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Abstract

Effective reasoning is crucial to solving complex mathematical problems. Recent
large language models (LLMs) have boosted performance by scaling test-time
computation through long chain-of-thought reasoning. However, transformer-based
models are inherently limited in extending context length due to their quadratic
computational complexity and linear memory requirements. In this paper, we
introduce a novel hybrid linear RNN reasoning model, M1, built on the Mamba
architecture, which allows memory-efficient inference. Our approach leverages a
distillation process from existing reasoning models and is further enhanced through
RL training. Experimental results on the AIME and MATH benchmarks show
that M1 not only outperforms previous linear RNN models but also matches the
performance of state-of-the-art Deepseek R1 distilled reasoning models at a similar
scale. We also compare our generation speed with a highly performant general
purpose inference engine, vLLM, and observe more than a 3x speedup compared
to a same size transformer. With throughput speedup, we are able to achieve higher
accuracy compared to DeepSeek R1 distilled transformer reasoning models under
a fixed generation time budget using self-consistency voting. Overall, we introduce
a hybrid Mamba reasoning model and provide a more effective approach to scaling
test-time generation using self-consistency or long chain of thought reasoning.

1 Introduction

Robust and effective reasoning is the cornerstone for successfully performing tasks in domains such
as mathematics and programming. Additionally, performance on reasoning tasks can often be boosted
by generating longer sequences and/or generating many sequences in parallel (Snell et al., 2024).
However, current transformer-based large language models (LLMs) face significant challenges when
tasked with processing long sequences with large batch sizes. These models are constrained by a
quadratic increase in computational complexity as the sequence length grows, coupled with a linear
escalation in memory requirements. This combination makes it increasingly difficult for models to
scale efficiently when handling large inputs.

Although linear hybrid RNN models (Gu & Dao, 2024; Dao & Gu, 2024; Beck et al., 2024; Yang
et al., 2024; Peng et al., 2023) have shown great potential as an alternative to transformer-based
on general language models, their effectiveness on reasoning tasks remains unclear. Since modern
reasoning models typically generate long chains of thought for challenging math questions, it is
uncertain whether the performance of hybrid linear RNNs diminishes in such scenarios.

In this paper, we propose M1 and show that it is possible to derive strong hybrid reasoning models by
efficiently transferring reasoning capabilities from a large transformer model. Our training process
involves distilling knowledge, incorporating math and reasoning abilities through supervised fine-
tuning (SFT), and finally, boosting performance using reinforcement learning (RL) training. In total,
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the training process requires fewer than 50 billion tokens. In contrast, DeepSeek-R1-Distill-Qwen-
1.5B is finetuned from Qwen2.5 MATH 1.5B which is trained using over 1 trillion MATH tokens on
top of Qwen?2.5.

We demonstrate that our hybrid models achieve a 3x speedup compared to transformers of the
same size when served using a highly performant general purpose inference engine, vLLM, at large
batch sizes. This gain is mainly due to large batches and long sequences, decoding being generally
memory-bound. Lower memory usage of hybrid models can transform this advantage into a speed
gain. The decoding speedup is approximately linear with the volume of model’s memory access
(Yuan et al., 2025).

Notably, this speedup can be converted to a gain in reasoning accuracy. Studies (Snell et al., 2024;
Li, 2025; Chen et al., 2025) show that techniques such as self-consistency (Wang et al., 2023) and
verification (Cobbe et al., 2021) at test time can significantly boost model reasoning performance.
Under these conditions, a high-throughput model can further enhance its performance by generating
more samples.

Overall, we show that M1 performs on par with DeepSeek-R 1-Distill-Qwen-1.5B, achieving scores
of 82 on MATHS00 (Hendrycks et al., 2021), 23 on AIME25 (MAA, 2025), 28 on AIME24 (MAA,
2024), and 47 on OlympiadBench (He et al., 2024), while offering 3x faster inference throughput,
even compared to the highly optimized vLLM (Kwon et al., 2023) implementation for Transformer
models.

2 The M1 Reasoning Model

In this section, we present a multi-stage process for building our hybrid linear RNN reasoning model,
M1. The approach has three stages: distillation, SFT, and RL.

