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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities
across various applications, but their performance on long-context tasks is of-
ten limited by the computational complexity of attention mechanisms. This paper
introduces a novel approach to accelerate attention computation in LLMs, par-
ticularly for long-context scenarios. We leverage the inherent sparsity within at-
tention mechanisms, both in conventional Softmax attention and ReLU attention
(with ReLUα activation, α ∈ N+), to significantly reduce the running time com-
plexity. Our method employs a Half-Space Reporting (HSR) data structure to
rapidly identify non-zero or “massively activated” entries in the attention matrix.
We present theoretical analyses for two key scenarios: attention generation and
full attention computation with long input context. Our approach achieves a run-
ning time of O(mn4/5) significantly faster than the naive approach O(mn) for
attention generation, where n is the context length, m is the query length, and d
is the hidden dimension. We can also reduce the running time of full attention
computation from O(mn) to O(mn1−1/⌊d/2⌋+mn4/5). Importantly, our method
introduces no error for ReLU attention and only provably negligible error for Soft-
max attention, where the latter is supported by our empirical validation. This work
represents a significant step towards enabling efficient long-context processing in
LLMs, potentially broadening their applicability across various domains.

1 INTRODUCTION

Large Language Models (LLMs) have showcased remarkable capabilities across various applica-
tions, including context-aware question answering, content generation, summarization, and dialogue
systems, among others (Thoppilan et al., 2022; Coenen et al., 2021; Wei et al., 2022; Zhang et al.,
2024b). Long-context tasks of LLMs have gained more and more attention. Several LLMs ex-
tend their context length to 128K tokens, such as Yarn (Peng et al., 2023), GPT-4 (OpenAI, 2023),
Claude 3.5 (Anthropic, 2024), Llama 3.1 (Meta, 2024), Phi-3.5 (Abdin et al., 2024), Mistral Nemo
(MistralAI, 2024), etc. A bottleneck for long-context tasks is the computational cost of the atten-
tion mechanism in LLMs. The key to LLM success is the transformer architecture (Vaswani et al.,
2017), wildly used in various practical scenarios (Radford et al., 2019; Kenton & Toutanova, 2019;
Wang et al., 2023b;a; 2024), whose critical component is the attention mechanism. Let n be the data
length, m be the length of query tokens, and d be the feature dimension1. The conventional attention
uses Softmax activation and is defined as follows:

Definition 1.1 (Softmax attention). Let Q ∈ Rm×d and K,V ∈ Rn×d denote the query, key, and
value matrix. The Softmax attention is:

Attns(Q,K, V ) := Softmax(QK⊤)V = D−1AsV ∈ Rm×d,

where (1) As := exp(QK⊤/
√
d) ∈ Rm×n and exp is applied element-wise , (2) D := diag(As ·

1n) ∈ Rm×m denotes the normalization matrix, (3) D−1As ∈ Rm×n denotes the attention matrix.

In practical LLM applications, there are two scenarios for attention computation depending on the
context length n and query length m. The first case, m = Θ(1), represents the iterative text gen-
eration based on the pre-computed Key Value Cache (KV), which stores the intermediate attention

1As d is always fixed in practice, there is no need to scale up d in analysis. Thus, in this work, we always
assume d is a small constant.
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key and value matrices. The second case, m = Θ(n), represents the full self-attention computation
before text generation or the cross-attention computation. However, in both cases, when the context
window n becomes larger, the running time will increase correspondingly, i.e., it will be linear and
quadratic in n for m = Θ(1) and m = Θ(n), respectively. Thus, reducing the running time of
attention computations with long context input becomes essential to minimize response latency and
increase throughput for LLM API calls.

In this work, we introduce novel methods to reduce the running time complexity for both cases, i.e.,
m = Θ(1) and m = Θ(n). Our approach is inspired by the inherent sparsity found within attention
mechanisms. Numerous prior studies have highlighted the significant sparsity in the attention matrix
(Child et al., 2019; Anagnostidis et al., 2023; Liu et al., 2023; Tang et al., 2024; Sun et al., 2024).
This manifestation of sparsity in Softmax attention is that a large number of attention scores, i.e.,
QK⊤, concentrate on a small number of entries, which is known as “massive activation”. Due to
this nature, Softmax attention can be accelerated by only calculating the entries that contain large
attention scores, introducing negligible approximation errors (Zhang et al., 2023; Li et al., 2024).

Moreover, when considering ReLU attention (with ReLUα activation, α ∈ N+), we can acceler-
ate the attention computation without any approximation error. ReLU attention is another attention
mechanism used in transformer architecture, substituting the conventional Softmax activation func-
tion with ReLU, which has demonstrated performance comparable to Softmax attention in various
downstream tasks (Wortsman et al., 2023; Hua et al., 2022); see Section 2 for more details. In the
following, we present the formal definition of ReLU attention.
Definition 1.2 (ReLU attention). Let Q ∈ Rm×d and K,V ∈ Rn×d denote the query, key, and
value matrix. Let α ∈ N+. The ReLU attention is:

Attnr(Q,K, V ) := D−1ArV ∈ Rm×d,

where (1) Ar := ReLUα(QK⊤/
√
d − b) ∈ Rm×n and ReLUα denotes the α-th power of ReLU

activation for any α ∈ N+, (2) D := diag(Ar · 1n) ∈ Rm×m denotes the normalization matrix, (3)
b ∈ R denotes position bias, (4) D−1Ar ∈ Rm×n denotes the attention matrix.
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Figure 1: The trending of the Softmax activation
(exp) and the ReLU activation with different pow-
ers. Here, we choose b = 1.5 as the threshold for
the ReLU activation.

To expedite the computation, the critical task is
to identify the large/non-zero entries for Soft-
max/ReLU attention, respectively. To do so,
we utilize the half-space reporting (HSR) data
structure, which is introduced in Agarwal et al.
(1992) to address the half-space range report-
ing problem. This is a fundamental problem
in computational geometry and can be formally
defined as follows:
Definition 1.3 (Half-space range reporting
(Agarwal et al., 1992; Song et al., 2021)).
Given a set S of n points in Rd with initializa-
tion, we have an operation QUERY(H): given
a half-space H ⊂ Rd, output all of the points
in S that contain in H , i.e., S ∩H .

In our framework, we define the half-space as
the region where the attention scores (the in-
ner products of key and query vectors) exceed
some threshold. We leverage this data structure
to expedite the identification of non-zero entries
within the ReLU attention matrix and large en-
tries in Softmax attention. Consequently, we can compute the ReLU attention only based on those
non-zero entries without any approximation error, and compute the Softmax attention based on en-
tries larger than threshold with negligible approximation errors, resulting in a substantial reduction
in computation time. When m = Θ(1), our methods can significantly accelerate ReLU and Softmax
attention computation time over the naive approach from O(mn) to O(mn4/5) with pre-processed
KV cache. When m = Θ(n), our online methods can also accelerate ReLU and Softmax attention
computation time over the naive approach from O(mn) to O(mn1−1/⌊d/2⌋ + mn4/5). In more
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details, when m = Θ(1) and for any d ∈ N+, our Algorithm 2 can achieve the fast generation
with pre-processed KV cache in O(mn4/5) (Theorem 4.1 and Theorem 4.2)). When m = Θ(n),
our Algorithm 3 can achieve the full attention computation in O(mn1−1/⌊d/2⌋ +mn4/5) including
HSR initialization time and query time (Theorem 5.1 and Theorem 5.2). Thus, our methods can im-
prove both the generation speed and full attention computation for long input context, i.e., n being
excessively large. Furthermore, our empirical results in Section 7 show that the approximation er-
ror associated with Softmax attention utilizing “massive activated” entries only is small in practice,
which is consistent with our theoretical analysis.

Our contributions:

• To the best of our knowledge, this is the first work incorporating the HSR data structure
with attention computation, to reduce the running time complexity with the help of the
sparsity within the attention mechanisms.

• Theoretically, we provide rigorous proofs for reducing the computational time (1) for ReLU
attention generation from O(mn) to O(mn4/5) (Algorithm 2 and Theorem 4.1); (2) for full
ReLU attention computation from O(mn) to O(mn1−1/⌊d/2⌋ +mn4/5) (Algorithm 3 and
Theorem 5.1), without incurring any approximation error in both cases.

