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ABSTRACT

Despite their successes, deep learning models struggle with tasks requiring com-
plex reasoning and function composition. We present a theoretical and empirical
investigation into the limitations of Structured State Space Models (SSMs) and
Transformers in such tasks. We prove that one-layer SSMs cannot efficiently
perform function composition over large domains without impractically large
state sizes, and even with Chain-of-Thought prompting, they require a number
of steps that scale unfavorably with the complexity of the function composition.
Finite-precision multi-layer SSMs are constrained as Finite State Machines (FSMs),
limiting their reasoning abilities. Our experiments corroborate these theoretical
findings. Evaluating models on tasks including various function composition set-
tings, multi-digit multiplication, dynamic programming, and Einstein’s puzzle, we
find significant performance degradation even with advanced prompting techniques.
Models often resort to shortcuts, leading to compounding errors. These findings
highlight fundamental barriers within current deep learning architectures rooted in
their computational capacities. We underscore the need for innovative solutions
to transcend these constraints and achieve reliable multi-step reasoning and com-
positional task-solving, which is critical for advancing toward general artificial
intelligence.

1 INTRODUCTION

Deep learning has revolutionized numerous fields, achieving remarkable success in natural language
processing (OpenAI, 2023; Google, 2024; Touvron et al., 2023), computer vision (Nguyen et al., 2022;
Zubić et al., 2024; Zhu et al., 2024), scientific computing (Merchant et al., 2023; Hansen et al., 2023),
and autonomous systems (Kaufmann et al., 2023; Bousmalis et al., 2024). The pursuit of general
artificial intelligence now stands as the new frontier, aiming to develop Large Language Models
(LLMs) capable of solving novel and complex tasks across diverse domains such as mathematics,
coding, vision, medicine, law, and psychology, approaching human-level performance (Bubeck et al.,
2023). Mastery of function composition is essential for this objective, as tasks like mathematical
problem-solving (Li et al., 2023), learning discrete algorithms (Thomm et al., 2024; Veličković
& Blundell, 2021), logical reasoning (Liu et al., 2023b), and dynamic programming (Dziri et al.,
2023) are deeply compositional. However, despite impressive capabilities on various language tasks,
deep learning models continue to struggle with tasks requiring complex reasoning over sequences,
particularly those involving function composition and compositional reasoning (Peng et al., 2024;
Dziri et al., 2023).

These tasks necessitate breaking down problems into simpler sub-problems and composing the
solutions to these subtasks. Current Transformer models (Vaswani et al., 2017), including advanced
ones like GPT-4, find it challenging to handle tasks demanding deep compositionality (Dziri et al.,
2023). For instance, we demonstrate that GPT-4 achieves only about 27% accuracy on basic tasks
like 4-by-3-digit multiplication. One explanation for this limitation is the Transformer’s inability to
express simple state-tracking problems (Merrill & Sabharwal, 2023a). Structured State Space Models
(SSMs) (Gu et al., 2022; Gu & Dao, 2023) have been introduced as an alternative to Transformers,
aiming to achieve similar expressive power to Recurrent Neural Networks (RNNs) for handling
problems that are naturally sequential and require state tracking. While SSMs have demonstrated
impressive capabilities on various sequential tasks (Goel et al., 2022; Schiff et al., 2024), they exhibit
similar limitations to Transformer models in solving function composition problems. For the same 4-
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by-3-digit multiplication task, Jamba (Lieber et al., 2024), an SSM-Attention hybrid model, achieves
only 17% accuracy.

Existing research has experimentally confirmed the inability of Transformers to perform function
composition and compositional tasks (Dziri et al., 2023; Zhao et al., 2024), leading to issues such as
hallucinations—responses that are incompatible with training data and prompts. Complexity theory
analysis further reveals that Transformers belong to a weak complexity class, logspace-uniform
TC0 (Merrill & Sabharwal, 2023a), as do SSMs (Merrill et al., 2024), emphasizing their inherent
limitations. While the impossibility of function composition for Transformers has been theoretically
studied (Peng et al., 2024), a similar theoretical understanding for SSMs remains lacking.

In this paper, we address this gap with two main contributions:

1. We provide a theoretical framework using complexity theory to explain the limitations of
SSMs in sequence modeling, particularly in their inability to perform function composition
efficiently. We prove that one-layer SSMs cannot solve function composition problems over
large domains without an impractically large state size (Theorem 1). Additionally, we show
that even with Chain-of-Thought prompting, SSMs require a polynomially growing number
of steps to solve iterated function composition problems (Theorem 2).

2. We extend our theoretical analysis to multi-layer SSMs, demonstrating that the computation
of an L-layer SSM on a prompt of length N can be carried out using O(L logN) bits of
memory, positioning SSMs within the complexity class L (logarithmic space). This implies
that SSMs cannot solve problems that are NL-complete unless L = NL, which is widely
believed to be false (Peng et al., 2024). We further discuss that SSMs share this limitation
with Transformers, highlighting a fundamental barrier in current deep learning architectures
(Theorem 3).

Our critical insight is the formal proof that SSMs cannot solve iterated function composition problems
without a polynomially growing number of Chain-of-Thought steps (Theorems 1 and 2), and that
even multi-layer finite-precision SSMs are limited to recognizing regular languages due to their
equivalence to finite-state machines (Theorem 4). While CoT prompting can, to some extent, enable
complex problem-solving by breaking down tasks into intermediate steps, it introduces a trade-off
between the model’s state size and the number of input passes required, leading to increased resource
demands, which is not optimal.

These findings underscore the need for innovative solutions beyond current deep learning paradigms
to achieve reliable multi-step reasoning and compositional task-solving in practical applications.

2 EQUIVALENCE OF SSMS WITH OTHER DEEP LEARNING MODELS

Recent advancements in deep learning architectures have unveiled significant connections between
SSMs and other prevalent models such as Linear Transformers. Notably, Dao & Gu (2024) have
demonstrated equivalence between Linear Transformers and SSMs, indicating that the computational
processes of these models are fundamentally related. Moreover, SSMs can be trained like Convolu-
tional Neural Networks (CNNs) and inferred as Recurrent Neural Networks (RNNs), leveraging the
benefits of both convolutional and recurrent architectures. This duality allows SSMs to efficiently
capture long-range dependencies like RNNs while benefiting from the parallelism during training
characteristic of CNNs.

Additionally, Merrill et al. (2024) have shown that SSMs and Transformers belong to the same
computational complexity class, specifically logspace-uniform TC0. This alignment in computational
capacity reinforces the notion that the limitations observed in SSMs indicate inherent challenges
within the broader landscape of deep learning models. Therefore, by focusing our theoretical and
empirical analysis on SSMs, we effectively cover the representational capabilities of current deep-
learning models, including Transformers and CNNs. This comprehensive coverage justifies our
exploration of the limits of deep learning in sequence modeling through the lens of complexity
theory. Our findings highlight the specific shortcomings of SSMs and shed light on the fundamental
constraints of deep learning architectures in handling tasks that require reliable multi-step reasoning
and compositional task-solving.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 BACKGROUND

For two natural numbers n ≤ m, we denote [n] = 1, 2, . . . , n and [n,m] = n, n + 1, . . . ,m, with
[0] = [n, n − 1] = ∅. We refer to the number of bits used in each computation as computational
precision p. Given two domains B,C, we denote by CB the set of all functions from B to C.
Definition 1 (SSM layer). Given an input sequence x1, . . . ,xn ∈ Rm, an SSM layer L is defined in
terms of a series of matrices At ∈ Rd×d, Bt ∈ Rd×m, Ct ∈ Rm×d, and Dt ∈ Rm×m for t ∈ [n].
L defines a sequence of states h1, . . . ,hn ∈ Rd as

ht = Atht−1 +Btxt; (1)

and outputs the sequence y1, . . . ,yn ∈ Rm as

yt = Ctht +Dtxt. (2)

Generally, the matrices At = A(xt), Bt = B(xt), Ct = C(xt), and Dt = D(xt) are functions
of the input vector xt for each t ∈ [n]. In the special case when At, Bt, Ct, and Dt are independent
from the input sequence x1, . . . ,xn, we call L a linear SSM layer. Moreover, we call d the embedding
dimension.

