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Abstract001

The growing capabilities of large language002
models in natural language understanding003
significantly strengthen existing agentic sys-004
tems. To power performant on-device mo-005
bile agents for better data privacy, we intro-006
duce DroidCall, the first training and testing007
dataset for accurate Android Intent invocation.008
With a highly flexible and reusable data gen-009
eration pipeline, we constructed 10k samples010
in DroidCall. Given a task instruction in nat-011
ural language, small language models such as012
Qwen2.5-3B and Gemma2-2B fine-tuned with013
DroidCall can approach or even surpass the014
capabilities of GPT-4o for accurate Android015
intent invocation. We also provide an end-016
to-end Android app equipped with these fine-017
tuned models to demonstrate the Android in-018
tent invocation process. The code and dataset019
are available at https://anonymous.4open.020
science/r/DroidCall-C100.021

1 Introduction022

The advent of large language models (LLMs) rev-023

olutionizes natural language processing, enabling024

machines to understand and generate human-like025

language with unprecedented accuracy. In the026

realm of mobile computing, this advancement027

presents a significant opportunity for developing028

intelligent mobile agents (Li et al., 2024; Zhang029

et al., 2024b; Wen et al., 2024; Wang et al., 2023a).030

Specifically, these agents can leverage the rich031

ecosystem of built-in intents (int, 2024) provided032

by both the operating system and third-party appli-033

cations on Android devices. These intents serve034

as a fundamental mechanism for inter-app com-035

munication and function invocation, such as send-036

ing messages, making phone calls, or triggering037

specific app features. By harnessing LLMs, mo-038

bile agents can interpret diverse and complex user039

instructions, seamlessly mapping them to the ap-040

propriate intents, and therefore automating user041

interaction with mobile devices.042

Figure 1: Small language models fine-tuned with
DroidCall have the capability to assist users in complet-
ing common tasks such as adding events to the calendar.

On-device LLMs are necessary for building 043

mobile agents due to privacy and latency con- 044

straints (goo, 2024; Lu et al., 2024b; Yin et al., 045

2024; Xu et al., 2023b; Yuan et al., 2024). Since 046

user data are processed locally, sensitive informa- 047

tion remains on devices, thereby mitigating risks 048

associated with data transmission over networks. 049

Moreover, on-device inference eliminates the need 050

for constant internet connectivity. Various on- 051

device LLM inference optimizations significantly 052

reduce response time (Xu et al., 2024b; Yi et al., 053

2023a; Xu et al., 2024a), leading to a more respon- 054

sive and fluid user experience. 055

However, our investigations reveal a critical chal- 056

lenge: Existing device-affordable LLMs lack the 057

capability of accurate intent invocation. For exam- 058

ple, Llama3.2-1B (Dubey et al., 2024) only suc- 059

ceeds in 31.5% and 60.5% of the tasks in zero-shot 060
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and few-shot scenarios, respectively. This limita-061

