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Abstract

Effective reasoning is crucial to solving complex mathematical problems. Recent1

large language models (LLMs) have boosted performance by scaling test-time2

computation through long chain-of-thought reasoning. However, transformer-based3

models are inherently limited in extending context length due to their quadratic4

computational complexity and linear memory requirements. In this paper, we5

introduce a novel hybrid linear RNN reasoning model, M1, built on the Mamba6

architecture, which allows memory-efficient inference. Our approach leverages a7

distillation process from existing reasoning models and is further enhanced through8

RL training. Experimental results on the AIME and MATH benchmarks show9

that M1 not only outperforms previous linear RNN models but also matches the10

performance of state-of-the-art Deepseek R1 distilled reasoning models at a similar11

scale. We also compare our generation speed with a highly performant general12

purpose inference engine, vLLM, and observe more than a 3x speedup compared13

to a same size transformer. With throughput speedup, we are able to achieve higher14

accuracy compared to DeepSeek R1 distilled transformer reasoning models under15

a fixed generation time budget using self-consistency voting. Overall, we introduce16

a hybrid Mamba reasoning model and provide a more effective approach to scaling17

test-time generation using self-consistency or long chain of thought reasoning.18

1 Introduction19

Robust and effective reasoning is the cornerstone for successfully performing tasks in domains such20

as mathematics and programming. Additionally, performance on reasoning tasks can often be boosted21

by generating longer sequences and/or generating many sequences in parallel (Snell et al., 2024).22

However, current transformer-based large language models (LLMs) face significant challenges when23

tasked with processing long sequences with large batch sizes. These models are constrained by a24

quadratic increase in computational complexity as the sequence length grows, coupled with a linear25

escalation in memory requirements. This combination makes it increasingly difficult for models to26

scale efficiently when handling large inputs.27

Although linear hybrid RNN models (Gu & Dao, 2024; Dao & Gu, 2024; Beck et al., 2024; Yang28

et al., 2024; Peng et al., 2023) have shown great potential as an alternative to transformer-based29

on general language models, their effectiveness on reasoning tasks remains unclear. Since modern30

reasoning models typically generate long chains of thought for challenging math questions, it is31

uncertain whether the performance of hybrid linear RNNs diminishes in such scenarios.32

In this paper, we propose M1 and show that it is possible to derive strong hybrid reasoning models by33

efficiently transferring reasoning capabilities from a large transformer model. Our training process34

involves distilling knowledge, incorporating math and reasoning abilities through supervised fine-35

tuning (SFT), and finally, boosting performance using reinforcement learning (RL) training. In total,36
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the training process requires fewer than 50 billion tokens. In contrast, DeepSeek-R1-Distill-Qwen-37

1.5B is finetuned from Qwen2.5 MATH 1.5B which is trained using over 1 trillion MATH tokens on38

top of Qwen2.5.39

We demonstrate that our hybrid models achieve a 3x speedup compared to transformers of the40

same size when served using a highly performant general purpose inference engine, vLLM, at large41

batch sizes. This gain is mainly due to large batches and long sequences, decoding being generally42

memory-bound. Lower memory usage of hybrid models can transform this advantage into a speed43

gain. The decoding speedup is approximately linear with the volume of model’s memory access44

(Yuan et al., 2025).45

Notably, this speedup can be converted to a gain in reasoning accuracy. Studies (Snell et al., 2024;46

Li, 2025; Chen et al., 2025) show that techniques such as self-consistency (Wang et al., 2023) and47

verification (Cobbe et al., 2021) at test time can significantly boost model reasoning performance.48

Under these conditions, a high-throughput model can further enhance its performance by generating49

more samples.50

Overall, we show that M1 performs on par with DeepSeek-R1-Distill-Qwen-1.5B, achieving scores51

of 82 on MATH500 (Hendrycks et al., 2021), 23 on AIME25 (MAA, 2025), 28 on AIME24 (MAA,52