• We achieve the same running time speed up for the conventional Softmax attention, and
we give rigorous theoretical proofs to ensure that the resulting approximation error remains
negligible (Theorem 4.2, 5.2 and Theorem 4.3).

• We conduct empirical experiments on prominent LLMs to verify the approximation error
associated with Softmax attention utilizing “massive activated” entries only. The results
show that the error using a few top entries is already insignificant, consistent with our
theoretical analysis.

Roadmap. Section 2 presents related work. In Section 3, we introduce essential concepts and key
definitions used this paper. In Section 4, we present our main results, i.e., guarantees on run time
reduction and approximation error. In Section 5, we introduce the extension of our method on full
attention computation. In Section 6, we provide a brief summary of the techniques used in our proof.
In Section 7, we provide our empirical results of evaluating three mainstream LLMs with Softmax
attention with top-r indices on different r. In Section 8, we discuss the potential of extending our
method to other activation functions. In Section 9, we concludes our algorithm and contributions.

2 RELATED WORK

Attention acceleration for long context input. Long context window is essential for transformer
based LLMs in many downstream tasks. However, due to the quadratic time complexity associated
with self-attention mechanisms, transformers are usually hard to inference efficiently. Numerous
methods have been proposed to enhance the inference efficiency. One approach involves using
alternative architectures as proxies for attention to support faster inference, such as Mamba (Gu &
Dao, 2023; Dao & Gu, 2024), PolySketchFormer (Kacham et al., 2023), and Linearizing Transform-
ers (Zhang et al., 2024a; Mercat et al., 2024). However, the broad applicability of these methods
across different applications and modalities remains to be fully validated. Another line of research
focuses on approximating attention matrix computation (Alman & Song, 2023; 2024a;b; Han et al.,
2024; Zandieh et al., 2024; Liang et al., 2024d; Poli et al., 2023; Cai et al., 2024; Liang et al.,
2024c;a; Gao et al., 2023; Dong et al., 2024; Liang et al., 2024b). Nevertheless, these methods
often rely on assumptions that may not be practical. For instance, some approaches use polyno-
mial methods to approximate the exponential function, which requires all entries to be bounded by
a small constant. However, our HSR-enhanced attention framework is designed based on practical
observation and validated by empirical support.

ReLU attention. ReLU attention is an innovative mechanism that employs the ReLU activation
function in place of the traditional Softmax function for attention computation. Previous studies
have highlighted the promise potential of ReLU attention in various domains. From empirical side,
Wortsman et al. (2023) has demonstrated that incorporating ReLU as the activation function in
vision transformers enhances performance on downstream tasks. Shen et al. (2023) has shown that
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transformers equipped with ReLU attention outperform those with Softmax attention, particularly
when dealing with large key-value memory in machine translation tasks. From theoretical side, the
scale-invariant property of ReLU attention (Li et al., 2022) facilitates the scalability of transformer
networks. Furthermore, Bai et al. (2023); Fu et al. (2023) have shown that the inherent properties
of ReLU attention contribute positively to the learning process of transformer models. Another
key advantage of ReLU attention is that the ReLU function effectively sets all negative values to
zero, allowing us to bypass these non-contributory elements during attention computation, thereby
reducing the running time of attention computation. Importantly, omitting these zero and negative
entries does not introduce any error into the final output of the ReLU attention mechanism.

Half-space reporting (HSR) data structure. The Half-Space Reporting (HSR) data structure, ini-
tially proposed by Agarwal et al. (1992), was developed to address the half-space range reporting
problem. The expedited range query capability inherent to HSR has been demonstrated to sig-
nificantly enhance computational efficiency across a variety of tasks, as evidenced by numerous
previous works in the literature. Studies such as Jiang et al. (2021) and Bhattacharya et al. (2023)
have applied HSR to facilitate solving general linear programming (LP) problems. Another line of
research has highlighted HSR’s potential in expediting the training process of contemporary neural
networks (Qin et al., 2023; Gao et al., 2022). There is also a collection of research that concentrates
on leveraging HSR for the advancement of solutions to geometric and graphical challenges (Chen
et al., 2005; Ju et al., 2013; Eppstein et al., 2017).

3 PRELIMINARY

In Section 3.1, we introduce notations used in the paper. In Section 3.2, we introduce a modified
version of Softmax attention that operates on a specific subset of indices. It defines the top-r nearest
neighbors Softmax attention, which focuses on the most relevant entries in the attention matrix. In
Section 3.3, we describe the massive activation property for attention mechanisms. In Section 3.4,
we present a data structure for efficiently solving the half-space range reporting problem.

3.1 NOTATIONS

Here, we introduce basic notations used in this paper. For any positive integer n, we use [n] to
denote set {1, 2, · · · , n}. We use Var[] to denote the variance. For two vectors x ∈ Rn and y ∈ Rn,
we use ⟨x, y⟩ to denote the inner product between x, y. We use 1n to denote a length-n vector where
all the entries are ones. We use Xi,j to denote the i-row, j-th column of X ∈ Rm×n. We use ∥A∥∞
to denote the ℓ∞ norm of a matrix A ∈ Rn×d, i.e. ∥A∥∞ := maxi∈[n],j∈[d] |Ai,j |.

3.2 SOFTMAX ATTENTION WITH INDEX SET

Recall that we have already provided the definition of ReLU attention in Definition 1.2. Here, we
present the key concepts of Softmax attention. For Softmax attention, since we only calculate the
“massive activated” entries to get our approximated results, we introduce the formal definition:
Definition 3.1 (Input with index set). Let K ∈ Rn×d and V ∈ Rn×d be defined in Definition 1.1.
Let R ⊆ [n] be an index set of size |R| = r ∈ [n]. Let R := [n]\R be the complementary set, where
|R| = n− r. We define

K̂ := KR ∈ Rr×d V̂ := VR ∈ Rr×d K := KR ∈ R(n−r)×d V := VR ∈ R(n−r)×d

as the submatrix of K and V , i.e., whose row index is in R or R, respectively.

In this work, we consider calculating the Softmax attention on the “massive activation” index set,
where we define the “massive activation” index set as the top-r indices. We introduce our definition
for top-r indices of Softmax attention as follows:
Definition 3.2 ( Top-r indices Softmax attention ). Let q ∈ Rd, K,V ∈ Rn×d be defined in Defini-
tion 1.1. Let NN(r, q,K) ⊆ [n] denote the indices of top-r entries of qK, where |NN(r, q,K)| = r.
Let K̂, V̂ ∈ Rr×d and K,V ∈ R(n−r)×d be defined in Definition 3.1. We define the top-r nearest
neighbors (NN) Softmax attention computation Âttns(q,K, V ) ∈ Rd as follows:

Âttns(q,K, V ) := Softmax(qK̂⊤)V̂ = α̂−1ûV̂ ∈ Rd

4
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where
û := exp(qK̂⊤) ∈ Rr and α̂ := ⟨û,1r⟩ ∈ R.

Furthermore, we define u := exp(qK
⊤
) ∈ Rn−r, α := ⟨u,1n−r⟩ ∈ R, and u := exp(qK⊤) ∈

Rn+1, α := ⟨u,1n+1⟩ ∈ R.

In Definition 3.2, we view the “massive activated” entries as the top-r entries. Therefore, we only
calculate the Softmax attention based on K̂, V̂ ∈ Rr×d, instead of K,V ∈ Rn×d.

3.3 MASSIVE ACTIVATION

Now, we introduce our observations on the properties of the attention scores (the inner products of
query vectors and key vectors). This further facilitates the error analysis of the top-r indices Softmax
attention. To begin with, we provide the definition of the massive activation property as follows:
Definition 3.3 (Massive activation property). Let γ ∈ [0, 1], β1 ≥ β2 ≥ 0. Let NN(r, q,K) ⊆ [n]
denote the indices of top-r entries of qK. We define (γ, β1, β2) massive activation for a query
q ∈ Rd and key cache K ∈ Rn×d, if the following conditions hold:

• The top-nγ entries are massive, i.e., 1
nγ ·∥q∥2

∑
i∈NN(nγ ,q,K)⟨q,Ki⟩ ≥ β1 log(n).