Stage 1: Distillation. The first step in building our M1 model is distilling a pretrained transformer
model into a Mamba model. We adapt the distillation approach introduced by Wang et al. (2024a).

The MAMBAINLLAMA framework (Wang et al., 2024a) proposes distilling hybrid Transformer-
Mamba models by reusing weights from attention layers. In this distillation procedure, outlined in
Algorithm 1, linear projections for Q, K, V, and O are initialized from the corresponding projections
for C, B, X, and O, respectively. The newly introduced parameters in the Mamba layers are the
sampling rate A and the dynamic parameter A, which control the resulting Mamba module via
a discretization function. Specifically, the sampling rate A € RN discretizes B;, C; € RN*1,

yielding B;,C; € RV "XNx1_ Different from Wang et al. (2024a), we introduce two additional
linear layers to project from head_dim * kv_head to head_dim * n_head. This is because GQA
(Ainslie et al., 2023) is used in the transformer model to reduce the KV cache. As Mamba does not
utilize a KV cache, this expansion can increase the expressiveness of B and X.

We directly reuse the MLP layers; however, unlike the original approach, we replace the attention
layers with Mamba layers in a single step. Subsequently, we fine-tune the entire model to expedite the
training process. The distillation step involves minimizing the token-level KL divergence, aligning
the entire probability distribution of the student model, p(+; #), with the teacher model, p(+; 07), for
every candidate token at position ¢. We use the reverse KL divergence, Dk (p(+;0) || p(;07)), as
our loss function rather than the forward KL divergence. We choose the reverse KL divergence due
to its mode-seeking properties, which results in improved empirical performance.

We reimplement the distillation and SFT framework using the Axolotl !training framework. We apply
the model chat template, mask the user prompt, and compute the loss only over the tokens generated
in the assistant’s output. To speed up training, we use data packing to merge different sequences into
a single one until we reach the maximum sequence length which is set to 8192. We find that data
packing achieves significantly better results compared to the non-packing version in distillation for
the same training steps. We use the AdamW optimizer with learning rate 1 x 10~ with cosine decay,
B =1(0.9,0.95) and a weight decay of 0.1.

"https://github.com/axolotl-ai-cloud/axolotl


https://github.com/axolotl-ai-cloud/axolotl

ss Stage 2: SFT Following the distillation procedure, we finetune the model on a large set of math
ss problems, OpenMathInstruct-2 (Toshniwal et al., 2024). As in the distillation stage, we apply the chat
g7 template to the prompts, mask the user prompt, and compute the loss only over the tokens generated
g8 in the assistant’s output. We train for two epochs using the same optimizer as distillation.

go After the initial fine-tuning stage, we finetune on an additional set of math problems and solutions
90 generated by reasoning models. We collect a mixed reasoning dataset, including OpenR 1-Math-220k
9t 2, OpenThoughts-114k-math?, and ServiceNow-AI-R1-Distill*, Magpie-Reasoning-250K?> for a total
92 of 10B reasoning tokens. The first two datasets were generated from R1, while the last two was
93 generated from the R1 distilled Qwen 32B model and R1 distilled Llama 70B model. We extended
94 the training length to 24,576 because we found that it covers 99% of the data items. We train the
95 model f(ér five epochs using the same optimizer as before but changing the peak learning rate to
% 6x107°.

97 Stage 3: Reasoning RL. To further enhance performance, we integrate Mamba with a RL pipeline
o8 for further training.® We use GRPO as the loss function. Differing from (Shao et al., 2024), we
99 remove the KL penalty term as empirically we find it destabilizes training. Additionally, we include
100 an entropy bonus to encourage a more diverse policy. The resulting formula is,

mo(als)

LGRPO(G) = ]ETNTrgold |:7T@ld(a|5)

A(s,aﬂ Ty H(ms) )

