DroidCall: A Dataset for LLM-powered Android Intent Invocation

Anonymous ACL submission

Abstract

The growing capabilities of large language
models in natural language understanding
significantly strengthen existing agentic sys-
tems. To power performant on-device mo-
bile agents for better data privacy, we intro-
duce DroidCall, the first training and testing
dataset for accurate Android Intent invocation.
With a highly flexible and reusable data gen-
eration pipeline, we constructed 10k samples
in DroidCall. Given a task instruction in nat-
ural language, small language models such as
Qwen2.5-3B and Gemma2-2B fine-tuned with

DroidCall can approach or even surpass the
capabilities of GPT-40 for accurate Android
intent invocation. We also provide an end-
to-end Android app equipped with these fine-
tuned models to demonstrate the Android in-
tent invocation process. The code and dataset
are available at https://anonymous.4open.
science/r/DroidCall-C100.

1 Introduction

The advent of large language models (LLMs) rev-
olutionizes natural language processing, enabling
machines to understand and generate human-like
language with unprecedented accuracy. In the
realm of mobile computing, this advancement
presents a significant opportunity for developing
intelligent mobile agents (Li et al., 2024; Zhang
et al., 2024b; Wen et al., 2024; Wang et al., 2023a).
Specifically, these agents can leverage the rich
ecosystem of built-in intents (int, 2024) provided
by both the operating system and third-party appli-
cations on Android devices. These intents serve
as a fundamental mechanism for inter-app com-
munication and function invocation, such as send-
ing messages, making phone calls, or triggering
specific app features. By harnessing LLMs, mo-
bile agents can interpret diverse and complex user
instructions, seamlessly mapping them to the ap-
propriate intents, and therefore automating user
interaction with mobile devices.

358 @ - e 4 o+ 358 @ - 7 4) ¢
€« Chat X 4
Add event
Done for you.
Remind me of a meeting in 30
minutes.
Done for you. Symphony Performance
Please help me add an event to All day
my calendar. | will attending a
symphony performance at the From
national grand theater on
November 30, 2024.
To
$result0 =
ACTION_INSERT_EVENT(TITLE="S Repeat
ymphony Performance”,
DESCRIPTION="Attending a
symphony performance at the Reminders
national grand theater on
November 30, 2024",
EVENT_LOCATION="national Alarm reminders
grand theater”,
EXTRA_EVENT_BEGIN_TIME="202
4-11-30T00:00:00",
EXTRA_EVENT_END_TIME="2024~ Account

@

11-30T00:00:00")$

Time zone

Help users add events to the calendar for reminders.

Figure 1: Small language models fine-tuned with
DroidCall have the capability to assist users in complet-
ing common tasks such as adding events to the calendar.

On-device LLMs are necessary for building
mobile agents due to privacy and latency con-
straints (goo, 2024; Lu et al., 2024b; Yin et al,,
2024; Xu et al., 2023b; Yuan et al., 2024). Since
user data are processed locally, sensitive informa-
tion remains on devices, thereby mitigating risks
associated with data transmission over networks.
Moreover, on-device inference eliminates the need
for constant internet connectivity. Various on-
device LLM inference optimizations significantly
reduce response time (Xu et al., 2024b; Yi et al.,
2023a; Xu et al., 2024a), leading to a more respon-
sive and fluid user experience.

However, our investigations reveal a critical chal-
lenge: Existing device-affordable LLMs lack the
capability of accurate intent invocation. For exam-
ple, Llama3.2-1B (Dubey et al., 2024) only suc-
ceeds in 31.5% and 60.5% of the tasks in zero-shot

https://anonymous.4open.science/r/DroidCall-C100
https://anonymous.4open.science/r/DroidCall-C100
https://anonymous.4open.science/r/DroidCall-C100

and few-shot scenarios, respectively. This limita-
tion is not due to inherent deficiencies in the models
themselves but stems from the absence of special-
ized datasets tailored for this purpose. Existing
LLMs are typically trained on broad datasets that
do not encompass the specific language patterns
and contextual nuances required for accurate intent
invocation.

To address this gap, we introduce DroidCall,
the first open-sourced, high-quality dataset de-
signed for fine-tuning LLMs for accurate intent in-
vocation on Android devices, along with a flexible
and reusable data generation pipeline. DroidCall
comprises an extensive collection of user instruc-
tions paired with their corresponding intents, cov-
ering a wide array of functionalities across the
system and third-party apps while the data gen-
eration pipeline automatically generates, validates,
and deduplicates data to ensure accuracy and diver-
sity. Unlike existing methods (Wang et al., 2022;
Taori et al., 2023; Qin et al., 2023), our approach
eliminates the need for manually written seed data,
significantly reducing labor.

Evaluation. Based on DroidCall, we fine-
tuned a series of small language models (SLMs)
that are tailored for on-device use. We demon-
strate that by fine-tuning models on DroidCall,
the Android Intent invocation capabilities of these
SLMs can be effectively unleashed. Some models
can even achieve higher accuracy than GPT-40 us-
ing simpler prompts. While prompts for GPT-40
contain an average of 1,367 tokens, models after
fine-tuning, achieve this with an average of just
645 tokens. The accuracy of using Gemma2-2B
improves from 59% to 85% after fine-tuned on
DroidCall, while GPT-40 only achieves an accu-
racy of 77%.

End-to-end demo and open-source. We also
provide an end-to-end Android demonstration with
the fine-tuned models based on mllm (Yi et al.,
2023b), a fast and lightweight multimodal LLM in-
ference engine, which demonstrates the feasibility
of our work. The demo is illustrated in Figure 1,
which can assist users in completing common op-
erations such as composing emails, setting alarms,
making phone calls, and so on. DroidCall is avail-
able at https://anonymous.4open.science/r/
DroidCall-C10e.

2 Related Work
2.1 LLM-based Agents

LLMs have emerged as a significant advancement
in artificial intelligence, particularly in natural lan-
guage processing. OpenAl’s GPT series (Achiam
et al., 2023) has led the development of LLMs,
which have rapidly gained attention. Open-source
LLMs (Yang et al., 2024; Team, 2024; Bai et al.,
2023; Dubey et al., 2024; Liu et al., 2024a; Zhu
et al., 2024; GLM et al., 2024) have also emerged,
with capabilities approaching or rivaling GPT-4.
Additionally, models like GPT-4V have extended
LLMs with visual capabilities (Yang et al., 2023c;
Lu et al., 2024a; Wang et al., 2024c; Liu et al.,
2024b), enabling them to handle more complex
tasks.

Prompting techniques such as React (Yao et al.,
2022), Plan and Solve (Wang et al., 2023b), and
ReWOO (Xu et al., 2023a) allow LLMs to plan
tasks, use tools, and interact with external envi-
ronments. These advancements have led to the
development of agents like AutoGPT (Yang et al.,
2023a), MetaGPT (Hong et al., 2023), and Hug-
gingGPT (Shen et al., 2024b), which can assist
humans in various tasks.