2024), and 47 on OlympiadBench (He et al., 2024), while offering 3x faster inference throughput,53

even compared to the highly optimized vLLM (Kwon et al., 2023) implementation for Transformer54

models.55

2 The M1 Reasoning Model56

In this section, we present a multi-stage process for building our hybrid linear RNN reasoning model,57

M1. The approach has three stages: distillation, SFT, and RL.58

Stage 1: Distillation. The first step in building our M1 model is distilling a pretrained transformer59

model into a Mamba model. We adapt the distillation approach introduced by Wang et al. (2024a).60

The MAMBAINLLAMA framework (Wang et al., 2024a) proposes distilling hybrid Transformer-61

Mamba models by reusing weights from attention layers. In this distillation procedure, outlined in62

Algorithm 1, linear projections for Q, K, V, and O are initialized from the corresponding projections63

for C, B, X, and O, respectively. The newly introduced parameters in the Mamba layers are the64

sampling rate ∆ and the dynamic parameter A, which control the resulting Mamba module via65

a discretization function. Specifically, the sampling rate ∆ ∈ RN ′
discretizes Bt,Ct ∈ RN×1,66

yielding Bt,Ct ∈ RN ′×N×1. Different from Wang et al. (2024a), we introduce two additional67

linear layers to project from head_dim * kv_head to head_dim * n_head. This is because GQA68

(Ainslie et al., 2023) is used in the transformer model to reduce the KV cache. As Mamba does not69

utilize a KV cache, this expansion can increase the expressiveness of B and X.70

We directly reuse the MLP layers; however, unlike the original approach, we replace the attention71

layers with Mamba layers in a single step. Subsequently, we fine-tune the entire model to expedite the72

training process. The distillation step involves minimizing the token-level KL divergence, aligning73

the entire probability distribution of the student model, p(·; θ), with the teacher model, p(·; θT ), for74

every candidate token at position t. We use the reverse KL divergence, DKL(p(·; θ) ∥ p(·; θT )), as75

our loss function rather than the forward KL divergence. We choose the reverse KL divergence due76

to its mode-seeking properties, which results in improved empirical performance.77

We reimplement the distillation and SFT framework using the Axolotl 1training framework. We apply78

the model chat template, mask the user prompt, and compute the loss only over the tokens generated79

in the assistant’s output. To speed up training, we use data packing to merge different sequences into80

a single one until we reach the maximum sequence length which is set to 8192. We find that data81

packing achieves significantly better results compared to the non-packing version in distillation for82

the same training steps. We use the AdamW optimizer with learning rate 1× 10−5 with cosine decay,83

β = (0.9, 0.95) and a weight decay of 0.1.84

1https://github.com/axolotl-ai-cloud/axolotl
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Stage 2: SFT Following the distillation procedure, we finetune the model on a large set of math85

problems, OpenMathInstruct-2 (Toshniwal et al., 2024). As in the distillation stage, we apply the chat86

template to the prompts, mask the user prompt, and compute the loss only over the tokens generated87

in the assistant’s output. We train for two epochs using the same optimizer as distillation.88

After the initial fine-tuning stage, we finetune on an additional set of math problems and solutions89

generated by reasoning models. We collect a mixed reasoning dataset, including OpenR1-Math-220k90
2, OpenThoughts-114k-math3, and ServiceNow-AI-R1-Distill4, Magpie-Reasoning-250K5 for a total91

of 10B reasoning tokens. The first two datasets were generated from R1, while the last two was92

generated from the R1 distilled Qwen 32B model and R1 distilled Llama 70B model. We extended93

the training length to 24,576 because we found that it covers 99% of the data items. We train the94

model for five epochs using the same optimizer as before but changing the peak learning rate to95

