Proposition 6. Let µ, ν ∈ P(C(X ,Rd))

KL (µ|ν) = sup{KL (µx1,...,xn
|νx1,...,xn

) : (x1, . . . , xn) ∈ Xn, n ∈ N}.
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Proof. First, note that for any {x1, . . . , xn} ∈ Xn, n ∈ N we have using the data processing theorem
(Ambrosio et al., 2008, Lemma 9.4.5)

KL (µ|ν) ≥ KL (µx1,...,xn
|νx1,...,xn

) . (7)

Since X is compact, for any n ∈ N, there exists {x1, . . . , xn} such that X ⊂ ∪n
k=1 B(xk, 1/(n+1)).

For any n ∈ N, let {φk}nk=1 be a smooth partition of unity associated with {B(xk, 1/(n+ 1))}nk=1.
For any C(X ,Rd)-valued random variable Y and n ∈ N, denote Yn such that for any x ∈ X

Yn
x =

∑n
k=1 φk(x)Yxk

.

Since Y is continuous and X is compact we have that Y is uniformly continuous. Hence, for any
ε > 0, there exists n ∈ N such that for any x1, x2, ∥x1 − x2∥ ≤ 1/(n + 1), ∥Yx1

− Yx2
∥ ≤ ε.

Therefore, we have that

∥Yn
x −Yx∥ ≤

∑n
k=1 φk(x)∥Yxk

−Yx∥ ≤ ε.

Therefore, we have that limn→+∞ supx∈X ∥Yn
x −Yx∥ = 0. Therefore, for any n ∈ N, denoting

µn the distribution of Yn, we get that (µn)n∈N converges to µ in P(C(X ,Rd)). For any n ∈ N,
let a = {ak}nk=1 ∈ (Rd)n and fa

n : X → Rd such that for any x ∈ X , fa
n(x) =

∑n
k=1 akφk(x).

Denote Cn(X ,Rd) = {fa
n : a ∈ (Rd)n}. Define φn : (Rd)n → Cn(X ,Rd) such that for any a ∈

(Rd)n, φn(a) = fa
n . We have that φn is a bijection. In addition, we have that (φn)#µn = µx1,...,xn

.
Therefore, using the data processing inequality we have that for any n ∈ N

KL (µn|νn) = KL (µx1,...,xn
|νx1,...,xn

) .

In addition, since (µn, νn) → (µ, ν) we using that the Kullback-Leibler divergence is lower semi-
continuous (Dupuis and Ellis, 2011, Lemma 1.4.3)

limn→+∞ KL (µn|νn) = limn→+∞ KL (µx1,...,xn
|νx1,...,xn

) ≥ KL (µ|ν) .

Therefore, we get that

KL (µ|ν) ≤ sup{KL (µx1,...,xn |νx1,...,xn) : (x1, . . . , xn) ∈ Xn, n ∈ N}.

Combining this result and (7), we conclude the proof.

The rest of the proof is similar to Appendix E.1, expect that one needs to check that the obtained
Gaussian process π⋆ is sample continuous (up to a modification). This is done using that there exists
ϕ : [0,+∞) such that for any x1, x2 ∈ X ,

E[∥Yx1
−Yx2

∥2] ≤ ϕ(∥x1 − x2∥),

such that
∫ +∞
0

ϕ(exp[−t2])dt < +∞, see Fernique (1975).

F Experimental details
In the following sections we provide details on our experimental procedures.

F.1 1D Datasets

Quadratic A synthetic dataset constructed to exhibit clear bi-modality. Samples consist of function
evaluations of f(x) := ax2 + ϵ with a ∼ Unif({−1, 1}) and ϵ ∼ N(0, 1) on a uniformly sampled
grid of 100 evaluation points in [−10, 10]. We allow unlimited samples during training, validation
and testing phases.