2.2 Mobile Device Control Agents

Significant efforts have been made in control-
ling mobile devices using agents. Early work
(Venkatesh et al., 2022; Wang et al., 2023a; Wen
et al., 2024) designed Ul representations to bridge
the gap between GUIs and natural language, en-
abling models to understand mobile screens. With
the advent of multimodal LL.Ms, agents can now
process textual inputs as well as images, audio,
or video, allowing them to perceive the environ-
ment and accomplish complex tasks. Work such as
AppAgent (Yang et al., 2023b) and Mobile Agent
(Wang et al., 2024b,a) integrates visual capabilities
to implement agents on mobile devices.

However, existing agents have limitations: (1)
Most rely on cloud-side LLMs like GPT-4, which
raises privacy concerns and fails in poor network
conditions. Our work addresses this by deploying
SLMs on edge devices. (2) Existing agents simu-
late human actions (e.g., tap and swipe) to operate
devices, which is inefficient and error-prone. We
propose intent invocation through function calling
as a more efficient and accurate approach. For
example, instead of navigating the Ul to set an
alarm, the agent directly communicates the intent

https://anonymous.4open.science/r/DroidCall-C100
https://anonymous.4open.science/r/DroidCall-C100
https://anonymous.4open.science/r/DroidCall-C100

/" Functions Predefinition

def funcl(argl): : : —

description of
funcl...

sample

Esamples
def func2(argl, arg2): v H

description of
func2...
i

sample

Externel
dataset

Predefined functions

DroidCall
Dataset

=l
U g
“S g g Fnetune g § o
]
ES LLM new LLM
fes
<
=5
(=
: o
"argument”: { =9
“argl": g
“arg2": value2

Figure 2: Workflow of DroidCall, which consist of three key phases:(1) Functions Predefinition; (2) Data

Generation; (3) Finetuning and Evaluation.

to the app. Our work abstracts intent invocation as
function calling, enabling operations on Android
without Ul interactions.

2.3 LLMs for Function Calling

LLMs possess reasoning capabilities that enable
function calling when needed. Toolformer (Schick
et al., 2024) pioneered this area by teaching LLMs
to use tools during interactions, demonstrating
the feasibility of function calling and providing
a framework for subsequent research. To equip
models with function-calling capabilities, substan-
tial data is often required. Self-Instruct (Wang
et al., 2022) shows that LLMs like GPT can gen-
erate large volumes of fine-tuning data. Following
this paradigm, efforts like (Qin et al., 2023; Tang
et al., 2023; Patil et al., 2023; Kim et al., 2023)
have generated extensive function-calling data for
fine-tuning. Additionally, works such as APIGen
(Liu et al., 2024d), ShortcutsBench (Shen et al.,
2024a), and ToolACE (Liu et al., 2024c¢) focus on
dataset construction. AgentOhana (Zhang et al.,
2024a) standardizes data formats and designs train-
ing pipelines for effective agent learning.

In our work, we construct a reusable and cus-
tomizable data generation pipeline, focusing on
Android intent invocation to achieve better edge
performance than GPT-40. We also provide simple
methods for fine-tuning and evaluation. Similar
works like TinyAgent (Erdogan et al., 2024) and
Octopus (Chen and Li, 2024) implement function-
calling agents on mobile devices, but TinyAgent
is specifically designed to target operations on ma-
cOS systems, meaning it can only function on Ap-
ple computers, and Octopus requires model archi-
tecture adjustments. Neither provides code for data

generation or fine-tuning.

3 DroidCall Dataset and Workflow

In this section, we introduce the overall workflow
of DroidCall, which comprises three key phases
as shown in Figure 2: Function Predefinition, Data
generation, Finetuning and Evaluation. In §3.1, we
first introduce Android intent, a key mechanism
of Android. Based on the common intents in An-
droid, we manually predefine 24 functions that can
assist users in performing some common opera-
tions on Android. In §3.2, we detail our method for
generating the DroidCall dataset, the first open-
sourced dataset for Android intent invocation. Our
method requires minimal human supervision and
can be easily extended. In §3.3, we describe how
we fine-tune LLMs and evaluate their performance.
3.4 shows an end-to-end demonstration of device
control using fine-tuned LLMs with DroidCall.

3.1 Collecting Android Intents

In Android development, an intent is a messaging
object used to request actions from app compo-
nents. It facilitates communication between com-
ponents like activities, services, and broadcast re-
ceivers. Android intents are categorized into two
types:

» Explicit Intents specify the exact component
to start, typically used for internal app com-
munication.

* Implicit Intents declare a general action, al-
lowing any compatible component to respond,
making them ideal for inter-app interactions.

The goal of DroidCall is to enable models to
perform function calling on Android devices for

common operations. Implicit intents are particu-
larly suitable for this purpose, as they effectively
express user intentions and utilize system resources
efficiently. To construct the DroidCall dataset, we
review the Android official documentation (com,
2024) and select frequently-used intents, encap-
sulating them into functions that cover common
operations, including but not limited to alarm con-
figuration, email composition, and web searching.

3.2 Dataset Generation

In this section, we present a detailed description of
the DroidCall dataset generation process. We first
introduce the key components utilized in data gen-
eration: the sampler, collector, LLM and filter com-
ponents. Subsequently, we elaborate on the critical
phases of data generation: function predefinition,
seed data generation, and data generation. The
entire dataset generation process leverages GPT-4-
turbo as the underlying language model. Figure 3
shows an overall workflow of data generation.

Seed Generation
Stage

D H
Predefined _‘1 H
functions @ : y

| |
h

External
dataset Seed generation |
prompt H

Sampler

{ Data Generation
: Stage

)

DroidCall .| Data generation
Dataset : prompt

functions & examples

Figure 3: Details of data generation in DroidCall. To
avoid manually creating seed data, DroidCall initially
samples examples from an external dataset to generate
its first set of data. Subsequently, the data is used as
seed data to continuously generate new data, thereby
eliminating the need for laborious manual work. All
the generated data will go through a set of customized
filters to ensure the correctness of data formats and the
diversity of the data.

3.2.1 Key Components of Generation Pipeline

The data generation pipeline consists of four key
components: Sampler, LLM, Filter, and Collector.

Sampler. The sampler takes multiple data
sources (e.g., lists, jsonl files) as input, samples
data according to a specific strategy, and organizes
it into a user-defined format for output.

LLM. The LLM is the core engine for data gen-
eration. Using the self-instruct paradigm (Wang
et al., 2022), we integrate sampled data into prompt
templates and generate data via the LLM. In this
work, GPT-4-turbo is used as the LLM.

Filter. Filters process the LLM’s output, extract-
ing structured data, discarding improperly format-
ted data, and removing highly similar data. The
framework supports custom filters for flexible data
processing.