6× 10−6.96

Stage 3: Reasoning RL. To further enhance performance, we integrate Mamba with a RL pipeline97

for further training.6 We use GRPO as the loss function. Differing from (Shao et al., 2024), we98

remove the KL penalty term as empirically we find it destabilizes training. Additionally, we include99

an entropy bonus to encourage a more diverse policy. The resulting formula is,100

LGRPO(θ) = Eτ∼πθold

[
πθ(a|s)
πθold(a|s)

Â(s, a)

]
+ η H(πθ) (1)

where Â(s, a) is the estimate of the advantage from multiple rollouts. We use a batch size of 128101

and a PPO batch size of 64, which also determines the number of PPO iterations, µ = 2. We set102

the number of generations for each sequence to 8 and the maximum generation length to 32k. For103

optimization, we use the Adam optimizer with a learning rate of 1× 10−6. We train for 50 steps, and104

pick the best checkpoint with the highest critic reward. We append the simple prompt "Let’s think105

step by step and output the final answer within \boxed{}" to the end of each question in both training106

and evaluation.107

3 Experiments108

Model. We adopt the Llama3.2-3B-Instruct models as distillation target models. For Mamba layers,109

we set the SSM state size to 16. Consequently, the number of SSM groups after expansion is 3072/16110

= 192 for the 3B model. We use 6 interleaved attention layers among 28 total layers.111

Evaluation Dataset. Following common practice in evaluating reasoning models, we use a similar112

set of math benchmarks, including competition-level problems: MATH500 (Hendrycks et al., 2021),113

AIME25 (MAA, 2025), AIME24 (MAA, 2024), AMC23 (MAA, 2023), and OlympiadBench (He114

et al., 2024).115

When using additional compute, we employ multiple aggregation strategies. The most straightforward116

method is majority voting, also known as self-consistency decoding (Wang et al., 2023), which takes117

the majority response among k samples as the predicted answer, and uses that to compute the118

accuracy.119

3.1 Reasoning Evaluation120

We evaluate our models using a temperature setting of 0.7 and a sequence length of 32k with121

evaluation tools in VeRL. We use 32k because it has become the standard for evaluating performance122

2https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
3https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k
4https://huggingface.co/datasets/ServiceNow-AI/R1-Distill-SFT
5https://huggingface.co/datasets/Magpie-Align/Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B
6We add it into the popular VeRL (Sheng et al., 2024) framework. In doing so, we addressed and resolved

the CUDA graph incompatibility issues that previously arose during training with PyTorch’s FSDP module. As a
result, the updated framework now efficiently supports Mamba generation with CUDA graph enabled, making it
5x faster than with CUDA Graph disabled
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Model AIME25 AIME24 MATH500 AMC23 OlympiadBench

Qwen2.5-Math-7B-Instruct - 13.3 79.8 50.6 40.7
rStar-Math-7B (Guan et al., 2025) - 26.7 78.4 47.5 47.1
Eurus-2-7B-PRIME (Cui et al., 2025) - 26.7 79.2 57.8 42.1
Qwen2.5-7B-SimpleRL (Zeng et al., 2025) - 26.7 82.4 62.5 43.3
DeepSeek-R1-Qwen-1.5B 23.0 28.8 82.8 62.9 43.3
M1-3B 23.5 28.9 82.1 62.8 47.3

Table 1: Evaluation results for M1-3B, DeepSeek-R1-Distill-Qwen-1.5B and other MATH models on
MATH benchmarks

Model AIME25 AIME24 MATH500 AMC23 OlympiadBench

Pass@1 Maj@32 Pass@1 Maj@32 Pass@1 Maj@32 Pass@1 Maj@32 Pass@1 Maj@32

DeepSeek-R1-Qwen-1.5B 23.0 35.0 28.8 49.2 82.8 91.0 62.9 54.2 43.3 80.3
M1-3B 23.5 34.6 29.0 50.5 82.1 91.8 62.8 55.0 47.3 80.1