tion is not due to inherent deficiencies in the models062

themselves but stems from the absence of special-063

ized datasets tailored for this purpose. Existing064

LLMs are typically trained on broad datasets that065

do not encompass the specific language patterns066

and contextual nuances required for accurate intent067

invocation.068

To address this gap, we introduce DroidCall,069

the first open-sourced, high-quality dataset de-070

signed for fine-tuning LLMs for accurate intent in-071

vocation on Android devices, along with a flexible072

and reusable data generation pipeline. DroidCall073

comprises an extensive collection of user instruc-074

tions paired with their corresponding intents, cov-075

ering a wide array of functionalities across the076

system and third-party apps while the data gen-077

eration pipeline automatically generates, validates,078

and deduplicates data to ensure accuracy and diver-079

sity. Unlike existing methods (Wang et al., 2022;080

Taori et al., 2023; Qin et al., 2023), our approach081

eliminates the need for manually written seed data,082

significantly reducing labor.083

Evaluation. Based on DroidCall, we fine-084

tuned a series of small language models (SLMs)085

that are tailored for on-device use. We demon-086

strate that by fine-tuning models on DroidCall,087

the Android Intent invocation capabilities of these088

SLMs can be effectively unleashed. Some models089

can even achieve higher accuracy than GPT-4o us-090

ing simpler prompts. While prompts for GPT-4o091

contain an average of 1,367 tokens, models after092

fine-tuning, achieve this with an average of just093

645 tokens. The accuracy of using Gemma2-2B094

improves from 59% to 85% after fine-tuned on095

DroidCall, while GPT-4o only achieves an accu-096

racy of 77%.097

End-to-end demo and open-source. We also098

provide an end-to-end Android demonstration with099

the fine-tuned models based on mllm (Yi et al.,100

2023b), a fast and lightweight multimodal LLM in-101

ference engine, which demonstrates the feasibility102

of our work. The demo is illustrated in Figure 1,103

which can assist users in completing common op-104

erations such as composing emails, setting alarms,105

making phone calls, and so on. DroidCall is avail-106

able at https://anonymous.4open.science/r/107

DroidCall-C100.108

2 Related Work 109

2.1 LLM-based Agents 110

LLMs have emerged as a significant advancement 111

in artificial intelligence, particularly in natural lan- 112

guage processing. OpenAI’s GPT series (Achiam 113

et al., 2023) has led the development of LLMs, 114

which have rapidly gained attention. Open-source 115

LLMs (Yang et al., 2024; Team, 2024; Bai et al., 116

2023; Dubey et al., 2024; Liu et al., 2024a; Zhu 117

et al., 2024; GLM et al., 2024) have also emerged, 118

with capabilities approaching or rivaling GPT-4. 119

Additionally, models like GPT-4V have extended 120

LLMs with visual capabilities (Yang et al., 2023c; 121

Lu et al., 2024a; Wang et al., 2024c; Liu et al., 122

2024b), enabling them to handle more complex 123

tasks. 124

Prompting techniques such as React (Yao et al., 125

2022), Plan and Solve (Wang et al., 2023b), and 126

ReWOO (Xu et al., 2023a) allow LLMs to plan 127

tasks, use tools, and interact with external envi- 128

ronments. These advancements have led to the 129

development of agents like AutoGPT (Yang et al., 130

2023a), MetaGPT (Hong et al., 2023), and Hug- 131

gingGPT (Shen et al., 2024b), which can assist 132

humans in various tasks. 133

2.2 Mobile Device Control Agents 134

Significant efforts have been made in control- 135

ling mobile devices using agents. Early work 136

(Venkatesh et al., 2022; Wang et al., 2023a; Wen 137

et al., 2024) designed UI representations to bridge 138

the gap between GUIs and natural language, en- 139

abling models to understand mobile screens. With 140

the advent of multimodal LLMs, agents can now 141

process textual inputs as well as images, audio, 142

or video, allowing them to perceive the environ- 143

ment and accomplish complex tasks. Work such as 144

AppAgent (Yang et al., 2023b) and Mobile Agent 145

(Wang et al., 2024b,a) integrates visual capabilities 146

to implement agents on mobile devices. 147

However, existing agents have limitations: (1) 148

Most rely on cloud-side LLMs like GPT-4, which 149

raises privacy concerns and fails in poor network 150

conditions. Our work addresses this by deploying 151

SLMs on edge devices. (2) Existing agents simu- 152

late human actions (e.g., tap and swipe) to operate 153

devices, which is inefficient and error-prone. We 154

propose intent invocation through function calling 155

as a more efficient and accurate approach. For 156

example, instead of navigating the UI to set an 157

alarm, the agent directly communicates the intent 158

2

https://anonymous.4open.science/r/DroidCall-C100
https://anonymous.4open.science/r/DroidCall-C100
https://anonymous.4open.science/r/DroidCall-C100


Figure 2: Workflow of DroidCall, which consist of three key phases:(1) Functions Predefinition; (2) Data
Generation; (3) Finetuning and Evaluation.

to the app. Our work abstracts intent invocation as159

function calling, enabling operations on Android160

without UI interactions.161

2.3 LLMs for Function Calling162

LLMs possess reasoning capabilities that enable163

function calling when needed. Toolformer (Schick164

et al., 2024) pioneered this area by teaching LLMs165

to use tools during interactions, demonstrating166

the feasibility of function calling and providing167

a framework for subsequent research. To equip168

models with function-calling capabilities, substan-169

tial data is often required. Self-Instruct (Wang170

et al., 2022) shows that LLMs like GPT can gen-171

erate large volumes of fine-tuning data. Following172

this paradigm, efforts like (Qin et al., 2023; Tang173

et al., 2023; Patil et al., 2023; Kim et al., 2023)174

have generated extensive function-calling data for175

fine-tuning. Additionally, works such as APIGen176

(Liu et al., 2024d), ShortcutsBench (Shen et al.,177

2024a), and ToolACE (Liu et al., 2024c) focus on178

dataset construction. AgentOhana (Zhang et al.,179

2024a) standardizes data formats and designs train-180

ing pipelines for effective agent learning.181

In our work, we construct a reusable and cus-182

tomizable data generation pipeline, focusing on183

Android intent invocation to achieve better edge184

performance than GPT-4o. We also provide simple185

methods for fine-tuning and evaluation. Similar186

works like TinyAgent (Erdogan et al., 2024) and187

Octopus (Chen and Li, 2024) implement function-188

calling agents on mobile devices, but TinyAgent189

is specifically designed to target operations on ma-190

cOS systems, meaning it can only function on Ap-191

ple computers, and Octopus requires model archi-192

tecture adjustments. Neither provides code for data193

generation or fine-tuning. 194

3 DroidCall Dataset and Workflow 195

In this section, we introduce the overall workflow 196

of DroidCall, which comprises three key phases 197

as shown in Figure 2: Function Predefinition, Data 198

generation, Finetuning and Evaluation. In §3.1, we 199

first introduce Android intent, a key mechanism 200

of Android. Based on the common intents in An- 201

droid, we manually predefine 24 functions that can 202

assist users in performing some common opera- 203

tions on Android. In §3.2, we detail our method for 204

generating the DroidCall dataset, the first open- 205

sourced dataset for Android intent invocation. Our 206

method requires minimal human supervision and 207

can be easily extended. In §3.3, we describe how 208

we fine-tune LLMs and evaluate their performance. 209

§3.4 shows an end-to-end demonstration of device 210

control using fine-tuned LLMs with DroidCall. 211

3.1 Collecting Android Intents 212

In Android development, an intent is a messaging 213

object used to request actions from app compo- 214

nents. It facilitates communication between com- 215

ponents like activities, services, and broadcast re- 216

ceivers. Android intents are categorized into two 217

types: 218

• Explicit Intents specify the exact component 219

to start, typically used for internal app com- 220

munication. 221

• Implicit Intents declare a general action, al- 222

lowing any compatible component to respond, 223

making them ideal for inter-app interactions. 224

The goal of DroidCall is to enable models to 225

perform function calling on Android devices for 226
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common operations. Implicit intents are particu-227