Remark: Although SSMs can be linked to streaming algorithms due to their limited hidden state,
applying communication complexity to analyze their limitations in function composition involves
intricate considerations unique to SSMs. No known streaming lower bound directly applies to our
specific setting. Our analysis accounts for the particular architectural constraints of SSMs, providing
a better understanding of their capabilities than general streaming algorithms.

4 FUNCTION COMPOSITION REQUIRES WIDE ONE-LAYER MODELS

Our analysis considers one-layer SSMs to establish fundamental limitations in function composition
tasks. The insights gained at the single-layer level highlight critical challenges that persist even in
deeper architectures. The function composition problem has been introduced in (Peng et al., 2024) to
provide a theoretical understanding of the causes of the hallucination of Transformer models. The
aim is to evaluate the model’s capability to combine relational information in the data to understand
language, which is the core competence of large language models. Indeed to correctly answer
questions like ’what is the birthday of Frédéric Chopin’s father?’ given the information that ’the
father of Frédéric Chopin was Nicolas Chopin’ and that ’Nicolas Chopin was born on April 15,
1771’, the model needs to be able to compose the functions ’birthday-of’ and ’father-of’ (Peng
et al., 2024), (Guan et al., 2024). In our analysis, we focus on function compositions where the
functions map elements from one finite, discrete domain to another, such as mapping individuals to
their parents or birthdates. These functions operate over discrete sets, like persons and dates, and
not over real-valued or continuous domains. Although this function composition task resembles a
database join operation, it is important to note that our analysis focuses on how SSMs handle such
compositions given natural language prompts. These prompts specify functions in an informal and
potentially incomplete manner, lacking the full intensional knowledge present in formal database
schemas. Our aim is to assess the model’s ability to perform reasoning over such natural language
prompts despite their potential incompleteness.

Next, we give a precise formulation of the function composition problem due to (Peng et al., 2024).
Consider two functions, g mapping a domain A to a domain B, and f mapping B to another domain
C. These functions will be described in a prompt X . The N tokens of X are divided into four parts:

1. the zeroth part describes the argument x ∈ A,
2. the first part describes the function g through |A| sentences in simple, unambiguous language

separated by punctuation, e.g., ’the father of Frédéric Chopin is Nicolas Chopin’,
3. the second part consists of |B| sentences describing the function f , e.g., ’the birthday of

Nicolas Chopin is April 15, 1771’,
4. the third part is the query question asking for the value of f(g(x)).

In this section, we discuss the theoretical limitations of SSMs for solving the function composition
problem. In our analysis, the concept of domain size is crucial. While we primarily consider discrete
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domains, such as finite sets like [n] = {1, 2, . . . , n}, it is important to discuss what domain size means
in other contexts. For continuous domains like the interval [1, n], representing general functions
would require infinitely many bits, making function composition intractable for models like SSMs and
Transformers. Therefore, in practical settings, the maximum meaningful domain size is constrained
by the total number of tokens and the prompt length, as the model’s input capacity is limited. In our
composition tasks, the functions are described within the prompt, so the prompt length effectively
serves as an upper bound on the domain size.

Theorem 1. Consider a function composition problem with input domain size |A| = |B| = n and an
SSM layer L with embedding dimension d and computation precision p. Let R = n log n−(d2+d)p ≥
0, then the probability that L answers the query incorrectly is at least R/(3n log n) if f is sampled
uniformly at random from CB .

The proof is based on a reduction from a famous problem in communication complexity (Peng et al.,
2024), (Yao, 1979). Additional background on Communication Complexity and relevant problem
classes can be seen in the Appendix A. We have three agents dubbed Faye, Grace, and Xavier. We
assume that the agents have unbounded computational capabilities but, the only communication
allowed is from Faye and Grace to Xavier. Faye knows a function f : [n] 7→ [n] and the argument
x ∈ [n], Grace knows a function g : [n] 7→ [n] and the argument x, while Xavier only knows the
argument x ∈ [n]. The goal is for Xavier to compute the value of f(g(x)), minimizing the total
number of bits communicated from Faye to Xavier and from Grace to Xavier.

We report a lemma from (Peng et al., 2024), which gives a hardness result for the abovementioned
problem.

Lemma 1 (Lemma 1 from (Peng et al., 2024)). Consider the problem described above: if fewer than
n log n bits are communicated by Faye to Xavier, then Xavier cannot know the value f(g(x)). In
particular, if only n log n−R bits are communicated for some R ≥ 0, then the probability that the
composition is computed incorrectly is at least R/(3n log n) if f is sampled uniformly at random
from CB .

Now, we prove the theorem based on the Lemma above.

Proof of Theorem 1. To establish the bound on q, we give a reduction of the communication problem
above to the function composition problem. Let L be an SSM layer that can solve the function
composition problem with probability q.

Suppose we have Faye, Grace, and Xavier as in the settings above, and Xavier wants to find the value
f(g(x)). We construct the following prompt: the zeroth token x0 is ’the argument of the function is
x’ , for i ∈ [1, n] let xi be the token ’g applied to i is g(i)’, where the information is provided by
Grace, and for i ∈ [n+1, 2n] let xi be the token string ’f applied to i is f(i)’, where the information
is provided by Faye. Xavier provides the last token string x2n+1 = ’what is the value of f(g(x))’.
Since the SSM layer L can solve the composition task with probability q, we have that:

y2n+1 = C2n+1h2n+1 +D2n+1x2n+1 = f(g(x)) (3)

with probability q.

But this allows us to construct the following communication protocol. Since Grace knows g and the
argument x, she knows the values of xi for i ∈ [0, n] and she iteratively computes:

hi = Aihi−1 +Bxi, (4)

and then sends hn to Xavier. On the other hand, Faye knows f and hence the values of xi for
i ∈ [n+ 1, 2n], she computes the matrix:

A =

2n∏
j=n+1

Aj , (5)

then the vector:

b =

2n∑
i=n+1

 2n−i∏
j=n+1

Aj

Bixi, (6)
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and she sends them to Xavier. At this point, Xavier computes:

h2n+1 = A2n+1 · (A · hn + b) +B2n+1x2n+1. (7)

and finds the value of f(g(x)) with probability q by computing y2n+1 = C2n+1·h2n+D2n+1·x2n+1.
The total number of bits of communication between Faye and Xavier is (d2 + d) · p. By Lemma 1, it
follows that q ≤ R/(3n log n).

Our theoretical results in Theorem 1 highlight that SSMs, like other deep neural networks, approxi-
mate functions rather than perform symbolic reasoning. Specifically, the probability bound indicates
that if we attempt to compose functions over domains of size n with an SSM of embedding dimension
d and computational precision p such that (d2 + d)p < n log n/2, the model will output the incorrect
result with a probability of at least 1/6. To achieve a high probability of correctness (e.g., 99%),
(d2 + d)p must be significantly larger than n log n/2. This establishes a strong lower bound on the
model’s width, demonstrating that to accurately perform function composition over large domains,
the model’s capacity must increase substantially.

While Theorem 1 addresses the limitations of one-layer SSMs, a natural question arises: Can deeper
SSMs overcome these limitations? We conjecture that any SSM with a constant number of layers
would still be unable to resolve the iterated composition task (as formalized in our Chain-of-Thought
section 5). This is because accurately communicating token embeddings between layers becomes
increasingly challenging as the depth grows. The difficulty in preserving and transmitting the
necessary information across layers suggests that simply increasing the number of layers without
a corresponding increase in model capacity does not suffice to address the fundamental limitations
identified.

5 MANY THOUGHT STEPS ARE NEEDED

A chain of thought (CoT) is a series of intermediate natural language reasoning steps that lead to
the final output. In this section, we focus on language models that can generate a similar chain of
thought— a coherent series of intermediate reasoning steps that lead to the final answer for a problem.
In (Wei et al., 2022), it was observed that CoT can mitigate the issue of hallucinations by encouraging
the LLM to generate prompts that break down the task into smaller steps, eventually leading to the
correct answer. In this section, we prove that, in general, many CoT steps are needed to break down
compositional tasks.

