
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HSR-ENHANCED SPARSE ATTENTION ACCELERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities
across various applications, but their performance on long-context tasks is of-
ten limited by the computational complexity of attention mechanisms. This paper
introduces a novel approach to accelerate attention computation in LLMs, par-
ticularly for long-context scenarios. We leverage the inherent sparsity within at-
tention mechanisms, both in conventional Softmax attention and ReLU attention
(with ReLUα activation, α ∈ N+), to significantly reduce the running time com-
plexity. Our method employs a Half-Space Reporting (HSR) data structure to
rapidly identify non-zero or “massively activated” entries in the attention matrix.
We present theoretical analyses for two key scenarios: attention generation and
full attention computation with long input context. Our approach achieves a run-
ning time of O(mn4/5) significantly faster than the naive approach O(mn) for
attention generation, where n is the context length, m is the query length, and d
is the hidden dimension. We can also reduce the running time of full attention
computation from O(mn) to O(mn1−1/⌊d/2⌋+mn4/5). Importantly, our method
introduces no error for ReLU attention and only provably negligible error for Soft-
max attention, where the latter is supported by our empirical validation. This work
represents a significant step towards enabling efficient long-context processing in
LLMs, potentially broadening their applicability across various domains.

1 INTRODUCTION

Large Language Models (LLMs) have showcased remarkable capabilities across various applica-
tions, including context-aware question answering, content generation, summarization, and dialogue
systems, among others (Thoppilan et al., 2022; Coenen et al., 2021; Wei et al., 2022; Zhang et al.,
2024b). Long-context tasks of LLMs have gained more and more attention. Several LLMs ex-
tend their context length to 128K tokens, such as Yarn (Peng et al., 2023), GPT-4 (OpenAI, 2023),
Claude 3.5 (Anthropic, 2024), Llama 3.1 (Meta, 2024), Phi-3.5 (Abdin et al., 2024), Mistral Nemo
(MistralAI, 2024), etc. A bottleneck for long-context tasks is the computational cost of the atten-
tion mechanism in LLMs. The key to LLM success is the transformer architecture (Vaswani et al.,
2017), wildly used in various practical scenarios (Radford et al., 2019; Kenton & Toutanova, 2019;
Wang et al., 2023b;a; 2024), whose critical component is the attention mechanism. Let n be the data
length, m be the length of query tokens, and d be the feature dimension1. The conventional attention
uses Softmax activation and is defined as follows:

Definition 1.1 (Softmax attention). Let Q ∈ Rm×d and K,V ∈ Rn×d denote the query, key, and
value matrix. The Softmax attention is:

Attns(Q,K, V) := Softmax(QK⊤)V = D−1AsV ∈ Rm×d,

where (1) As := exp(QK⊤/
√
d) ∈ Rm×n and exp is applied element-wise , (2) D := diag(As ·

1n) ∈ Rm×m denotes the normalization matrix, (3) D−1As ∈ Rm×n denotes the attention matrix.

In practical LLM applications, there are two scenarios for attention computation depending on the
context length n and query length m. The first case, m = Θ(1), represents the iterative text gen-
eration based on the pre-computed Key Value Cache (KV), which stores the intermediate attention

1As d is always fixed in practice, there is no need to scale up d in analysis. Thus, in this work, we always
assume d is a small constant.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

key and value matrices. The second case, m = Θ(n), represents the full self-attention computation
before text generation or the cross-attention computation. However, in both cases, when the context
window n becomes larger, the running time will increase correspondingly, i.e., it will be linear and
quadratic in n for m = Θ(1) and m = Θ(n), respectively. Thus, reducing the running time of
attention computations with long context input becomes essential to minimize response latency and
increase throughput for LLM API calls.

In this work, we introduce novel methods to reduce the running time complexity for both cases, i.e.,
m = Θ(1) and m = Θ(n). Our approach is inspired by the inherent sparsity found within attention
mechanisms. Numerous prior studies have highlighted the significant sparsity in the attention matrix
(Child et al., 2019; Anagnostidis et al., 2023; Liu et al., 2023; Tang et al., 2024; Sun et al., 2024).
This manifestation of sparsity in Softmax attention is that a large number of attention scores, i.e.,
QK⊤, concentrate on a small number of entries, which is known as “massive activation”. Due to
this nature, Softmax attention can be accelerated by only calculating the entries that contain large
attention scores, introducing negligible approximation errors (Zhang et al., 2023; Li et al., 2024).

Moreover, when considering ReLU attention (with ReLUα activation, α ∈ N+), we can acceler-
ate the attention computation without any approximation error. ReLU attention is another attention
mechanism used in transformer architecture, substituting the conventional Softmax activation func-
tion with ReLU, which has demonstrated performance comparable to Softmax attention in various
downstream tasks (Wortsman et al., 2023; Hua et al., 2022); see Section 2 for more details. In the
following, we present the formal definition of ReLU attention.
Definition 1.2 (ReLU attention). Let Q ∈ Rm×d and K,V ∈ Rn×d denote the query, key, and
value matrix. Let α ∈ N+. The ReLU attention is:

Attnr(Q,K, V) := D−1ArV ∈ Rm×d,

where (1) Ar := ReLUα(QK⊤/
√
d − b) ∈ Rm×n and ReLUα denotes the α-th power of ReLU

activation for any α ∈ N+, (2) D := diag(Ar · 1n) ∈ Rm×m denotes the normalization matrix, (3)
b ∈ R denotes position bias, (4) D−1Ar ∈ Rm×n denotes the attention matrix.

1 0 1 2 3 4 5 6
x

0
100
200
300
400
500
600

y

exp(x) and RELU (x b)
ReLU(x b)
ReLU2(x b)
ReLU3(x b)
ReLU4(x b)
exp(x)

Figure 1: The trending of the Softmax activation
(exp) and the ReLU activation with different pow-
ers. Here, we choose b = 1.5 as the threshold for
the ReLU activation.

To expedite the computation, the critical task is
to identify the large/non-zero entries for Soft-
max/ReLU attention, respectively. To do so,
we utilize the half-space reporting (HSR) data
structure, which is introduced in Agarwal et al.
(1992) to address the half-space range report-
ing problem. This is a fundamental problem
in computational geometry and can be formally
defined as follows:
Definition 1.3 (Half-space range reporting
(Agarwal et al., 1992; Song et al., 2021)).
Given a set S of n points in Rd with initializa-
tion, we have an operation QUERY(H): given
a half-space H ⊂ Rd, output all of the points
in S that contain in H , i.e., S ∩H .

In our framework, we define the half-space as
the region where the attention scores (the in-
ner products of key and query vectors) exceed
some threshold. We leverage this data structure
to expedite the identification of non-zero entries
within the ReLU attention matrix and large en-
tries in Softmax attention. Consequently, we can compute the ReLU attention only based on those
non-zero entries without any approximation error, and compute the Softmax attention based on en-
tries larger than threshold with negligible approximation errors, resulting in a substantial reduction
in computation time. When m = Θ(1), our methods can significantly accelerate ReLU and Softmax
attention computation time over the naive approach from O(mn) to O(mn4/5) with pre-processed
KV cache. When m = Θ(n), our online methods can also accelerate ReLU and Softmax attention
computation time over the naive approach from O(mn) to O(mn1−1/⌊d/2⌋ + mn4/5). In more

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

details, when m = Θ(1) and for any d ∈ N+, our Algorithm 2 can achieve the fast generation
with pre-processed KV cache in O(mn4/5) (Theorem 4.1 and Theorem 4.2)). When m = Θ(n),
our Algorithm 3 can achieve the full attention computation in O(mn1−1/⌊d/2⌋ +mn4/5) including
HSR initialization time and query time (Theorem 5.1 and Theorem 5.2). Thus, our methods can im-
prove both the generation speed and full attention computation for long input context, i.e., n being
excessively large. Furthermore, our empirical results in Section 7 show that the approximation er-
ror associated with Softmax attention utilizing “massive activated” entries only is small in practice,
which is consistent with our theoretical analysis.

Our contributions:

• To the best of our knowledge, this is the first work incorporating the HSR data structure
with attention computation, to reduce the running time complexity with the help of the
sparsity within the attention mechanisms.

• Theoretically, we provide rigorous proofs for reducing the computational time (1) for ReLU
attention generation from O(mn) to O(mn4/5) (Algorithm 2 and Theorem 4.1); (2) for full
ReLU attention computation from O(mn) to O(mn1−1/⌊d/2⌋ +mn4/5) (Algorithm 3 and
Theorem 5.1), without incurring any approximation error in both cases.

• We achieve the same running time speed up for the conventional Softmax attention, and
we give rigorous theoretical proofs to ensure that the resulting approximation error remains
negligible (Theorem 4.2, 5.2 and Theorem 4.3).

• We conduct empirical experiments on prominent LLMs to verify the approximation error
associated with Softmax attention utilizing “massive activated” entries only. The results
show that the error using a few top entries is already insignificant, consistent with our
theoretical analysis.

Roadmap. Section 2 presents related work. In Section 3, we introduce essential concepts and key
definitions used this paper. In Section 4, we present our main results, i.e., guarantees on run time
reduction and approximation error. In Section 5, we introduce the extension of our method on full
attention computation. In Section 6, we provide a brief summary of the techniques used in our proof.
In Section 7, we provide our empirical results of evaluating three mainstream LLMs with Softmax
attention with top-r indices on different r. In Section 8, we discuss the potential of extending our
method to other activation functions. In Section 9, we concludes our algorithm and contributions.