Collector. The collector coordinates the pipeline.
It retrieves data from the sampler, integrates it into
prompt templates, generates raw data via the LLM,
processes the data through filters, and collects the
final results.

3.2.2 Functions Predefinition

Automated extraction of intents from the Android
Open Source Project (AOS, 2024) is complex due
to the dynamic nature of the Android platform. To
avoid these challenges, we predefine 24 functions
covering common Android operations, utilizing
common intents for their implementation. These
functions act as an interface between the LLM and
the intents, hiding intent details from the LLM.
This approach ensures compatibility across differ-
ent Android versions, as the LLM only needs to
learn the functions, while the underlying intent
implementations can be adapted as needed. The
predefined functions support operations such as:

* Scheduling Assistant: Set alarms/timers, in-
sert calendar events.

* Contact Management: Add contacts, make
phone calls.

* Common Operations: Internet search, map
search, open camera, adjust settings.

* Messaging Services: Compose text messages
or emails.

In our framework, functions are predefined simi-
larly to ordinary Python functions. We write func-
tion signatures and provide Google-style docstrings
(Goo, 2024), from which structured information is
automatically extracted. The extracted data format
is shown in Listing 1.

{

"name"”: "funcl"”,

"description”: "This function is ...",

"arguments”: {

"argl": {

"description”: "This arg is...",
"type”: "<type>",
"required”: "true or false”,
"default”: "<default_value>"

3,
"arg2": ...
1,
"returns”: {
"type”: " "
"description”: "..."

3,

"example”: [...]

3

Listing 1: Extracted function. “returns” field and

“example” field are optional.

3.2.3 Data generation

We follow the self-instruct paradigm (Wang et al.,
2022; Taori et al., 2023) to build our data genera-
tion pipeline, which consists of two stages: seed
generation and data generation.

Seed Generation Stage. High-quality seed data
is crucial for guiding LLMs in synthetic data gen-
eration. To avoid manual effort, we automatically
generate seed data by leveraging existing function-
calling datasets. Specifically, we sample data from
xlam-function-calling-60k (Liu et al., 2024d) and
prompt the LLM to generate user queries and call-
ing examples for our predefined functions. These
seeds are used in the subsequent data generation
stage.

Data Generation Stage. In this stage, we use
the self-instruct paradigm to generate more data.
For each predefined function, we extract examples
from the seed data and prompt the LLM to produce
additional user queries and function-calling exam-
ples. The generated data follows the format shown
in Listing 2

{
"query": "user query here”,
"answers”: [
{
"id": id,
"name"”: "func_name",
"arguments”: {
"argl": "valuel”,

Listing 2: An example of generated data

To ensure data quality, we apply three filters
sequentially:

JsonExtractor: Extracts JSON data from LLM
output using a syntax parser.

FormatFilter: Ensures the extracted JSON
matches the required format.
SimilarityFilter: Filters out highly similar

queries using the LCS ROUGE score (Lin, 2004),
discarding data with an F-measure value above
75%.

We generate two types of function-calling data:

» Simple: User queries requiring a single func-
tion call. Listing 3 shows an example:

{
"query": "Wake me up at 8:30",
"answers": [
{
"id": o,
"name": "ACTION_SET_ALARM",
"arguments”: {
"EXTRA_HOUR": 8,
"EXTRA_MINUTE": 30
3
}
]
3

Listing 3: Simple call example

* Complex: User queries requiring multiple
function calls. Listing 4 shows an example:

{

"query": "Set a timer for 30 minutes and
dial 123456",
"answers": [
{
"id": o,
"name": "ACTION_SET_TIMER",
"arguments”: {
"duration”: "30 minutes”
3
3,
{
"id": 1,
"name": "dial",
"arguments”: {
"phone_number”: "123456"

3
}
]
3

Listing 4: Complex call example

The DroidCall dataset consists of 10,000 train-
ing and 200 test entries. All prompt templates are
provided in Appendix A.

3.3 Fine-tuning SLLMs with DroidCall

Models. We fine-tuned a series of SLMs us-
ing the DroidCall dataset, including PhonelLM-
1.5B (Yi et al., 2024), Qwen2.5-1.5B, Qwen2.5-
3B (Yang et al., 2024; Team, 2024), Llama3.2-1B,
Llama3.2-3B (Dubey et al., 2024), MiniCPM3-4B
(Hu et al., 2024), Phi3.5-3.8B (Abdin et al., 2024)
and Gemma?2-2B (Team et al., 2024).

Modeling function-calling tasks. We treat func-
tion calling as an instruction-following task, where
the model’s input includes the user query, avail-
able function descriptions, and task instructions,
and the output is a specific representation for call-
ing a function.

To avoid performance degradation caused by
mismatched formats, we reuse the model’s chat
template instead of designing a unified input-output
format. Most models are fine-tuned for chat tasks
involving three roles: system, user, and assistant.
We place the user query and available function

descriptions in the system and user prompts, and
the function-calling result in the assistant output.
This approach aligns the fine-tuning data with the
model’s existing knowledge, ensuring better perfor-
mance.

Setups. We formatted the DroidCall dataset
into the chat format, resulting in 10K training sam-
ples. We fine-tuned the model using LoRA (Hu
et al., 2022) with a rank of 8, alpha of 16, and a
linear learning rate scheduler (learning rate: 1.41e-
5, warmup ratio: 0.1). Training ran for 24 epochs,
with the best checkpoint selected. Prompt format
details are provided in Appendix B.

3.4 Putting It All Together

Using the DroidCall dataset, we equip SLMs with
Android intent invocation capabilities. To verify
its effectiveness, we developed an Android applica-
tion, whose design is shown in Figure 4. The demo
consists of two key components:

Retriever: Retrieves the most relevant functions
using GTE (Li et al., 2023) for word embeddings
and ObjectBox (obj, 2024) as the vector database.
When a user query arrives, GTE generates embed-
dings, and ObjectBox retrieves the relevant func-
tions.

Intent Invocation Model: Takes the user query
and retrieved functions as input, and outputs the
function calls to fulfill the query. We use PhoneLM-
1.5B (Yi et al., 2024) fine-tuned on the DroidCall
dataset for this purpose.

All model inference is performed on mobile de-
vices using mllm (Yi et al., 2023b), a fast and
lightweight multimodal LLM inference engine for
edge devices. Figure 1 illustrates an example of
the end-to-end demo, where the fine-tuned model
assists users in adding an event to the calendar.

Prompt Template

retrieve

Documents Embeddings

001101110

Set an alarm
at 8:30

query emb T
P |

query

I mllm l
User

Figure 4: Design of our demo.

4 Experiments

We first explored the impact of prompt designs
on model fine-tuning, selecting an optimal format
based on prompt length and model performance.
We then demonstrated that the DroidCall dataset
outperforms general function-calling datasets for
Android intent invocation. Finally, we present re-
sults showcasing the effectiveness of models fine-
tuned with DroidCall.