101 where A(s, a) is the estimate of the advantage from multiple rollouts. We use a batch size of 128
102 and a PPO batch size of 64, which also determines the number of PPO iterations, u = 2. We set
103 the number of generations for each sequence to 8 and the maximum generation length to 32k. For
104 optimization, we use the Adam optimizer with a learning rate of 1 x 10~5. We train for 50 steps, and
105 pick the best checkpoint with the highest critic reward. We append the simple prompt "Let’s think
106 step by step and output the final answer within \boxed{}" to the end of each question in both training
107 and evaluation.

e 3 Experiments

109 Model. We adopt the Llama3.2-3B-Instruct models as distillation target models. For Mamba layers,
110 we set the SSM state size to 16. Consequently, the number of SSM groups after expansion is 3072/16
111 =192 for the 3B model. We use 6 interleaved attention layers among 28 total layers.

112 Evaluation Dataset. Following common practice in evaluating reasoning models, we use a similar
113 set of math benchmarks, including competition-level problems: MATH500 (Hendrycks et al., 2021),
114 AIME25 (MAA, 2025), AIME24 (MAA, 2024), AMC23 (MAA, 2023), and OlympiadBench (He
115 et al., 2024).

116 When using additional compute, we employ multiple aggregation strategies. The most straightforward
117 method is majority voting, also known as self-consistency decoding (Wang et al., 2023), which takes
118 the majority response among k samples as the predicted answer, and uses that to compute the
119 accuracy.

120 3.1 Reasoning Evaluation

121 We evaluate our models using a temperature setting of 0.7 and a sequence length of 32k with
122 evaluation tools in VeRL. We use 32k because it has become the standard for evaluating performance

*https://huggingface.co/datasets/open-ri/0penR1-Math-220k
*https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k
*https://huggingface.co/datasets/ServiceNow-AI/R1-Distill-SFT
https://huggingface.co/datasets/Magpie-Align/Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B
We add it into the popular VeRL (Sheng et al., 2024) framework. In doing so, we addressed and resolved

the CUDA graph incompatibility issues that previously arose during training with PyTorch’s FSDP module. As a

result, the updated framework now efficiently supports Mamba generation with CUDA graph enabled, making it

5x faster than with CUDA Graph disabled


https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k
https://huggingface.co/datasets/ServiceNow-AI/R1-Distill-SFT
https://huggingface.co/datasets/Magpie-Align/Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B
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Model AIME25 AIME24 MATH500 AMC23 OlympiadBench

Qwen2.5-Math-7B-Instruct - 13.3 79.8 50.6 40.7
rStar-Math-7B (Guan et al., 2025) - 26.7 78.4 47.5 471
Eurus-2-7B-PRIME (Cui et al., 2025) - 26.7 79.2 57.8 42.1
Qwen2.5-7B-SimpleRL (Zeng et al., 2025) - 26.7 82.4 62.5 43.3
DeepSeek-R1-Qwen-1.5B 23.0 28.8 82.8 62.9 43.3
M1-3B 23.5 28.9 82.1 62.8 47.3

Table 1: Evaluation results for M1-3B, DeepSeek-R1-Distill-Qwen-1.5B and other MATH models on
MATH benchmarks

Model AIME25 AIME24 MATHS500 AMC23 OlympiadBench
Pass@1 Maj@32 Pass@l Maj@32 Pass@l Maj@32 Pass@l Maj@32 Pass@l Maj@32

DeepSeek-R1-Qwen-1.5B 23.0 35.0 28.8 49.2 82.8 91.0 62.9 542 433 80.3

M1-3B 23.5 34.6 29.0 50.5 82.1 91.8 62.8 55.0 47.3 80.1

Table 2: Maj@32 results comparing M1-3B with DeepSeek-R1-Distill-Qwen-1.5B.

on reasoning models (DeepSeek-Al et al., 2025; Luo et al., 2025). We report the pass@ 1 metric
averaged over 64 runs; for majority voting, we repeat the metric calculation 100 times.

3.2 Speed Evaluation

We benchmark inference time with our model against a transformer model (Llama-3.2.-3B (Grattafiori
et al., 2024)) of the same size. We use vLLM (version 0.6.3), which is the version used in VeRL for
efficient rollouts. We also compare against DeepSeek-R1-Distill-Qwen-1.5B (DeepSeek-Al et al.,
2025), a reasoning transformer model that is half the size of M1. This model has the same number of
layers as the 3B parameter transformer, but the hidden dimension is half the size.