2 RELATED WORK

Attention acceleration for long context input. Long context window is essential for transformer
based LLMs in many downstream tasks. However, due to the quadratic time complexity associated
with self-attention mechanisms, transformers are usually hard to inference efficiently. Numerous
methods have been proposed to enhance the inference efficiency. One approach involves using
alternative architectures as proxies for attention to support faster inference, such as Mamba (Gu &
Dao, 2023; Dao & Gu, 2024), PolySketchFormer (Kacham et al., 2023), and Linearizing Transform-
ers (Zhang et al., 2024a; Mercat et al., 2024). However, the broad applicability of these methods
across different applications and modalities remains to be fully validated. Another line of research
focuses on approximating attention matrix computation (Alman & Song, 2023; 2024a;b; Han et al.,
2024; Zandieh et al., 2024; Liang et al., 2024d; Poli et al., 2023; Cai et al., 2024; Liang et al.,
2024c;a; Gao et al., 2023; Dong et al., 2024; Liang et al., 2024b). Nevertheless, these methods
often rely on assumptions that may not be practical. For instance, some approaches use polyno-
mial methods to approximate the exponential function, which requires all entries to be bounded by
a small constant. However, our HSR-enhanced attention framework is designed based on practical
observation and validated by empirical support.

ReLU attention. ReLU attention is an innovative mechanism that employs the ReLU activation
function in place of the traditional Softmax function for attention computation. Previous studies
have highlighted the promise potential of ReLU attention in various domains. From empirical side,
Wortsman et al. (2023) has demonstrated that incorporating ReLU as the activation function in
vision transformers enhances performance on downstream tasks. Shen et al. (2023) has shown that

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

transformers equipped with ReLU attention outperform those with Softmax attention, particularly
when dealing with large key-value memory in machine translation tasks. From theoretical side, the
scale-invariant property of ReLU attention (Li et al., 2022) facilitates the scalability of transformer
networks. Furthermore, Bai et al. (2023); Fu et al. (2023) have shown that the inherent properties
of ReLU attention contribute positively to the learning process of transformer models. Another
key advantage of ReLU attention is that the ReLU function effectively sets all negative values to
zero, allowing us to bypass these non-contributory elements during attention computation, thereby
reducing the running time of attention computation. Importantly, omitting these zero and negative
entries does not introduce any error into the final output of the ReLU attention mechanism.

Half-space reporting (HSR) data structure. The Half-Space Reporting (HSR) data structure, ini-
tially proposed by Agarwal et al. (1992), was developed to address the half-space range reporting
problem. The expedited range query capability inherent to HSR has been demonstrated to sig-
nificantly enhance computational efficiency across a variety of tasks, as evidenced by numerous
previous works in the literature. Studies such as Jiang et al. (2021) and Bhattacharya et al. (2023)
have applied HSR to facilitate solving general linear programming (LP) problems. Another line of
research has highlighted HSR’s potential in expediting the training process of contemporary neural
networks (Qin et al., 2023; Gao et al., 2022). There is also a collection of research that concentrates
on leveraging HSR for the advancement of solutions to geometric and graphical challenges (Chen
et al., 2005; Ju et al., 2013; Eppstein et al., 2017).

3 PRELIMINARY

In Section 3.1, we introduce notations used in the paper. In Section 3.2, we introduce a modified
version of Softmax attention that operates on a specific subset of indices. It defines the top-r nearest
neighbors Softmax attention, which focuses on the most relevant entries in the attention matrix. In
Section 3.3, we describe the massive activation property for attention mechanisms. In Section 3.4,
we present a data structure for efficiently solving the half-space range reporting problem.

3.1 NOTATIONS

Here, we introduce basic notations used in this paper. For any positive integer n, we use [n] to
denote set {1, 2, · · · , n}. We use Var[] to denote the variance. For two vectors x ∈ Rn and y ∈ Rn,
we use ⟨x, y⟩ to denote the inner product between x, y. We use 1n to denote a length-n vector where
all the entries are ones. We use Xi,j to denote the i-row, j-th column of X ∈ Rm×n. We use ∥A∥∞
to denote the ℓ∞ norm of a matrix A ∈ Rn×d, i.e. ∥A∥∞ := maxi∈[n],j∈[d] |Ai,j |.

3.2 SOFTMAX ATTENTION WITH INDEX SET

Recall that we have already provided the definition of ReLU attention in Definition 1.2. Here, we
present the key concepts of Softmax attention. For Softmax attention, since we only calculate the
“massive activated” entries to get our approximated results, we introduce the formal definition:
Definition 3.1 (Input with index set). Let K ∈ Rn×d and V ∈ Rn×d be defined in Definition 1.1.
Let R ⊆ [n] be an index set of size |R| = r ∈ [n]. Let R := [n]\R be the complementary set, where
|R| = n− r. We define

K̂ := KR ∈ Rr×d V̂ := VR ∈ Rr×d K := KR ∈ R(n−r)×d V := VR ∈ R(n−r)×d

as the submatrix of K and V , i.e., whose row index is in R or R, respectively.

In this work, we consider calculating the Softmax attention on the “massive activation” index set,
where we define the “massive activation” index set as the top-r indices. We introduce our definition
for top-r indices of Softmax attention as follows:
Definition 3.2 (Top-r indices Softmax attention). Let q ∈ Rd, K,V ∈ Rn×d be defined in Defini-
tion 1.1. Let NN(r, q,K) ⊆ [n] denote the indices of top-r entries of qK, where |NN(r, q,K)| = r.
Let K̂, V̂ ∈ Rr×d and K,V ∈ R(n−r)×d be defined in Definition 3.1. We define the top-r nearest
neighbors (NN) Softmax attention computation Âttns(q,K, V) ∈ Rd as follows:

Âttns(q,K, V) := Softmax(qK̂⊤)V̂ = α̂−1ûV̂ ∈ Rd

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where
û := exp(qK̂⊤) ∈ Rr and α̂ := ⟨û,1r⟩ ∈ R.

Furthermore, we define u := exp(qK
⊤
) ∈ Rn−r, α := ⟨u,1n−r⟩ ∈ R, and u := exp(qK⊤) ∈

Rn+1, α := ⟨u,1n+1⟩ ∈ R.

In Definition 3.2, we view the “massive activated” entries as the top-r entries. Therefore, we only
calculate the Softmax attention based on K̂, V̂ ∈ Rr×d, instead of K,V ∈ Rn×d.

3.3 MASSIVE ACTIVATION

Now, we introduce our observations on the properties of the attention scores (the inner products of
query vectors and key vectors). This further facilitates the error analysis of the top-r indices Softmax
attention. To begin with, we provide the definition of the massive activation property as follows:
Definition 3.3 (Massive activation property). Let γ ∈ [0, 1], β1 ≥ β2 ≥ 0. Let NN(r, q,K) ⊆ [n]
denote the indices of top-r entries of qK. We define (γ, β1, β2) massive activation for a query
q ∈ Rd and key cache K ∈ Rn×d, if the following conditions hold:

• The top-nγ entries are massive, i.e., 1
nγ ·∥q∥2

∑
i∈NN(nγ ,q,K)⟨q,Ki⟩ ≥ β1 log(n).

• The remaining terms are upper bounded, i.e, ∀i ∈ [n] \ NN(nγ , q,K), 1
∥q∥2
⟨q,Ki⟩ ≤ β2 log(n).

An intuitive understanding of Definition 3.3 is that, the summation of “massive activated” entries
dominates the summation of all entries, and the entries we ignored only contributes little to the final
summation. Therefore, it is reasonable for us to omit those non “massive activated” entries.
Remark 3.4. There are many distributions satisfying the property in Definition 3.3, such as (1)
K drawing from any subexponential distribution, e.g., multivariate Laplace distributions, (2) K
drawing from any mixture of Gaussian distribution with n1−γ Gaussian clusters.

3.4 HALF-SPACE REPORTING (HSR) DATA STRUCTURE

Algorithm 1 Half Space Report Data Structure

1: data structure HALFSPACEREPORT
2: INIT(S, n, d) ▷ Initialize the data structure with a set S of n points in Rd

3: QUERY(a, b) ▷ a, b ∈ Rd. Output the set {x ∈ S : sgn(⟨a, x⟩ − b) ≥ 0}
4: end data structure

We restate the result from Agarwal et al. (1992) for solving the half-space range reporting problem.
The interface of their algortihm can be summarized as in Algorithm 1. Intuitively, the data-structure
recursively partitions the set S and organizes the points in a tree data-structure. Then for a given
query (a, b), all k points of S with sgn(⟨a, x⟩ − b) ≥ 0 are reported quickly. Note that the query
(a, b) here defines the half-space H in Definition 1.3. We summarize the time complexity of HSR
data structure as follows:
Corollary 3.5 (HSR data-structure time complexity Agarwal et al. (1992), informal version of
Corollary A.7). Let Tinit denote the pre-processing time to build the data structure, Tquery denote
the time per query and Tupdate time per update. Given a set of n points in Rd, the half-space range
reporting problem can be solved with the following performances:

• Part 1. Tinit(n, d) = Od(n log n), Tquery(n, d, k) = O(dn1−1/⌊d/2⌋ + dk).