• The remaining terms are upper bounded, i.e, ∀i ∈ [n] \ NN(nγ , q,K), 1
∥q∥2
⟨q,Ki⟩ ≤ β2 log(n).

An intuitive understanding of Definition 3.3 is that, the summation of “massive activated” entries
dominates the summation of all entries, and the entries we ignored only contributes little to the final
summation. Therefore, it is reasonable for us to omit those non “massive activated” entries.
Remark 3.4. There are many distributions satisfying the property in Definition 3.3, such as (1)
K drawing from any subexponential distribution, e.g., multivariate Laplace distributions, (2) K
drawing from any mixture of Gaussian distribution with n1−γ Gaussian clusters.

3.4 HALF-SPACE REPORTING (HSR) DATA STRUCTURE

Algorithm 1 Half Space Report Data Structure

1: data structure HALFSPACEREPORT
2: INIT(S, n, d) ▷ Initialize the data structure with a set S of n points in Rd

3: QUERY(a, b) ▷ a, b ∈ Rd. Output the set {x ∈ S : sgn(⟨a, x⟩ − b) ≥ 0}
4: end data structure

We restate the result from Agarwal et al. (1992) for solving the half-space range reporting problem.
The interface of their algortihm can be summarized as in Algorithm 1. Intuitively, the data-structure
recursively partitions the set S and organizes the points in a tree data-structure. Then for a given
query (a, b), all k points of S with sgn(⟨a, x⟩ − b) ≥ 0 are reported quickly. Note that the query
(a, b) here defines the half-space H in Definition 1.3. We summarize the time complexity of HSR
data structure as follows:
Corollary 3.5 (HSR data-structure time complexity Agarwal et al. (1992), informal version of
Corollary A.7). Let Tinit denote the pre-processing time to build the data structure, Tquery denote
the time per query and Tupdate time per update. Given a set of n points in Rd, the half-space range
reporting problem can be solved with the following performances:

• Part 1. Tinit(n, d) = Od(n log n), Tquery(n, d, k) = O(dn1−1/⌊d/2⌋ + dk).

• Part 2. Tinit(n, d) = O(n⌊d/2⌋), Tquery(n, d, k) = O(d log(n) + dk).

4 MAIN RESULTS ON ATTENTION GENERATION

In this section, we present our key findings regarding attention generation, m = Θ(1), for both
ReLU and Softmax attention mechanisms. Across both scenarios, we have reduced the time com-
plexity from a naive O(mn) to O(mn4/5). Specifically, for the ReLU attention model, we have
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managed to accelerate the processing time without introducing any approximation errors. In the
case of Softmax attention, our technique results in only an insignificant approximation error.

Algorithm 2 Attention generation

1: data structure ATTENTIONGENERATION ▷ Lemma 6.2
2: members
3: HALFSPACEREPORT HSR ▷ Algorithm 1, Part 2 of Corollary 3.5
4: {Ki}i∈[n] ▷ Key matrix
5: V ∈ Rn×d ▷ Value matrix
6: b ∈ R ▷ Threshold of ReLU activation
7: end members
8: procedure INIT({Ki}i∈[n], V, n, d)
9: {Ki}i∈[n], V ← {Ki}i∈[n], V ▷ Store necessary matrices

10: b← σa ·
√
0.4 log n ▷ Init essential parameters and data structure. Lemma 6.1

11: HSR.INIT({Ki}i∈[n], n, d) ▷ It takes Tinit(n, d) time
12: end procedure
13: procedure INFERENCE(Q ∈ Rm×d,m)
14: A← 0m×n

15: for i = 1→ m do ▷ Loop for m query vectors
16: S̃i,fire ← HSR.QUERY(Qi, b) ▷ It takes Tquery(n, d, k̃i) time
17: for j ∈ S̃i,fire do ▷ Calculate the ReLU attention output according to S̃i,fire

18: Ai,j ← ReLUα(⟨Qi,Kj⟩/
√
d− b) or Ai,j ← Softmax(⟨Qi,Kj⟩/

√
d)

19: end for
20: end for
21: return D−1AV
22: end procedure
23: end data structure

We begin with introducing our result on ReLU attention generation as follows:
Theorem 4.1 (Running time of ReLU attention generation, informal version of Theorem C.2). Let
ReLU attention be defined as Definition 1.2. Assume each entry of K is from Gaussian N (0, σ2

k),
and each entry of Q is from Gaussian N (0, σ2

q ). Let δ ∈ (0, 1) denote the failure probability. Let
σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk. Let b = σa ·

√
0.4 log n. Suppose we have KV Cache

K,V ∈ Rn×d. We want to generate a m length answer, where n≫ m. Then, our inference function
in Algorithm 2, with probability at least 1− δ, takes O(mn4/5) time to generate the answer.

Theorem 4.1 shows that our Algorithm 2 accelerates the running time of ReLU attention generation
from naive O(mn) to O(mn4/5), which is a significant speed up when the KV Cache is large. The at
least 1− δ success probability originates from the sparsity analysis of ReLU attention (Lemma 6.1),
where with probability at least 1 − δ, we have the number of non-zero entries of each row of the
attention matrix is at most n4/5.

Then, we move on to presenting our result on Softmax attention generation. Our results consist two
parts: the improved running time of Softmax attention generation, and the error analysis of Softmax
attention with index set. Firstly, we introduce our result about the imporved running time of Softmax
attention generation as follows:
Theorem 4.2 (Running time of Softmax attention generation, informal version of Theorem E.1).
Let Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Definition 1.1. Let
NN(r, q,K) ⊆ [n] and the Softmax attention with index set Âttns be defined as Definition 3.2. We
choose the threshold b ∈ R in Algorithm 2 such that R = NN(n4/5, q,K). Then, we can show
that the Softmax attention with index set Âttns achieves outstanding running time under the Softmax
attention generation scenario: Suppose we have KV Cache K,V ∈ Rn×d. We want to generate a
m length answer, where n ≫ m. Our inference function in Algorithm 2 (replacing ReLU attention
with Softmax attention) takes O(mn4/5) time to generate the answer.

Theorem 4.2 demonstrates that if we choose the threshold b satisfying R = NN(n4/5, q,K), we can
achieve a significant running time improve of the Softmax attention generation.
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It is evident that this method introduces an approximation error due to the exclusion of certain
entries. Nevertheless, under mild assumptions about the distribution of the attention scores, we
demonstrate that this approximation error is indeed negligible. The proof’s intuitive explanation lies
in the fact that the majority of attention scores are focused on the small subset of entries that we
retain. We organize our result as follows:

Theorem 4.3 (Error analysis of Softmax attention with index set, informal version of Theorem F.2).
Let Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Definition 1.1. Let
q ∈ Rd denote a single row of Q ∈ Rm×d. Let γ ∈ [0, 1], β1 ≥ β2 ≥ 0. Let the index set R and the
Softmax attention with index set Âttns be defined as Definition 3.2. Let NN(r, q,K) ⊆ [n] denote
the indices of top-r entries of qK. Let R = NN(nγ , q,K) ⊆ [n], where |R| = nγ . Assume the query
q and key cache K have (γ, β1, β2) massive activation property (Definition 3.3). Then, we have

∥Âttns(q,K, V )− Attns(q,K, V )∥∞ ≤
2∥V ∥∞

nγ+(β1−β2)·∥q∥2−1
.

Theorem 4.3 presents the error of Softmax attention with index set is relatively small. Consequently,
omitting the remaining less significant entries is a justifiable compromise.

Remark 4.4. With mild assumptions on V , we can have more precious results from Theorem 4.3.
For example, if the entries in V conform to subgaussian distribution with constant variance, we have
∥V ∥∞ = O(log(n)) with high probability.