We start the discussion with the formal definition of an SSM with k CoT steps. It adapts the definition
for the Transformer model of (Merrill & Sabharwal, 2024) to the case of SSMs.

Definition 2 (SSM with CoT). Let ϕ : (Rm)∗ → Rm be a function mapping a prefix of tokens to a
new token. The function ϕ is parametrized by an SSM layer L.

Given an input sequence x1,x2, . . . ,xn ∈ Rm, we call:

ϕk(x1,x2, . . . ,xn) = ϕk−1(x1,x2, . . . ,xn) · ϕ(ϕk−1(x1,x2, . . . ,xn),x1,x2, . . . ,xn),

where ϕ1(x1,x2, . . . ,xn) = ϕ(x1,x2, . . . ,xn) and · denotes concatenation, the output of the SSM
layer L with k CoT-steps.

In this section, we want to prove that, while this procedure could help SSM layers with compositional
tasks, it might require many chain of thought steps to be effective. In particular, we focus on the
iterated function composition problem and show a lower bound on the number of CoT steps needed
by an SSM layer to solve this problem correctly.

In the iterated function composition problem we are given k functions f1, f2, . . . , fk : [n] 7→ [n],
and we need to calculate fk(fk−1(. . . f2(f1(x)) . . . )) for x ∈ [n]. Here we restrict to the case when
f1 = f2 = · · · = fk, we define f (k)(x) := f(f(. . . f(x))), and we call this k-iterated function
composition problem.

Theorem 2. Consider an iterated composition problem with domain size n, computation precision p,
and embedding dimension d. An SSM layer requires Ω(

√
n logn
dp ) CoT steps for answering correctly

iterated function composition prompts.
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The proof relies on reducing the iterated function composition problem from the pointer chasing
problem (Papadimitriou & Sipser, 1982), a classical problem in communication complexity. In the
k-steps pointer chasing problem, we have two agents dubbed Alice and Bob; Alice knows a function
fA : [n] 7→ [n] and Bob knows a function fB : [n] 7→ [n]. We then define the pointers:

z1 = 1, z2 = fA(z1), z3 = fB(z2), z4 = fA(z3), z5 = fB(z4), . . . .

The communication proceeds for 2k rounds, with Alice starting. The goal is for Bob to output the
binary value of z2k+2 mod 2. Following, we prove that an SSM layer with R CoT steps solving
the iterated function composition problem can be used to design a communication protocol for the
pointer chasing problem where the number of transmitted bits scales with R. The next fundamental
Lemma in communication complexity gives a lower bound on the number of bits that need to be
communicated in any such communication protocol and thus allows the lower bound to be derived on
the CoT steps.

Lemma 2 (Theorem 1.1 (Yehudayoff, 2020)). Any randomized protocol for the k-steps pointer chas-
ing problem with error probability 1/3 under the uniform distribution must involve the transmission
of at least n/(2000k)− 2k log n bits.

Before we begin with the actual proof, let us introduce some notation. We note that ϕk is a string of
k tokens of Rm. Moreover, to compute the new token ϕ(ϕk−1(x1,x2, . . . ,xn),x1,x2, . . . ,xn) the
SSM layer L computes n+(k−1) hidden states. We denote the i-th hidden state by ϕk,i(x1, . . . ,xn).

Proof of Theorem 2. The proof is similar to the proof of Theorem 2 in (Peng et al., 2024). We reduce
the pointer chasing problem to the iterated composition problem with CoT prompts. In particular, we
show that if the SSM L can solve the k-iterated function composition problem with R CoT steps,
then we can construct a protocol solving the (k − 1)-steps pointer chasing problem using 2Rdp bits
of communication.

Fix a (k − 1)-steps pointer chasing problem for the function fA, fB : [n] 7→ [n]. Define the function
f : [2n] 7→ [2n] as:

f(i) =

{
fA(i) + n, i ∈ [1, n];

fB(i− n), i ∈ [n+ 1, 2n].
(8)

We point out that f (k)(i) = (fB ◦ fA)(k)(i). Consider the k-iterated function composition problem
for f and suppose that there exists an SSM L that solves it using R CoT steps.

We construct the following prompt: for i ∈ [1, n] let xi be the token ’f applied to i is f(i)’, where
the information f(i) is provided by Alice, and for i ∈ [n+ 1, 2n] let xi the token string ’f applied
to i is f(i)’, where the information f(i) is provided by Bob. The last token string x2n+1 is given
by ’what is the value of f (k) applied to x’. Since the SSM layer L can solve the k-iterated function
composition task with R CoT steps, we have that ϕR(x1, . . . ,x2n) is the right answer for fk(x).
We will use this fact to construct a communication protocol transmitting at most 2 ·Rdp bits. The
communication protocol lasts for R rounds.

In the r-th round Alice computes ϕr,n+k(x1, . . . ,x2n) from ϕr−1(x1, . . . ,x2n) (where
ϕ0(x1, . . . ,x2n) is the empty string of tokens) and x1, . . . ,xn and communicates it with Bob.
Bob on the other hand computes ϕr(x1, . . . ,x2n) from ϕr,n+k(x1, . . . ,x2n) and xn+1, . . . ,x2n

and transmits it to Alice. In each iteration at most dp bits are communicated from Alice to Bob and
from Bob to Alice.

After R rounds, Bob knows the value of ϕR(x1, . . . ,x2n). By hypothesis, this is the solution to
the (k − 1)-steps pointer chasing problem. Notice that, the total number of bits communicated by
the protocol are 2Rdp. In conclusion, we fix k = 1

100

√
n

logn + 1 and by Lemma 2 we get that

2Rdp ≥ n/(2000k)− 2k log n which gives R ≥ 3
100

√
n logn
dp

6 SSMS ARE LIMITED TO REGULAR LANGUAGES

In Peng et al. (2024), it is suggested to analyze the computational capability of LLMs on the compu-
tational problems below. The empirical compositional tasks studied in later sections—multiplication
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of multi-digit integers, dynamic programming, and logic puzzles such as “Einstein’s Riddle”—can be
expressed in terms of these computational problems (Peng et al., 2024).

Circuit evaluation: Given the description of a circuit with gates, which can be either Boolean or
arithmetic operations, as well as the values of all input gates of the circuit, evaluate the output(s) of
the circuit. Multiplying decimal integers with multiple digits is an example of such a circuit.

Derivability: Given a finite domain S and a relation D ⊆ S × S. For a given initial set I ⊆ S and
a final set F ⊆ S, answer the question whether there are elements a1, a2, . . . , ak ∈ S such that (a)
a0 ∈ I , (b) ak ∈ F , and (c) for all j such that 0 < j ≤ k, (aj−1, aj) ∈ D.

Logical reasoning: Logic puzzles like ’Einstein’s Riddle’ can typically be formulated as satisfiability
(or SAT) instances. This problem is NP-complete. However, most common-sense reasoning can be
expressed by one of the three tractable exceptional cases of SAT: 2-SAT, Horn SAT, Mod 2 SAT.

In Peng et al. (2024), it was noted that Derivability and 2-SAT are NL-complete, while Horn SAT
and Circuit Evaluation are P-complete problems. Since the log-precision Transformer model lies in
the complexity class log-uniform TC0 ⊆ L (Merrill & Sabharwal, 2023b), these problems cannot
be solved by a log-precision Transformer model provided NL ̸= L (which is a widely believed
hypothesis in computational complexity). For Mod 2 SAT, the result is valid provided the weaker
statement L ̸= Mod 2L. For Horn SAT and Circuit Evaluation, the result holds unless the stronger
statement L = P holds. Very recently, in Merrill et al. (2024), it was established that log-precision
linear and S6-SSMs (Gu & Dao, 2023) are also part of the complexity class log-uniform TC0, which
yields the following theorem similar to the case of Transformers.

Theorem 3. The problems of Derivability and 2-SAT cannot be solved by log-precision linear or
S6-SSMs provided L ̸= NL. For Mod 2 SAT, the result is valid provided the weaker statement
L ̸= Mod 2L holds. For Horn SAT and Circuit Evaluation, the result holds unless the stronger
statement L = P holds.

So far, we have explored the computational capabilities and limitations of SSMs in various settings.
Particularly, we have seen that SSMs face fundamental challenges when dealing with tasks requiring
complex reasoning or computations that go beyond their inherent architectural constraints.