• Part 2. Tinit(n, d) = O(n⌊d/2⌋), Tquery(n, d, k) = O(d log(n) + dk).

4 MAIN RESULTS ON ATTENTION GENERATION

In this section, we present our key findings regarding attention generation, m = Θ(1), for both
ReLU and Softmax attention mechanisms. Across both scenarios, we have reduced the time com-
plexity from a naive O(mn) to O(mn4/5). Specifically, for the ReLU attention model, we have

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

managed to accelerate the processing time without introducing any approximation errors. In the
case of Softmax attention, our technique results in only an insignificant approximation error.

Algorithm 2 Attention generation

1: data structure ATTENTIONGENERATION ▷ Lemma 6.2
2: members
3: HALFSPACEREPORT HSR ▷ Algorithm 1, Part 2 of Corollary 3.5
4: {Ki}i∈[n] ▷ Key matrix
5: V ∈ Rn×d ▷ Value matrix
6: b ∈ R ▷ Threshold of ReLU activation
7: end members
8: procedure INIT({Ki}i∈[n], V, n, d)
9: {Ki}i∈[n], V ← {Ki}i∈[n], V ▷ Store necessary matrices

10: b← σa ·
√
0.4 log n ▷ Init essential parameters and data structure. Lemma 6.1

11: HSR.INIT({Ki}i∈[n], n, d) ▷ It takes Tinit(n, d) time
12: end procedure
13: procedure INFERENCE(Q ∈ Rm×d,m)
14: A← 0m×n

15: for i = 1→ m do ▷ Loop for m query vectors
16: S̃i,fire ← HSR.QUERY(Qi, b) ▷ It takes Tquery(n, d, k̃i) time
17: for j ∈ S̃i,fire do ▷ Calculate the ReLU attention output according to S̃i,fire

18: Ai,j ← ReLUα(⟨Qi,Kj⟩/
√
d− b) or Ai,j ← Softmax(⟨Qi,Kj⟩/

√
d)

19: end for
20: end for
21: return D−1AV
22: end procedure
23: end data structure

We begin with introducing our result on ReLU attention generation as follows:
Theorem 4.1 (Running time of ReLU attention generation, informal version of Theorem C.2). Let
ReLU attention be defined as Definition 1.2. Assume each entry of K is from Gaussian N (0, σ2

k),
and each entry of Q is from Gaussian N (0, σ2

q). Let δ ∈ (0, 1) denote the failure probability. Let
σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk. Let b = σa ·

√
0.4 log n. Suppose we have KV Cache

K,V ∈ Rn×d. We want to generate a m length answer, where n≫ m. Then, our inference function
in Algorithm 2, with probability at least 1− δ, takes O(mn4/5) time to generate the answer.

Theorem 4.1 shows that our Algorithm 2 accelerates the running time of ReLU attention generation
from naive O(mn) to O(mn4/5), which is a significant speed up when the KV Cache is large. The at
least 1− δ success probability originates from the sparsity analysis of ReLU attention (Lemma 6.1),
where with probability at least 1 − δ, we have the number of non-zero entries of each row of the
attention matrix is at most n4/5.

Then, we move on to presenting our result on Softmax attention generation. Our results consist two
parts: the improved running time of Softmax attention generation, and the error analysis of Softmax
attention with index set. Firstly, we introduce our result about the imporved running time of Softmax
attention generation as follows:
Theorem 4.2 (Running time of Softmax attention generation, informal version of Theorem E.1).
Let Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Definition 1.1. Let
NN(r, q,K) ⊆ [n] and the Softmax attention with index set Âttns be defined as Definition 3.2. We
choose the threshold b ∈ R in Algorithm 2 such that R = NN(n4/5, q,K). Then, we can show
that the Softmax attention with index set Âttns achieves outstanding running time under the Softmax
attention generation scenario: Suppose we have KV Cache K,V ∈ Rn×d. We want to generate a
m length answer, where n ≫ m. Our inference function in Algorithm 2 (replacing ReLU attention
with Softmax attention) takes O(mn4/5) time to generate the answer.

Theorem 4.2 demonstrates that if we choose the threshold b satisfying R = NN(n4/5, q,K), we can
achieve a significant running time improve of the Softmax attention generation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

It is evident that this method introduces an approximation error due to the exclusion of certain
entries. Nevertheless, under mild assumptions about the distribution of the attention scores, we
demonstrate that this approximation error is indeed negligible. The proof’s intuitive explanation lies
in the fact that the majority of attention scores are focused on the small subset of entries that we
retain. We organize our result as follows:

Theorem 4.3 (Error analysis of Softmax attention with index set, informal version of Theorem F.2).
Let Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Definition 1.1. Let
q ∈ Rd denote a single row of Q ∈ Rm×d. Let γ ∈ [0, 1], β1 ≥ β2 ≥ 0. Let the index set R and the
Softmax attention with index set Âttns be defined as Definition 3.2. Let NN(r, q,K) ⊆ [n] denote
the indices of top-r entries of qK. Let R = NN(nγ , q,K) ⊆ [n], where |R| = nγ . Assume the query
q and key cache K have (γ, β1, β2) massive activation property (Definition 3.3). Then, we have

∥Âttns(q,K, V)− Attns(q,K, V)∥∞ ≤
2∥V ∥∞

nγ+(β1−β2)·∥q∥2−1
.

Theorem 4.3 presents the error of Softmax attention with index set is relatively small. Consequently,
omitting the remaining less significant entries is a justifiable compromise.

Remark 4.4. With mild assumptions on V , we can have more precious results from Theorem 4.3.
For example, if the entries in V conform to subgaussian distribution with constant variance, we have
∥V ∥∞ = O(log(n)) with high probability.

5 EXTENSION ON FULL ATTENTION COMPUTATION

In this section, we extend our results to full attention computation scenario, where the number of
queries and keys is proportional, i.e., m = Θ(n). Essentially, the full attention computation is
beneficial in practical applications, particularly within the context of cross-attention computations.
For ReLU attention, we leverage Part 1 result of Corollary 3.5 to accelerate the identification of
non-zero entries (activated entries). We introduce our result on ReLU attention as follows:

Algorithm 3 Full attention computation

1: data structure FULLATTENTIONCOMPUTATION ▷ Lemma 6.3
2: members
3: HALFSPACEREPORT HSR ▷ Algorithm 1, Part 1 of Corollary 3.5
4: end members
5:
6: procedure INFERENCE({Ki}i∈[n], {Qr}r∈[m], V, n,m, d)
7: b← σa ·

√
0.4 log n. ▷ Threshold of ReLU activation (Lemma 6.1)

8: HSR.INIT({Ki}i∈[n], n, d) ▷ It takes Tinit(n, d) time
9: A← 0m×n

10: for i = 1→ m do ▷ Loop for m query vectors
11: S̃i,fire ← HSR.QUERY(Qi, b) ▷ It takes Tquery(n, d, k̃i) time.
12: for j ∈ S̃i,fire do ▷ Calculate the ReLU attention output according to S̃i,fire

13: Ai,j ← ReLUα(⟨Qi,Kj⟩/
√
d− b) or Ai,j ← Softmax(⟨Qi,Kj⟩/

√
d)

14: end for
15: end for
16: return D−1AV
17: end procedure
18: end data structure

Theorem 5.1 (Running time of full ReLU attention computation, informal version of Theorem B.2).
Let ReLU attention be defined as Definition 1.2. Assume each entry of K is from GaussianN (0, σ2

k),
and each entry of Q is from Gaussian N (0, σ2

q). Let δ ∈ (0, 1) denote the failure probability. Let
σa = 4 · (1+d−1 log(m/δ))1/2 ·σqσk. Let b = σa ·

√
0.4 log n. Suppose we have Q,K, V ∈ Rn×d.

There exist an algorithm (Algorithm 3), with probability at least 1−δ, takes O(n2−1/⌊d/2⌋+n1+4/5)
time to compute the full ReLU attention of Q,K, V .

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

In Theorem 5.1, we improve the running time of full ReLU attention computation from O(n2) to
O(n2−1/⌊d/2⌋ + n1+4/5), which is a notable uplift of the running time when n is extremely large.

Then, we present our result on Softmax attention. Intuitively, we use the Part 1 result of Corollary 3.5
to identify those “massive activated” entries (top-r indices) within the attention matrix of Softmax
attention, and calculate the Softmax attention with top-r indices. We organize our result as follows:

Theorem 5.2 (Running time of Softmax full attention computation, informal version of Theo-
rem E.2). Let Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Defi-
nition 1.1. Let NN(r, q,K) ⊆ [n] and the Softmax attention with index set Âttns be defined as
Definition 3.2. We choose the threshold b ∈ R in Algorithm 3 such that R = NN(n4/5, q,K).
Then, we have the Softmax attention with index set Âttns achieves outstanding running time under
full Softmax attention computation scenario: Suppose we have m = Θ(n). Algorithm 3 (replac-
ing ReLU attention with Softmax attention) takes O(n2−1/⌊d/2⌋ + n1+4/5) time to compute the full
ReLU attention of Q,K, V .

Theorem 5.2 demonstrates our O(n2−1/⌊d/2⌋ + n1+4/5) running time on Softmax full attention
computation, which improves from naive running time O(n2).