Table 2: Maj@32 results comparing M1-3B with DeepSeek-R1-Distill-Qwen-1.5B.

on reasoning models (DeepSeek-AI et al., 2025; Luo et al., 2025). We report the pass@1 metric123

averaged over 64 runs; for majority voting, we repeat the metric calculation 100 times.124

3.2 Speed Evaluation125

We benchmark inference time with our model against a transformer model (Llama-3.2.-3B (Grattafiori126

et al., 2024)) of the same size. We use vLLM (version 0.6.3), which is the version used in VeRL for127

efficient rollouts. We also compare against DeepSeek-R1-Distill-Qwen-1.5B (DeepSeek-AI et al.,128

2025), a reasoning transformer model that is half the size of M1. This model has the same number of129

layers as the 3B parameter transformer, but the hidden dimension is half the size.130

According to Luo et al. (2025), the average generation length of reasoning models on MATH questions131

is 4k to 5k. We therefore fix a decoding length of 4096 (and prompt length of 256) and benchmark our132

model across a range of batch sizes. We vary the batch size from 8 to 512, measuring the inference133

latency across different models.134

We perform our benchmarking on a single NVIDIA H100 GPU with greedy decoding. To ensure135

that every model generates up to the set maximum number of tokens, we use ignore_eos=True.136

Before recording results, we warm up the system with two runs. The final performance metrics are137

then averaged over three subsequent runs. The inference speeds of the models across batch sizes are138

shown in Figure 1. M1 achieves a 3× speedup over similarly-sized transformers when using a batch139

size of 512 and a decoding length of 4096, demonstrating its effectiveness in large-batch generation140

settings.141

The maximum length of generated sequences is also an important factor in RL training, as longer142

sequences allow the model to use more compute during learning by generating longer chains-of-143

thought, shown in Figure 5. To benchmark our model in this setting, we fix the batch size to 128, and144

vary the generation length. We compare against the same two models as in the batch size varying145

case, and the results are shown in Figure 2. As the generated sequence length increases, M1 achieves146

increasing speedups relative to the baseline models, and consistently generates at least 2x faster than147

Llama-3.2-3B (2.64x faster for the longest sequence length).148
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Figure 1: Inference latency when using prompt
length 256 and decoding length 4096.
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A Related Work355

A.1 Reasoning models356

Recent models like Deepseek-R1 (DeepSeek-AI et al., 2025) have shown the potential of RL357

training to improve performance on verifiable reasoning tasks, such as math problem solving and358

programming. Additional work has proposed methods for inducing this reasoning behavior via359

supervised fine-tuning, either on curated data (Muennighoff et al., 2025) or on generated pairs360

of traces (Yang et al., 2025). Other approaches also combine search procedures such as MCTS361

with language models (Qi et al., 2024) or alter standard RL training schemes to control the length362

of generated outputs (Aggarwal & Welleck, 2025). After training, these models solve complex363

tasks by generating long chains of thought, which often include subtasks of the overall problem,364

multiple attempted solutions, and backtracking over prior attempts (Gandhi et al., 2025). Since the365

performance of these models, both during training and inference, relies on generating lengthy chains366

of thought, more efficient architectures can enable larger scale training and less costly generation.367

A.2 Enhancing Reasoning via Scaled Inference Compute368

Increasing the computational budget during inference has become a promising approach to boost LLM369

performance. Methods like Chain of Thought (CoT) and its derivatives have achieved notable gains on370

reasoning benchmarks by breaking down complex tasks into intermediate steps (Wei et al., 2023; Yao371

et al., 2023). Although decomposing tasks improves reasoning, it also lengthens generation sequences372

and raises computational costs. Some recent studies even indicate that this extra computation might373

itself enhance model capabilities (Pfau et al., 2024). In addition, adaptive compute allocation during374

inference has been explored. For example, Goyal et al. (2024) incorporated pause tokens into the375

vocabulary, allowing models to distribute compute more efficiently and improve both reasoning and376

overall task performance. LightTransfer (Zhang et al., 2024c) introduces a lightweight method that377

detects lazy layers and replaces their full attention with streaming attention—slashing KV-cache378

overhead and boosting throughput.379

Another strategy involves generating several outputs and selecting the best one. Researchers have380

developed various sampling algorithms to diversify and enhance the quality of generated responses,381

thereby increasing the chances of retrieving the most accurate answer (Wang et al., 2023; Renze &382