5 EXTENSION ON FULL ATTENTION COMPUTATION

In this section, we extend our results to full attention computation scenario, where the number of
queries and keys is proportional, i.e., m = Θ(n). Essentially, the full attention computation is
beneficial in practical applications, particularly within the context of cross-attention computations.
For ReLU attention, we leverage Part 1 result of Corollary 3.5 to accelerate the identification of
non-zero entries (activated entries). We introduce our result on ReLU attention as follows:

Algorithm 3 Full attention computation

1: data structure FULLATTENTIONCOMPUTATION ▷ Lemma 6.3
2: members
3: HALFSPACEREPORT HSR ▷ Algorithm 1, Part 1 of Corollary 3.5
4: end members
5:
6: procedure INFERENCE({Ki}i∈[n], {Qr}r∈[m], V, n,m, d)
7: b← σa ·

√
0.4 log n. ▷ Threshold of ReLU activation (Lemma 6.1)

8: HSR.INIT({Ki}i∈[n], n, d) ▷ It takes Tinit(n, d) time
9: A← 0m×n

10: for i = 1→ m do ▷ Loop for m query vectors
11: S̃i,fire ← HSR.QUERY(Qi, b) ▷ It takes Tquery(n, d, k̃i) time.
12: for j ∈ S̃i,fire do ▷ Calculate the ReLU attention output according to S̃i,fire

13: Ai,j ← ReLUα(⟨Qi,Kj⟩/
√
d− b) or Ai,j ← Softmax(⟨Qi,Kj⟩/

√
d)

14: end for
15: end for
16: return D−1AV
17: end procedure
18: end data structure

Theorem 5.1 (Running time of full ReLU attention computation, informal version of Theorem B.2).
Let ReLU attention be defined as Definition 1.2. Assume each entry of K is from GaussianN (0, σ2

k),
and each entry of Q is from Gaussian N (0, σ2

q ). Let δ ∈ (0, 1) denote the failure probability. Let
σa = 4 · (1+d−1 log(m/δ))1/2 ·σqσk. Let b = σa ·

√
0.4 log n. Suppose we have Q,K, V ∈ Rn×d.

There exist an algorithm (Algorithm 3), with probability at least 1−δ, takes O(n2−1/⌊d/2⌋+n1+4/5)
time to compute the full ReLU attention of Q,K, V .
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In Theorem 5.1, we improve the running time of full ReLU attention computation from O(n2) to
O(n2−1/⌊d/2⌋ + n1+4/5), which is a notable uplift of the running time when n is extremely large.

Then, we present our result on Softmax attention. Intuitively, we use the Part 1 result of Corollary 3.5
to identify those “massive activated” entries (top-r indices) within the attention matrix of Softmax
attention, and calculate the Softmax attention with top-r indices. We organize our result as follows:

Theorem 5.2 (Running time of Softmax full attention computation, informal version of Theo-
rem E.2). Let Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Defi-
nition 1.1. Let NN(r, q,K) ⊆ [n] and the Softmax attention with index set Âttns be defined as
Definition 3.2. We choose the threshold b ∈ R in Algorithm 3 such that R = NN(n4/5, q,K).
Then, we have the Softmax attention with index set Âttns achieves outstanding running time under
full Softmax attention computation scenario: Suppose we have m = Θ(n). Algorithm 3 (replac-
ing ReLU attention with Softmax attention) takes O(n2−1/⌊d/2⌋ + n1+4/5) time to compute the full
ReLU attention of Q,K, V .

Theorem 5.2 demonstrates our O(n2−1/⌊d/2⌋ + n1+4/5) running time on Softmax full attention
computation, which improves from naive running time O(n2).

6 TECHNICAL OVERVIEW

In Section 6.1, we introduce our analysis about the sparsity in the ReLU attention mechanism. In
Section 6.2, we present our results of two general attention frameworks. In Section 6.3, we provide
our error analysis of Softmax attention with index set. We have shown that with mild assumption on
the distribution of attention scores, the error of Softmax attention with index set is negligible.

6.1 SPARSITY ANALYSIS OF RELU ATTENTION

Intuitively, the ReLU activation will deactivate some key and query pairs. We introduce the results
of employing the concentration inequality to quantitatively analyze the number of non-zero entries.

Lemma 6.1 (Sparsity analysis, informal version of Lemma D.3). Let the ReLU attention be defined
as Definition 1.2. Let Q ∈ Rm×d and K,V ∈ Rn×d be defined as Definition 1.2. Let b ∈ R denote
the threshold of ReLU activation, as defined in Definition 1.2. For i ∈ [m], let k̃i denote the number
of non-zero entries in i-th row of A ∈ Rm×n. Assume each entry of K is from Gaussian N (0, σ2

k),
and each entry of Q is from Gaussian N (0, σ2

q ). Let δ ∈ (0, 1) denote the failure probability. Let
σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk. Let b = σa ·

√
0.4 log n. Then, we have, with probability at

least 1− δ, for all i ∈ [m], the number of non-zero entries of the i-th row k̃i is at most 2n4/5.

In Lemma 6.1, we use k̃i to denote the number of non-zero entries in i-th row of attention matrix
Ar ∈ Rm×n. It indicates that if we choose b = σa

√
0.4 log n, with high probability, the number of

activated (non-zero) entries can be bounded by O(n4/5).

6.2 GENERAL ATTENTION FRAMEWORKS

First, we introduce our general framework for attention generation computation. Here, we use the
Part 1 result of the HSR data structure. As for this framework is designed for the attention generation
task, the key matrix K is fixed in each inference. Therefore, in the INIT procedure, we initialize the
HSR data structure with the key matrix K. Then, in each inference, we use the same HSR data
structure to answer the query from each row of the query matrix Q. We provide the result of this
general attention generation framework as follows.

Lemma 6.2 (General attention generation framework, informal version of Lemma C.1). Let Q ∈
Rm×d and K,V ∈ Rn×d be defined as Definition 1.2. Assume each entry of K is from Gaussian
N (0, σ2

k), and each entry of Q is from Gaussian N (0, σ2
q ). Let δ ∈ (0, 1) denote the failure proba-

bility. Let σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk. Let b = σa ·
√
0.4 log n. Let HSR data structure

be defined as Part 2 in Corollary 3.5. There exists an algorithm (Algorithm 2), with at least 1 − δ
probability, has the following performance:
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• Part 1. The INIT procedure runs in O(n⌊d/2⌋) time.

• Part 2. For each query, the INFERENCE procedure runs in O(mn4/5) time.

The general framework for full attention computation is quite different from the previous one.
Namely, we choose the Part 2 result of the HSR data structure. Since in each inference, both the
query matrix Q and the key matrix K differ from any other inference, we first initialize the HSR
data structure with the key matrix K. Then for each row of the query matrix Q, we query the HSR
data structure to find the activated entries.

Lemma 6.3 (General full attention computation framework, informal version of Lemma B.1). Let
Q ∈ Rm×d and K,V ∈ Rn×d be defined as Definition 1.2. Assume each entry of K is from
Gaussian N (0, σ2

k), and each entry of Q is from Gaussian N (0, σ2
q ). Let δ ∈ (0, 1) denote the

failure probability. Let σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk. Let b = σa ·
√
0.4 log n. Let HSR

data structure be defined as Part 1 in Corollary 3.5. There exists an algorithm (Algorithm 3), with
at least 1− δ probability, computes full attention of Q,K, V in O(mn1−1/⌊d/2⌋ +mn4/5) time.

6.3 ERROR ANALYSIS OF SOFTMAX ATTENTION WITH TOP-r INDICES

Calculating the Softmax attention on the “massive actavted” index set will introduce approximation
error. In the following Lemma, we analyze the quantity of this approximation error. Here, we use
α to denote the summation of all entries activated by exp(x) function, and we use α to denote the
summation of those entries which are excluded from “massive activated” index set. We provide the
general error bound of Softmax attention with index set as follows.

Lemma 6.4 (General error analysis of Softmax attention with index set, informal version of
Lemma F.1). Let Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Def-
inition 1.1. Let q ∈ Rd denote a single row of Q ∈ Rm×d. Let α, α and Âttns be defined as
Definition 3.2. Then we have ∥Attns(q,K, V )− Âttns(q,K, V )∥∞ ≤ 2α

α · ∥V ∥∞.

Note that Lemma 6.4 only provides a general error analysis of Softmax attention with index set.
Under mild assumption on the distribution of attention scores, we show that this error is actually
very small. For more details, please refer to Theorem 4.3.

7 EXPERIMENTS

In this section, we present our empirical results of evaluating three mainstream LLMs with Softmax
attention with top-r indices on different r, showing that the results of the experiments are consistent
with our theoretical analysis.

Datasets. To estimate the approximation error of the Softmax attention with “massive ac-
tivation” entries, we conduct experiments on the PaulGrahamEssays datasets from LLMTest-
NeedleInAHaystack (Kamradt, 2024). Specifically, for each article in the dataset, we first input
215 = 32768 tokens to the LLMs, then generate 1024 tokens.