Building upon these insights, we now consider the implications of finite precision arithmetic on the
computational power of SSMs. In practical implementations, SSMs operate with finite precision due
to hardware limitations, using fixed-point or floating-point representations with a finite number of
bits. This finite precision affects the range and granularity of values that the model’s parameters and
hidden states can represent.

Given that SSMs have a fixed hidden dimension d and operate with finite precision, the total number
of distinct hidden states they can assume is finite. This finiteness imposes significant restrictions
on the types of functions and languages that SSMs can compute or recognize. To formalize this
limitation, we present the following theorem, which establishes that SSMs under these constraints
are computationally equivalent to finite-state machines (FSMs). This equivalence implies that SSMs
with finite precision cannot recognize languages beyond the class of regular languages.

Theorem 4. Let Σ be a finite alphabet. Consider an SSM with fixed hidden dimension d and a fixed
number of layers L, operating with finite precision real numbers (e.g., fixed-point or floating-point
arithmetic with a finite number of bits). Then, any function f : Σ∗ → Σ∗ computed by such an SSM
corresponds to a function computable by a finite-state machine (FSM). Consequently, the class of
functions computable by such SSMs is within the class of regular languages.

Proof. An SSM processes an input sequence w = w1w2 . . . wN , where each wt ∈ Σ, and produces
an output sequence y = y1y2 . . . yN , where each yt ∈ Σ. The computations at each time step t are
given by:

1. State Update:
ht = Aht−1 +Bxt, (9)

where ht ∈ Rd is the hidden state, xt = ϕ(wt) is the input embedding, and A,B are fixed matrices.

2. Output Computation:
ot = Cht +Dxt, (10)
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where C,D are fixed matrices.

3. Decoding to Output Symbol:

yt = Decode(ot), (11)

where Decode maps the output vector to an output symbol in Σ.

With finite precision arithmetic, the hidden states ht can take on only a finite (albeit large) number of
distinct values because each component is represented with a finite number of bits. Also, the number
of possible input embeddings xt is finite since Σ is finite and ϕ is fixed. The matrices A,B,C,D
have entries represented with finite precision, leading to finite possible computations.

Now, we define an equivalence relation ∼ on the set of possible hidden states where two hidden states
h and h′ are equivalent (h ∼ h′) if, for all possible future input sequences, the outputs produced by
the SSM starting from h and h′ are identical. Since the number of possible hidden states is finite, the
number of equivalence classes under ∼ is also finite and allows us to model the behavior of the SSM
using a finite automaton.

Now, we construct the Finite-State Machine (FSM) M = (Q,Σ, δ, q0, ω), where:

- Q is the set of equivalence classes of hidden states under ∼.

- Σ is the finite input alphabet.

- δ : Q× Σ → Q is the transition function defined by the SSM’s state update equations.

- q0 is the initial state corresponding to the equivalence class of the initial hidden state h0.

- ω : Q × Σ → Σ is the output function mapping each state and input to an output symbol, as
determined by the SSM’s output computation and decoding.

We define the transition Function δ such that for each state q ∈ Q and input symbol w ∈ Σ, we
choose a representative hidden state hq from the equivalence class q, then compute the next hidden
state: h′ = Ahq +Bϕ(w). After that, we determine the equivalence class q′ ∈ Q such that h′ ∈ q′,
and set δ(q, w) = q′.

Similarly, regarding the output function, for each state q ∈ Q and input symbol w ∈ Σ, we compute
the output vector o = Chq + Dϕ(w), determine the output symbol y = Decode(o) and set
ω(q, w) = y.

By doing all of this, we are sure that for any input sequence, the sequence of states and outputs
produced by the FSM matches exactly those produced by the SSM. This is because the FSM
transitions and outputs are defined to replicate the computations of the SSM. Since the FSM has a
finite number of states and replicates the behavior of the SSM, the function computed by the SSM is
regular. Therefore, any function f : Σ∗ → Σ∗ computed by the SSM is computable by an FSM.

This result implies that SSMs operating with finite precision are computationally equivalent to FSMs.
Consequently, under finite precision constraints, SSMs cannot recognize or generate languages
beyond the class of regular languages because they are inherently limited to computations that
can be modeled by FSMs. In terms of computational limitations, this means that tasks requiring
computational models with greater expressive power, such as context-free grammars or context-
sensitive grammars, cannot be efficiently solved by SSMs with finite precision. Examples of such
tasks include recognizing balanced parentheses, detecting palindromic sequences, and performing
more complex logical inference that necessitates memory beyond finite states.

These limitations are significant because they highlight the boundaries of what SSMs can achieve in
practical settings. Regarding practical considerations, since real-world implementations of SSMs
operate on hardware with finite memory and finite precision arithmetic, these theoretical limitations
directly apply to SSMs used in actual applications. Therefore, when designing systems for tasks
that require processing beyond regular languages, it becomes clear that SSMs with finite precision
may not suffice, and alternative architectures or computational mechanisms need to be considered to
overcome these inherent constraints.
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7 EXPERIMENTS

Our theoretical results suggest that SSMs inherently struggle with function composition and multi-
step reasoning tasks due to their architectural limitations. To validate these findings, we empirically
assess SSMs’ performance on practical tasks requiring these capabilities.

We evaluate the inability of various sequence models to address function composition tasks by examin-
ing three axes of composition: spatial, temporal, and relational (Appendix B.1). This evaluation uses
four datasets designed to test function composition. Subsequently, we proceed to compositional tasks
involving multi-digit multiplication, dynamic programming, and Einstein’s puzzle. We investigate the
effects of Chain-of-Thought (CoT) prompting (Appendix B.2) and conduct a thorough error analysis
to understand the failure points and underlying reasons for the erroneous behavior (Appendix B.3).

We conducted GPT experiments using the ChatGPT API (OpenAI, 2023) and performed all exper-
iments with the GPT-4 model as of June 2024, while other models were evaluated on machines
equipped with 2x NVIDIA A100 80 GB GPUs. We used Jamba version 1. Unless otherwise specified,
each task is evaluated three times with 500 test samples per evaluation to ensure consistency and
minimize variance. All other experimental details, including prompts and additional results, are
provided in the Appendix.

8 RELATED WORK

Limitations in Function Composition and Reasoning Recent studies have underscored the
limitations of deep learning models, particularly Transformers, in handling tasks requiring deep
compositionality and multi-step reasoning (Peng et al., 2024; Dziri et al., 2023). These tasks are
crucial in applications like mathematical problem-solving (Li et al., 2023), algorithm learning
(Thomm et al., 2024; Veličković & Blundell, 2021), logical reasoning (Liu et al., 2023b), and
dynamic programming (Dziri et al., 2023). Despite their capabilities, Transformers have been shown
to struggle with function composition, which is essential for understanding relational information in
data (Guan et al., 2024).

Research has highlighted architectural and training limitations that prevent these models from
maintaining accuracy over multiple reasoning steps, leading to issues like hallucinations and reasoning
errors (Merrill & Sabharwal, 2023a; Zhao et al., 2023). Studies by Merrill et al. (2024) and Peng et al.
(2024) have identified that both Transformers and SSMs belong to weak complexity classes, such as
logspace-uniform TC0, which limits their computational abilities. However, prior work primarily
focused on Transformers, with SSMs not thoroughly investigated theoretically and empirically
concerning their ability to perform function composition and compositional tasks. Our contribution
fills this gap by providing a comprehensive theoretical framework and empirical analysis specific to
SSMs.

Chain-of-Thought Prompting The Chain-of-Thought (CoT) prompting method has been proposed
to improve reasoning capabilities in large language models by breaking down complex tasks into
smaller, intermediate steps (Wei et al., 2022). CoT prompting aims to mitigate issues like hallucina-
tions and enhance multi-step reasoning by encouraging models to generate intermediate reasoning
steps. While CoT has shown promise in certain contexts, recent research indicates that even with
CoT prompting, current models remain inadequate for solving deeply compositional tasks (Merrill
& Sabharwal, 2023a; Liu et al., 2023a). Our work supports these findings, demonstrating that CoT
prompting does not overcome the fundamental computational limitations of SSMs and Transformers
in tasks requiring complex reasoning.