According to Luo et al. (2025), the average generation length of reasoning models on MATH questions
is 4k to Sk. We therefore fix a decoding length of 4096 (and prompt length of 256) and benchmark our
model across a range of batch sizes. We vary the batch size from 8 to 512, measuring the inference
latency across different models.

We perform our benchmarking on a single NVIDIA H100 GPU with greedy decoding. To ensure
that every model generates up to the set maximum number of tokens, we use ignore_eos=True.
Before recording results, we warm up the system with two runs. The final performance metrics are
then averaged over three subsequent runs. The inference speeds of the models across batch sizes are
shown in Figure 1. M1 achieves a 3x speedup over similarly-sized transformers when using a batch
size of 512 and a decoding length of 4096, demonstrating its effectiveness in large-batch generation
settings.

The maximum length of generated sequences is also an important factor in RL training, as longer
sequences allow the model to use more compute during learning by generating longer chains-of-
thought, shown in Figure 5. To benchmark our model in this setting, we fix the batch size to 128, and
vary the generation length. We compare against the same two models as in the batch size varying
case, and the results are shown in Figure 2. As the generated sequence length increases, M1 achieves
increasing speedups relative to the baseline models, and consistently generates at least 2x faster than
Llama-3.2-3B (2.64x faster for the longest sequence length).

3.01 2.64
400{ ™= DeepSeek-R1-Distill-Qwen-1.5B i 1600 MM DeepSeek-R1-Distill-Qwen-1.5B i
T 350 Llama-3.2-3B m Llama-3.2-3B
S = M1-3B © 14007 pum m1-38
8 300 ¥2.00 8
3 250 ‘&i
= 25
v ()
€ £
5 200 E
[ [
é 150 é
€100 g
50 xﬂ.éé 27 0. éé»‘u

8 16 32 64 128 256 512 4096 8192 16384 20480
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Figure 1: Inference latency when using prompt Figure 2: Inference latency when using batch
length 256 and decoding length 4096. size 128.
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A Related Work

A.1 Reasoning models

Recent models like Deepseek-R1 (DeepSeek-Al et al., 2025) have shown the potential of RL
training to improve performance on verifiable reasoning tasks, such as math problem solving and
programming. Additional work has proposed methods for inducing this reasoning behavior via
supervised fine-tuning, either on curated data (Muennighoff et al., 2025) or on generated pairs
of traces (Yang et al., 2025). Other approaches also combine search procedures such as MCTS
with language models (Qi et al., 2024) or alter standard RL training schemes to control the length
of generated outputs (Aggarwal & Welleck, 2025). After training, these models solve complex
tasks by generating long chains of thought, which often include subtasks of the overall problem,
multiple attempted solutions, and backtracking over prior attempts (Gandhi et al., 2025). Since the
performance of these models, both during training and inference, relies on generating lengthy chains
of thought, more efficient architectures can enable larger scale training and less costly generation.

A.2 Enhancing Reasoning via Scaled Inference Compute

Increasing the computational budget during inference has become a promising approach to boost LLM
performance. Methods like Chain of Thought (CoT) and its derivatives have achieved notable gains on
reasoning benchmarks by breaking down complex tasks into intermediate steps (Wei et al., 2023; Yao
et al., 2023). Although decomposing tasks improves reasoning, it also lengthens generation sequences
and raises computational costs. Some recent studies even indicate that this extra computation might
itself enhance model capabilities (Pfau et al., 2024). In addition, adaptive compute allocation during
inference has been explored. For example, Goyal et al. (2024) incorporated pause tokens into the
vocabulary, allowing models to distribute compute more efficiently and improve both reasoning and
overall task performance. LightTransfer (Zhang et al., 2024c) introduces a lightweight method that
detects lazy layers and replaces their full attention with streaming attention—slashing KV-cache
overhead and boosting throughput.