Metric. We evaluate the generation quality by the classical perplexity. Perplexity is defined as the
exponentiated average negative log-likelihood of a sequence. If we have a tokenized sequence X =

(x0, x1, · · · , xN ), then the perplexity of X is: Perplexity(X) = exp(− 1
N

∑N
i=1 log pθ(xi|x<i)),

where log pθ(xi|x<i) is the log-likelihood of the i-th token conditioned on the preceding tokens.
Intuitively, it can be thought of as an evaluation of the model’s ability to predict uniformly among
the set of specified tokens in a corpus. Importantly, the tokenization procedure has a direct impact
on a model’s perplexity which should be taken into consideration when comparing different models.

Models. To demonstrate the generalization of our approximation error bound, we conducted experi-
ments on three mainstream large models: LLaMA 3.1 8B Instruct2 (Meta, 2024), Mistral Nemo 12B
Instruct3 (MistralAI, 2024), and Phi 3.5 Mini 3.8B Instruct4 (Abdin et al., 2024).

2
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct

3
https://huggingface.co/mistralai/Mistral-Nemo-Base-2407

4
https://huggingface.co/microsoft/Phi-3.5-mini-instruct
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Results. The experiments are conducted on the setting discussed in previous paragraphs. We eval-
uated the performance of three mainstream LLMs using Softmax attention with top-r indices. In
particular, we chose r from the set {22, 24, 26, 28, 210, 212, 215}. As depicted in Figure 2, a sig-
nificant increase in the perplexity (drop in performance) of LLMs is observed only when r falls
below 24. This suggests that the “massive activated” tokens are predominantly found within the
top-24 entries. In comparison to the total of 215 entries, the “massive activated” entries constitute a
relatively minor fraction. The observed results align with our theoretical analysis, confirming that
the approximation error of the Softmax attention mechanism with top-r indices is insignificant for
larger values of r.

22 24 26 28 210212215

25

50

75

Pe
rp

le
xi

ty

LLaMA 3.1
LLaMA 3.1

22 24 26 28 210212215

Softmax attention with top-r indices
0

5000

Mistral Nemo
Mistral Nemo

22 24 26 28 210212215

25

50

Phi 3.5
Phi 3.5

Figure 2: We evaluated the perplexity of three mainstream language models : LLaMA 3.1 8B In-
struct, Mistral Nemo 12B, and Phi 3.5 Mini 3.8B Instruct, using Softmax attention with top-r indices
on the PaulGrahamEssays dataset. The results indicate a significant increase in perplexity only when
the number of selected entries, r, falls below 24. This observation aligns with our earlier findings
that the proportion of “massive activated” entries is minimal compared to the total number of en-
tries. Furthermore, the approximation error introduced by using top-r indices in Softmax attention
remains negligible unless r becomes excessively small.

8 DISCUSSION AND FUTURE WORK

The sparsity within neural networks arises primarily from the incorporation of non-linear activation
functions. These non-linear functions determine the mechanism or circuit of the neural networks,
e.g., the induction head in transformers (Olsson et al., 2022). Gaining insight into these non-linear
layers not only enhances our understanding of how neural networks work but also paves the way for
optimizing training and inference. We hope our analysis may inspire efficient neural network archi-
tecture design. This work represents the initial point of this envisioned blueprint. We concentrate on
analyzing the combinations of LLMs and fundamental non-linear activation functions—ReLU and
Softmax, which are most relevant to contemporary applications. By analyzing these functions, we
aim to demonstrate to the research community that a thorough examination of a model’s non-linear
characteristics can significantly enhance the running time complexity of neural networks.

In real-world scenarios, a multitude of non-linear activation functions exist beyond ReLU and Soft-
max, such as those designated as SELU(x) = scale · (max(0, x) + min(0, α · (exp(x) − 1)))
(Klambauer et al., 2017), CELU(x) = max(0, x)+min(0, α · (exp(x/α)− 1)) (Barron, 2017), and
PRELU(x) = max(0, x)+weight·min(0, x) (He et al., 2015). However, analyzing these alternative
functions poses multiple challenges. Hence, we will explore these additional functions in the future.

9 CONCLUSION

This work investigates the exploitation of the intrinsic sparsity present in both ReLU and Softmax
attention mechanisms to decrease the computational complexity of full attention computation and
attention generation scenarios. Specifically, we employ the Half-Space Reporting (HSR) data struc-
ture to accelerate the process of identifying non-zero or “massive activated” entries within ReLU
and Softmax attentions, respectively. Importantly, our approach does not import any errors to ReLU
attention, and it results in only a negligible approximation error for Softmax attention.
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Appendix
Roadmap. In Section A, we introduce more fundamental lemmas and facts. In Section B, we ex-
tend the analysis to ReLU attention calculation, demonstrating improved performance over standard
attention computation under specific conditions. In Section C, we first introduce and analyze the
time complexity of ReLU attention generation using half-space reporting (HSR) data structures. In
Section D, we analyze the sparsity of ReLU attention matrices. In Section E, we introduce our re-
sults on reducing the running time of Softmax attention. In Section F, we analyze error bounds for
Softmax attention with index sets, balancing efficiency and accuracy.

A PRELIMINARY

In this section, we display more fundamental concepts. In Section A.1, we introduce several impor-
tant probability properties and bounds. In Section A.2, we detail the time complexity and perfor-
mance of half-space reporting (HSR) data structures.

A.1 PROBABILITY TOOLS

We state several fundamental properties and bounds for some common distributions.
Fact A.1 (Weighted summation of Gaussian). If the following conditions hold:

• Let x ∈ Rd be a fixed vector and y ∈ Rd be a random vector.

• For i ∈ [d], let xi denote the i-th entry of x.

• Suppose for i ∈ [d], yi ∼ N (0, σ2).

Then the inner product of x and y, ⟨x, y⟩ conforms Gaussian distribution N (0, ∥x∥22σ2). Namely,
we have ⟨x, y⟩ ∼ N (0, ∥x∥22σ2).
Fact A.2 (Independence between ⟨x, yi⟩ and ⟨x, yj⟩). If the following conditions hold:

• Let x ∈ Rd be a fixed vector.

• Let y1, y2, · · · yn ∈ Rd be n random vectors.

• For any i, j ∈ [n], i ̸= j, yi and yj are independent.

Then, for any i, j ∈ [n], i ̸= j, ⟨x, yi⟩ and ⟨x, yj⟩ are independent.

We provide tail bounds for chi-square and Gaussian distributed random variables:
Lemma A.3 (Chi-square tail bound, Lemma 1 in Laurent & Massart (2000) ). Let X ∼ X 2

k be a
chi-squared distributed random variable with k degrees of freedom. Each one has zero means and
σ2 variance.

Then, it holds that

Pr[X − kσ2 ≥ (2
√
kt+ 2t)σ2] ≤ exp (−t)

Pr[kσ2 −X ≥ 2
√
ktσ2] ≤ exp (−t)

Fact A.4 (Gaussian tail bound). Suppose we have a random variable x ∼ N (µ, σ).

Then, for t ∈ R, we have

Pr[x ≥ µ+ t] ≤ exp(− t2

2σ2
)

Proof. We can show

Pr[x ≥ µ+ t] = Pr[x− µ ≥ t]

= Pr[ex−µ ≥ et]

15
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= inf
λ≥0

Pr[eλ(x−µ) ≥ eλt]

≤ inf
λ≥0

E[eλ(x−µ)]

eλt
(1)

where the first step, the second step follows from basic algebra, the third step follows from that the
inequality holds for any λ > 0, and the fourth step follows from Markov’s inequality.

Then we consider the numerator and we use y = x− µ to simplify the calculation, we have

E[eλy] =
∫
R
eλy

e−y2/2σ2

√
2πσ

dy

=

∫
R

e−(y−λ/σ2)2· 1
2σ2 eλ

2σ2/2

√
2πσ

dy

= e
λ2σ2

2

∫
R

e−(y−λ/σ2)· 1
2σ2

√
2πσ

dy

= e
λ2σ2

2 (2)

where the first step follows from the definition of the moment generating function, the second and the
third steps follow from basic algebra, and the fourth step follows from the property of the probability
density function.