While advanced methods like tree search algorithms (Trinh et al., 2024; Polu & Sutskever, 2020;
Lample et al., 2022) and self-correction techniques (Wang et al., 2024; Kumar et al., 2024) have been
proposed to improve reasoning by integrating external mechanisms, our work focuses on the inherent
computational limitations of SSMs and Transformers when used without such augmentations. These
external engines can mitigate some limitations by leveraging additional resources, but they do not
address the core architectural constraints we have identified.

Expressive Power and Complexity of Neural Networks There is a growing body of work explor-
ing the expressive power of neural network architectures and their limitations from a computational
complexity perspective. Weiss et al. (2018) and Siegelmann & Sontag (1992) examined the capabili-
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ties of recurrent neural networks in relation to Turing machines. Pérez et al. (2019) investigated the
Turing completeness of Transformers under certain conditions.

More recently, Merrill et al. (2020) analyzed the relationship between network depth, parameter size,
and computational expressivity. Bhattamishra et al. (2020) explored the computational limitations of
Transformers concerning formal languages. Our work contributes to this line of research by analyzing
SSMs within the framework of computational complexity, specifically their placement within the
class L and implications for their reasoning capabilities.

Alternative Approaches to Complex Reasoning Given the limitations of current architectures,
researchers have explored alternative approaches to enhance models’ reasoning abilities. Methods
include integrating external memory modules (Graves et al., 2016), incorporating symbolic reasoning
components (Gaunt et al., 2017), and developing neuro-symbolic models (Dai et al., 2019). These
approaches aim to combine the strengths of neural networks with symbolic computation to overcome
the shortcomings in tasks requiring complex, multi-step reasoning. Our findings underscore the
necessity for such innovative solutions, suggesting that overcoming the fundamental limitations
identified requires moving beyond traditional deep learning paradigms.

9 CONCLUSION

In this work, we have demonstrated both theoretically and empirically that Structured State Space
Models (SSMs) and Transformers face fundamental limitations in performing function composition
and complex reasoning tasks. Our theoretical analysis shows that overcoming these limitations would
require architectures beyond finite-state machines. SSMs with fixed hidden dimensions and layers are
equivalent to finite-state machines and thus limited to regular languages (Theorem 4). This limitation
explains their inability to handle tasks that require computational power beyond regular languages,
such as context-free languages or problems that are NL-complete.

Our empirical evaluations confirm these findings, revealing significant performance degradation as
task complexity increases, even when employing advanced prompting techniques. Models often
resort to shortcuts, leading to errors in multi-step reasoning processes. These results highlight that
current deep learning architectures are fundamentally limited in their ability to perform reliable
multi-step reasoning and compositional task-solving due to their architectural constraints. This
underscores the necessity for innovative architectural solutions or computational frameworks that can
handle such tasks more efficiently. Future research should explore new directions, such as integrating
symbolic reasoning components, improving memory and state-tracking capabilities, or developing
hybrid models that transcend the limitations of existing architectures. Addressing these challenges is
crucial for advancing toward general artificial intelligence capable of sophisticated reasoning and
problem-solving across diverse domains.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Samira Abnar, Omid Saremi, Laurent Dinh, Shantel Wilson, Miguel Angel Bautista, Chen Huang,
Vimal Thilak, Etai Littwin, Jiatao Gu, Josh Susskind, and Samy Bengio. Adaptivity and modularity
for efficient generalization over task complexity, 2023.

S. Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of transformers and its
implications in sequence modeling. In Conference on Computational Natural Language Learning,
2020.

Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Manon Devin, Alex X. Lee,
Maria Bauza Villalonga, Todor Davchev, Yuxiang Zhou, Agrim Gupta, Akhil Raju, Antoine
Laurens, Claudio Fantacci, Valentin Dalibard, Martina Zambelli, Murilo Fernandes Martins,
Rugile Pevceviciute, Michiel Blokzijl, Misha Denil, Nathan Batchelor, Thomas Lampe, Emilio
Parisotto, Konrad Zolna, Scott Reed, Sergio Gómez Colmenarejo, Jonathan Scholz, Abbas Abdol-
maleki, Oliver Groth, Jean-Baptiste Regli, Oleg Sushkov, Thomas Rothörl, Jose Enrique Chen,
Yusuf Aytar, David Barker, Joy Ortiz, Martin Riedmiller, Jost Tobias Springenberg, Raia Hadsell,
Francesco Nori, and Nicolas Heess. Robocat: A self-improving generalist agent for robotic
manipulation. Trans. Mach. Learn. Res., 2024.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In Annu. Meet. Assoc.
Comput. Linguist., 2019.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms through
structured state space duality. In Int. Conf. Mach. Learn., 2024.

Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan and
Jakob Rehof (eds.), Tools and Algorithms for the Construction and Analysis of Systems, 2008.

Mengnan Du, Fengxiang He, Na Zou, Dacheng Tao, and Xia Hu. Shortcut learning of large
language models in natural language understanding. Commun. ACM, 2022. URL https:
//api.semanticscholar.org/CorpusID:251800110.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Xiang
Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers
on compositionality. In NeurIPS, 2023. URL https://openreview.net/forum?id=
Fkckkr3ya8.

Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Ré. Hungry
Hungry Hippos: Towards language modeling with state space models. In ICLR, 2023.

Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel Tarlow. Differentiable programs
with neural libraries. In Int. Conf. Mach. Learn., 2017.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard S. Zemel, Wieland Brendel,
Matthias Bethge, and Felix Wichmann. Shortcut learning in deep neural networks. Nature Mach.
Intell., 2020.

Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with
state-space models. Int. Conf. Mach. Learn., 2022.

Gemini Team Google. Gemini 1.5: Unlocking multimodal understanding across millions of tokens
of context. ArXiv, abs/2403.05530, 2024. URL https://api.semanticscholar.org/
CorpusID:268297180.

11

https://api.semanticscholar.org/CorpusID:251800110
https://api.semanticscholar.org/CorpusID:251800110
https://openreview.net/forum?id=Fkckkr3ya8
https://openreview.net/forum?id=Fkckkr3ya8
https://api.semanticscholar.org/CorpusID:268297180
https://api.semanticscholar.org/CorpusID:268297180


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwinska, Sergio Gomez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John P. Agapiou,
Adrià Puigdomènech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain,
Helen King, Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis.
Hybrid computing using a neural network with dynamic external memory. Nature, 2016.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In ICLR, 2022.

Xinyan Guan, Yanjiang Liu, Hongyu Lin, Yaojie Lu, Ben He, Xianpei Han, and Le Sun. Mitigating
large language model hallucinations via autonomous knowledge graph-based retrofitting. In AAAI,
2024.

Derek Hansen, Danielle Maddix Robinson, Shima Alizadeh, Gaurav Gupta, and Michael Mahoney.
Learning physical models that can respect conservation laws. In Int. Conf. Mach. Learn., 2023.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Na-
ture, 2023. doi: 10.1038/s41586-023-06419-4. URL https://doi.org/10.1038/
s41586-023-06419-4.

Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman Publishing Co., Inc.,
USA, 2005. ISBN 0321295358.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D. Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, Lei M. Zhang, Kay McKinney, Disha Shrivastava,
Cosmin Paduraru, George Tucker, Doina Precup, Feryal M. P. Behbahani, and Aleksandra Faust.
Training language models to self-correct via reinforcement learning. ArXiv, 2024.

Guillaume Lample, Marie-Anne Lachaux, Thibaut Lavril, Xavier Martinet, Amaury Hayat, Gabriel
Ebner, Aurelien Rodriguez, and Timothée Lacroix. Hypertree proof search for neural theorem
proving. ArXiv, abs/2205.11491, 2022.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
CAMEL: Communicative agents for ”mind” exploration of large language model society. In
NeurIPS, 2023. URL https://openreview.net/forum?id=3IyL2XWDkG.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, Omri Abend, Raz Alon, Tomer Asida,
Amir Bergman, Roman Glozman, Michael Gokhman, Avashalom Manevich, Nir Ratner, Noam
Rozen, Erez Shwartz, Mor Zusman, and Yoav Shoham. Jamba: A hybrid transformer-mamba
language model, 2024.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. ICLR, 2023a. doi: 10.48550/arXiv.2210.10749. URL https:
//openreview.net/forum?id=De4FYqjFueZ.