larly suitable for this purpose, as they effectively228

express user intentions and utilize system resources229

efficiently. To construct the DroidCall dataset, we230

review the Android official documentation (com,231

2024) and select frequently-used intents, encap-232

sulating them into functions that cover common233

operations, including but not limited to alarm con-234

figuration, email composition, and web searching.235

3.2 Dataset Generation236

In this section, we present a detailed description of237

the DroidCall dataset generation process. We first238

introduce the key components utilized in data gen-239

eration: the sampler, collector, LLM and filter com-240

ponents. Subsequently, we elaborate on the critical241

phases of data generation: function predefinition,242

seed data generation, and data generation. The243

entire dataset generation process leverages GPT-4-244

turbo as the underlying language model. Figure 3245

shows an overall workflow of data generation.246

Figure 3: Details of data generation in DroidCall. To
avoid manually creating seed data, DroidCall initially
samples examples from an external dataset to generate
its first set of data. Subsequently, the data is used as
seed data to continuously generate new data, thereby
eliminating the need for laborious manual work. All
the generated data will go through a set of customized
filters to ensure the correctness of data formats and the
diversity of the data.

3.2.1 Key Components of Generation Pipeline247

The data generation pipeline consists of four key248

components: Sampler, LLM, Filter, and Collector.249

Sampler. The sampler takes multiple data250

sources (e.g., lists, jsonl files) as input, samples251

data according to a specific strategy, and organizes252

it into a user-defined format for output.253

LLM. The LLM is the core engine for data gen-254

eration. Using the self-instruct paradigm (Wang255

et al., 2022), we integrate sampled data into prompt256

templates and generate data via the LLM. In this257

work, GPT-4-turbo is used as the LLM.258

Filter. Filters process the LLM’s output, extract- 259

ing structured data, discarding improperly format- 260

ted data, and removing highly similar data. The 261

framework supports custom filters for flexible data 262

processing. 263

Collector. The collector coordinates the pipeline. 264

It retrieves data from the sampler, integrates it into 265

prompt templates, generates raw data via the LLM, 266

processes the data through filters, and collects the 267

final results. 268

3.2.2 Functions Predefinition 269

Automated extraction of intents from the Android 270

Open Source Project (AOS, 2024) is complex due 271

to the dynamic nature of the Android platform. To 272

avoid these challenges, we predefine 24 functions 273

covering common Android operations, utilizing 274

common intents for their implementation. These 275

functions act as an interface between the LLM and 276

the intents, hiding intent details from the LLM. 277

This approach ensures compatibility across differ- 278

ent Android versions, as the LLM only needs to 279

learn the functions, while the underlying intent 280

implementations can be adapted as needed. The 281

predefined functions support operations such as: 282

• Scheduling Assistant: Set alarms/timers, in- 283

sert calendar events. 284

• Contact Management: Add contacts, make 285

phone calls. 286

• Common Operations: Internet search, map 287

search, open camera, adjust settings. 288

• Messaging Services: Compose text messages 289

or emails. 290

In our framework, functions are predefined simi- 291

larly to ordinary Python functions. We write func- 292

tion signatures and provide Google-style docstrings 293

(Goo, 2024), from which structured information is 294

automatically extracted. The extracted data format 295

is shown in Listing 1. 296
297

{ 298
"name": "func1", 299
"description": "This function is ...", 300
"arguments": { 301

"arg1": { 302
"description": "This arg is...", 303
"type": "<type >", 304
"required": "true or false", 305
"default": "<default_value >" 306

}, 307
"arg2": ... 308

}, 309
"returns": { 310

"type": "...", 311
"description": "..." 312

}, 313
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"example": [...]314
}315316

Listing 1: Extracted function. “returns” field and
“example” field are optional.