Metrics. We introduce two metrics to evaluate
function-calling performance: Accuracy and Soft
Accuracy.

* Accuracy. Measures the model’s ability to
perfectly match ground-truth function calls.
A sample is correct only if the model’s out-
put matches the ground truth in both function
identity and parameter values:

N, perfect

Acc =
N total

* Soft Accuracy. Evaluates partially correct
function calls by calculating the proportion
of accurately predicted parameters. The met-
ric is averaged across all function calls:

F
A 1 P, correct,?
CCsoft = g
F i—1 Ptotal,i

For parameters like title or subject, semantic
consistency is sufficient. We use RoOBERTa (Liu
et al., 2019) to measure semantic similarity, with a
threshold of 0.75 for correctness.

We evaluate SLMs using the 200 test entries
from DroidCall. During testing, we use a fake re-
triever that always retrieves ground-truth functions
to isolate the impact of the retriever.

4.1 Effect of Different Prompts

Prompt | Average Number of Tokens
code_short 645.195
json_short 950.340

code 931.555
json 1367.905

Table 1: Average number of tokens of different prompts.

In § 3.3, we described the model input compo-
nents: user query, available function descriptions,
and task instructions, with the output being a spe-
cific representation for calling a function. While

Model Accuracy over Checkpoints

Accuracy (%)

o
o
L

64 1

—— code_short

621 json_short

1 2 3 4 5 6 7 8 9
Checkpoint

(a) Accuracy of Qwen2.5-1.5B-Instruct on different

prompts

Model Accuracy over Checkpoints

/

o
8

Accuracy (%)

without fine-tune

—— PhonelLM-1.5B:xlam
—— PhonelLM-1.5B:DroidCall
—— Qwen2.5-1.5B:DroidCall
Qwen2.5-1.5B:xlam

o] 2 4 6 8
Checkpoint

(b) Different models fine-tuned on different datasets

Figure 5: Figure 5(a) illustrates the performance of Qwen2.5-1.5B-Instruct after fine-tuning under different prompt
formats. Figure 5(b) shows the performance of PhoneLM-1.5B and Qwen2.5-1.5B-Instruct after finetuning on

different datasets.

the user query is user-provided, we designed the
remaining components to evaluate their impact on
fine-tuning performance.

json. A minimalist design using JSON for avail-
able function descriptions and function call repre-
sentations. JSON was chosen for its simplicity.

code. Leveraging the prevalence of code data
in pre-training, we used docstrings for function
descriptions and Python function calls for function
representations. This aligns with pre-training data,
potentially improving model comprehension.

short. We hypothesized that fine-tuned mod-
els might not require explicit task instructions.
Thus, we removed task instructions from the json
and code formats, resulting in json_short and
code_short.

We fine-tuned the Qwen2.5-1.5B-Instruct model
using four prompt formats. Figure 5(a) shows the
accuracy across nine checkpoints. While the json
format performed slightly better, the code_short
format achieved comparable results with signifi-
cantly fewer tokens, as shown in Table 1. Based on
these findings, we selected the code_short format
for subsequent fine-tuning experiments.

4.2 Effectiveness of DroidCall

To verify that the DroidCall dataset can achieve
better results in the task of controlling An-
droid phones through Android Intent invocation,
we compared the performance of the Qwen2.5-
1.5B-Instruct and PhoneLM-1.5B models after
fine-tuning on the DroidCall dataset and xlam-
function-calling-60k (Liu et al., 2024d), a general

function calling dataset.

To eliminate the influence of prompt design, we
formatted both the xlam-function-calling-60k and
DroidCall datasets using the code_short format.
The xlam-function-calling-60k dataset comprises
60k data points, while DroidCall contains 10k.
To ensure an equivalent number of training data
instances, we trained the model for 4 epochs on
the xlam-function-calling-60k dataset and for 24
epochs on DroidCall. We selected 9 checkpoints
for testing, and the results are presented in Fig-
ure 5(b). Note that the Oth checkpoint in the figure
represents the model’s performance when directly
evaluated with the code format of prompts before
any fine-tuning took place.

From the experimental results, we can observe
that, regardless of the dataset used, accuracy im-
proves with the fine-tuning process. However, the
model fine-tuned with the xlam-function-calling-
60k dataset quickly reaches a plateau. In contrast,
the improvement brought by using the DroidCall
dataset is significantly more substantial.

It is evident that when a model is required to per-
form a specific task, a dataset constructed for that
task, such as DroidCall, can yield better results
compared to a general-purpose dataset. Further-
more, from Figure 5(b), we can discern that ini-
tially, Qwen’s capabilities are significantly higher
than PhoneLM’s. However, by the end of the
fine-tuning process, PhoneLM’s performance is
on par with Qwen’s. We speculate that initially,
PhoneLLM’s Supervised Fine-Tuning (SFT) and
alignment were not as effective as Qwen’s, pre-

Model Size Zero-Shot Few-Shot Fine-Tuning
Acc Accsopr Acc Accsopr Acc Accsopt

PhoneLM-1.5B 1.5B 17.5 17.5 55.5 62.8 75 86.1
Qwen2.5-1.5B-Instruct 1.5B 61 76.6 64.5 81 76 90.3
Qwen2.5-3B-Instruct 3B 62 79.4 71 86.1 83 93.5
Qwen2.5-Coder-1.5B 1.5B 42.5 48.8 65.5 81.6 82 93.2
Gemma?2-2B-it 2B 59 77.2 67.5 83.7 85 93.9
Phi-3.5-mini-instruct 3.8B 62 77.8 67.5 82.1 83.5 93.8
MiniCPM3-4B 4B 67 84.3 75 89.6 74.5 82.3
Llama3.2-1B-Instruct 1B 31.5 37.7 60.5 76.3 75.5 87.3
Llama3.2-3B-Instruct 3B 66.5 79.8 72 87.2 82 92.7
GPT-40 (2024-08-06) 77 89.1 80.5 91.5

GPT-40-mini (2024-07-18) 71.5 86.6 76 88.6

Table 2: Evaluation of different models. Our fine-tuned model achieves superior performance compared to GPT-4o,
utilizing only half the prompt length and a compact 2 billion parameters.

venting it from leveraging its pre-trained knowl-
edge efficiently. The DroidCall dataset, however,
aids the model in learning to utilize its pre-trained
knowledge to control Android devices. Since the
pre-trained knowledge of both PhoneLM and Qwen
is comparable, they eventually reach a similar level
of performance.

4.3 Performance of Different SLMs

To test the Android intent invocation capabilities of
some existing SLMs tailored for the edge scenario
and further verify the effectiveness of DroidCall,
we tested the Acc and Acc,,f; of a few models un-
der three conditions: zero-shot, few-shot, and after
fine-tuning. When testing the models’ zero-shot
and few-shot performance, we used json format
prompts for both, as the json-short and code-short
formats lack task instructions, which prevents the
model from finishing the task. In comparison, the
Jjson format has been found to be more effective
than the code format.