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji Zhou, and Yuexin Zhang. Evaluating the
logical reasoning ability of chatgpt and gpt-4. ArXiv, abs/2304.03439, 2023b. URL https:
//api.semanticscholar.org/CorpusID:258041354.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language models.
In NeurIPS, 2023.

Amil Merchant, Simon Batzner, Samuel S. Schoenholz, Muratahan Aykol, Gowoon Cheon, and
Ekin Dogus Cubuk. Scaling deep learning for materials discovery. Nature, 2023. doi: 10.1038/
s41586-023-06735-9. URL https://doi.org/10.1038/s41586-023-06735-9.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Trans. Assoc. Comput. Linguist., 2023a. doi: 10.1162/tacl_a_00562. URL https:
//aclanthology.org/2023.tacl-1.31.

12

https://doi.org/10.1038/s41586-023-06419-4
https://doi.org/10.1038/s41586-023-06419-4
https://openreview.net/forum?id=3IyL2XWDkG
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=De4FYqjFueZ
https://api.semanticscholar.org/CorpusID:258041354
https://api.semanticscholar.org/CorpusID:258041354
https://doi.org/10.1038/s41586-023-06735-9
https://aclanthology.org/2023.tacl-1.31
https://aclanthology.org/2023.tacl-1.31


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023b.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought,
2024.

William Merrill, Vivek Ramanujan, Yoav Goldberg, Roy Schwartz, and Noah A. Smith. Effects of
parameter norm growth during transformer training: Inductive bias from gradient descent. In Proc.
Conf. Empirical Methods in Nat. Lang. Process., 2020.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models,
2024.

Roshanak Mirzaee and Parisa Kordjamshidi. Transfer learning with synthetic corpora for spatial role
labeling and reasoning. In Proc. Conf. Empirical Methods in Nat. Lang. Process. Association for
Computational Linguistics, 2022.

Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs, Preey Shah, Tri Dao, Stephen Baccus, and
Christopher Ré. S4nd: Modeling images and videos as multidimensional signals with state spaces.
In NeurIPS, 2022.

OpenAI. Gpt-4 technical report, 2023.

Christos H. Papadimitriou and Michael Sipser. Communication complexity. In Proc. Annu. ACM
Symp. Theory Comput. Association for Computing Machinery, 1982. doi: 10.1145/800070.802192.
URL https://doi.org/10.1145/800070.802192.

Binghui Peng, Srini Narayanan, and Christos Papadimitriou. On limitations of the transformer
architecture, 2024.

Jorge Pérez, Javier Marinkovic, and Pablo Barceló. On the turing completeness of modern neural
network architectures. ICLR, 2019.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
ArXiv, abs/2009.03393, 2020.

Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem. Comput. Intell., 9, 1993.
URL https://api.semanticscholar.org/CorpusID:36951414.

Yair Schiff, Chia-Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, and Volodymyr Kuleshov.
Caduceus: Bi-directional equivariant long-range dna sequence modeling, 2024.

Hava T. Siegelmann and Eduardo Sontag. On the computational power of neural nets. In Annual
Conference Computational Learning Theory, 1992.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging
big-bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

Ruixiang Tang, Dehan Kong, Lo li Huang, and Hui Xue. Large language models can be lazy learners:
Analyze shortcuts in in-context learning. In Annu. Meet. Assoc. Comput. Linguist., 2023. URL
https://api.semanticscholar.org/CorpusID:258959244.

Jonathan Thomm, Aleksandar Terzic, Geethan Karunaratne, Giacomo Camposampiero, Bernhard
Schölkopf, and Abbas Rahimi. Limits of transformer language models on learning algorithmic
compositions, 2024.

Shivin Thukral, Kunal Kukreja, and Christian Kavouras. Probing language models for understand-
ing of temporal expressions. In BlackboxNLP Workshop on Analyzing and Interpreting Neu-
ral Networks for NLP, 2021. URL https://api.semanticscholar.org/CorpusID:
238259493.

13

https://doi.org/10.1145/800070.802192
https://api.semanticscholar.org/CorpusID:36951414
https://api.semanticscholar.org/CorpusID:258959244
https://api.semanticscholar.org/CorpusID:238259493
https://api.semanticscholar.org/CorpusID:238259493


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. ArXiv, 2023.

Trieu Trinh, Yuhuai Wu, Quoc Le, He He, and Thang Luong. Solving olympiad geometry without
human demonstrations. Nature, 2024. doi: 10.1038/s41586-023-06747-5.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.
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A BACKGROUND ON COMMUNICATION COMPLEXITY AND COMPUTATIONAL
CLASSES

To provide a solid foundation for our theoretical results, we offer an overview of key concepts in
communication complexity and computational complexity theory. This background is essential for
understanding the limitations of SSMs and other deep learning architectures in sequence modeling
tasks that require complex reasoning.

A.1 COMMUNICATION COMPLEXITY

Communication complexity studies the amount of communication required between two or more
parties to compute a function whose input is distributed among them. It provides lower bounds on the
communication needed for distributed computation.

Communication Protocols: A communication protocol specifies the rules by which parties exchange
messages to compute a function collaboratively. The primary goal is to minimize the total number of
bits exchanged.

Key Problems in Communication Complexity:

• Function Composition Problem: Two parties, Faye and Grace, hold functions f : B → C
and g : A → B, respectively, along with a common input x ∈ A. Their goal is to compute
f(g(x)) with minimal communication to a third party, Xavier. This problem models
scenarios where composing functions over large domains requires significant communication,
highlighting the challenges in function composition tasks for sequence models.

• Pointer Chasing Problem: This involves two parties who alternately apply functions to an
initial input over several rounds. It is a fundamental problem used to establish lower bounds
in communication complexity. It demonstrates that certain computations inherently require
a substantial amount of communication, regardless of the protocol used.

• Set Disjointness Problem: Two parties each hold a subset of a universal set and wish to
determine if their subsets intersect without revealing additional information. This problem
is notable for having high communication complexity, serving as a basis for proving lower
bounds in various computational models.

Relevance to Sequence Modeling: Communication complexity provides tools to prove theoretical
limits on the capabilities of computational models, including neural networks. By reducing problems
in communication complexity to tasks performed by sequence models, we can establish lower bounds
on the resources required (e.g., hidden state size, number of layers) for these models to perform
certain computations. This approach helps in understanding why models like SSMs struggle with
tasks requiring complex reasoning or function composition.

A.2 COMPUTATIONAL COMPLEXITY CLASSES

Computational complexity theory classifies problems based on the resources required to solve them,
such as time or memory space. Understanding these classes is crucial for characterizing the limitations
of computational models.

Key Complexity Classes:

• L (Logarithmic Space): The class of decision problems solvable by a deterministic Turing
machine using logarithmic amount of memory space with respect to the input size. Problems
in L are considered efficiently solvable with very limited memory.

• NL (Nondeterministic Logarithmic Space): Consists of decision problems solvable by a
nondeterministic Turing machine using logarithmic space. NL is a broader class than L, as
nondeterminism allows guessing and verifying solutions using limited memory.

• P (Polynomial Time): Contains decision problems solvable by a deterministic Turing
machine in polynomial time. It represents problems that are efficiently solvable in terms of
time, without specific memory constraints.

• Regular Languages: The class of languages recognizable by finite automata or equivalently,
by regular expressions. They are the simplest class in the Chomsky hierarchy and can be
recognized using constant memory.
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• Context-Free Languages: Recognizable by pushdown automata, these languages can
handle nested structures and require memory that grows with the input size.

• TC0 (Constant Depth Threshold Circuits): A class of problems solvable by constant-
depth, polynomial-size circuits with threshold gates. These circuits can compute certain
functions very efficiently in parallel.

Relationships Between Classes:

Regular Languages ⊆ L ⊆ NL ⊆ P (12)

It’s widely believed that these inclusions are strict (e.g., L ̸= NL), meaning each class strictly
contains the previous one.