6 TECHNICAL OVERVIEW

In Section 6.1, we introduce our analysis about the sparsity in the ReLU attention mechanism. In
Section 6.2, we present our results of two general attention frameworks. In Section 6.3, we provide
our error analysis of Softmax attention with index set. We have shown that with mild assumption on
the distribution of attention scores, the error of Softmax attention with index set is negligible.

6.1 SPARSITY ANALYSIS OF RELU ATTENTION

Intuitively, the ReLU activation will deactivate some key and query pairs. We introduce the results
of employing the concentration inequality to quantitatively analyze the number of non-zero entries.

Lemma 6.1 (Sparsity analysis, informal version of Lemma D.3). Let the ReLU attention be defined
as Definition 1.2. Let Q ∈ Rm×d and K,V ∈ Rn×d be defined as Definition 1.2. Let b ∈ R denote
the threshold of ReLU activation, as defined in Definition 1.2. For i ∈ [m], let k̃i denote the number
of non-zero entries in i-th row of A ∈ Rm×n. Assume each entry of K is from Gaussian N (0, σ2

k),
and each entry of Q is from Gaussian N (0, σ2

q). Let δ ∈ (0, 1) denote the failure probability. Let
σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk. Let b = σa ·

√
0.4 log n. Then, we have, with probability at

least 1− δ, for all i ∈ [m], the number of non-zero entries of the i-th row k̃i is at most 2n4/5.

In Lemma 6.1, we use k̃i to denote the number of non-zero entries in i-th row of attention matrix
Ar ∈ Rm×n. It indicates that if we choose b = σa

√
0.4 log n, with high probability, the number of

activated (non-zero) entries can be bounded by O(n4/5).

6.2 GENERAL ATTENTION FRAMEWORKS

First, we introduce our general framework for attention generation computation. Here, we use the
Part 1 result of the HSR data structure. As for this framework is designed for the attention generation
task, the key matrix K is fixed in each inference. Therefore, in the INIT procedure, we initialize the
HSR data structure with the key matrix K. Then, in each inference, we use the same HSR data
structure to answer the query from each row of the query matrix Q. We provide the result of this
general attention generation framework as follows.

Lemma 6.2 (General attention generation framework, informal version of Lemma C.1). Let Q ∈
Rm×d and K,V ∈ Rn×d be defined as Definition 1.2. Assume each entry of K is from Gaussian
N (0, σ2

k), and each entry of Q is from Gaussian N (0, σ2
q). Let δ ∈ (0, 1) denote the failure proba-

bility. Let σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk. Let b = σa ·
√
0.4 log n. Let HSR data structure

be defined as Part 2 in Corollary 3.5. There exists an algorithm (Algorithm 2), with at least 1 − δ
probability, has the following performance:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

• Part 1. The INIT procedure runs in O(n⌊d/2⌋) time.

• Part 2. For each query, the INFERENCE procedure runs in O(mn4/5) time.

The general framework for full attention computation is quite different from the previous one.
Namely, we choose the Part 2 result of the HSR data structure. Since in each inference, both the
query matrix Q and the key matrix K differ from any other inference, we first initialize the HSR
data structure with the key matrix K. Then for each row of the query matrix Q, we query the HSR
data structure to find the activated entries.

Lemma 6.3 (General full attention computation framework, informal version of Lemma B.1). Let
Q ∈ Rm×d and K,V ∈ Rn×d be defined as Definition 1.2. Assume each entry of K is from
Gaussian N (0, σ2

k), and each entry of Q is from Gaussian N (0, σ2
q). Let δ ∈ (0, 1) denote the

failure probability. Let σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk. Let b = σa ·
√
0.4 log n. Let HSR

data structure be defined as Part 1 in Corollary 3.5. There exists an algorithm (Algorithm 3), with
at least 1− δ probability, computes full attention of Q,K, V in O(mn1−1/⌊d/2⌋ +mn4/5) time.

6.3 ERROR ANALYSIS OF SOFTMAX ATTENTION WITH TOP-r INDICES

Calculating the Softmax attention on the “massive actavted” index set will introduce approximation
error. In the following Lemma, we analyze the quantity of this approximation error. Here, we use
α to denote the summation of all entries activated by exp(x) function, and we use α to denote the
summation of those entries which are excluded from “massive activated” index set. We provide the
general error bound of Softmax attention with index set as follows.

Lemma 6.4 (General error analysis of Softmax attention with index set, informal version of
Lemma F.1). Let Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Def-
inition 1.1. Let q ∈ Rd denote a single row of Q ∈ Rm×d. Let α, α and Âttns be defined as
Definition 3.2. Then we have ∥Attns(q,K, V)− Âttns(q,K, V)∥∞ ≤ 2α

α · ∥V ∥∞.

Note that Lemma 6.4 only provides a general error analysis of Softmax attention with index set.
Under mild assumption on the distribution of attention scores, we show that this error is actually
very small. For more details, please refer to Theorem 4.3.

7 EXPERIMENTS

In this section, we present our empirical results of evaluating three mainstream LLMs with Softmax
attention with top-r indices on different r, showing that the results of the experiments are consistent
with our theoretical analysis.

Datasets. To estimate the approximation error of the Softmax attention with “massive ac-
tivation” entries, we conduct experiments on the PaulGrahamEssays datasets from LLMTest-
NeedleInAHaystack (Kamradt, 2024). Specifically, for each article in the dataset, we first input
215 = 32768 tokens to the LLMs, then generate 1024 tokens.

Metric. We evaluate the generation quality by the classical perplexity. Perplexity is defined as the
exponentiated average negative log-likelihood of a sequence. If we have a tokenized sequence X =

(x0, x1, · · · , xN), then the perplexity of X is: Perplexity(X) = exp(− 1
N

∑N
i=1 log pθ(xi|x<i)),

where log pθ(xi|x<i) is the log-likelihood of the i-th token conditioned on the preceding tokens.
Intuitively, it can be thought of as an evaluation of the model’s ability to predict uniformly among
the set of specified tokens in a corpus. Importantly, the tokenization procedure has a direct impact
on a model’s perplexity which should be taken into consideration when comparing different models.

Models. To demonstrate the generalization of our approximation error bound, we conducted experi-
ments on three mainstream large models: LLaMA 3.1 8B Instruct2 (Meta, 2024), Mistral Nemo 12B
Instruct3 (MistralAI, 2024), and Phi 3.5 Mini 3.8B Instruct4 (Abdin et al., 2024).

2
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct

3
https://huggingface.co/mistralai/Mistral-Nemo-Base-2407

4
https://huggingface.co/microsoft/Phi-3.5-mini-instruct

9

https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
https://huggingface.co/microsoft/Phi-3.5-mini-instruct

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Results. The experiments are conducted on the setting discussed in previous paragraphs. We eval-
uated the performance of three mainstream LLMs using Softmax attention with top-r indices. In
particular, we chose r from the set {22, 24, 26, 28, 210, 212, 215}. As depicted in Figure 2, a sig-
nificant increase in the perplexity (drop in performance) of LLMs is observed only when r falls
below 24. This suggests that the “massive activated” tokens are predominantly found within the
top-24 entries. In comparison to the total of 215 entries, the “massive activated” entries constitute a
relatively minor fraction. The observed results align with our theoretical analysis, confirming that
the approximation error of the Softmax attention mechanism with top-r indices is insignificant for
larger values of r.

22 24 26 28 210212215

25

50

75

Pe
rp

le
xi

ty

LLaMA 3.1
LLaMA 3.1

22 24 26 28 210212215

Softmax attention with top-r indices
0

5000

Mistral Nemo
Mistral Nemo

22 24 26 28 210212215

25

50

Phi 3.5
Phi 3.5

Figure 2: We evaluated the perplexity of three mainstream language models : LLaMA 3.1 8B In-
struct, Mistral Nemo 12B, and Phi 3.5 Mini 3.8B Instruct, using Softmax attention with top-r indices
on the PaulGrahamEssays dataset. The results indicate a significant increase in perplexity only when
the number of selected entries, r, falls below 24. This observation aligns with our earlier findings
that the proportion of “massive activated” entries is minimal compared to the total number of en-
tries. Furthermore, the approximation error introduced by using top-r indices in Softmax attention
remains negligible unless r becomes excessively small.

8 DISCUSSION AND FUTURE WORK

The sparsity within neural networks arises primarily from the incorporation of non-linear activation
functions. These non-linear functions determine the mechanism or circuit of the neural networks,
e.g., the induction head in transformers (Olsson et al., 2022). Gaining insight into these non-linear
layers not only enhances our understanding of how neural networks work but also paves the way for
optimizing training and inference. We hope our analysis may inspire efficient neural network archi-
tecture design. This work represents the initial point of this envisioned blueprint. We concentrate on
analyzing the combinations of LLMs and fundamental non-linear activation functions—ReLU and
Softmax, which are most relevant to contemporary applications. By analyzing these functions, we
aim to demonstrate to the research community that a thorough examination of a model’s non-linear
characteristics can significantly enhance the running time complexity of neural networks.