The experimental outcomes, as depicted in Ta-
ble 2, provide a comprehensive overview of the An-
droid intent invocation capabilities across various
models. Judging from the zero-shot results, there
is a significant performance variation among dif-
ferent models. The zero-shot scenario is a critical
test of a model’s ability to complete tasks based on
instructions without having seen relevant examples.
We believe the primary reason for the differences
in zero-shot performance among models lies in the
effectiveness of their SFT and alignment. These
training stages determine whether the model can

develop strong instruction-following capabilities. It
is also observable that all models exhibit improved
performance under few shots. We credit the perfor-
mance boost to the models’ improved use of their
knowledge from pretraining.

After fine-tuning with DroidCall using
code_short format, there is a significant improve-
ment in the model’s performance. Additionally,
during inference, the model only requires a prompt
that essentially consists of the user query and
available function descriptions, which greatly
reduces the prompt length compared to the
zero-shot and few-shot scenarios.

5 Conclusion

In this paper, we introduce DroidCall, a novel
dataset specifically engineered to enhance the An-
droid intent invocation capabilities of LLMs. Our
approach diverged from conventional cloud-based
models, focusing instead on on-device deployment
to address privacy concerns inherent in mobile en-
vironments. In our work, we (1) build a highly
customizable and reusable data generation pipeline,
(2) construct DroidCall, a first-of-its-kind open-
sourced dataset for Android intent invocation based
on the pipeline, (3) fine-tune a series of models tai-
lored for edge devices, enabling them to approach
or even surpass the performance of GPT-4o in the
specific task of intent invocation and (4) implement
an end-to-end demo with mllm. Our work demon-
strates the potential applications of small models
on the edge. We have open-sourced all the code of
the data generation, fine-tuning, and evaluation.

Limitations

While our approach demonstrates promising re-
sults, it has several limitations that warrant further
investigation.

Data Quality and Generalizability. Our
method relies heavily on the quality of the gen-
erated data, which may introduce biases or inaccu-
racies. For instance, the synthetic data generated by
LLMs may not fully capture the diversity of real-
world scenarios, potentially limiting the model’s
generalization ability. In this work, we prioritize
generating high-quality, task-specific data for An-
droid intent invocation, which allows us to mitigate
some of these issues within the narrow scope of
our target domain. However, broader generaliza-
tion to more diverse or complex scenarios remains
a challenge. Future work could explore hybrid data
generation techniques, combining synthetic data
with real-world user interactions, to improve both
diversity and accuracy.

Scalability of the Method. Our approach re-
quires predefined functions, which limits its adapt-
ability to new tasks without significant manual
effort. This limitation is partially offset by the
modular design of our pipeline, which allows for
easy extension to new functions within the An-
droid ecosystem. In the context of this work, we
focus on a curated set of common Android intents,
where predefined functions are sufficient to cover
most use cases. However, for more dynamic or
open-ended tasks, this approach may not scale ef-
fectively. Future research could investigate meth-
ods for automatically discovering and defining new
functions, potentially leveraging unsupervised or
semi-supervised learning techniques to reduce man-
ual intervention.

References

2024. Aosp. https://source.android. com/.

2024. Common intents. https://
developer.android.com/guide/components/
intents-common.

2024. Google ai edge sdk for gemini nano. https:
//developer.android.com/ai/aicore.

2024. Google-style docstrings. https:
//google.github.io/styleguide/pyguide.
html#381-docstrings.

2024. intent. https://developer.android.com/
reference/android/content/Intent.

2024. Objectbox: Fast and efficient database with
vector search. https://github.com/objectbox/
objectbox-java.

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,
Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat Behl, et al. 2024. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv
preprint arXiv:2404.14219.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Wei Chen and Zhiyuan Li. 2024. Octopus v2: On-
device language model for super agent. arXiv
preprint arXiv:2404.01744.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Lutfi Eren Erdogan, Nicholas Lee, Siddharth Jha, Se-
hoon Kim, Ryan Tabrizi, Suhong Moon, Coleman
Hooper, Gopala Anumanchipalli, Kurt Keutzer, and
Amir Gholami. 2024. Tinyagent: Function calling at
the edge. arXiv preprint arXiv:2409.00608.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-
hui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu
Feng, Hanlin Zhao, et al. 2024. Chatglm: A family
of large language models from glm-130b to glm-4 all
tools. arXiv preprint arXiv:2406.12793.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. 2023.
Metagpt: Meta programming for multi-agent collabo-
rative framework. arXiv preprint arXiv:2308.00352.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu
Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxi-
ang Huang, Weilin Zhao, et al. 2024. Minicpm:
Unveiling the potential of small language models
with scalable training strategies. arXiv preprint
arXiv:2404.06395.

Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas
Lee, Michael W Mahoney, Kurt Keutzer, and Amir
Gholami. 2023. An Ilm compiler for parallel function
calling. arXiv preprint arXiv:2312.04511.

https://source.android.com/
https://developer.android.com/guide/components/intents-common
https://developer.android.com/guide/components/intents-common
https://developer.android.com/guide/components/intents-common
https://developer.android.com/guide/components/intents-common
https://developer.android.com/guide/components/intents-common
https://developer.android.com/ai/aicore
https://developer.android.com/ai/aicore
https://developer.android.com/ai/aicore
https://google.github.io/styleguide/pyguide.html#381-docstrings
https://google.github.io/styleguide/pyguide.html#381-docstrings
https://google.github.io/styleguide/pyguide.html#381-docstrings
https://google.github.io/styleguide/pyguide.html#381-docstrings
https://google.github.io/styleguide/pyguide.html#381-docstrings
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://github.com/objectbox/objectbox-java
https://github.com/objectbox/objectbox-java
https://github.com/objectbox/objectbox-java
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li,
Yizhen Yuan, Guohong Liu, Jiacheng Liu, Wenx-
ing Xu, Xiang Wang, Yi Sun, et al. 2024. Per-
sonal 1lm agents: Insights and survey about the
capability, efficiency and security. arXiv preprint
arXiv:2401.05459.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023. Towards
general text embeddings with multi-stage contrastive
learning. arXiv preprint arXiv:2308.03281.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74-81, Barcelona, Spain.
Association for Computational Linguistics.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang,
Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. 2024a.
Deepseek-v2: A strong, economical, and efficient
mixture-of-experts language model. arXiv preprint
arXiv:2405.04434.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2024b. Visual instruction tuning. Advances in
neural information processing systems, 36.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao,
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,
Zhengying Liu, Yuanqging Yu, et al. 2024c. Toolace:
Winning the points of llm function calling. arXiv
preprint arXiv:2409.00920.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu,
Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao,
Zhiwei Liu, Yihao Feng, et al. 2024d. Apigen:
Automated pipeline for generating verifiable and
diverse function-calling datasets. arXiv preprint
arXiv:2406.18518.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai
Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhu-
oshu Li, Hao Yang, et al. 2024a. Deepseek-vl:
towards real-world vision-language understanding.
arXiv preprint arXiv:2403.05525.