Relevance to Sequence Modeling: By placing computational models within these complexity
classes, we can formalize their computational power and limitations. For instance:

• Finite-State Machines (FSMs): Equivalent to models that recognize regular languages.
They have a finite number of states and cannot handle tasks requiring memory that scales
with input size.

• Pushdown Automata: Recognize context-free languages and can handle nested or recursive
structures due to their use of a stack.

• SSMs and Transformers: Our analysis shows that SSMs with fixed hidden dimensions and
layers are equivalent to FSMs, limiting them to regular languages. Similarly, Transformers
have been shown to have limitations corresponding to the class TC0 or L under certain
conditions.

Implications for SSMs: Understanding that SSMs are limited to regular languages explains why
they struggle with tasks requiring more computational power, such as:

• Function Composition: Requires the ability to maintain and manipulate information over
long sequences, which exceeds the capabilities of finite-state models.

• Complex Reasoning Tasks: Problems like multi-digit multiplication, logical puzzles, and
dynamic programming necessitate memory and computational resources beyond what is
available in models limited to regular languages.

By grounding our analysis in communication complexity and computational complexity theory,
we establish a theoretical foundation for the limitations of SSMs. This background enables us to
formalize the challenges faced by sequence models in handling tasks that require computational
resources beyond regular languages and logarithmic space.

A.3 KEY PROBLEMS AND THEIR COMPLEXITY

To further contextualize the limitations of SSMs, we briefly describe some computational problems
and their associated complexity classes:

• Derivability (NL-Complete): Given a finite set and a relation, determine if there is a
sequence of elements satisfying certain conditions. This problem requires nondeterministic
logarithmic space and cannot be solved by models limited to L unless L = NL.

• 2-SAT (NL-Complete): A satisfiability problem where each clause has at most two literals.
It is solvable in polynomial time but is NL-complete, indicating it requires more than
deterministic logarithmic space.

• Horn SAT and Circuit Evaluation (P-Complete): Problems that are as hard as any
problem in P. Solving these efficiently would require polynomial time computation, beyond
the capabilities of FSMs.

• Mod 2 SAT (Beyond L): Involves solving satisfiability problems modulo 2. Requires
computational resources beyond deterministic logarithmic space.
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Relevance to Our Work: The inability of SSMs to solve these problems stems from their equivalence
to finite-state machines. Since FSMs cannot utilize memory that grows with input size, they are
inherently incapable of solving problems that require maintaining and processing an unbounded
amount of information. The limitations highlighted by these complexity classes and problems suggest
that to handle complex reasoning tasks effectively, sequence models need architectures that go beyond
finite-state computations. This could involve models that can simulate pushdown automata or Turing
machines, allowing them to recognize context-free languages or perform computations requiring
more substantial memory resources.

B MAIN EXPERIMENTS

B.1 FUNCTION COMPOSITION AND COMPOSITIONAL TASKS

In the context of Large Language Models (LLMs), compositional tasks differ from function com-
position. Function composition fK(fK−1(. . . (f1(x)))) is a mathematical process where the output
of one function serves as the input for another across multiple functions f1, f2, . . . , fK . Conversely,
LLM compositional tasks involve breaking down complex inputs into simpler parts and integrating
the results to generate an overall output. Examples include (i) combining linguistic elements to
generate coherent text, (ii) solving multi-step reasoning problems, and (iii) decomposing complex
tasks (e.g., multi-turn conversations, summarization) into manageable sub-tasks.

Solving compositional tasks necessitates the capability to perform function composition (Peng et al.,
2024; Dziri et al., 2023) and demands additional competencies such as contextual understanding,
multi-step reasoning, and the integration of diverse information types. A model’s proficiency in
function composition is a critical prerequisite for tackling complex compositional tasks (Lu et al.,
2023). For instance, if an SSM-powered LLM cannot evaluate f(g(x)), it will be inadequate for
tasks involving multi-step arithmetic or logical operations that depend on nested functions.

Composition tasks We begin with three fundamental composition tasks: spatial, temporal, and
relationship compositions. These axes are crucial as they encapsulate core aspects of comprehending
and interacting with the world. Spatial composition entails integrating information about the positions
and orientations of objects. Temporal composition involves reasoning over sequences and durations
of events. Relationship composition focuses on understanding the connections between entities, such
as those in a genealogy tree.

Number of Parameters We conducted experiments using Jamba (Lieber et al., 2024) (joint Mamba
and Attention) with 7B parameters, Mamba (Gu & Dao, 2023) with 2.8B parameters, S4-H3 (Gu et al.,
2022; Fu et al., 2023) with 2.7B parameters, GPT-4 (OpenAI, 2023), and GPT-4o models. Qualitative
results are presented in Fig. 1. As illustrated in Fig. 1, all models failed to answer questions across
the three composition axes correctly.

Problem 1 - Spatial axis

Question: Rectangle is to the west of the pen-
tagon. The triangle is to the north of the square.
The rectangle is to the south of the square. The
triangle is to the west of the circle. Where
is the square located in relation to the pentagon?

Jamba: East ✗
Mamba: Northeast ✗
GPT-4: Northeast ✗
GPT-4o: North ✗
Correct: Northwest. ✓

Problem 2 - Temporal axis

Question: Anne is the younger sister of Erwin,
Erwin is the elder brother of Daniel. Is Anne
younger than Daniel?

Jamba: Yes ✗
Mamba: Yes ✗
GPT-4: Yes ✗
GPT-4o: Yes ✗
Correct: Not enough information. ✓

Problem 3 - Relationship axis

Question: Alan is the son of Marco, Joe
is the son of Alan. Does Alan have any
grandchildren?

Jamba: Yes ✗
Mamba: Yes ✗
GPT-4: No ✗
GPT-4o: No ✗
Correct: Not enough information. ✓

Figure 1: Qualitative example of zero-shot inference on prominent SSM and Attention-based models.
None of the models successfully resolved the problems across any of the composition axes.

To quantitatively assess the limitations of models, including the latest GPT-4o (OpenAI, 2023),
in solving function composition tasks, we evaluate their performance on four datasets specifically
designed to test these capabilities. Unless otherwise specified, each model is tested on 500 samples.

Composition datasets Math-QA dataset, derived from (Li et al., 2023), includes 25 math topics.
We focus on the first 100 samples from Algebra, Calculus, Combinatorics, Game Theory, and
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Trigonometry. Problems involve solving function compositions and temporal reasoning. BIG-Bench
Hard (Suzgun et al., 2022) dataset features 250 Boolean expressions that the model must evaluate.
In Temporal-NLI (Thukral et al., 2021) dataset, each sample consists of a premise (e.g., "They
got married on Saturday") and a hypothesis (e.g., "They got married before Friday"), requiring the
model to determine if the relationship is entailment, contradiction, or neutral. SpaRTUN (Mirzaee
& Kordjamshidi, 2022) dataset is designed for spatial reasoning, and it includes stories describing
the spatial positions of objects, followed by questions about the orientation of one object relative to
another (e.g., left, right, inside, above).

GPT-4o GPT-4 Jamba Mamba S4-H3
Math-QA 51.8% 51.0% 42.2% 35.0% 28.6%

BIG-Bench Hard 56.8% 58.4% 78.2% 67.0% 60.6%
Temporal-NLI 79.4% 77.2% 69.8% 59.2% 54.6%

SpaRTUN 80.8% 61.4% 50.8% 42.2% 35.2%

Table 1: Performance of Attention, SSM and Attention-SSM based
models on various function composition tasks involving logical ex-
pressions, temporal reasoning, spatial reasoning, and math tasks.

GPT-4o GPT-4 Jamba Mamba S4-H3
Algebra 51% 47% 42% 36% 29%
Calculus 50% 48% 41% 34% 28%

Combinatorics 88% 70% 48% 38% 33%
Game theory 30% 40% 50% 41% 32%
Trigonometry 40% 50% 30% 26% 21%

Table 2: Performance of models on various topics within the Math-
QA dataset. Input dependency consistently improves performance,
with Mamba consistently outperforming S4-H3.