In real-world scenarios, a multitude of non-linear activation functions exist beyond ReLU and Soft-
max, such as those designated as SELU(x) = scale · (max(0, x) + min(0, α · (exp(x) − 1)))
(Klambauer et al., 2017), CELU(x) = max(0, x)+min(0, α · (exp(x/α)− 1)) (Barron, 2017), and
PRELU(x) = max(0, x)+weight·min(0, x) (He et al., 2015). However, analyzing these alternative
functions poses multiple challenges. Hence, we will explore these additional functions in the future.

9 CONCLUSION

This work investigates the exploitation of the intrinsic sparsity present in both ReLU and Softmax
attention mechanisms to decrease the computational complexity of full attention computation and
attention generation scenarios. Specifically, we employ the Half-Space Reporting (HSR) data struc-
ture to accelerate the process of identifying non-zero or “massive activated” entries within ReLU
and Softmax attentions, respectively. Importantly, our approach does not import any errors to ReLU
attention, and it results in only a negligible approximation error for Softmax attention.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

Pankaj K Agarwal, David Eppstein, and Jirı́ Matousek. Dynamic half-space reporting, geometric
optimization, and minimum spanning trees. In Annual Symposium on Foundations of Computer
Science, volume 33, pp. 80–80. IEEE COMPUTER SOCIETY PRESS, 1992.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36, 2023.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. arXiv preprint arXiv:2402.04497, 2024a.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024b.

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurelien Lucchi, and Thomas Hof-
mann. Dynamic context pruning for efficient and interpretable autoregressive transformers. Ad-
vances in Neural Information Processing Systems, 36, 2023.

Anthropic. Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in neural information
processing systems, 36, 2023.

Jonathan T Barron. Continuously differentiable exponential linear units. arXiv preprint
arXiv:1704.07483, 2017.

Sergei Bernstein. On a modification of chebyshev’s inequality and of the error formula of laplace.
Ann. Sci. Inst. Sav. Ukraine, Sect. Math, 1(4):38–49, 1924.

Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. Dynamic algorithms for packing-
covering lps via multiplicative weight updates. In Proceedings of the 2023 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 1–47. SIAM, 2023.

Ruisi Cai, Yuandong Tian, Zhangyang Wang, and Beidi Chen. Lococo: Dropping in convolutions
for long context compression. arXiv preprint arXiv:2406.05317, 2024.

Danny Z Chen, Michiel Smid, and Bin Xu. Geometric algorithms for density-based data clustering.
International Journal of Computational Geometry & Applications, 15(03):239–260, 2005.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Andy Coenen, Luke Davis, Daphne Ippolito, Emily Reif, and Ann Yuan. Wordcraft: A human-ai
collaborative editor for story writing. arXiv preprint arXiv:2107.07430, 2021.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang Wang, Yuejie Chi, and Beidi Chen. Get more
with less: Synthesizing recurrence with kv cache compression for efficient llm inference. arXiv
preprint arXiv:2402.09398, 2024.

David Eppstein, Michael T Goodrich, Doruk Korkmaz, and Nil Mamano. Defining equitable geo-
graphic districts in road networks via stable matching. In Proceedings of the 25th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems, pp. 1–4, 2017.

11

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hengyu Fu, Tianyu Guo, Yu Bai, and Song Mei. What can a single attention layer learn? a study
through the random features lens. Advances in Neural Information Processing Systems, 36, 2023.

Yeqi Gao, Lianke Qin, Zhao Song, and Yitan Wang. A sublinear adversarial training algorithm.
arXiv preprint arXiv:2208.05395, 2022.

Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformulating single
layer attention in llm based on tensor and svm trick, and solving it in matrix multiplication time.
arXiv preprint arXiv:2309.07418, 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
Eh0Od2BJIM.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le. Transformer quality in linear time. In Inter-
national conference on machine learning, pp. 9099–9117. PMLR, 2022.

Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. A faster algorithm for solving gen-
eral lps. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pp. 823–832, 2021.

Wenqi Ju, Chenglin Fan, Jun Luo, Binhai Zhu, and Ovidiu Daescu. On some geometric problems
of color-spanning sets. Journal of Combinatorial Optimization, 26:266–283, 2013.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

Greg Kamradt. Llmtest-needleinahaystack, 2024. URL https://github.com/gkamradt/
LLMTest_NeedleInAHaystack.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of naacL-HLT, volume 1,
pp. 2. Minneapolis, Minnesota, 2019.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. Advances in neural information processing systems, 30, 2017.

Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model selec-
tion. Annals of Statistics, pp. 1302–1338, 2000.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv:2404.14469, 2024.

Zhiyuan Li, Srinadh Bhojanapalli, Manzil Zaheer, Sashank Reddi, and Sanjiv Kumar. Robust train-
ing of neural networks using scale invariant architectures. In International Conference on Ma-
chine Learning, pp. 12656–12684. PMLR, 2022.

Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, and Junze Yin. Conv-basis: A new
paradigm for efficient attention inference and gradient computation in transformers. arXiv
preprint arXiv:2405.05219, 2024a.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer transformers
gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233, 2024b.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Toward infinite-long prefix in trans-
former. arXiv preprint arXiv:2406.14036, 2024c.

12

https://openreview.net/forum?id=Eh0Od2BJIM
https://openreview.net/forum?id=Eh0Od2BJIM
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably effi-
cient learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024d.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137–22176. PMLR,
2023.

Jean Mercat, Igor Vasiljevic, Sedrick Keh, Kushal Arora, Achal Dave, Adrien Gaidon, and Thomas
Kollar. Linearizing large language models. arXiv preprint arXiv:2405.06640, 2024.

Meta. Llama 3, 2024. URL https://ai.meta.com/blog/meta-llama-3/.

MistralAI. Mistral nemo, 2024. URL https://mistral.ai/news/mistral-nemo/.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

OpenAI. Gpt-4 turbo, 2023. URL https://openai.com/blog/
new-models-and-developer-products-announced-at-devday.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models. arXiv preprint arXiv:2309.00071, 2023.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. In International Conference on Machine Learning, pp. 28043–28078. PMLR,
2023.

Lianke Qin, Zhao Song, and Yuanyuan Yang. Efficient sgd neural network training via sublinear
activated neuron identification. arXiv preprint arXiv:2307.06565, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Kai Shen, Junliang Guo, Xu Tan, Siliang Tang, Rui Wang, and Jiang Bian. A study on relu and
softmax in transformer. arXiv preprint arXiv:2302.06461, 2023.

Zhao Song, Shuo Yang, and Ruizhe Zhang. Does preprocessing help training over-parameterized
neural networks? Advances in Neural Information Processing Systems, 34:22890–22904, 2021.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Yilin Wang, Zeyuan Chen, Liangjun Zhong, Zheng Ding, Zhizhou Sha, and Zhuowen Tu. Dolfin:
Diffusion layout transformers without autoencoder. arXiv preprint arXiv:2310.16305, 2023a.

Yilin Wang, Haiyang Xu, Xiang Zhang, Zeyuan Chen, Zhizhou Sha, Zirui Wang, and Zhuowen Tu.
Omnicontrolnet: Dual-stage integration for conditional image generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7436–7448, 2024.

13

https://ai.meta.com/blog/meta-llama-3/
https://mistral.ai/news/mistral-nemo/
https://openai.com/blog/new-models-and-developer-products-announced-at-devday
https://openai.com/blog/new-models-and-developer-products-announced-at-devday

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zirui Wang, Zhizhou Sha, Zheng Ding, Yilin Wang, and Zhuowen Tu. Tokencompose: Grounding
diffusion with token-level supervision. arXiv preprint arXiv:2312.03626, 2023b.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022.

Mitchell Wortsman, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Replacing softmax with relu
in vision transformers. arXiv preprint arXiv:2309.08586, 2023.

Amir Zandieh, Insu Han, Vahab Mirrokni, and Amin Karbasi. Subgen: Token generation in sublin-
ear time and memory. arXiv preprint arXiv:2402.06082, 2024.

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Ré. The hedgehog & the por-
cupine: Expressive linear attentions with softmax mimicry. arXiv preprint arXiv:2402.04347,
2024a.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B
Hashimoto. Benchmarking large language models for news summarization. Transactions of the
Association for Computational Linguistics, 12:39–57, 2024b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendix
Roadmap. In Section A, we introduce more fundamental lemmas and facts. In Section B, we ex-
tend the analysis to ReLU attention calculation, demonstrating improved performance over standard
attention computation under specific conditions. In Section C, we first introduce and analyze the
time complexity of ReLU attention generation using half-space reporting (HSR) data structures. In
Section D, we analyze the sparsity of ReLU attention matrices. In Section E, we introduce our re-
sults on reducing the running time of Softmax attention. In Section F, we analyze error bounds for
Softmax attention with index sets, balancing efficiency and accuracy.

A PRELIMINARY

In this section, we display more fundamental concepts. In Section A.1, we introduce several impor-
tant probability properties and bounds. In Section A.2, we detail the time complexity and perfor-
mance of half-space reporting (HSR) data structures.

A.1 PROBABILITY TOOLS

We state several fundamental properties and bounds for some common distributions.
Fact A.1 (Weighted summation of Gaussian). If the following conditions hold:

• Let x ∈ Rd be a fixed vector and y ∈ Rd be a random vector.

• For i ∈ [d], let xi denote the i-th entry of x.

• Suppose for i ∈ [d], yi ∼ N (0, σ2).