Zhenyan Lu, Xiang Li, Dongqi Cai, Rongjie Yi, Fang-
ming Liu, Xiwen Zhang, Nicholas D Lane, and
Mengwei Xu. 2024b. Small language models: Sur-
vey, measurements, and insights. arXiv preprint
arXiv:2409.15790.

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

10

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2024.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36.

Haiyang Shen, Yue Li, Desong Meng, Dongqi Cai,
Sheng Qi, Li Zhang, Mengwei Xu, and Yun Ma.
2024a. Shortcutsbench: A large-scale real-world
benchmark for api-based agents. arXiv preprint
arXiv:2407.00132.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2024b. Hugging-
gpt: Solving ai tasks with chatgpt and its friends
in hugging face. Advances in Neural Information
Processing Systems, 36.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023.
Toolalpaca: Generalized tool learning for language
models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-1lab/stanford_alpaca.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv e-prints, pages arXiv—2408.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Sagar Gubbi Venkatesh, Partha Talukdar, and Srini
Narayanan. 2022. Ugif: Ui grounded instruction
following. arXiv preprint arXiv:2211.07615.

Bryan Wang, Gang Li, and Yang Li. 2023a. Enabling
conversational interaction with mobile ui using large
language models. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems,
pages 1-17.

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang,
Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang,
and Jitao Sang. 2024a. Mobile-agent-v2: Mo-
bile device operation assistant with effective navi-
gation via multi-agent collaboration. arXiv preprint
arXiv:2406.01014.

https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan,
Weizhou Shen, Ji Zhang, Fei Huang, and Jitao Sang.
2024b. Mobile-agent: Autonomous multi-modal
mobile device agent with visual perception. arXiv
preprint arXiv:2401.16158.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023b. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, et al. 2024c. Qwen2-vl: Enhanc-
ing vision-language model’s perception of the world
at any resolution. arXiv preprint arXiv:2409.12191.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2022. Self-instruct: Aligning language
model with self generated instructions.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao,
Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao Liu,
Yaqin Zhang, and Yunxin Liu. 2024. Autodroid: LIm-
powered task automation in android. In Proceedings
of the 30th Annual International Conference on Mo-
bile Computing and Networking, pages 543-557.

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata
Mukherjee, Yuchen Liu, and Dongkuan Xu. 2023a.
Rewoo: Decoupling reasoning from observations for
efficient augmented language models. arXiv preprint
arXiv:2305.18323.

Daliang Xu, Wangsong Yin, Xin Jin, Ying Zhang,
Shiyun Wei, Mengwei Xu, and Xuanzhe Liu. 2023b.
Llmcad: Fast and scalable on-device large language
model inference. arXiv preprint arXiv:2309.04255.

Daliang Xu, Hao Zhang, Liming Yang, Ruiqi Liu,
Gang Huang, Mengwei Xu, and Xuanzhe Liu.
2024a. Empowering 1000 tokens/second on-device
Ilm prefilling with mllm-npu. arXiv preprint
arXiv:2407.05858.

Mengwei Xu, Wangsong Yin, Dongqi Cai, Rongjie Yi,
Daliang Xu, Qipeng Wang, Bingyang Wu, Yihao
Zhao, Chen Yang, Shihe Wang, et al. 2024b. A sur-
vey of resource-efficient llm and multimodal founda-
tion models. arXiv preprint arXiv:2401.08092.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Hui Yang, Sifu Yue, and Yunzhong He. 2023a. Auto-gpt
for online decision making: Benchmarks and addi-
tional opinions. arXiv preprint arXiv:2306.02224.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Ze-
biao Huang, Bin Fu, and Gang Yu. 2023b. Appa-
gent: Multimodal agents as smartphone users. arXiv
preprint arXiv:2312.13771.

11

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng
Wang, Chung-Ching Lin, Zicheng Liu, and Lijuan
Wang. 2023c. The dawn of Imms: Preliminary
explorations with gpt-4v (ision). arXiv preprint
arXiv:2309.17421,9(1):1.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Rongjie Yi, Liwei Guo, Shiyun Wei, Ao Zhou, Shang-
guang Wang, and Mengwei Xu. 2023a. Edgemoe:
Fast on-device inference of moe-based large language
models. arXiv preprint arXiv:2308.14352.

Rongjie Yi, Xiang Li, Qichen Qiu, Zhenyan Lu, Hao
Zhang, Daliang Xu, Liming Yang, Weikai Xie,
Chenghua Wang, and Mengwei Xu. 2023b. mllm:
fast and lightweight multimodal 1lm inference engine
for mobile and edge devices.

Rongjie Yi, Xiang Li, Weikai Xie, Zhenyan Lu,
Chenghua Wang, Ao Zhou, Shangguang Wang, Xi-
wen Zhang, and Mengwei Xu. 2024. Phonelm:an
efficient and capable small language model fam-
ily through principled pre-training. Preprint,
arXiv:2411.05046.

Wangsong Yin, Mengwei Xu, Yuanchun Li, and Xu-
anzhe Liu. 2024. Llm as a system service on mobile
devices. arXiv preprint arXiv:2403.11805.

Jinliang Yuan, Chen Yang, Dongqi Cai, Shihe Wang,
Xin Yuan, Zeling Zhang, Xiang Li, Dingge Zhang,
Hanzi Mei, Xianqing Jia, et al. 2024. Mobile founda-
tion model as firmware. In Proceedings of the 30th
Annual International Conference on Mobile Comput-
ing and Networking, pages 279-295.

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu,
Weiran Yao, Juntao Tan, Thai Hoang, Liangwei Yang,
Yihao Feng, Zuxin Liu, et al. 2024a. Agentohana:
Design unified data and training pipeline for effective
agent learning. arXiv preprint arXiv:2402.15506.

Li Zhang, Shihe Wang, Xianqing Jia, Zhihan Zheng,
Yunhe Yan, Longxi Gao, Yuanchun Li, and Meng-
wei Xu. 2024b. Llamatouch: A faithful and scal-
able testbed for mobile ui automation task evaluation.
arXiv preprint arXiv:2404.16054.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2:
Breaking the barrier of closed-source models in code
intelligence. arXiv preprint arXiv:2406.11931.

https://github.com/UbiquitousLearning/mllm
https://github.com/UbiquitousLearning/mllm
https://github.com/UbiquitousLearning/mllm
https://github.com/UbiquitousLearning/mllm
https://github.com/UbiquitousLearning/mllm
https://arxiv.org/abs/2411.05046
https://arxiv.org/abs/2411.05046
https://arxiv.org/abs/2411.05046
https://arxiv.org/abs/2411.05046
https://arxiv.org/abs/2411.05046

A Data Generation Prompts

At the beginning of data generation, we first generate seed data. The prompt used to generate seed is
shown as following:

I need your help to generate some function calling datasets. I will provide you with a tool description,
and you need to generate queries and corresponding answers based on this tool, i.e., the answers that
call the tool to resolve the user’s query. Here are my requirements:

1. For queries, try to use different vocabulary and syntax to ensure query diversity. Queries can be
long or short, complex or concise. In short, try not to generate similar queries; I want to ensure query
diversity.