Melbourne A real dataset recording the number of pedestrians on streets in Melbourne, each
sample being a period of 24 hours with readings taken hourly (giving a grid of 24 evaluation
points per sample). The dataset is sourced from http://www.timeseriesclassification.com/
description.php?Dataset=MelbournePedestrian. We pre-processed the dataset by removing
rows with unobserved values and rescaling the dataset to have unit variance. The pre-processed
dataset contains 2319 samples and we split the dataset in the ratio of [0.8, 0.1, 0.1] for training,
validation and testing respectively.
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Gridwatch A real dataset recording the energy demand of the UK grid, each sample being a period
of 24 hours with readings taken every five minutes (giving a grid of 288 evaluation points per sample).
The dataset is sourced from https://www.gridwatch.templar.co.uk/download.php by selecting
the ‘demand’ field. We performed a number of pre-processing steps:

• Select days where the readings were taken exactly on the fifth minute,

• Remove days where the the difference between two consecutive readings was beyond the
99.5th percentile of differences,

• Remove days where consecutive readings did not vary for half an hour or more,

• Centered the dataset so each sample has zero mean,

• Scaled the dataset so each sample has unit variance.

This resulted in 1013 samples which we split in the ratio of [0.8, 0.1, 0.1] for training, validation and
testing respectively.

F.2 Baselines

Gaussian Processes We used a Matern-1/2 kernel with lengthscale and noise variance learnt by
maximising the marginal likelihood.

Neural Processes We modified a PyTorch implementation of Neural Proccesses available online
at https://github.com/EmilienDupont/neural-processes. Our modifications adapted the
implementation to unconditional training/sampling by implementing Equation 7 of Garnelo et al.
(2018b). We set the dimension of the representation of context points and the dimension of the latent
variable to be 512 (1024 for Gridwatch dataset). The encoder and decoder were three-layered FCNs
with 512 (1024 for Gridwatch dataset) units and ReLU activations, trained to 1000 epochs.

F.3 Functional MMD and two-sample test power

Our quantitative results are based off the functional MMD and kernel two-sample hypothesis test of
Wynne and Duncan (2022).

The hypothesis test considered uses the null hypothesis that samples from the model and dataset are
from the same distribution, while the alternative states that they are not. We know that the null is false
as the distribution of samples from the model will never truly match the data distribution. Therefore,
we expect a perfectly powerful test to always reject the null hypothesis. By choosing a specific test
with finite power (for example by restricting the number of samples used when computing the test
statistic), we can compare the quality of samples from different models by computing the power of
the specific test on each of the sets of samples. If the test exhibits a lower power on a set of samples, it
indicates those samples are harder to distinguish from the data distribution and thus can be considered
of higher quality.

The specific test we choose is the kernel two-sample test with the ID kernel computed on 10 samples.
We perform 1000 tests to estimate the power. Confidence intervals are obtained by repeating the
procedure on models trained from different seeds.

F.4 Uncurated samples

We visualise samples from all models on the 1D datasets and from SP-SGM on MNIST.
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Dataset SP-SGM NP GP

Table 2: Samples from trained models on 1D datasets; Quadratic [top], Melbourne [middle] and
Gridwatch [bottom].

Figure 6: Uncurated MNIST samples, covariance kernel, M = 100

F.5 Further ablation studies
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M = 20 M = 100 M = 200

Figure 7: Effect of increasing truncation order M . Increasing reconstruction quality on MNIST digits
[top], decreasing quality of fit in spectral space [bottom].

Figure 8: Eigenfunctions [left] and samples from SP-SGM [right] for RBF kernel with lengthscale in
[1,2,3,4,5] [top to bottom respectively]
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Figure 9: Forward noising process of SP-SGM on MNIST digits using RBF kernel with lengthscales
in [1,2,3,4,5] [top to bottom respectively]. Rightmost columns show the pixel-wise mean and standard
deviation of the reference measure respectively.

Figure 10: Eigenfunctions [left] and samples from SP-SGM [right] for Matern-3/2 kernel with
lengthscale in [1,2,3,4,5] [top to bottom respectively]
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Figure 11: Forward noising process of SP-SGM on MNIST digits using Matern-3/2 kernel with
lengthscales in [1,2,3,4,5] [top to bottom respectively]. Rightmost columns show the pixel-wise mean
and standard deviation of the reference measure respectively.
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