Another strategy involves generating several outputs and selecting the best one. Researchers have
developed various sampling algorithms to diversify and enhance the quality of generated responses,
thereby increasing the chances of retrieving the most accurate answer (Wang et al., 2023; Renze &
Guven, 2024; Zhang et al., 2023). Moreover, outcome and process reward models (ORMs and PRMs)
have been introduced to evaluate responses and steer intermediate generation steps (Lightman et al.,
2023; Zhang et al., 2024a; Luo et al., 2024; Uesato et al., 2022).

Recent investigations reveal that, under fixed compute budgets, smaller LLMs augmented with
inference-time compute techniques (such as majority voting or PRM-guided search) can outperform
larger models (Snell et al., 2024; Wu et al., 2024; Beeching et al., 2024). However, these results are
mainly confined to Transformer-based architectures, leaving open questions about whether similar
scaling laws hold for subquadratic architectures, which offer faster inference but might compromise
on expressiveness.
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A.3 Alternatives to Transformer Architectures

Even though most reasoning models are based on the Transformer architecture (Grattafiori et al.,
2024; Qwen et al., 2025), alternatives have been proposed to alleviate their high computational cost.
Models built on top of RNNs (Beck et al., 2024; Peng et al., 2023), state space models (SSMs) (Gu
et al., 2022; Gu & Dao, 2024), and linear attention mechanisms (Katharopoulos et al., 2020; Yang
et al., 2024) demonstrate superior inference and memory efficiency, particularly for long-context tasks
and large-batch generation. The Mamba series (Mamba-1 and Mamba-2) notably introduced selective
state spaces to enable linear-time sequence modeling with strong performance (Gu & Dao, 2024;
Dao & Gu, 2024). In addition, hybrid architectures that combine a few self-attention layers with
subquadratic layers (e.g., Mamba) have emerged, showing advantages over both pure Transformer and
pure subquadratic designs (Lieber et al., 2024; Ren et al., 2024). Such architectures are particularly
suited to meet the high compute demands of inference-time scaling, and our work investigates their
scaling properties.

A.4 Knowledge Distillation Strategies

Knowledge distillation has proven to be an effective means of transferring capabilities from large
teacher models to smaller, more efficient student models (Hinton et al., 2015). In LLMs, this
process compresses a larger pre-trained model into a more compact version while preserving core
knowledge and functionality (Gu et al., 2024; Xu et al., 2024). Although larger models tend to exhibit
superior reasoning abilities due to scaling properties (Xu et al., 2025; Wei et al., 2022), distillation
techniques have enabled smaller models to achieve competitive reasoning performance (DeepSeek-Al
et al., 2025; Labs, 2025). While most efforts have focused on intra-architecture distillation (e.g.,
Transformer-to-Transformer), recent studies have ventured into cross-architecture distillation. For
instance, pretrained Transformers have been distilled into architectures such as RNNs (Kasai et al.,
2021; Mercat et al., 2024), linear attention models (Zhang et al., 2024b; Zhang et al.), convolutional
networks (Ralambomihanta et al., 2024), and SSMs (Bick et al., 2024; Wang et al., 2024b; Paliotta
et al., 2025). Whether the robust reasoning abilities of Deepseek R1 (DeepSeek-Al et al., 2025)
distilled models can be effectively transferred across different architectures remains an open question.

A.5 Test-Time Scaling

Given a fixed time budget, M1 can generate more sequences or longer sequences compared to a
transformer model, which can hopefully boost its performance. We evaluate the effect of test-time
compute scaling on model performance. We scale both the number of samples generated as well as
the length of generated samples, to see if M1 benefits from additional compute along these axes. We
aim to investigate whether the speed benefit from section 3.2 can translate into an accuracy gain.