3.2.3 Data generation317

We follow the self-instruct paradigm (Wang et al.,318

2022; Taori et al., 2023) to build our data genera-319

tion pipeline, which consists of two stages: seed320

generation and data generation.321

Seed Generation Stage. High-quality seed data322

is crucial for guiding LLMs in synthetic data gen-323

eration. To avoid manual effort, we automatically324

generate seed data by leveraging existing function-325

calling datasets. Specifically, we sample data from326

xlam-function-calling-60k (Liu et al., 2024d) and327

prompt the LLM to generate user queries and call-328

ing examples for our predefined functions. These329

seeds are used in the subsequent data generation330

stage.331

Data Generation Stage. In this stage, we use332

the self-instruct paradigm to generate more data.333

For each predefined function, we extract examples334

from the seed data and prompt the LLM to produce335

additional user queries and function-calling exam-336

ples. The generated data follows the format shown337

in Listing 2338
339

{340
"query": "user query here",341
"answers": [342

{343
"id": id,344
"name": "func_name",345
"arguments": {346

"arg1": "value1",347
...348

}349
}, ...350

]351
}352353

Listing 2: An example of generated data

To ensure data quality, we apply three filters354

sequentially:355

JsonExtractor: Extracts JSON data from LLM356

output using a syntax parser.357

FormatFilter: Ensures the extracted JSON358

matches the required format.359

SimilarityFilter: Filters out highly similar360

queries using the LCS ROUGE score (Lin, 2004),361

discarding data with an F-measure value above362

75%.363

We generate two types of function-calling data:364

• Simple: User queries requiring a single func-365

tion call. Listing 3 shows an example:366

367
{ 368

"query": "Wake me up at 8:30", 369
"answers": [ 370

{ 371
"id": 0, 372
"name": "ACTION_SET_ALARM", 373
"arguments": { 374

"EXTRA_HOUR": 8, 375
"EXTRA_MINUTE": 30 376

} 377
} 378

] 379
} 380381

Listing 3: Simple call example

• Complex: User queries requiring multiple 382

function calls. Listing 4 shows an example: 383
384

{ 385
"query": "Set a timer for 30 minutes and 386

dial 123456", 387
"answers": [ 388

{ 389
"id": 0, 390
"name": "ACTION_SET_TIMER", 391
"arguments": { 392

"duration": "30 minutes" 393
} 394

}, 395
{ 396

"id": 1, 397
"name": "dial", 398
"arguments": { 399

"phone_number": "123456" 400
} 401

} 402
] 403

} 404405

Listing 4: Complex call example

The DroidCall dataset consists of 10,000 train- 406

ing and 200 test entries. All prompt templates are 407

provided in Appendix A. 408

3.3 Fine-tuning SLMs with DroidCall 409

Models. We fine-tuned a series of SLMs us- 410

ing the DroidCall dataset, including PhoneLM- 411

1.5B (Yi et al., 2024), Qwen2.5-1.5B, Qwen2.5- 412

3B (Yang et al., 2024; Team, 2024), Llama3.2-1B, 413

Llama3.2-3B (Dubey et al., 2024), MiniCPM3-4B 414

(Hu et al., 2024), Phi3.5-3.8B (Abdin et al., 2024) 415

and Gemma2-2B (Team et al., 2024). 416

Modeling function-calling tasks. We treat func- 417

tion calling as an instruction-following task, where 418

the model’s input includes the user query, avail- 419

able function descriptions, and task instructions, 420

and the output is a specific representation for call- 421

ing a function. 422

To avoid performance degradation caused by 423

mismatched formats, we reuse the model’s chat 424

template instead of designing a unified input-output 425

format. Most models are fine-tuned for chat tasks 426

involving three roles: system, user, and assistant. 427

We place the user query and available function 428
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descriptions in the system and user prompts, and429

the function-calling result in the assistant output.430

This approach aligns the fine-tuning data with the431

model’s existing knowledge, ensuring better perfor-432

mance.433

Setups. We formatted the DroidCall dataset434

into the chat format, resulting in 10K training sam-435

ples. We fine-tuned the model using LoRA (Hu436

et al., 2022) with a rank of 8, alpha of 16, and a437

linear learning rate scheduler (learning rate: 1.41e-438

5, warmup ratio: 0.1). Training ran for 24 epochs,439

with the best checkpoint selected. Prompt format440

details are provided in Appendix B.441

3.4 Putting It All Together442

Using the DroidCall dataset, we equip SLMs with443

Android intent invocation capabilities. To verify444

its effectiveness, we developed an Android applica-445

tion, whose design is shown in Figure 4. The demo446

consists of two key components:447

Retriever: Retrieves the most relevant functions448

using GTE (Li et al., 2023) for word embeddings449

and ObjectBox (obj, 2024) as the vector database.450

When a user query arrives, GTE generates embed-451

dings, and ObjectBox retrieves the relevant func-452

tions.453

Intent Invocation Model: Takes the user query454

and retrieved functions as input, and outputs the455

function calls to fulfill the query. We use PhoneLM-456

1.5B (Yi et al., 2024) fine-tuned on the DroidCall457

dataset for this purpose.458

All model inference is performed on mobile de-459

vices using mllm (Yi et al., 2023b), a fast and460

lightweight multimodal LLM inference engine for461

edge devices. Figure 1 illustrates an example of462

the end-to-end demo, where the fine-tuned model463

assists users in adding an event to the calendar.464

Figure 4: Design of our demo.

4 Experiments 465

We first explored the impact of prompt designs 466

on model fine-tuning, selecting an optimal format 467

based on prompt length and model performance. 468

We then demonstrated that the DroidCall dataset 469

outperforms general function-calling datasets for 470

Android intent invocation. Finally, we present re- 471

sults showcasing the effectiveness of models fine- 472

tuned with DroidCall. 473

Metrics. We introduce two metrics to evaluate 474

function-calling performance: Accuracy and Soft 475

Accuracy. 476

• Accuracy. Measures the model’s ability to 477

perfectly match ground-truth function calls. 478

A sample is correct only if the model’s out- 479

put matches the ground truth in both function 480

identity and parameter values: 481

Acc =
Nperfect

Ntotal
482

• Soft Accuracy. Evaluates partially correct 483

function calls by calculating the proportion 484

of accurately predicted parameters. The met- 485

ric is averaged across all function calls: 486

Accsoft =
1

F

F∑
i=1

Pcorrect,i

Ptotal,i
487

For parameters like title or subject, semantic 488

consistency is sufficient. We use RoBERTa (Liu 489

et al., 2019) to measure semantic similarity, with a 490

threshold of 0.75 for correctness. 491

We evaluate SLMs using the 200 test entries 492

from DroidCall. During testing, we use a fake re- 493

triever that always retrieves ground-truth functions 494

to isolate the impact of the retriever. 495

4.1 Effect of Different Prompts 496

Prompt Average Number of Tokens
code_short 645.195
json_short 950.340

code 931.555
json 1367.905

Table 1: Average number of tokens of different prompts.