Then the inner product of x and y, ⟨x, y⟩ conforms Gaussian distribution N (0, ∥x∥22σ2). Namely,
we have ⟨x, y⟩ ∼ N (0, ∥x∥22σ2).
Fact A.2 (Independence between ⟨x, yi⟩ and ⟨x, yj⟩). If the following conditions hold:

• Let x ∈ Rd be a fixed vector.

• Let y1, y2, · · · yn ∈ Rd be n random vectors.

• For any i, j ∈ [n], i ̸= j, yi and yj are independent.

Then, for any i, j ∈ [n], i ̸= j, ⟨x, yi⟩ and ⟨x, yj⟩ are independent.

We provide tail bounds for chi-square and Gaussian distributed random variables:
Lemma A.3 (Chi-square tail bound, Lemma 1 in Laurent & Massart (2000)). Let X ∼ X 2

k be a
chi-squared distributed random variable with k degrees of freedom. Each one has zero means and
σ2 variance.

Then, it holds that

Pr[X − kσ2 ≥ (2
√
kt+ 2t)σ2] ≤ exp (−t)

Pr[kσ2 −X ≥ 2
√
ktσ2] ≤ exp (−t)

Fact A.4 (Gaussian tail bound). Suppose we have a random variable x ∼ N (µ, σ).

Then, for t ∈ R, we have

Pr[x ≥ µ+ t] ≤ exp(− t2

2σ2
)

Proof. We can show

Pr[x ≥ µ+ t] = Pr[x− µ ≥ t]

= Pr[ex−µ ≥ et]

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

= inf
λ≥0

Pr[eλ(x−µ) ≥ eλt]

≤ inf
λ≥0

E[eλ(x−µ)]

eλt
(1)

where the first step, the second step follows from basic algebra, the third step follows from that the
inequality holds for any λ > 0, and the fourth step follows from Markov’s inequality.

Then we consider the numerator and we use y = x− µ to simplify the calculation, we have

E[eλy] =
∫
R
eλy

e−y2/2σ2

√
2πσ

dy

=

∫
R

e−(y−λ/σ2)2· 1
2σ2 eλ

2σ2/2

√
2πσ

dy

= e
λ2σ2

2

∫
R

e−(y−λ/σ2)· 1
2σ2

√
2πσ

dy

= e
λ2σ2

2 (2)

where the first step follows from the definition of the moment generating function, the second and the
third steps follow from basic algebra, and the fourth step follows from the property of the probability
density function.

Then we have

Pr[x ≥ µ+ t] ≤ inf
λ≥0

exp(
λ2 − σ2

2
− λt)

≤ exp(− t2

2σ2
)

where the first step follows from Eq. (1) and Eq.(2), the second step follows from the calculation of
infimum.

The Bernstein’s inequality for bounding sums of independent random variables is:
Lemma A.5 (Bernstein inequality Bernstein (1924)). Assume Z1, · · · , Zn are n i.i.d. random vari-
ables. ∀i ∈ [n], E[Zi] = 0 and |Zi| ≤M almost surely. Let Z =

∑n
i=1 Zi. Then,

Pr [Z > t] ≤ exp

(
− t2/2∑n

j=1 E[Z2
j] +Mt/3

)
,∀t > 0.

A.2 HALF-SPACE REPORTING (HSR) DATA STRUCTURES

The time complexity of the HSR data structure is:
Theorem A.6 (Agarwal, Eppstein and Matousek Agarwal et al. (1992)). Let d be a fixed constant.
Let t be a parameter between n and n⌊d/2⌋. There is a dynamic data structure for half-space
reporting that uses Od,ϵ(t

1+ϵ) space and pre-processing time, Od,ϵ(
n

t1/⌊d/2⌋
log n + k) time per

query where k is the output size and ϵ > 0 is any fixed constant, and Od,ϵ(t
1+ϵ/n) amortized update

time.

As a direct corollary, we have
Corollary A.7 (HSR data-structure time complexity Agarwal et al. (1992), formal version of Corol-
lary 3.5). Let Tinit denote the pre-processing time to build the data structure, Tquery denote the time
per query, and Tupdate time per update. Given a set of n points in Rd, the half-space range reporting
problem can be solved with the following performances:

• Part 1. Tinit(n, d) = Od(n log n), Tquery(n, d, k) = O(dn1−1/⌊d/2⌋ + dk).

• Part 2. Tinit(n, d) = O(n⌊d/2⌋), Tquery(n, d, k) = O(d log(n) + dk).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B FULL RELU ATTENTION COMPUTATION

In this section, we focus on optimizing the standard ReLU attention calculation. By leveraging a
HSR data structure and assuming sparsity, the time complexity can be reduced to O(n1+4/5d).
Lemma B.1 (General full attention computation framework, formal version of Lemma 6.3). If the
following conditions hold:

• Let Q ∈ Rm×d and K,V ∈ Rn×d be defined as Definition 1.2.

• Assume each entry of K is from GaussianN (0, σ2
k), and each entry of Q is from Gaussian

N (0, σ2
q).

• Let δ ∈ (0, 1) denote the failure probability.

• Let σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk.

• Let b = σa ·
√
0.4 log n.

• Let HSR data structure be defined as Part 1 in Corollary A.7.

There exists an algorithm (Algorithm 3), with at least 1 − δ probability, computes full attention of
Q,K, V in O(mn1−1/⌊d/2⌋ +mn4/5) time.

Proof. For i ∈ [m], let k̃i := |S̃i,fire| denote the number of non-zero entries in i-th row of A ∈
Rm×n.

The running time for INFERENCE procedure can be written as

Tinit(n, d) +
m∑
i=1

Tquery(n, d, k̃i) +O(d

m∑
i=1

k̃i) +O(d

m∑
i=1

k̃i)

The first term Tinit(n, d) corresponds to the initialization of the HSR data structure. Since we use
Part 1 result from Corollary A.7, the running time for initialization is Tinit(m, d) = Od(m logm).

The second term
∑m

i=1 Tquery(n, d, k̃i) comes from the HSR query operation (Line 11). Since we
use Part 1 result from Corollary A.7, we have

m∑
i=1

Tquery(n, d, k̃i) = O(mn1−1/⌊d/2⌋d+ d

m∑
i=1

k̃i)

= O(mn1−1/⌊d/2⌋d+mn4/5d)

where the first step follows from Tquery(n, d, k̃i) = O(dn1−⌊d/2⌋ + dk̃i) (Part 1 of Corollary A.7),
the second step follows from with high probability k̃i at most n4/5 (Lemma D.3).

The third term O(
∑m

i=1 k̃i) corresponds to calculating Aj,i (Line 13). By Lemma D.3, we have the
third term is O(mn4/5).

The fourth term O(
∑m

i=1 k̃i) corresponds to calculating D−1AV . Since for i-th row of A, there are
k̃i non-zero entries. Therefore, it takes O(

∑m
i=1 k̃i) time for calculating D−1A. Therefore, it takes

O(d
∑m

i=1 k̃i) time to calculate D−1AV . By Lemma D.3, with high probability, k̃i is at most n4/5.
Therefore, we have the third term as O(mn4/5d).

To sum up, the overall running time is O(mn1−1/⌊d/2⌋d+mn4/5d).

We can now derive a more specific result for the full ReLU attention computation:
Theorem B.2 (Running time of full ReLU attention computation, formal version of Lemma 5.1). If
the following conditions hold:

• Let ReLU attention be defined as Definition 1.2.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

• Assume each entry of K is from GaussianN (0, σ2
k), and each entry of Q is from Gaussian

N (0, σ2
q).

• Let δ ∈ (0, 1) denote the failure probability.

• Let σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk.

• Let b = σa ·
√
0.4 log n.

• Suppose we have Q,K, V ∈ Rn×d.

There exists an algorithm (Algorithm 3), with probability at least 1 − δ, takes O(n2−1/⌊d/2⌋d +
n1+4/5d) time to compute the full ReLU attention of Q,K, V .

Proof. By Lemma B.1, we have that the FULLATTENTIONCOMPUTATION data structure (Algo-
rithm 3) can run INFERENCE to calculate the ReLU attention, in O(m1−⌊d/2⌋nd+mn4/5d) time.

By our assumption, we have Q ∈ Rn×d. For each calculation, we only need to call FULLATTEN-
TIONCOMPUTATION.INFERENCE(K,Q, V, n, n, d) for once.

Then, we have the ReLU attention calculation run in O(n1+4/5d) time.

C RELU ATTENTION GENERATION

In this section, we present a theoretical analysis of the time complexity of ReLU attention generation
using a HSR data structure.
Lemma C.1 (General attention generation framework, formal version of Lemma 6.2). If the follow-
ing conditions hold:

• Let Q ∈ Rm×d and K,V ∈ Rn×d be defined as Definition 1.2.

• Assume each entry of K is from GaussianN (0, σ2
k), and each entry of Q is from Gaussian

N (0, σ2
q).

• Let δ ∈ (0, 1) denote the failure probability.

• Let σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk.

• Let b = σa ·
√
0.4 log n.

• Let HSR data structure be defined as Part 2 in Corollary A.7.

Then, there exists an algorithm (Algorithm 2), with at least 1 − δ probability, has the following
performance:

• Part 1. The INIT procedure runs in O(n⌊d/2⌋) time.