Then we have

Pr[x ≥ µ+ t] ≤ inf
λ≥0

exp(
λ2 − σ2

2
− λt)

≤ exp(− t2

2σ2
)

where the first step follows from Eq. (1) and Eq.(2), the second step follows from the calculation of
infimum.

The Bernstein’s inequality for bounding sums of independent random variables is:
Lemma A.5 (Bernstein inequality Bernstein (1924)). Assume Z1, · · · , Zn are n i.i.d. random vari-
ables. ∀i ∈ [n], E[Zi] = 0 and |Zi| ≤M almost surely. Let Z =

∑n
i=1 Zi. Then,

Pr [Z > t] ≤ exp

(
− t2/2∑n

j=1 E[Z2
j ] +Mt/3

)
,∀t > 0.

A.2 HALF-SPACE REPORTING (HSR) DATA STRUCTURES

The time complexity of the HSR data structure is:
Theorem A.6 (Agarwal, Eppstein and Matousek Agarwal et al. (1992)). Let d be a fixed constant.
Let t be a parameter between n and n⌊d/2⌋. There is a dynamic data structure for half-space
reporting that uses Od,ϵ(t

1+ϵ) space and pre-processing time, Od,ϵ(
n

t1/⌊d/2⌋
log n + k) time per

query where k is the output size and ϵ > 0 is any fixed constant, and Od,ϵ(t
1+ϵ/n) amortized update

time.

As a direct corollary, we have
Corollary A.7 (HSR data-structure time complexity Agarwal et al. (1992), formal version of Corol-
lary 3.5). Let Tinit denote the pre-processing time to build the data structure, Tquery denote the time
per query, and Tupdate time per update. Given a set of n points in Rd, the half-space range reporting
problem can be solved with the following performances:

• Part 1. Tinit(n, d) = Od(n log n), Tquery(n, d, k) = O(dn1−1/⌊d/2⌋ + dk).

• Part 2. Tinit(n, d) = O(n⌊d/2⌋), Tquery(n, d, k) = O(d log(n) + dk).
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B FULL RELU ATTENTION COMPUTATION

In this section, we focus on optimizing the standard ReLU attention calculation. By leveraging a
HSR data structure and assuming sparsity, the time complexity can be reduced to O(n1+4/5d).
Lemma B.1 (General full attention computation framework, formal version of Lemma 6.3). If the
following conditions hold:

• Let Q ∈ Rm×d and K,V ∈ Rn×d be defined as Definition 1.2.

• Assume each entry of K is from GaussianN (0, σ2
k), and each entry of Q is from Gaussian

N (0, σ2
q ).

• Let δ ∈ (0, 1) denote the failure probability.

• Let σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk.

• Let b = σa ·
√
0.4 log n.

• Let HSR data structure be defined as Part 1 in Corollary A.7.

There exists an algorithm (Algorithm 3), with at least 1 − δ probability, computes full attention of
Q,K, V in O(mn1−1/⌊d/2⌋ +mn4/5) time.

Proof. For i ∈ [m], let k̃i := |S̃i,fire| denote the number of non-zero entries in i-th row of A ∈
Rm×n.

The running time for INFERENCE procedure can be written as

Tinit(n, d) +
m∑
i=1

Tquery(n, d, k̃i) +O(d

m∑
i=1

k̃i) +O(d

m∑
i=1

k̃i)

The first term Tinit(n, d) corresponds to the initialization of the HSR data structure. Since we use
Part 1 result from Corollary A.7, the running time for initialization is Tinit(m, d) = Od(m logm).

The second term
∑m

i=1 Tquery(n, d, k̃i) comes from the HSR query operation (Line 11). Since we
use Part 1 result from Corollary A.7, we have

m∑
i=1

Tquery(n, d, k̃i) = O(mn1−1/⌊d/2⌋d+ d

m∑
i=1

k̃i)

= O(mn1−1/⌊d/2⌋d+mn4/5d)

where the first step follows from Tquery(n, d, k̃i) = O(dn1−⌊d/2⌋ + dk̃i) (Part 1 of Corollary A.7),
the second step follows from with high probability k̃i at most n4/5 (Lemma D.3).

The third term O(
∑m

i=1 k̃i) corresponds to calculating Aj,i (Line 13). By Lemma D.3, we have the
third term is O(mn4/5).

The fourth term O(
∑m

i=1 k̃i) corresponds to calculating D−1AV . Since for i-th row of A, there are
k̃i non-zero entries. Therefore, it takes O(

∑m
i=1 k̃i) time for calculating D−1A. Therefore, it takes

O(d
∑m

i=1 k̃i) time to calculate D−1AV . By Lemma D.3, with high probability, k̃i is at most n4/5.
Therefore, we have the third term as O(mn4/5d).

To sum up, the overall running time is O(mn1−1/⌊d/2⌋d+mn4/5d).

We can now derive a more specific result for the full ReLU attention computation:
Theorem B.2 (Running time of full ReLU attention computation, formal version of Lemma 5.1). If
the following conditions hold:

• Let ReLU attention be defined as Definition 1.2.
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• Assume each entry of K is from GaussianN (0, σ2
k), and each entry of Q is from Gaussian

N (0, σ2
q ).

• Let δ ∈ (0, 1) denote the failure probability.

• Let σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk.

• Let b = σa ·
√
0.4 log n.

• Suppose we have Q,K, V ∈ Rn×d.

There exists an algorithm (Algorithm 3), with probability at least 1 − δ, takes O(n2−1/⌊d/2⌋d +
n1+4/5d) time to compute the full ReLU attention of Q,K, V .

Proof. By Lemma B.1, we have that the FULLATTENTIONCOMPUTATION data structure (Algo-
rithm 3) can run INFERENCE to calculate the ReLU attention, in O(m1−⌊d/2⌋nd+mn4/5d) time.

By our assumption, we have Q ∈ Rn×d. For each calculation, we only need to call FULLATTEN-
TIONCOMPUTATION.INFERENCE(K,Q, V, n, n, d) for once.

Then, we have the ReLU attention calculation run in O(n1+4/5d) time.

C RELU ATTENTION GENERATION

In this section, we present a theoretical analysis of the time complexity of ReLU attention generation
using a HSR data structure.
Lemma C.1 (General attention generation framework, formal version of Lemma 6.2). If the follow-
ing conditions hold:

• Let Q ∈ Rm×d and K,V ∈ Rn×d be defined as Definition 1.2.

• Assume each entry of K is from GaussianN (0, σ2
k), and each entry of Q is from Gaussian

N (0, σ2
q ).

• Let δ ∈ (0, 1) denote the failure probability.

• Let σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk.

• Let b = σa ·
√
0.4 log n.

• Let HSR data structure be defined as Part 2 in Corollary A.7.

Then, there exists an algorithm (Algorithm 2), with at least 1 − δ probability, has the following
performance:

• Part 1. The INIT procedure runs in O(n⌊d/2⌋) time.

• Part 2. For each query, the INFERENCE procedure runs in O(mn4/5d) time.

Proof. Proof of Part 1.

The INIT procedure only runs the initialization of the HSR data structure. Since we use Part 2 result
from Corollary A.7, the running time of INIT procedure is Tinit(n, d) = O(n⌊d/2⌋).

Proof of Part 2.

For i ∈ [m], let k̃i := |S̃i,fire| denote the number of non-zero entries in i-th row of A ∈ Rm×n.

The running time for INFERENCE procedure can be written as
m∑
i=1

Tquery(n, d, k̃i) +O(d

m∑
i=1

k̃i) +O(d

m∑
i=1

k̃i)
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The first term
∑m

i=1 Tquery(n, d, k̃i) corresponds to the HSR query operation (Line 16). Since we
use the Part 2 result from Corollary A.7, we have

m∑
i=1

Tquery(n, d, k̃i) = O(md log n+ d

m∑
i=1

k̃i)

= O(md log n+mn4/5d)

= O(mn4/5d)

where the first step follows from Tquery(n, d, k) = O(d log n + dk) in Part 2 of Corollary A.7,
the second step follows from with high probability, k̃i is at most n4/5 (Lemma D.3), the third step
follows from log n < n4/5.