In § 3.3, we described the model input compo- 497

nents: user query, available function descriptions, 498

and task instructions, with the output being a spe- 499

cific representation for calling a function. While 500
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(a) Accuracy of Qwen2.5-1.5B-Instruct on different
prompts

(b) Different models fine-tuned on different datasets

Figure 5: Figure 5(a) illustrates the performance of Qwen2.5-1.5B-Instruct after fine-tuning under different prompt
formats. Figure 5(b) shows the performance of PhoneLM-1.5B and Qwen2.5-1.5B-Instruct after finetuning on
different datasets.

the user query is user-provided, we designed the501

remaining components to evaluate their impact on502

fine-tuning performance.503

json. A minimalist design using JSON for avail-504

able function descriptions and function call repre-505

sentations. JSON was chosen for its simplicity.506

code. Leveraging the prevalence of code data507

in pre-training, we used docstrings for function508

descriptions and Python function calls for function509

representations. This aligns with pre-training data,510

potentially improving model comprehension.511

short. We hypothesized that fine-tuned mod-512

els might not require explicit task instructions.513

Thus, we removed task instructions from the json514

and code formats, resulting in json_short and515

code_short.516

We fine-tuned the Qwen2.5-1.5B-Instruct model517

using four prompt formats. Figure 5(a) shows the518

accuracy across nine checkpoints. While the json519

format performed slightly better, the code_short520

format achieved comparable results with signifi-521

cantly fewer tokens, as shown in Table 1. Based on522

these findings, we selected the code_short format523

for subsequent fine-tuning experiments.524

4.2 Effectiveness of DroidCall525

To verify that the DroidCall dataset can achieve526

better results in the task of controlling An-527

droid phones through Android Intent invocation,528

we compared the performance of the Qwen2.5-529

1.5B-Instruct and PhoneLM-1.5B models after530

fine-tuning on the DroidCall dataset and xlam-531

function-calling-60k (Liu et al., 2024d), a general532

function calling dataset. 533

To eliminate the influence of prompt design, we 534

formatted both the xlam-function-calling-60k and 535

DroidCall datasets using the code_short format. 536

The xlam-function-calling-60k dataset comprises 537

60k data points, while DroidCall contains 10k. 538

To ensure an equivalent number of training data 539

instances, we trained the model for 4 epochs on 540

the xlam-function-calling-60k dataset and for 24 541

epochs on DroidCall. We selected 9 checkpoints 542

for testing, and the results are presented in Fig- 543

ure 5(b). Note that the 0th checkpoint in the figure 544

represents the model’s performance when directly 545

evaluated with the code format of prompts before 546

any fine-tuning took place. 547

From the experimental results, we can observe 548

that, regardless of the dataset used, accuracy im- 549

proves with the fine-tuning process. However, the 550

model fine-tuned with the xlam-function-calling- 551

60k dataset quickly reaches a plateau. In contrast, 552

the improvement brought by using the DroidCall 553

dataset is significantly more substantial. 554

It is evident that when a model is required to per- 555

form a specific task, a dataset constructed for that 556

task, such as DroidCall, can yield better results 557

compared to a general-purpose dataset. Further- 558

more, from Figure 5(b), we can discern that ini- 559

tially, Qwen’s capabilities are significantly higher 560

than PhoneLM’s. However, by the end of the 561

fine-tuning process, PhoneLM’s performance is 562

on par with Qwen’s. We speculate that initially, 563

PhoneLM’s Supervised Fine-Tuning (SFT) and 564

alignment were not as effective as Qwen’s, pre- 565
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Model Size Zero-Shot Few-Shot Fine-Tuning

Acc Accsoft Acc Accsoft Acc Accsoft

PhoneLM-1.5B 1.5B 17.5 17.5 55.5 62.8 75 86.1
Qwen2.5-1.5B-Instruct 1.5B 61 76.6 64.5 81 76 90.3
Qwen2.5-3B-Instruct 3B 62 79.4 71 86.1 83 93.5
Qwen2.5-Coder-1.5B 1.5B 42.5 48.8 65.5 81.6 82 93.2
Gemma2-2B-it 2B 59 77.2 67.5 83.7 85 93.9
Phi-3.5-mini-instruct 3.8B 62 77.8 67.5 82.1 83.5 93.8
MiniCPM3-4B 4B 67 84.3 75 89.6 74.5 82.3
Llama3.2-1B-Instruct 1B 31.5 37.7 60.5 76.3 75.5 87.3
Llama3.2-3B-Instruct 3B 66.5 79.8 72 87.2 82 92.7

GPT-4o (2024-08-06) 77 89.1 80.5 91.5
GPT-4o-mini (2024-07-18) 71.5 86.6 76 88.6

Table 2: Evaluation of different models. Our fine-tuned model achieves superior performance compared to GPT-4o,
utilizing only half the prompt length and a compact 2 billion parameters.