• Part 2. For each query, the INFERENCE procedure runs in O(mn4/5d) time.

Proof. Proof of Part 1.

The INIT procedure only runs the initialization of the HSR data structure. Since we use Part 2 result
from Corollary A.7, the running time of INIT procedure is Tinit(n, d) = O(n⌊d/2⌋).

Proof of Part 2.

For i ∈ [m], let k̃i := |S̃i,fire| denote the number of non-zero entries in i-th row of A ∈ Rm×n.

The running time for INFERENCE procedure can be written as
m∑
i=1

Tquery(n, d, k̃i) +O(d

m∑
i=1

k̃i) +O(d

m∑
i=1

k̃i)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The first term
∑m

i=1 Tquery(n, d, k̃i) corresponds to the HSR query operation (Line 16). Since we
use the Part 2 result from Corollary A.7, we have

m∑
i=1

Tquery(n, d, k̃i) = O(md log n+ d

m∑
i=1

k̃i)

= O(md log n+mn4/5d)

= O(mn4/5d)

where the first step follows from Tquery(n, d, k) = O(d log n + dk) in Part 2 of Corollary A.7,
the second step follows from with high probability, k̃i is at most n4/5 (Lemma D.3), the third step
follows from log n < n4/5.

The second term O(d
∑m

i=1 k̃i) corresponds to calculating Ai,j (Line 18). There are m iterations,
and in each iteration, it calculates k̃i entries of A. Then, the second term is O(d

∑m
i=1 k̃i). By

Lemma D.3, with high probability, k̃i is at most n4/5. Therefore, we have the second term as
O(mn4/5d).

Similar to the proof of Lemma B.1 this term is O(mn4/5d).

To sum up, we have the overall running time for INFERENCE procedure is O(mn4/5d).

We now derive a comprehensive sparsity analysis for the ReLU attention mechanism:
Theorem C.2 (Running time of full ReLU attention generation, formal version of Theorem 4.1). If
the following conditions hold:

• Let ReLU attention be defined as Definition 1.2.

• Assume each entry of K is from GaussianN (0, σ2
k), and each entry of Q is from Gaussian

N (0, σ2
q).

• Let δ ∈ (0, 1) denote the failure probability.

• Let σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk.

• Let b = σa ·
√
0.4 log n.

• Suppose we have KV Cache K,V ∈ Rn×d. We want to generate a m length answer, where
n≫ m.

There exists an algorithm (Algorithm 2), with at least 1 − δ probability, takes O(mn4/5d) time to
generate the answer.

Proof. We make use of the ATTENTIONGENERATION data structure (Algorithm 2) in Lemma C.1.

The generation process is an auto-regressive procedure, we define the following notations for better
understanding. For i ∈ [m], let qi, ki ∈ Rd denote the query vector of the i-th iteration, respectively.
Note that qi need to attend on both K ∈ Rn×d and {k1, k2, · · · , ki−1}.
For calculating the attention between qi and K ∈ Rn×d, we just need to call ATTENTIONGENERA-
TION .INFERENCE(qi, 1) for once. Therefore the running time for this part is O(n4/5d) time.

For calculating the attention between qi and {k1, k2, · · · , ki−1, ki}, it takes O(i · d) time.

Therefore, for a single query qi, the running time for getting the attention matrix A ∈ R1×(n+i) is
(n4/5 + i) · d. Since there are only n4/5 + i non-zero entries in A, it takes n4/5 + i time to calculate
D−1A. Then, it takes (n4/5 + i) · d time to calculate D−1AV . Since i ≤ m, the total running time
for calculating attention for a single query qi is O((n4/5 +m) · d).

There are m queries in total. The running time for m queries is O(mn4/5d+m2d).

Since we have n≫ m, the overall running time for the generation is O(mn4/5d).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D SPARSITY ANALYSIS

To begin our analysis, we first examine the application of Bernstein’s inequality to the matrix K:
Lemma D.1 (Bernstein on K). If the following conditions hold:

• Let the ReLU attention be defined as Definition 1.2.

• Let Q ∈ Rm×d and K,V ∈ Rn×d be defined as Definition 1.2.

• Let b ∈ R denote the threshold of ReLU activation, as defined in Definition 1.2.

• For i ∈ [m], let k̃i denote the number of non-zero entries in i-th row of A ∈ Rm×n.

• Assume each entry of K is from Gaussian N (0, σ2
k)

• Let x ∈ Rd denote a single row of Q ∈ Rm×d.

• Let σa = ∥x∥2σk/
√
d.

Then, we can show that, with probability at least 1 − exp(−Ω(n · exp(− b2

2σ2
a
))), the number of

non-zero entries k̃i is at most 2n · exp(− b2

2σ2
a
). Namely, we have

Pr[k̃i ≤ 2n · exp(− b2

2σ2
a

)] ≥ 1− exp(−Ω(n · exp(− b2

2σ2
a

)))

Proof. For simplicity, for i ∈ [n], j ∈ [d], we use Ki,j ∈ R to denote the (i, j)-th entry of K ∈
Rn×d.

Let ri ∈ {0, 1} be the indicator function of ⟨x,Ki,∗⟩. Then, we have k̃i =
∑n

j=1 rj .

Since ri is an indicator function, then we have

|ri| ≤ 1.

By assumption, we have Ki,j ∼ N (0, σ2
k).

Let σa = ∥x∥2 · σk/
√
d.

By the property of Gaussian distribution (Fact A.1), we have ⟨x,Ki,∗⟩ ∼ N (0, d · σ2
a) and

⟨x,Ki,∗⟩/
√
d ∼ N (0, σ2

a).

For any i, j ∈ [n], by Fact A.2, we have ⟨x,Ki,∗⟩ and ⟨x,Kj,∗⟩ are independent, which implies ri
and rj are independent.

By the tail bound of Gaussian distribution (Fact A.4), we have

Pr[ri = 1] = Pr[⟨x,Ki,∗⟩/
√
d ≥ b]

≤ exp(− b2

2σ2
a

),

which implies

E[ri] ≤ exp(− b2

2σ2
a

), (3)

and

E[r2i] ≤ exp(− b2

2σ2
a

),

which implies
n∑

i=1

E[r2i] ≤ n · exp(− b2

2σ2
a

).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Since we have k̃i =
∑n

j=1 rj , by Eq. (3), we have

E[k̃i] ≤ n · exp(− b2

2σ2
a

).

Let k0 := n · exp(− b2

2σ2
a
). By the Bernstein inequality (Lemma A.5), we have

Pr[k̃i ≥ k0 + t] ≤ exp(− t2/2

k0 + t/3
) (4)

We choose t = k0, then we have

Pr[k̃i ≥ 2k0] ≤ exp(−3k0/8)

Then, we reach our conclusion: with probability at least 1− exp(−Ω(n · exp(− b2

2σ2
a
))), the number

of non-zero entries in each row of the attention matrix A is bounded by k̃i ≤ 2n · exp(− b2

2σ2
a
).

We turn our attention to bounding ∥x∥2:
Lemma D.2 (∥x∥2 bound). If the following conditions hold:

• Let Q ∈ Rm×d be defined as Definition 1.2.

• Let x ∈ Rd denote a single row of Q ∈ Rm×d.

• Assume each entry of Q is from N (0, σ2
q).

Then, we can show that, for t ≥ 0 with probability 1− exp(−t), ∥x∥2 is at most
√
3 · (d+ t)1/2 ·σq .

Namely, we have

Pr[∥x∥2 ≤
√
3 · (d+ t)1/2 · σq] ≥ 1− exp(−t).

Proof. For simplicity, we use xi ∈ R to denote the i-th entry of x.

By the assumption, we have xi ∼ N (0, σ2
q).

Since ∥x∥22 =
∑d

i=1 x
2
i , by Chi-square tail bound (Lemma A.3), we have

Pr[∥x∥22 − dσ2
q ≥ (2

√
dt+ 2t)σ2

q] ≤ exp(−t),

which implies

Pr[∥x∥22 ≥ (2
√
dt+ 2t+ d)σ2

q] ≤ exp(−t). (5)

Since we have 2
√
dt ≤ d+ t, Eq. (5) implies

Pr[∥x∥22 ≥ 3(d+ t)σ2
q] ≤ exp(−t),

which is equivalent to

Pr[∥x∥2 ≥
√
3 · (d+ t)1/2 · σq] ≤ exp(−t).

We can now present our formal sparsity analysis, which builds upon the previous lemmas:
Lemma D.3 (Sparsity analysis, formal version of Lemma 6.1). If the following conditions hold:

• Let the ReLU attention be defined as Definition 1.2.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• Let Q ∈ Rm×d and K,V ∈ Rn×d be defined as Definition 1.2.

• Let b ∈ R denote the threshold of ReLU activation, as defined in Definition 1.2.

• For i ∈ [m], let k̃i denote the number of non-zero entries in i-th row of A ∈ Rm×n.

• Assume each entry of K is from GaussianN (0, σ2
k), and each entry of K is from Gaussian

N (0, σ2
q).

• Let δ ∈ (0, 1) denote the failure probability.

• Let σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk.

• Let b = σa ·
√
0.4 log n.

Then, we can show that, with probability at least 1 − δ, for all i ∈ [m], the number of non-zero
entries of the i-th row k̃i is at most 2n4/5.