Guven, 2024; Zhang et al., 2023). Moreover, outcome and process reward models (ORMs and PRMs)383

have been introduced to evaluate responses and steer intermediate generation steps (Lightman et al.,384

2023; Zhang et al., 2024a; Luo et al., 2024; Uesato et al., 2022).385

Recent investigations reveal that, under fixed compute budgets, smaller LLMs augmented with386

inference-time compute techniques (such as majority voting or PRM-guided search) can outperform387

larger models (Snell et al., 2024; Wu et al., 2024; Beeching et al., 2024). However, these results are388

mainly confined to Transformer-based architectures, leaving open questions about whether similar389

scaling laws hold for subquadratic architectures, which offer faster inference but might compromise390

on expressiveness.391
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A.3 Alternatives to Transformer Architectures392

Even though most reasoning models are based on the Transformer architecture (Grattafiori et al.,393

2024; Qwen et al., 2025), alternatives have been proposed to alleviate their high computational cost.394

Models built on top of RNNs (Beck et al., 2024; Peng et al., 2023), state space models (SSMs) (Gu395

et al., 2022; Gu & Dao, 2024), and linear attention mechanisms (Katharopoulos et al., 2020; Yang396

et al., 2024) demonstrate superior inference and memory efficiency, particularly for long-context tasks397

and large-batch generation. The Mamba series (Mamba-1 and Mamba-2) notably introduced selective398

state spaces to enable linear-time sequence modeling with strong performance (Gu & Dao, 2024;399

Dao & Gu, 2024). In addition, hybrid architectures that combine a few self-attention layers with400

subquadratic layers (e.g., Mamba) have emerged, showing advantages over both pure Transformer and401

pure subquadratic designs (Lieber et al., 2024; Ren et al., 2024). Such architectures are particularly402

suited to meet the high compute demands of inference-time scaling, and our work investigates their403

scaling properties.404

A.4 Knowledge Distillation Strategies405

Knowledge distillation has proven to be an effective means of transferring capabilities from large406

teacher models to smaller, more efficient student models (Hinton et al., 2015). In LLMs, this407

process compresses a larger pre-trained model into a more compact version while preserving core408

knowledge and functionality (Gu et al., 2024; Xu et al., 2024). Although larger models tend to exhibit409

superior reasoning abilities due to scaling properties (Xu et al., 2025; Wei et al., 2022), distillation410

techniques have enabled smaller models to achieve competitive reasoning performance (DeepSeek-AI411

et al., 2025; Labs, 2025). While most efforts have focused on intra-architecture distillation (e.g.,412

Transformer-to-Transformer), recent studies have ventured into cross-architecture distillation. For413

instance, pretrained Transformers have been distilled into architectures such as RNNs (Kasai et al.,414

2021; Mercat et al., 2024), linear attention models (Zhang et al., 2024b; Zhang et al.), convolutional415

networks (Ralambomihanta et al., 2024), and SSMs (Bick et al., 2024; Wang et al., 2024b; Paliotta416

et al., 2025). Whether the robust reasoning abilities of Deepseek R1 (DeepSeek-AI et al., 2025)417

distilled models can be effectively transferred across different architectures remains an open question.418

A.5 Test-Time Scaling419

Given a fixed time budget, M1 can generate more sequences or longer sequences compared to a420

transformer model, which can hopefully boost its performance. We evaluate the effect of test-time421

compute scaling on model performance. We scale both the number of samples generated as well as422

the length of generated samples, to see if M1 benefits from additional compute along these axes. We423

aim to investigate whether the speed benefit from section 3.2 can translate into an accuracy gain.424

Scaling with majority vote.425
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Figure 3: Number of samples vs. AIME25 accuracy (left) and generation time (seconds) vs. AIME25
accuracy (right). Both graphs include pass@1 and majority voting accuracies for M1 and DeepSeek-
R1-Distill-Qwen-1.5B.