The second term O(d
∑m

i=1 k̃i) corresponds to calculating Ai,j (Line 18). There are m iterations,
and in each iteration, it calculates k̃i entries of A. Then, the second term is O(d

∑m
i=1 k̃i). By

Lemma D.3, with high probability, k̃i is at most n4/5. Therefore, we have the second term as
O(mn4/5d).

Similar to the proof of Lemma B.1 this term is O(mn4/5d).

To sum up, we have the overall running time for INFERENCE procedure is O(mn4/5d).

We now derive a comprehensive sparsity analysis for the ReLU attention mechanism:
Theorem C.2 (Running time of full ReLU attention generation, formal version of Theorem 4.1). If
the following conditions hold:

• Let ReLU attention be defined as Definition 1.2.

• Assume each entry of K is from GaussianN (0, σ2
k), and each entry of Q is from Gaussian

N (0, σ2
q ).

• Let δ ∈ (0, 1) denote the failure probability.

• Let σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk.

• Let b = σa ·
√
0.4 log n.

• Suppose we have KV Cache K,V ∈ Rn×d. We want to generate a m length answer, where
n≫ m.

There exists an algorithm (Algorithm 2), with at least 1 − δ probability, takes O(mn4/5d) time to
generate the answer.

Proof. We make use of the ATTENTIONGENERATION data structure (Algorithm 2) in Lemma C.1.

The generation process is an auto-regressive procedure, we define the following notations for better
understanding. For i ∈ [m], let qi, ki ∈ Rd denote the query vector of the i-th iteration, respectively.
Note that qi need to attend on both K ∈ Rn×d and {k1, k2, · · · , ki−1}.
For calculating the attention between qi and K ∈ Rn×d, we just need to call ATTENTIONGENERA-
TION .INFERENCE(qi, 1) for once. Therefore the running time for this part is O(n4/5d) time.

For calculating the attention between qi and {k1, k2, · · · , ki−1, ki}, it takes O(i · d) time.

Therefore, for a single query qi, the running time for getting the attention matrix A ∈ R1×(n+i) is
(n4/5 + i) · d. Since there are only n4/5 + i non-zero entries in A, it takes n4/5 + i time to calculate
D−1A. Then, it takes (n4/5 + i) · d time to calculate D−1AV . Since i ≤ m, the total running time
for calculating attention for a single query qi is O((n4/5 +m) · d).

There are m queries in total. The running time for m queries is O(mn4/5d+m2d).

Since we have n≫ m, the overall running time for the generation is O(mn4/5d).
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D SPARSITY ANALYSIS

To begin our analysis, we first examine the application of Bernstein’s inequality to the matrix K:
Lemma D.1 (Bernstein on K). If the following conditions hold:

• Let the ReLU attention be defined as Definition 1.2.

• Let Q ∈ Rm×d and K,V ∈ Rn×d be defined as Definition 1.2.

• Let b ∈ R denote the threshold of ReLU activation, as defined in Definition 1.2.

• For i ∈ [m], let k̃i denote the number of non-zero entries in i-th row of A ∈ Rm×n.

• Assume each entry of K is from Gaussian N (0, σ2
k)

• Let x ∈ Rd denote a single row of Q ∈ Rm×d.

• Let σa = ∥x∥2σk/
√
d.

Then, we can show that, with probability at least 1 − exp(−Ω(n · exp(− b2

2σ2
a
))), the number of

non-zero entries k̃i is at most 2n · exp(− b2

2σ2
a
). Namely, we have

Pr[k̃i ≤ 2n · exp(− b2

2σ2
a

)] ≥ 1− exp(−Ω(n · exp(− b2

2σ2
a

)))

Proof. For simplicity, for i ∈ [n], j ∈ [d], we use Ki,j ∈ R to denote the (i, j)-th entry of K ∈
Rn×d.

Let ri ∈ {0, 1} be the indicator function of ⟨x,Ki,∗⟩. Then, we have k̃i =
∑n

j=1 rj .

Since ri is an indicator function, then we have

|ri| ≤ 1.

By assumption, we have Ki,j ∼ N (0, σ2
k).

Let σa = ∥x∥2 · σk/
√
d.

By the property of Gaussian distribution (Fact A.1), we have ⟨x,Ki,∗⟩ ∼ N (0, d · σ2
a) and

⟨x,Ki,∗⟩/
√
d ∼ N (0, σ2

a).

For any i, j ∈ [n], by Fact A.2, we have ⟨x,Ki,∗⟩ and ⟨x,Kj,∗⟩ are independent, which implies ri
and rj are independent.

By the tail bound of Gaussian distribution (Fact A.4), we have

Pr[ri = 1] = Pr[⟨x,Ki,∗⟩/
√
d ≥ b]

≤ exp(− b2

2σ2
a

),

which implies

E[ri] ≤ exp(− b2

2σ2
a

), (3)

and

E[r2i ] ≤ exp(− b2

2σ2
a

),

which implies
n∑

i=1

E[r2i ] ≤ n · exp(− b2

2σ2
a

).
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Since we have k̃i =
∑n

j=1 rj , by Eq. (3), we have

E[k̃i] ≤ n · exp(− b2

2σ2
a

).

Let k0 := n · exp(− b2

2σ2
a
). By the Bernstein inequality (Lemma A.5), we have

Pr[k̃i ≥ k0 + t] ≤ exp(− t2/2

k0 + t/3
) (4)

We choose t = k0, then we have

Pr[k̃i ≥ 2k0] ≤ exp(−3k0/8)

Then, we reach our conclusion: with probability at least 1− exp(−Ω(n · exp(− b2

2σ2
a
))), the number

of non-zero entries in each row of the attention matrix A is bounded by k̃i ≤ 2n · exp(− b2

2σ2
a
).

We turn our attention to bounding ∥x∥2:
Lemma D.2 (∥x∥2 bound). If the following conditions hold:

• Let Q ∈ Rm×d be defined as Definition 1.2.

• Let x ∈ Rd denote a single row of Q ∈ Rm×d.

• Assume each entry of Q is from N (0, σ2
q ).

Then, we can show that, for t ≥ 0 with probability 1− exp(−t), ∥x∥2 is at most
√
3 · (d+ t)1/2 ·σq .

Namely, we have

Pr[∥x∥2 ≤
√
3 · (d+ t)1/2 · σq] ≥ 1− exp(−t).

Proof. For simplicity, we use xi ∈ R to denote the i-th entry of x.

By the assumption, we have xi ∼ N (0, σ2
q ).

Since ∥x∥22 =
∑d

i=1 x
2
i , by Chi-square tail bound (Lemma A.3), we have

Pr[∥x∥22 − dσ2
q ≥ (2

√
dt+ 2t)σ2

q ] ≤ exp(−t),

which implies

Pr[∥x∥22 ≥ (2
√
dt+ 2t+ d)σ2

q ] ≤ exp(−t). (5)

Since we have 2
√
dt ≤ d+ t, Eq. (5) implies

Pr[∥x∥22 ≥ 3(d+ t)σ2
q ] ≤ exp(−t),

which is equivalent to

Pr[∥x∥2 ≥
√
3 · (d+ t)1/2 · σq] ≤ exp(−t).

We can now present our formal sparsity analysis, which builds upon the previous lemmas:
Lemma D.3 (Sparsity analysis, formal version of Lemma 6.1). If the following conditions hold:

• Let the ReLU attention be defined as Definition 1.2.
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• Let Q ∈ Rm×d and K,V ∈ Rn×d be defined as Definition 1.2.

• Let b ∈ R denote the threshold of ReLU activation, as defined in Definition 1.2.

• For i ∈ [m], let k̃i denote the number of non-zero entries in i-th row of A ∈ Rm×n.

• Assume each entry of K is from GaussianN (0, σ2
k), and each entry of K is from Gaussian

N (0, σ2
q ).

• Let δ ∈ (0, 1) denote the failure probability.

• Let σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk.

• Let b = σa ·
√
0.4 log n.

Then, we can show that, with probability at least 1 − δ, for all i ∈ [m], the number of non-zero
entries of the i-th row k̃i is at most 2n4/5.

Proof. This proof follows from applying union bound on Lemma D.1 and Lemma D.2.