venting it from leveraging its pre-trained knowl-566

edge efficiently. The DroidCall dataset, however,567

aids the model in learning to utilize its pre-trained568

knowledge to control Android devices. Since the569

pre-trained knowledge of both PhoneLM and Qwen570

is comparable, they eventually reach a similar level571

of performance.572

4.3 Performance of Different SLMs573

To test the Android intent invocation capabilities of574

some existing SLMs tailored for the edge scenario575

and further verify the effectiveness of DroidCall,576

we tested the Acc and Accsoft of a few models un-577

der three conditions: zero-shot, few-shot, and after578

fine-tuning. When testing the models’ zero-shot579

and few-shot performance, we used json format580

prompts for both, as the json-short and code-short581

formats lack task instructions, which prevents the582

model from finishing the task. In comparison, the583

json format has been found to be more effective584

than the code format.585

The experimental outcomes, as depicted in Ta-586

ble 2, provide a comprehensive overview of the An-587

droid intent invocation capabilities across various588

models. Judging from the zero-shot results, there589

is a significant performance variation among dif-590

ferent models. The zero-shot scenario is a critical591

test of a model’s ability to complete tasks based on592

instructions without having seen relevant examples.593

We believe the primary reason for the differences594

in zero-shot performance among models lies in the595

effectiveness of their SFT and alignment. These596

training stages determine whether the model can597

develop strong instruction-following capabilities. It 598

is also observable that all models exhibit improved 599

performance under few shots. We credit the perfor- 600

mance boost to the models’ improved use of their 601

knowledge from pretraining. 602

After fine-tuning with DroidCall using 603

code_short format, there is a significant improve- 604

ment in the model’s performance. Additionally, 605

during inference, the model only requires a prompt 606

that essentially consists of the user query and 607

available function descriptions, which greatly 608

reduces the prompt length compared to the 609

zero-shot and few-shot scenarios. 610

5 Conclusion 611

In this paper, we introduce DroidCall, a novel 612

dataset specifically engineered to enhance the An- 613

droid intent invocation capabilities of LLMs. Our 614

approach diverged from conventional cloud-based 615

models, focusing instead on on-device deployment 616

to address privacy concerns inherent in mobile en- 617

vironments. In our work, we (1) build a highly 618

customizable and reusable data generation pipeline, 619

(2) construct DroidCall, a first-of-its-kind open- 620

sourced dataset for Android intent invocation based 621

on the pipeline, (3) fine-tune a series of models tai- 622

lored for edge devices, enabling them to approach 623

or even surpass the performance of GPT-4o in the 624

specific task of intent invocation and (4) implement 625

an end-to-end demo with mllm. Our work demon- 626

strates the potential applications of small models 627

on the edge. We have open-sourced all the code of 628

the data generation, fine-tuning, and evaluation. 629
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Limitations630

While our approach demonstrates promising re-631

sults, it has several limitations that warrant further632

investigation.633

Data Quality and Generalizability. Our634

method relies heavily on the quality of the gen-635

erated data, which may introduce biases or inaccu-636

racies. For instance, the synthetic data generated by637

LLMs may not fully capture the diversity of real-638

world scenarios, potentially limiting the model’s639

generalization ability. In this work, we prioritize640

generating high-quality, task-specific data for An-641

droid intent invocation, which allows us to mitigate642

some of these issues within the narrow scope of643

our target domain. However, broader generaliza-644

tion to more diverse or complex scenarios remains645

a challenge. Future work could explore hybrid data646

generation techniques, combining synthetic data647

with real-world user interactions, to improve both648

diversity and accuracy.649

Scalability of the Method. Our approach re-650

quires predefined functions, which limits its adapt-651

ability to new tasks without significant manual652

effort. This limitation is partially offset by the653

modular design of our pipeline, which allows for654

easy extension to new functions within the An-655

droid ecosystem. In the context of this work, we656

focus on a curated set of common Android intents,657

where predefined functions are sufficient to cover658

most use cases. However, for more dynamic or659

open-ended tasks, this approach may not scale ef-660

fectively. Future research could investigate meth-661

ods for automatically discovering and defining new662

functions, potentially leveraging unsupervised or663

semi-supervised learning techniques to reduce man-664

ual intervention.665
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A Data Generation Prompts943

At the beginning of data generation, we first generate seed data. The prompt used to generate seed is944

shown as following:945

I need your help to generate some function calling datasets. I will provide you with a tool description,
and you need to generate queries and corresponding answers based on this tool, i.e., the answers that
call the tool to resolve the user’s query. Here are my requirements:

1. For queries, try to use different vocabulary and syntax to ensure query diversity. Queries can be
long or short, complex or concise. In short, try not to generate similar queries; I want to ensure query
diversity.
2. The language of the queries should be as diverse as possible. This means a query can be a
command, a question, or a request with detailed descriptions, etc.
3. The generated queries should cover all possible uses of the tool as much as possible, meaning the
coverage of various parameters should be comprehensive, ensuring the tool can be used to complete
various forms of work.
4. The generated queries should be solvable using the given tools.
5. For the queries you generate, you should provide answers using the tool, i.e., give the tool used
and the values for each parameter.
6. When providing parameters, if a parameter has required=False, you may omit its value.
7. The generated data must be presented in the format given in my example.
8. The parameter values generated with function call generated must be values that can be inferred
from the user’s query; YOU CANNOT FABRICATE PARAMETERS THAT CANNOT BE
OBTAINED FROM THE USER’S REQUEST.
9. Attach each answer with an id starting from 0. And if a tool should use the respone from another
tool, you can reference it using #id, where id is the id of the tool.

following are some examples:
$examples

Now I will give you a tool, and you help me generate 15 query-answer pairs.
REMEMBER TO GENERATE THE RESULT IN JSON FORMAT LIKE THE EXAMPLE ABOVE
REMEMBER NOT TO FABRICATE PARAMETERS FOR TOOLS. PARAMETERS SHOULD BE
INFERED FROM USER QUERY.
tool: $tool

In the prompt above, $examples will be replace by random samples sampled from xlam-function-946

calling-60k (Liu et al., 2024d). Below is an example:947

tool: {
"name: "...",
"description": "...",
"arguments": {

...
}

}
response: {

"query": "...",
"answers": [

{
...