Scaling with majority vote.

w
=)

AIME25 Accuracy (%)

25 —— DeepSeek-R1-Distill-Qwen-1.5B Majority Vote@k 25 —e— DeepSeek-R1-Distill-Qwen-1.5B Majority Vote@k
—— M1 Majority Vote@k —e— M1 Majority Vote@k
20 —e- DeepSeek-R1-Distill-Qwen-1.5B Pass@k 20 —e- DeepSeek-R1-Distill-Qwen-1.5B Pass@k
—-e- M1 Pass@k —e- M1 Pass@k
20 40 60 80 10 20 30 40 50
Number of Samples Time

Figure 3: Number of samples vs. AIME25 accuracy (left) and generation time (seconds) vs. AIME25
accuracy (right). Both graphs include pass@ 1 and majority voting accuracies for M1 and DeepSeek-
R1-Distill-Qwen-1.5B.

The left side of Figure 3 shows the effect of scaling the number of generated samples (while fixing the
maximum decoding length) on AIME25 accuracy. Both the baseline model and M1 see increasing
accuracy as the number of samples increases, with M1 nearly matching the baseline performance
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for larger sample sizes. The efficient generation of M1 also means that generating large number of
samples at test-time is faster than for the baseline transformer model.

We quantify this efficiency in the right side of Figure 3, which compares the number of seconds spent
generating samples against the resulting accuracy. To compute the time values on the x-axis, we
find an optimal throughput value (in tokens per second) for each model by increasing batch sizes
until throughput decreases. The optimal values were 7263 T/s for DeepSeek-R1-Distill-Qwen-1.5B,
and 15169 T/s for M1. We then assume that each generated sample is maximum length (8K), and
compute the seconds required for one sample from one model as 8K divided by the throughput. We
then convert the left graph of Figure 3 into the right graph, by multiplying the number of samples
for each datapoint by the seconds required per sample for each model. As an example, M1 requires
roughly a half second (8K/15K) per sample, so the accuracy value for M1 at 32 samples on the left
graph appears at approximately 16 seconds on the right graph.

Scaling with longer sequences

Figure 4 shows the effect of scaling the maximum length of the generated answer, while fixing
the number of generated samples to one. For both the baseline and M1, increasing the maximum
sequence length leads to increased accuracy, as shown in the left graph in Figure 4. After converting
from generation length to the seconds required to generate (done in the same way as Figure 3, but
dividing the generation length by throughput), we can see the accuracy gain per time spent generating
on the right side of Figure 4. In this case, M1 actually gets a higher accuracy for the same amount
of time spent generating at 4 of the 5 evaluated sequence lengths, showing the benefits of efficient
generation for test-time compute scaling.

N N N
o N i

AIME25 Accuracy (%)
= =
o =]

AIME25 Accuracy (%)

14

-
I

—— DeepSeek-R1-Distill-Qwen-1.5B T=0.8

—e— DeepSeek-R1-Distill-Qwen-1.5B T=0.8
— M1T=0.8 —— M1T=0.8
12 12

5000 10000 15000 20000 25000 30000 0 100 200 300 400 500 60(
Generation Length Time (normalized units)

Figure 4: Generation length vs. AIME25 accuracy (left) and generation time (seconds) vs. AIME25
accuracy (right). Sampling for both models is done using a temperature of 0.8.

B Analysis

Increasing Training Length in RL boosts model performance

With more efficient models, we can increase the length of sequences used in RL training, resulting in
improved performance. Empirically, we see this in Figure 5, which shows an increase in accuracy on
AIME2S5 as we scale up the length of sequences generated when training with GRPO. Training with
sequences of maximum length 4096 results in accuracy below 10%, while allowing sequences up to
length 24K boosts the accuracy up to 23%.

MATH Accuracy at each training stage

To identify which components of our training pipeline have the greatest impact on performance,
we also evaluate intermediate versions of the model on MATHS00 (Hendrycks et al., 2021) and
AIME24 (MAA, 2024). The results of these evaluations are presented in Table 3. Each step of the
training pipeline provides a boost to performance, with particularly large gains from fine-tuning on
solutions from reasoning models (+29% on MATHS500 and +17% on AIME24).