By Lemma D.2, we have

Pr[∥x∥2 ≤
√
3 · (d+ t)1/2 · σq] ≥ 1− exp(−t). (6)

We choose t = d+ log(m/δ). Then, Eq. (6) implies

Pr[∥x∥2 ≤ 4 · (d+ log(m/δ))1/2 · σq] ≥ 1− exp(−(d+ log(m/δ))). (7)

Let σa = ∥x∥2 · σk/
√
d. By Eq.(7), we have σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk.

By Lemma D.1, we have

Pr[k̃i ≤ 2n · exp(− b2

2σ2
a

)] ≥ 1− exp(−Ω(n · exp(− b2

2σ2
a

))). (8)

Let b = σa ·
√
0.4 log n. Then, Eq. (8) implies

Pr[k̃i ≤ 2n4/5] ≥ 1− exp(−O(n4/5)) (9)

Since we have n≫ d, this implies

exp(−O(n4/5)) ≤ exp(−d) (10)

Taking union bound over Eq. (7) and Eq. (9), we have

Pr[k̃i ≤ 2n4/5] ≥ 1− (exp(−O(n4/5) + exp(−(d+ log(m/δ))))

= 1− (exp(−O(n4/5) + (δ/m) · exp(−d)))
≥ 1− δ/m. (11)

where the first step follows from the union bound, the second step follows from basic algebra, the
third step follows from Eq. (10).

Since x ∈ R represents a single row of Q ∈ Rm×d, we already proved that for each fixed row of A,
the k̃i is at most 2n4/5 with probability 1− δ/m.

Taking the union bound over m rows in A, then we can show that with probability 1−δ, for all rows
of A, that row’s k̃i is at most 2n4/5.
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E RUNNING TIME OF SOFTMAX ATTENTION

In this section, we provide our results on reducing the running time of Softmax attention. We begin
with introducing our result on Softmax attention generation.

Theorem E.1 (Running time of Softmax attention generation, formal version of Theorem 4.2). Let
Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Definition 1.1. Let
NN(r, q,K) ⊆ [n] and the Softmax attention with index set Âttns be defined as Definition 3.2. We
choose the threshold b ∈ R in Algorithm 2 such that R = NN(n4/5, q,K). Then, we can show
that the Softmax attention with index set Âttns achieves outstanding running time under the Softmax
attention generation scenario: Suppose we have KV Cache K,V ∈ Rn×d. We want to generate a
m length answer, where m = Θ(1). Algorithm 2 (replacing ReLU attention with Softmax attention)
takes O(mn4/5) time to generate the answer.

Proof. The Softmax attention generation scenario can be proved by substituting the ReLU attention
Attnr (Definition 1.2) with Softmax attention with index set Âttns (Definition 3.2) in Algorithm 2
and Theorem 4.1.

Then, we move on to our result on Softmax full attention computation.

Theorem E.2 (Running time of Softmax full attention computation, formal version of Theorem 5.2).
Let Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Definition 1.1. Let
NN(r, q,K) ⊆ [n] and the Softmax attention with index set Âttns be defined as Definition 3.2. We
choose the threshold b ∈ R in Algorithm 3 such that R = NN(n4/5, q,K). Then, we can show that
the Softmax attention with index set Âttns achieves outstanding running time under full Softmax at-
tention computation scenario: Suppose we have m = Θ(n). Algorithm 3 (replacing ReLU attention
with Softmax attention) takes O(n2−1/⌊d/2⌋d+ n1+4/5d) time to calculate the attention output.

Proof. The Softmax full attention computation scenario can be proved by substituting the ReLU
attention Attnr (Definition 1.2) with Softmax attention with index set Âttns (Definition 3.2) in
Algorithm 3 and Theorem 5.1.

F ERROR ANALYSIS OF SOFTMAX ATTENTION

In this section, we provide an error analysis of the Softmax attention mechanism, deriving error
bounds for the general case and a specific case with the massive activation property.

The following lemmas establish error bounds for Softmax attention when using index sets, formal-
izing the approximation error in attention computation.

Lemma F.1 ( General error analysis of Softmax attention with index set, formal version of
Lemma 6.4 ). If the following conditions hold:

• Let Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Definition 1.1.

• Let q ∈ Rd denote a single row of Q ∈ Rm×d.

• Let α, α and Âttns be defined as Definition 3.2.

Then we have

∥Attns(q,K, V )− Âttns(q,K, V )∥∞ ≤
2α

α
· ∥V ∥∞.

Proof. Recall that R = [n] \ R and K̂ = KR ∈ Rr×d and V̂ = VR ∈ Rr×d and K = KR ∈
R(n−r)×d and V = VR ∈ R(n−r)×d as defined in Definition 3.1. Also, we have û = exp(qK̂⊤) ∈
Rr and α̂ = ⟨û,1r⟩ ∈ R and u = exp(qK

⊤
) ∈ Rn−r and α = ⟨u,1n−r⟩ ∈ R as defined in

Definition 3.2.
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Then, we have

∥Attns(q,K, V )− Âttns(q,K, V )∥∞
= ∥(α̂+ α)−1(ûV̂ + uV )− α̂−1ûV̂ ∥∞
≤ ∥((α̂+ α)−1 − α̂−1)ûV̂ ∥∞ + ∥(α̂+ α)−1uV ∥∞
≤ |(α̂+ α)−1 − α̂−1| · ∥û∥1 · ∥V̂ ∥∞ + (α̂+ α)−1 · ∥u∥1 · ∥V ∥∞
= (α̂−1 − (α̂+ α)−1) · α̂ · ∥V̂ ∥∞ + (α̂+ α)−1 · α · ∥V ∥∞
≤ (α̂−1 − (α̂+ α)−1) · α̂ · ∥V ∥∞ + (α̂+ α)−1 · α · ∥V ∥∞
= 2(α̂+ α)−1 · α · ∥V ∥∞
= 2α−1 · α · ∥V ∥∞,

where the first step is by Definition 3.2, the second step is by triangle inequality, the third step is
by ∥uV ∥∞ ≤ ∥u∥1 · ∥V ∥∞ for any vector u and conformable matrix V , and the fourth step is by
definition of α̂ and α, i.e., α̂ = ⟨û,1r⟩ = ∥û∥1 (note that each entry of û is positive), the fifth step
is by max{∥V̂ ∥∞, ∥V ∥∞} = ∥V ∥∞, the sixth step in by simple calculation and the last step is by
α̂+ α = α.

Building on this, we now present a more specific error analysis incorporating the massive activation
property:

Theorem F.2 (Error analysis of Softmax attention with index set, formal version of Theorem 4.3).
If the following conditions hold:

• Let Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Definition 1.1.

• Let q ∈ Rd denote a single row of Q ∈ Rm×d.

• Let γ ∈ [0, 1], β1 ≥ β2 ≥ 0.

• Let the Softmax attention with index set Âttns be defined as Definition 3.2.

• Let NN(r, q,K) ⊆ [n] denote the indices of top-r entries of qK.

• Let R = NN(nγ , q,K) ⊆ [n], where |R| = nγ .

• Assume the query q and key cache K have (γ, β1, β2) massive activation property.

Then, we can show that

∥Âttns(q,K, V )− Attns(q,K, V )∥∞ ≤
2∥V ∥∞

nγ+(β1−β2)·∥q∥2−1
.

Proof. Let α, α, α̂ be defined in Definition 3.2. By Lemma F.1, we have

∥Attns(q,K, V )− Âttns(q,K, V )∥∞ ≤
2α

α
· ∥V ∥∞.

By Definition 3.3, we have

α̂ =
∑

i∈NN(nγ ,q,K)

exp(⟨q,Ki⟩)

≥
∑

i∈NN(nγ ,q,K)

exp(∥q∥2β1 log(n))

= nγ+β1·∥q∥2 ,

where the first step is by Definition of α̂, the second step is by Definition 3.3 and Jensen inequality,
and the last step is by simple calculation.
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We also have

α =
∑

i∈[n]\NN(nγ ,q,K)

exp(⟨q,Ki⟩)

≤
∑

i∈[n]\NN(nγ ,q,K)

exp(∥q∥2β2 log(n))

≤ n1+β2·∥q∥2 ,

where the first step is by Definition of α, the second step is by Definition 3.3, and the last step is by
simple calculation.

Finally, we finish the proof by the fact α̂+ α = α.
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