The left side of Figure 3 shows the effect of scaling the number of generated samples (while fixing the426

maximum decoding length) on AIME25 accuracy. Both the baseline model and M1 see increasing427

accuracy as the number of samples increases, with M1 nearly matching the baseline performance428
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for larger sample sizes. The efficient generation of M1 also means that generating large number of429

samples at test-time is faster than for the baseline transformer model.430

We quantify this efficiency in the right side of Figure 3, which compares the number of seconds spent431

generating samples against the resulting accuracy. To compute the time values on the x-axis, we432

find an optimal throughput value (in tokens per second) for each model by increasing batch sizes433

until throughput decreases. The optimal values were 7263 T/s for DeepSeek-R1-Distill-Qwen-1.5B,434

and 15169 T/s for M1. We then assume that each generated sample is maximum length (8K), and435

compute the seconds required for one sample from one model as 8K divided by the throughput. We436

then convert the left graph of Figure 3 into the right graph, by multiplying the number of samples437

for each datapoint by the seconds required per sample for each model. As an example, M1 requires438

roughly a half second (8K/15K) per sample, so the accuracy value for M1 at 32 samples on the left439

graph appears at approximately 16 seconds on the right graph.440

Scaling with longer sequences441

Figure 4 shows the effect of scaling the maximum length of the generated answer, while fixing442

the number of generated samples to one. For both the baseline and M1, increasing the maximum443

sequence length leads to increased accuracy, as shown in the left graph in Figure 4. After converting444

from generation length to the seconds required to generate (done in the same way as Figure 3, but445

dividing the generation length by throughput), we can see the accuracy gain per time spent generating446

on the right side of Figure 4. In this case, M1 actually gets a higher accuracy for the same amount447

of time spent generating at 4 of the 5 evaluated sequence lengths, showing the benefits of efficient448

generation for test-time compute scaling.449
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Figure 4: Generation length vs. AIME25 accuracy (left) and generation time (seconds) vs. AIME25
accuracy (right). Sampling for both models is done using a temperature of 0.8.

B Analysis450

Increasing Training Length in RL boosts model performance451

With more efficient models, we can increase the length of sequences used in RL training, resulting in452

improved performance. Empirically, we see this in Figure 5, which shows an increase in accuracy on453

AIME25 as we scale up the length of sequences generated when training with GRPO. Training with454

sequences of maximum length 4096 results in accuracy below 10%, while allowing sequences up to455

length 24K boosts the accuracy up to 23%.456

MATH Accuracy at each training stage457

To identify which components of our training pipeline have the greatest impact on performance,458

we also evaluate intermediate versions of the model on MATH500 (Hendrycks et al., 2021) and459

AIME24 (MAA, 2024). The results of these evaluations are presented in Table 3. Each step of the460

training pipeline provides a boost to performance, with particularly large gains from fine-tuning on461

solutions from reasoning models (+29% on MATH500 and +17% on AIME24).462

Direct Distillation from Reasoning Models We also attempted to distill from Deepseek-R1-Qwen-463

1.5B instead of Llama-3.2-3B. In this case, we did not SFT on OpenMathInstruct, and instead only464

SFT on the 10B reasoning data that we collected after distillation. We found that the distilled model’s465

performance was poor (38% and 3.3% pass@1 accuracy on MATH500 and AIME24, resspectively).466
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Figure 5: Pass@1 vs. maximum sequence length in GRPO training

MATH500 AIME24

Distill 38 0
Distill + SFT(MATH) 45 0
Distill + SFT(MATH) + SFT(Reason) 74 22
Distill + SFT(MATH) + SFT(Reason) + RL 82 28

Table 3: M1 Accuracy after each training stage on MATH500 and AIME24.