Direct Distillation from Reasoning Models We also attempted to distill from Deepseek-R1-Qwen-
1.5B instead of Llama-3.2-3B. In this case, we did not SFT on OpenMathInstruct, and instead only
SFT on the 10B reasoning data that we collected after distillation. We found that the distilled model’s
performance was poor (38% and 3.3% pass@1 accuracy on MATHS500 and AIME?24, resspectively).
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Figure 5: Pass@1 vs. maximum sequence length in GRPO training

MATHS500 AIME24

Distill 38 0
Distill + SFT(MATH) 45 0
Distill + SFT(MATH) + SFT(Reason) 74 22
Distill + SFT(MATH) + SFT(Reason) + RL 82 28

Table 3: M1 Accuracy after each training stage on MATH500 and AIME24.

467 Our hypothesis for why this occurs is that 10B tokens is insufficient to effectively transfer reasoning
468 skills from the transformer to Mamba. Although curating a high-quality reasoning dataset demands
469 significant time and effort, we begin by leveraging the standard MATH distillation dataset from
470  OpenMathInstruct (Toshniwal et al., 2024) to first distill a strong MATH model. We then transform
471 this MATH model into a reasoning model via SFT on the dedicated reasoning dataset. This approach
472 achieves strong performance with a much smaller number of reasoning tokens.

a3 C  Conclusion

474 In this paper, we introduced M1, a hybrid reasoning model built on the Mamba architecture, designed
475  to address the scalability challenges of the Transformer models. We demonstrated effective techniques
476 for distillation and finetuning to develop M1, which achieves mathematical reasoning performance
477 comparable to state-of-the-art reasoning models of similar size. Notably, M1 delivers over 3x faster
478 inference than similar-sized Transformer models, even when using the heavily optimized vLLM
479 inference engine, particularly at large batch sizes. This improved efficiency can make the resource-
480 intensive inference-time strategies, such as self-consistency, more practical. Our findings establish
481 M1 as a strong alternative to Transformer-based architectures, paving the way for more efficient and
482 high-performing reasoning models.

s D Limitations and Future Work

484  Speedup. Our current hybrid model is only 3x faster than a Transformer of the same size when
a5 serving inference with vLLM. Recently, NVIDIA introduced a new hybrid Mamba kernel’, which
486 could further boost the speed of hybrid models. Additionally, our attention implementation in hybrid
4g7 models does not yet leverage the optimizations available in vLLM. Integrating M1 into vLLM could
4ss further boost performance by taking advantage of these attention speedups.

489 Why do we not distill Qwen2.5 1.5B MATH model. We considered using the Qwen2.5 1.5B
490 MATH Instruct model as the distillation target in the first stage. However, we found that the cross
491 entropy loss of the Qwen 1.5B MATH model on the OpenMATH Instruct dateset (Toshniwal et al.,
492 2024) exceeded 1.8, which is much higher than that of the Llama models (0.5). This suggests that, to
493 mimic the Qwen2.5 model, we need a dataset generated from a large Qwen?2.5 series model rather

7https ://github.com/NVIDIA/Megatron-LM/commit/b957578e76a921209e£873cbbd389114a4042542
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497
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506
507
508
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510

than this one generated from the Llama models. Dataset curation from Qwen Math models goes
beyond the scope of this work.

Improvement on RL training speed Recently, DeepSeek R1 (DeepSeek-Al et al., 2025) showed
that reinforcement learning (RL) is a key component in improving model reasoning performance
during post-training. Since then, recent research has predominantly relied on reinforcement learning
(RL) as a training paradigm for reasoning models. However, training with RL requires the efficient
generation of long sequences. For example, in VeRL (Sheng et al., 2024), the typical training
batch size ranges from a few thousand to several thousand. DeepscaleR (Luo et al., 2025) also
shows a significant accuracy boost when training RL with longer sequences, as it tends to enhance
model performance by providing more steps for thorough reasoning. However, this shift towards
reinforcement learning has resulted in the generation process becoming a significant bottleneck in
reasoning model training, taking more than three times as long as the actor’s weight update (forward
+ backward) according to the time profiling done for DeepscaleR (Luo et al., 2025). This need for
efficient generation in RL presents a significant challenge for transformer models, namely due to the
heavy computational burden imposed by large key-value caches during generation, especially for
large batch sizes. Given their generation speed advantages, linear RNN models may be better suited
for scaling RL training.
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