2. The language of the queries should be as diverse as possible. This means a query can be a
command, a question, or a request with detailed descriptions, etc.

3. The generated queries should cover all possible uses of the tool as much as possible, meaning the
coverage of various parameters should be comprehensive, ensuring the tool can be used to complete
various forms of work.

4. The generated queries should be solvable using the given tools.

5. For the queries you generate, you should provide answers using the tool, i.e., give the tool used
and the values for each parameter.

6. When providing parameters, if a parameter has required=False, you may omit its value.

7. The generated data must be presented in the format given in my example.

8. The parameter values generated with function call generated must be values that can be inferred
from the user’s query; YOU CANNOT FABRICATE PARAMETERS THAT CANNOT BE
OBTAINED FROM THE USER’S REQUEST.

9. Attach each answer with an id starting from 0. And if a tool should use the respone from another
tool, you can reference it using #id, where id is the id of the tool.

following are some examples:
$examples

Now I will give you a tool, and you help me generate 15 query-answer pairs.
REMEMBER TO GENERATE THE RESULT IN JSON FORMAT LIKE THE EXAMPLE ABOVE
REMEMBER NOT TO FABRICATE PARAMETERS FOR TOOLS. PARAMETERS SHOULD BE
INFERED FROM USER QUERY.
tool: $tool

In the prompt above, $examples will be replace by random samples sampled from xlam-function-
calling-60k (Liu et al., 2024d). Below is an example:

tool: {
nname. n n
oo,
"description”: "...",
"arguments”: {
3
3
response: {
Hqueryll: ll.-.ll,
"answers”": [
{
3
]
)

$tools will be replace by json formatted predefined function, below is an example:

12

tool: {
"name"”: "ACTION_SET_ALARM",
"description”: "..."
"arguments”: {

3
3

After seed generation stage, we will use another prompt to continuously generate data. Prompt is shown
as following:

I need your help to generate some function calling datasets. I will provide you with a tool description
and some example data for you. You need to generate queries and corresponding answers based on
this tool, i.e., the answers that call the tool to resolve the user’s query. Here are my requirements:

1. For queries, try to use different vocabulary and syntax to ensure query diversity. Queries can be
long or short, complex or concise. In short, try not to generate similar queries; I want to ensure query
diversity.

2. The language of the queries should be as diverse as possible. This means a query can be a
command, a question, or a request with detailed descriptions, etc.

3. The generated queries should cover all possible uses of the tool as much as possible, meaning the
coverage of various parameters should be comprehensive, ensuring the tool can be used to complete
various forms of work.

4. The generated queries should be solvable using the given tools.

5. For the queries you generate, you should provide answers using the tool, i.e., give the tool used
and the values for each parameter.

6. When providing parameters, if a parameter has required=False, it is not necessary to provide its
value.

7. The query-answer pairs should cover as many possible uses of the tool as possible.

8. The generated data must be presented in the format given in my example.

9. The parameter values generated with function call generated must be values that can be inferred
from the user’s query; YOU CANNOT FABRICATE PARAMETERS THAT CANNOT BE
OBTAINED FROM THE USER’S REQUEST.

following are tool I provided and some examples of query-answer pairs: tool: $tool examples:
$examples

Now please help me generate 40 query-answer pairs. REMEMBER TO GENERATE THE
RESULT IN JSON FORMAT LIKE THE EXAMPLE ABOVE REMEMBER NOT TO FABRICATE
PARAMETERS FOR TOOLS. PARAMETERS SHOULD BE INFERED FROM USER QUERY.

$tool will be replaced by the json format of predefined functions shown early. $examples is the data
sampled from the seed data generated previously.

When generating data of complex call, we slightly modify the prompt shown above. The seed generation
prompt is shown below:

I need your help to generate some function calling datasets. I will provide you with a tool description,

13

and you need to generate queries and corresponding answers based on this tool, i.e., the answers that
call the tool to resolve the user’s query. Here are my requirements:

1. For queries, try to use different vocabulary and syntax to ensure query diversity. Queries can be
long or short, complex or concise. In short, try not to generate similar queries; I want to ensure query
diversity.

2. The language of the queries should be as diverse as possible. This means a query can be a
command, a question, or a request with detailed descriptions, etc.

3. The generated queries should cover all possible uses of the tool as much as possible, meaning the
coverage of various parameters should be comprehensive, ensuring the tool can be used to complete
various forms of work.

4. The generated queries should be solvable using the given tools.

5. For the queries you generate, you should provide answers using the tool, i.e., give the tool used
and the values for each parameter.

6. When providing parameters, if a parameter has required=False, you may omit its value.

7. The generated data must be presented in the format given in my example.

8. THE PARAMETER VALUES GENERATED WITH FUNCTION CALL GENERATED MUST
BE VALUES THAT CAN BE INFERRED FROM THE USER’S QUERY; YOU CANNOT
FABRICATE PARAMETERS THAT CANNOT BE OBTAINED FROM THE USER’S REQUEST.
9. THE GENERATED QUERY SHOULD CONTAIN ENOUGH INFOMATION SO THAT YOU
COULD CORRECTLY GENERATE PARAMETER USED BY THE TOOLS. THIS IS ALSO TO
GUARANTEE THAT YOU DON’T FABRICATE PARAMETERS.

10. You should use all the tools I provided to generate the query and answer. It means that you
should generate a query that needs to use all the tools I provided to solve, and remember to provider
an answer that uses all the tools to solve the query.

11. You can use the same tool multiple times in a single query to ensure the query diversity.

12. Attach each answer with an id starting from 0. And if a tool should use the respone from another
tool, you can reference it using #id, where id is the id of the tool.

13. Generate data of nested function calls if possible. i.e., the argument of a function call is the
response of another function call.

following are some examples:
$examples

Now I will give you a tool, and you help me generate 15 query-answer pairs. REMEMBER TO
GENERATE THE RESULT IN JSON FORMAT LIKE THE EXAMPLE ABOVE AND PUT IT IN
A JSON LIST.
REMEMBER YOU SHOULD USE ALL THE TOOLS AT ONE QUERY AND SOLVE IT WITH
ALL TOOLS, AND GENERATE NESTED CALL IF POSSIBLE.
REMEMBER NOT TO FABRICATE PARAMETERS FOR TOOLS. PARAMETERS SHOULD BE
INFERED FROM USER QUERY.
tools:
$tools

Prompt for continuously generating complex function calling data is:

I need your help to generate some function calling datasets. I will provide you with a tool description,

14

and you need to generate queries and corresponding answers based on this tool, i.e., the answers that
call the tool to resolve the user’s query. Here are my requirements:

1. For queries, try to use different vocabulary and syntax to ensure query diversity. Queries can be
long or short, complex or concise. In short, try not to generate similar queries; I want to ensure query
diversity.