Proof. This proof follows from applying union bound on Lemma D.1 and Lemma D.2.

By Lemma D.2, we have

Pr[∥x∥2 ≤
√
3 · (d+ t)1/2 · σq] ≥ 1− exp(−t). (6)

We choose t = d+ log(m/δ). Then, Eq. (6) implies

Pr[∥x∥2 ≤ 4 · (d+ log(m/δ))1/2 · σq] ≥ 1− exp(−(d+ log(m/δ))). (7)

Let σa = ∥x∥2 · σk/
√
d. By Eq.(7), we have σa = 4 · (1 + d−1 log(m/δ))1/2 · σqσk.

By Lemma D.1, we have

Pr[k̃i ≤ 2n · exp(− b2

2σ2
a

)] ≥ 1− exp(−Ω(n · exp(− b2

2σ2
a

))). (8)

Let b = σa ·
√
0.4 log n. Then, Eq. (8) implies

Pr[k̃i ≤ 2n4/5] ≥ 1− exp(−O(n4/5)) (9)

Since we have n≫ d, this implies

exp(−O(n4/5)) ≤ exp(−d) (10)

Taking union bound over Eq. (7) and Eq. (9), we have

Pr[k̃i ≤ 2n4/5] ≥ 1− (exp(−O(n4/5) + exp(−(d+ log(m/δ))))

= 1− (exp(−O(n4/5) + (δ/m) · exp(−d)))
≥ 1− δ/m. (11)

where the first step follows from the union bound, the second step follows from basic algebra, the
third step follows from Eq. (10).

Since x ∈ R represents a single row of Q ∈ Rm×d, we already proved that for each fixed row of A,
the k̃i is at most 2n4/5 with probability 1− δ/m.

Taking the union bound over m rows in A, then we can show that with probability 1−δ, for all rows
of A, that row’s k̃i is at most 2n4/5.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

E RUNNING TIME OF SOFTMAX ATTENTION

In this section, we provide our results on reducing the running time of Softmax attention. We begin
with introducing our result on Softmax attention generation.

Theorem E.1 (Running time of Softmax attention generation, formal version of Theorem 4.2). Let
Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Definition 1.1. Let
NN(r, q,K) ⊆ [n] and the Softmax attention with index set Âttns be defined as Definition 3.2. We
choose the threshold b ∈ R in Algorithm 2 such that R = NN(n4/5, q,K). Then, we can show
that the Softmax attention with index set Âttns achieves outstanding running time under the Softmax
attention generation scenario: Suppose we have KV Cache K,V ∈ Rn×d. We want to generate a
m length answer, where m = Θ(1). Algorithm 2 (replacing ReLU attention with Softmax attention)
takes O(mn4/5) time to generate the answer.

Proof. The Softmax attention generation scenario can be proved by substituting the ReLU attention
Attnr (Definition 1.2) with Softmax attention with index set Âttns (Definition 3.2) in Algorithm 2
and Theorem 4.1.

Then, we move on to our result on Softmax full attention computation.

Theorem E.2 (Running time of Softmax full attention computation, formal version of Theorem 5.2).
Let Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Definition 1.1. Let
NN(r, q,K) ⊆ [n] and the Softmax attention with index set Âttns be defined as Definition 3.2. We
choose the threshold b ∈ R in Algorithm 3 such that R = NN(n4/5, q,K). Then, we can show that
the Softmax attention with index set Âttns achieves outstanding running time under full Softmax at-
tention computation scenario: Suppose we have m = Θ(n). Algorithm 3 (replacing ReLU attention
with Softmax attention) takes O(n2−1/⌊d/2⌋d+ n1+4/5d) time to calculate the attention output.

Proof. The Softmax full attention computation scenario can be proved by substituting the ReLU
attention Attnr (Definition 1.2) with Softmax attention with index set Âttns (Definition 3.2) in
Algorithm 3 and Theorem 5.1.

F ERROR ANALYSIS OF SOFTMAX ATTENTION

In this section, we provide an error analysis of the Softmax attention mechanism, deriving error
bounds for the general case and a specific case with the massive activation property.

The following lemmas establish error bounds for Softmax attention when using index sets, formal-
izing the approximation error in attention computation.

Lemma F.1 (General error analysis of Softmax attention with index set, formal version of
Lemma 6.4). If the following conditions hold:

• Let Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Definition 1.1.

• Let q ∈ Rd denote a single row of Q ∈ Rm×d.

• Let α, α and Âttns be defined as Definition 3.2.

Then we have

∥Attns(q,K, V)− Âttns(q,K, V)∥∞ ≤
2α

α
· ∥V ∥∞.

Proof. Recall that R = [n] \ R and K̂ = KR ∈ Rr×d and V̂ = VR ∈ Rr×d and K = KR ∈
R(n−r)×d and V = VR ∈ R(n−r)×d as defined in Definition 3.1. Also, we have û = exp(qK̂⊤) ∈
Rr and α̂ = ⟨û,1r⟩ ∈ R and u = exp(qK

⊤
) ∈ Rn−r and α = ⟨u,1n−r⟩ ∈ R as defined in

Definition 3.2.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Then, we have

∥Attns(q,K, V)− Âttns(q,K, V)∥∞
= ∥(α̂+ α)−1(ûV̂ + uV)− α̂−1ûV̂ ∥∞
≤ ∥((α̂+ α)−1 − α̂−1)ûV̂ ∥∞ + ∥(α̂+ α)−1uV ∥∞
≤ |(α̂+ α)−1 − α̂−1| · ∥û∥1 · ∥V̂ ∥∞ + (α̂+ α)−1 · ∥u∥1 · ∥V ∥∞
= (α̂−1 − (α̂+ α)−1) · α̂ · ∥V̂ ∥∞ + (α̂+ α)−1 · α · ∥V ∥∞
≤ (α̂−1 − (α̂+ α)−1) · α̂ · ∥V ∥∞ + (α̂+ α)−1 · α · ∥V ∥∞
= 2(α̂+ α)−1 · α · ∥V ∥∞
= 2α−1 · α · ∥V ∥∞,

where the first step is by Definition 3.2, the second step is by triangle inequality, the third step is
by ∥uV ∥∞ ≤ ∥u∥1 · ∥V ∥∞ for any vector u and conformable matrix V , and the fourth step is by
definition of α̂ and α, i.e., α̂ = ⟨û,1r⟩ = ∥û∥1 (note that each entry of û is positive), the fifth step
is by max{∥V̂ ∥∞, ∥V ∥∞} = ∥V ∥∞, the sixth step in by simple calculation and the last step is by
α̂+ α = α.

Building on this, we now present a more specific error analysis incorporating the massive activation
property:

Theorem F.2 (Error analysis of Softmax attention with index set, formal version of Theorem 4.3).
If the following conditions hold:

• Let Q ∈ Rm×d, K,V ∈ Rn×d and the Softmax attention Attns be defined in Definition 1.1.

• Let q ∈ Rd denote a single row of Q ∈ Rm×d.

• Let γ ∈ [0, 1], β1 ≥ β2 ≥ 0.

• Let the Softmax attention with index set Âttns be defined as Definition 3.2.

• Let NN(r, q,K) ⊆ [n] denote the indices of top-r entries of qK.

• Let R = NN(nγ , q,K) ⊆ [n], where |R| = nγ .

• Assume the query q and key cache K have (γ, β1, β2) massive activation property.

Then, we can show that

∥Âttns(q,K, V)− Attns(q,K, V)∥∞ ≤
2∥V ∥∞

nγ+(β1−β2)·∥q∥2−1
.

Proof. Let α, α, α̂ be defined in Definition 3.2. By Lemma F.1, we have

∥Attns(q,K, V)− Âttns(q,K, V)∥∞ ≤
2α

α
· ∥V ∥∞.

By Definition 3.3, we have

α̂ =
∑

i∈NN(nγ ,q,K)

exp(⟨q,Ki⟩)

≥
∑

i∈NN(nγ ,q,K)

exp(∥q∥2β1 log(n))

= nγ+β1·∥q∥2 ,

where the first step is by Definition of α̂, the second step is by Definition 3.3 and Jensen inequality,
and the last step is by simple calculation.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

We also have

α =
∑

i∈[n]\NN(nγ ,q,K)

exp(⟨q,Ki⟩)

≤
∑

i∈[n]\NN(nγ ,q,K)

exp(∥q∥2β2 log(n))

≤ n1+β2·∥q∥2 ,

where the first step is by Definition of α, the second step is by Definition 3.3, and the last step is by
simple calculation.

Finally, we finish the proof by the fact α̂+ α = α.

25

	Introduction
	Related Work
	Preliminary
	Notations
	Softmax Attention with Index Set
	Massive Activation
	Half-Space Reporting (HSR) Data Structure

	Main Results on Attention Generation
	Extension on Full Attention Computation
	Technical Overview
	Sparsity Analysis of ReLU Attention
	General Attention Frameworks
	Error Analysis of Softmax Attention with Top- Indices

	Experiments
	Discussion and Future Work
	Conclusion
	Preliminary
	Probability Tools
	Half-Space Reporting (HSR) Data Structures

	Full ReLU Attention Computation
	ReLU Attention Generation
	Sparsity Analysis
	Running Time of Softmax Attention
	Error Analysis of Softmax Attention