}
]

}

$tools will be replace by json formatted predefined function, below is an example:948
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tool: {
"name": "ACTION_SET_ALARM",
"description": "...".
"arguments": {

...
}

}

After seed generation stage, we will use another prompt to continuously generate data. Prompt is shown 949

as following: 950

I need your help to generate some function calling datasets. I will provide you with a tool description
and some example data for you. You need to generate queries and corresponding answers based on
this tool, i.e., the answers that call the tool to resolve the user’s query. Here are my requirements:

1. For queries, try to use different vocabulary and syntax to ensure query diversity. Queries can be
long or short, complex or concise. In short, try not to generate similar queries; I want to ensure query
diversity.
2. The language of the queries should be as diverse as possible. This means a query can be a
command, a question, or a request with detailed descriptions, etc.
3. The generated queries should cover all possible uses of the tool as much as possible, meaning the
coverage of various parameters should be comprehensive, ensuring the tool can be used to complete
various forms of work.
4. The generated queries should be solvable using the given tools.
5. For the queries you generate, you should provide answers using the tool, i.e., give the tool used
and the values for each parameter.
6. When providing parameters, if a parameter has required=False, it is not necessary to provide its
value.
7. The query-answer pairs should cover as many possible uses of the tool as possible.
8. The generated data must be presented in the format given in my example.
9. The parameter values generated with function call generated must be values that can be inferred
from the user’s query; YOU CANNOT FABRICATE PARAMETERS THAT CANNOT BE
OBTAINED FROM THE USER’S REQUEST.

following are tool I provided and some examples of query-answer pairs: tool: $tool examples:
$examples

Now please help me generate 40 query-answer pairs. REMEMBER TO GENERATE THE
RESULT IN JSON FORMAT LIKE THE EXAMPLE ABOVE REMEMBER NOT TO FABRICATE
PARAMETERS FOR TOOLS. PARAMETERS SHOULD BE INFERED FROM USER QUERY.

$tool will be replaced by the json format of predefined functions shown early. $examples is the data 951

sampled from the seed data generated previously. 952

When generating data of complex call, we slightly modify the prompt shown above. The seed generation 953

prompt is shown below: 954

I need your help to generate some function calling datasets. I will provide you with a tool description, 955
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and you need to generate queries and corresponding answers based on this tool, i.e., the answers that
call the tool to resolve the user’s query. Here are my requirements:

1. For queries, try to use different vocabulary and syntax to ensure query diversity. Queries can be
long or short, complex or concise. In short, try not to generate similar queries; I want to ensure query
diversity.
2. The language of the queries should be as diverse as possible. This means a query can be a
command, a question, or a request with detailed descriptions, etc.
3. The generated queries should cover all possible uses of the tool as much as possible, meaning the
coverage of various parameters should be comprehensive, ensuring the tool can be used to complete
various forms of work.
4. The generated queries should be solvable using the given tools.
5. For the queries you generate, you should provide answers using the tool, i.e., give the tool used
and the values for each parameter.
6. When providing parameters, if a parameter has required=False, you may omit its value.
7. The generated data must be presented in the format given in my example.
8. THE PARAMETER VALUES GENERATED WITH FUNCTION CALL GENERATED MUST
BE VALUES THAT CAN BE INFERRED FROM THE USER’S QUERY; YOU CANNOT
FABRICATE PARAMETERS THAT CANNOT BE OBTAINED FROM THE USER’S REQUEST.
9. THE GENERATED QUERY SHOULD CONTAIN ENOUGH INFOMATION SO THAT YOU
COULD CORRECTLY GENERATE PARAMETER USED BY THE TOOLS. THIS IS ALSO TO
GUARANTEE THAT YOU DON’T FABRICATE PARAMETERS.
10. You should use all the tools I provided to generate the query and answer. It means that you
should generate a query that needs to use all the tools I provided to solve, and remember to provider
an answer that uses all the tools to solve the query.
11. You can use the same tool multiple times in a single query to ensure the query diversity.
12. Attach each answer with an id starting from 0. And if a tool should use the respone from another
tool, you can reference it using #id, where id is the id of the tool.
13. Generate data of nested function calls if possible. i.e., the argument of a function call is the
response of another function call.

following are some examples:
$examples

Now I will give you a tool, and you help me generate 15 query-answer pairs. REMEMBER TO
GENERATE THE RESULT IN JSON FORMAT LIKE THE EXAMPLE ABOVE AND PUT IT IN
A JSON LIST.
REMEMBER YOU SHOULD USE ALL THE TOOLS AT ONE QUERY AND SOLVE IT WITH
ALL TOOLS, AND GENERATE NESTED CALL IF POSSIBLE.
REMEMBER NOT TO FABRICATE PARAMETERS FOR TOOLS. PARAMETERS SHOULD BE
INFERED FROM USER QUERY.
tools:
$tools956

Prompt for continuously generating complex function calling data is:957

I need your help to generate some function calling datasets. I will provide you with a tool description,958
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and you need to generate queries and corresponding answers based on this tool, i.e., the answers that
call the tool to resolve the user’s query. Here are my requirements:

1. For queries, try to use different vocabulary and syntax to ensure query diversity. Queries can be
long or short, complex or concise. In short, try not to generate similar queries; I want to ensure query
diversity.
2. The language of the queries should be as diverse as possible. This means a query can be a
command, a question, or a request with detailed descriptions, etc.
3. The generated queries should cover all possible uses of the tool as much as possible, meaning the
coverage of various parameters should be comprehensive, ensuring the tool can be used to complete
various forms of work.
4. The generated queries should be solvable using the given tools.
5. For the queries you generate, you should provide answers using the tool, i.e., give the tool used
and the values for each parameter.
6. When providing parameters, if a parameter has required=False, you may omit its value.
7. The generated data must be presented in the format given in my example.
8. THE PARAMETER VALUES GENERATED WITH FUNCTION CALL GENERATED MUST
BE VALUES THAT CAN BE INFERRED FROM THE USER’S QUERY; YOU CANNOT
FABRICATE PARAMETERS THAT CANNOT BE OBTAINED FROM THE USER’S REQUEST.
9. THE GENERATED QUERY SHOULD CONTAIN ENOUGH INFOMATION SO THAT YOU
COULD CORRECTLY GENERATE PARAMETER USED BY THE TOOLS. THIS IS ALSO TO
GUARANTEE THAT YOU DON’T FABRICATE PARAMETERS.
10. You should use all the tools I provided to generate the query and answer. It means that you
should generate a query that needs to use all the tools I provided to solve, and remember to provider
an answer that uses all the tools to solve the query.
11. You can use the same tool multiple times in a single query to ensure the query diversity.
12. Attach each answer with an id starting from 0. And if a tool should use the respone from another
tool, you can reference it using #id, where id is the id of the tool.
13. Generate data of nested function calls if possible. i.e., the argument of a function call is the
response of another function call.

Now I will give you some tools and some example data of query-answer pairs using these tools.
Please help me generate 40 query-answer pairs. tools: $tools
examples: $examples

REMEMBER TO GENERATE THE RESULT IN JSON FORMAT LIKE THE EXAMPLE
ABOVE AND PUT IT IN A JSON LIST.
REMEMBER YOU SHOULD USE ALL THE TOOLS AT ONE QUERY AND SOLVE IT WITH
ALL TOOLS, AND GENERATE NESTED CALL IF POSSIBLE.
REMEMBER NOT TO FABRICATE PARAMETERS FOR TOOLS. PARAMETERS SHOULD BE
INFERED FROM USER QUERY. 959

B Function Calling Prompts 960

In § 4.1, we’ve mentioned that we have tested 4 format of prompt: json, code, json_short and code_short. 961

To unify our fine-tuning, we use chat to do function calling thus we only need to design the part of system, 962

user and assistant using chat template. 963

In json or code format, the system prompt would be: 964

You are an expert in composing functions. You are given a query and a set of possible functions.
Based on the query, you will need to make one or more function calls to achieve the purpose. If none
of the function can be used, point it out. If the given question lacks the parameters required by the
function, also point it out. Remember you should not use functions that is not suitable for the query
and only return the function call in tools call sections.

in json_short or code_short the system prompt would be: 965
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You are an expert in composing functions.

The user part of json or code is:966

Here is a list of functions that you can invoke:
$functions

Should you decide to return the function call(s), Put it in the format of
$format_description

$example
If there is a way to achieve the purpose using the given functions, please provide the function

call(s) in the above format. REMEMBER TO ONLY RETURN THE FUNCTION CALLS LIKE
THE EXAMPLE ABOVE, NO OTHER INFORMATION SHOULD BE RETURNED.

Now my query is: $user_query

$functions is the functions descriptions provided by retriever, in code or code_short format, it would be967

like:968

Name:
send_email

Description:
Compose and send an email with optional attachments.

This function allows the user to compose an email with various options,
including multiple recipients, CC, BCC, and file attachments.
Args:

to (List[str]): ...
subject (str): ...
...

Returns:
None

Example:
# Send an email with a content URI attachment

send_email(
to=["recipient@example.com"],
subject="Document",
body="Please find the attached document.",
attachments=...

)

In json or json_short, functions would be describe directly in json format as shown in Listing 1.969

$format_description in the prompt will be replace by detailed output format the model should follow.970

In json it will be:971

[972
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{
"id": 0,
"name": "func0",
"arguments": {

"arg1": "value1",
"arg2": "value2",
...

}
},
{
"id": 1,
"name": "func1",
"arguments": {

"arg1": "value1",
"arg2": "value2",
...

}
},
...

]
If an argument is a response from a previous function call,
you can reference it in the following way like the argument
value of arg2 in func1:
[

{
"id": 0,
"name": "func0",
"arguments": {

"arg1": "value1",
"arg2": "value2",
...

}
},
{
"id": 1,
"name": "func1",
"arguments": {

"arg1": "value1",
"arg2": "#0",
...

}
},
...

]
This means that the value of arg2 in func1 is the return
value from func0 (#0 means the response from the function call with id 0). 973

In code format this will be 974

result1 = func0(arg1="value1", arg2="value2", ...) 975
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result2 = func1(arg1="value1", arg2=result1, ...)
...
You can do nested function calling in the following way:
result1 = func0(arg1="value1", arg2="value2", ...)
result2 = func1(arg1="value1", arg2=result1, ...)
...
This means that the value of arg2 in func1 is the return value from func0.976

$example in the prompt is used to test few-shot performance of a model.977

The user prompt of json_short or code_short is much simpler withou task instructions:978

Here is a list of functions: $functions
Now my query is: $user_query

In code or code_short format the assistant output would be:979

<sep>result1 = func0(arg1="value1", arg2="value2", ...)
result2 = func1(arg1="value1", arg2=result1, ...)</sep>

where < sep > and < /sep > can be any seperator set before fine-tuning.980

In json or json_short format the assistant output would be:981

[
{
"id": 0,
"name": "func0",
"arguments": {

"arg1": "value1",
"arg2": "value2",
...

}
},
...

]
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