2. The language of the queries should be as diverse as possible. This means a query can be a
command, a question, or a request with detailed descriptions, etc.

3. The generated queries should cover all possible uses of the tool as much as possible, meaning the
coverage of various parameters should be comprehensive, ensuring the tool can be used to complete
various forms of work.

4. The generated queries should be solvable using the given tools.

5. For the queries you generate, you should provide answers using the tool, i.e., give the tool used
and the values for each parameter.

6. When providing parameters, if a parameter has required=False, you may omit its value.

7. The generated data must be presented in the format given in my example.

8. THE PARAMETER VALUES GENERATED WITH FUNCTION CALL GENERATED MUST
BE VALUES THAT CAN BE INFERRED FROM THE USER’S QUERY; YOU CANNOT
FABRICATE PARAMETERS THAT CANNOT BE OBTAINED FROM THE USER’S REQUEST.
9. THE GENERATED QUERY SHOULD CONTAIN ENOUGH INFOMATION SO THAT YOU
COULD CORRECTLY GENERATE PARAMETER USED BY THE TOOLS. THIS IS ALSO TO
GUARANTEE THAT YOU DON’T FABRICATE PARAMETERS.

10. You should use all the tools I provided to generate the query and answer. It means that you
should generate a query that needs to use all the tools I provided to solve, and remember to provider
an answer that uses all the tools to solve the query.

11. You can use the same tool multiple times in a single query to ensure the query diversity.

12. Attach each answer with an id starting from 0. And if a tool should use the respone from another
tool, you can reference it using #id, where id is the id of the tool.

13. Generate data of nested function calls if possible. i.e., the argument of a function call is the
response of another function call.

Now I will give you some tools and some example data of query-answer pairs using these tools.
Please help me generate 40 query-answer pairs. tools: $tools
examples: $examples

REMEMBER TO GENERATE THE RESULT IN JSON FORMAT LIKE THE EXAMPLE
ABOVE AND PUT IT IN A JSON LIST.
REMEMBER YOU SHOULD USE ALL THE TOOLS AT ONE QUERY AND SOLVE IT WITH
ALL TOOLS, AND GENERATE NESTED CALL IF POSSIBLE.
REMEMBER NOT TO FABRICATE PARAMETERS FOR TOOLS. PARAMETERS SHOULD BE
INFERED FROM USER QUERY.

B Function Calling Prompts

In § 4.1, we’ve mentioned that we have tested 4 format of prompt: json, code, json_short and code_short.
To unify our fine-tuning, we use chat to do function calling thus we only need to design the part of system,
user and assistant using chat template.

In json or code format, the system prompt would be:

You are an expert in composing functions. You are given a query and a set of possible functions.
Based on the query, you will need to make one or more function calls to achieve the purpose. If none
of the function can be used, point it out. If the given question lacks the parameters required by the
function, also point it out. Remember you should not use functions that is not suitable for the query
and only return the function call in tools call sections.

in json_short or code_short the system prompt would be:

15

You are an expert in composing functions.

The user part of json or code is:

Here is a list of functions that you can invoke:
$functions

Should you decide to return the function call(s), Put it in the format of
$format_description

$example

If there is a way to achieve the purpose using the given functions, please provide the function
call(s) in the above format. REMEMBER TO ONLY RETURN THE FUNCTION CALLS LIKE
THE EXAMPLE ABOVE, NO OTHER INFORMATION SHOULD BE RETURNED.

Now my query is: $user_query

$functions is the functions descriptions provided by retriever, in code or code_short format, it would be
like:
Name:
send_email
Description:
Compose and send an email with optional attachments.

This function allows the user to compose an email with various options,
including multiple recipients, CC, BCC, and file attachments.
Args:
to (List[strl]):
subject (str):
Returns:
None
Example:
Send an email with a content URI attachment
send_email(
to=["recipient@example.com”],
subject="Document"”,
body="Please find the attached document.”,
attachments=...

)

In json or json_short, functions would be describe directly in json format as shown in Listing 1.

$format_description in the prompt will be replace by detailed output format the model should follow.
In json it will be:

L

16

“id”: Q,

"name”: "func@",

"arguments”: {
"argl”: "valuel”,

"arg2": "value2",

3
}Y
{
"id": 1,
"name”: "funcl”,
"arguments”: {
"argl”: "valuel”,
"arg2": "value2",
3
}Y

]

If an argument is a response from a previous function call,
you can reference it in the following way like the argument

value of arg2 in funcl:

L
{
"id": @,
"name”: "funco",
"arguments”: {
"argl”: "valuel”,
"arg2": "value2",
}
3,
{
"id": 1,
"name”: "funcl1”,
"arguments”: {
"argl”: "valuel”,
"arg2": "#0",
}
3,
]

This means that the value of arg2 in funcl is the return
value from func@ (#0 means the response from the function call with id 0).

In code format this will be

resultl = func@(argl="valuel”, arg2="value2", ...)

17

result2 = funcl(argl="valuel”, arg2=resultl, ...)
You can do nested function calling in the following way:
resultl = func@(argl="valuel”, arg2="value2", ...)

result2 = funcl(argl="valuel”, arg2=resultl, ...)

This means that the value of arg2 in funcl is the return value from funce.

$example in the prompt is used to test few-shot performance of a model.
The user prompt of json_short or code_short is much simpler withou task instructions:

Here is a list of functions: $functions
Now my query is: $user_query

In code or code_short format the assistant output would be:

<sep>resultl = func@(argl="valuel”, arg2="value2”, ...)
result2 = funcl(argl="valuel”, arg2=resultl, ...)</sep>

where < sep > and < /sep > can be any seperator set before fine-tuning.
In json or json_short format the assistant output would be:

L
{
"id": @,
"name”: "funce@”,
"arguments”: {
"argl"”: "valuel”,
"arg2": "value2",
}
}
]

18

	Introduction
	Related Work
	LLM-based Agents
	Mobile Device Control Agents
	LLMs for Function Calling

	DroidCall Dataset and Workflow
	Collecting Android Intents
	Dataset Generation
	Key Components of Generation Pipeline
	Functions Predefinition
	Data generation

	Fine-tuning SLMs with DroidCall
	Putting It All Together

	Experiments
	Effect of Different Prompts
	Effectiveness of DroidCall
	Performance of Different SLMs

	Conclusion
	Data Generation Prompts
	Function Calling Prompts