Our hypothesis for why this occurs is that 10B tokens is insufficient to effectively transfer reasoning467

skills from the transformer to Mamba. Although curating a high-quality reasoning dataset demands468

significant time and effort, we begin by leveraging the standard MATH distillation dataset from469

OpenMathInstruct (Toshniwal et al., 2024) to first distill a strong MATH model. We then transform470

this MATH model into a reasoning model via SFT on the dedicated reasoning dataset. This approach471

achieves strong performance with a much smaller number of reasoning tokens.472

C Conclusion473

In this paper, we introduced M1, a hybrid reasoning model built on the Mamba architecture, designed474

to address the scalability challenges of the Transformer models. We demonstrated effective techniques475

for distillation and finetuning to develop M1, which achieves mathematical reasoning performance476

comparable to state-of-the-art reasoning models of similar size. Notably, M1 delivers over 3x faster477

inference than similar-sized Transformer models, even when using the heavily optimized vLLM478

inference engine, particularly at large batch sizes. This improved efficiency can make the resource-479

intensive inference-time strategies, such as self-consistency, more practical. Our findings establish480

M1 as a strong alternative to Transformer-based architectures, paving the way for more efficient and481

high-performing reasoning models.482

D Limitations and Future Work483

Speedup. Our current hybrid model is only 3× faster than a Transformer of the same size when484

serving inference with vLLM. Recently, NVIDIA introduced a new hybrid Mamba kernel7, which485

could further boost the speed of hybrid models. Additionally, our attention implementation in hybrid486

models does not yet leverage the optimizations available in vLLM. Integrating M1 into vLLM could487

further boost performance by taking advantage of these attention speedups.488

Why do we not distill Qwen2.5 1.5B MATH model. We considered using the Qwen2.5 1.5B489

MATH Instruct model as the distillation target in the first stage. However, we found that the cross490

entropy loss of the Qwen 1.5B MATH model on the OpenMATH Instruct dateset (Toshniwal et al.,491

2024) exceeded 1.8, which is much higher than that of the Llama models (0.5). This suggests that, to492

mimic the Qwen2.5 model, we need a dataset generated from a large Qwen2.5 series model rather493

7https://github.com/NVIDIA/Megatron-LM/commit/b957578e76a921209ef873cbbd389114a4042542
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than this one generated from the Llama models. Dataset curation from Qwen Math models goes494

beyond the scope of this work.495

Improvement on RL training speed Recently, DeepSeek R1 (DeepSeek-AI et al., 2025) showed496

that reinforcement learning (RL) is a key component in improving model reasoning performance497

during post-training. Since then, recent research has predominantly relied on reinforcement learning498

(RL) as a training paradigm for reasoning models. However, training with RL requires the efficient499

generation of long sequences. For example, in VeRL (Sheng et al., 2024), the typical training500

batch size ranges from a few thousand to several thousand. DeepscaleR (Luo et al., 2025) also501

shows a significant accuracy boost when training RL with longer sequences, as it tends to enhance502

model performance by providing more steps for thorough reasoning. However, this shift towards503

reinforcement learning has resulted in the generation process becoming a significant bottleneck in504

reasoning model training, taking more than three times as long as the actor’s weight update (forward505

+ backward) according to the time profiling done for DeepscaleR (Luo et al., 2025). This need for506

efficient generation in RL presents a significant challenge for transformer models, namely due to the507

heavy computational burden imposed by large key-value caches during generation, especially for508

large batch sizes. Given their generation speed advantages, linear RNN models may be better suited509

for scaling RL training.510
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