The results presented in Tables 1 and 2 highlight several critical observations regarding the perfor-
mance of various models across different composition tasks. Notably, Mamba (Gu & Dao, 2023)
consistently outperforms the S4-H3 (Gu et al., 2022; Fu et al., 2023) model, despite both having
almost the same number of parameters. This performance gap underscores the importance of input-
dependence in model design, as Mamba’s architecture better leverages input information to achieve
superior results. Additionally, while GPT-4o is the most performant overall, it struggles with many
tasks, including those that seem simple to humans, such as logical expression chaining, as evidenced
by its performance on the BIG-Bench Hard (Suzgun et al., 2022) benchmark. This indicates that even
state-of-the-art models like GPT-4o have limitations in solving complex composition tasks, which
numerically justifies our theoretical findings. Accuracy for all models is calculated as the number of
correct answers divided by the total number of samples.

Compositional tasks Having demonstrated that models encounter difficulties even with more
straightforward composition tasks, we now examine their performance on more complex com-
positional tasks. Given their proven inability to perform function composition, as established in
Theorem 1, it is entirely anticipated that their performance on these tasks will be suboptimal. We
explore three compositional tasks: (i) multi-digit multiplication, (ii) dynamic programming, and (iii)
Einstein’s puzzle.

For the multi-digit multiplication task, we generate question-answer pairs such as "What is 5 times
90?" with the answer being "450". This task involves multiplying two numbers, x = (x1, x2, . . . , xk)
and y = (y1, y2, . . . , yk), where each number can have up to k digits. Consequently, there are
9× 10(k−1) possible combinations for each number. In our experiments, we set k to 5 and found that
both Attention and SSM-based models are unable to solve the 5-by-5 digit multiplication task, even
in the case of GPT-4o with CoT prompting (A- 12).
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Figure 2: Jamba Lieber et al. (2024) performance on multiplication, DP and puzzle tasks. For DP
various models are shown. All struggle with compositional tasks, especially for larger input size.

Dynamic programming (DP) recursively decomposes complex problems into simpler sub-problems,
making solutions compositional by nature. We consider a classic relaxation of the NP-complete
Maximum Weighted Independent Set problem (Kleinberg & Tardos, 2005): Given a sequence of
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integers, find a subsequence with the highest sum such that no two numbers in the subsequence are
adjacent in the original sequence. DP can solve This relaxation in O(n) time. For our experiments,
we restrict each integer to the range [−5, 5] and follow the generation steps as in (Dziri et al., 2023),
with an input list containing from 2 to 6 elements. Prompting details are shown in the A-C.3.

Einstein’s puzzle is a well-known logic puzzle commonly used as a benchmark for solving constraint
satisfaction problems (Prosser, 1993). It involves a series of houses with various attributes, and the
objective is to determine which attributes correspond to each home by interpreting a set of predefined
natural language clues or constraints. The solution to the puzzle is represented as a matrix of size
H × A, where H denotes the number of houses and A represents the number of attributes. As H
and A increase, synthesizing partial solutions that satisfy individual constraints becomes increasingly
compositionally complex. Qualitative examples and details about data generation for this task are
provided in the A-C.2.

B.2 COT EXPERIMENTS

Next, we evaluate how the popular chain-of-thought (CoT) prompting method (Wei et al., 2022)
affects the performance of GPT-4o (OpenAI, 2023), Jamba (Lieber et al., 2024), Mamba (Gu & Dao,
2023) and S4-H3 (Gu et al., 2022) models on compositional tasks from Sec. B.1. CoT improves
performance but does not solve the problem. Details of the experiments and examples of full prompts
can be found in the A-D.

B.3 ERROR ANALYSIS

We focus on graph analysis of errors, emphasizing multi-digit multiplication because this problem is
easier to interpret and understand. From this analysis, we obtain a few interesting conclusions about
how errors happen and then propagate inside SSM-based LLMs (Fu et al., 2023; Gu & Dao, 2023;
Mirzaee & Kordjamshidi, 2022).

Computation Graph To study the propagation of errors and its dependency on input size, we define
A as a deterministic algorithm (function) and FA as the set of primitives (functions) the algorithm
employs during execution. Given inputs x to the algorithm A, we define the static computation graph
of A(x), denoted as GA(x), as GA(x) = (V,E, s, op), a directed acyclic graph.

Nodes V represent all variable values during A’s execution, where each node v ∈ V has an associated
value s(v) ∈ R. Edges E represent function arguments involved in computations: for each non-
source node v ∈ V , let U = {u1, . . . , uj} ⊂ V be its parent nodes. Then, s(v) = f(u1, . . . , uj) for
some f ∈ FA. Since each node v is uniquely determined by the computation of a single primitive
f , we define op : V → FA, op(v) = f as the operator function that yields s(v). Let S ⊂ V be
the source nodes of GA(x), and without loss of generality, let o ∈ V be its sole leaf node. By
definition, S ≡ x and A(x) = s(o), representing the input and output of A, respectively. To evaluate
a language model’s ability to follow algorithm A, we must linearize GA(x) (arrange the nodes in
a linear sequence that respects the dependencies). This means if a node u is a parent of node v,
the u should appear before v in the sequence. Since we only consider autoregressive models, this
linearization must also be a topological ordering. A topological order ensures that every node appears
after its parent nodes, maintaining the correct order of computations. This is crucial for correctly
following the sequence of operations defined by the algorithm A.

To instantiate GA(x), let FA = {one-digit multiplication, sum, mod 10, carry over, concatenation}.
Source nodes S are digits of input numbers, leaf node o is the final output, and intermediate nodes
v are partial results generated during the execution of the long-form multiplication algorithm (see
Fig. 3). The corresponding algorithm is on the left of the Fig. 3 - Alg. 1.

Error propagation We examine errors in SSMs, focusing on how they propagate through compu-
tation steps. Fig. 4 shows an example from the S4-H3 model performing multi-digit multiplication
using CoT prompting. In this case, the model multiplies 9 by 63. It correctly computes 9× 3 = 27
but mistakenly carries over ’3’ instead of ’2’, leading to an incorrect middle digit in the final answer
despite correct addition in later steps. This highlights propagation errors, where an initial mistake
affects later steps. Our analysis shows these errors are 2-4 times more common than local errors,
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Algorithm 1 Multiply two numbers

1: function MULTIPLY(x[1..p], y[1..q]) ▷
multiply x for each y[i]

2: for i = q to 1 do
3: carry = 0
4: for j = p to 1 do
5: t = x[j]× y[i]
6: t += carry ▷ add carry
7: carry = t÷ 10
8: digits [j] = t mod 10
9: end for

10: summands[i] = digits
11: end for
12: product =

∑q
i=1 summands[q + 1 − i] ·

10i−1

13: return product
14: end function

9

8

7

72

63

6

2

8

7

3

783

Figure 3: Example of 2-by-1 digit multiplication
(87 × 9). Operations on graph include: inputs,
multiply 1-digit, carry, sum, mod 10 and output.

consistent with findings from Dziri et al. (2023). This suggests SSMs handle single-step tasks well
but struggle with multi-step reasoning, leading to compounded errors.
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Figure 4: Error Propagation. Carry operation
outputs number 3 instead of 2 from node ’27’,
and that error is further propagated, yielding
incorrect solution in the middle digit, although
all other steps were done right.
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Figure 5: SSMs and Transformers learn shortcuts
that seem to solve function composition but fail
with larger inputs and out-of-distribution data.

SSMs learn shortcuts The performance of SSMs provides valuable insights into their behavior.
These models often predict partially correct answers even when the overall response is incorrect. For
example, using Mamba (Gu & Dao, 2023) for 2-by-2 digit multiplication, the first and last digits are
usually accurate. The first two and last two digits in larger multiplications tend to be correct. Using
Relative Information Gain (RIG) analysis (Dziri et al., 2023), we find that SSMs learn shortcuts,
performing fewer operations (illustrated by the red and green subgraphs in Fig. 5). This allows them
to frequently predict peripheral digits correctly. For instance, the model multiplies 8 and 5 to compute
the last digit, carrying 0 to the end, mimicking human multiplication, and accurately predicting the
last digit. RIG analysis reveals a strong correlation between the first digit (or first two digits) of the
output and the first digit (or first two digits) of the input numbers.

These models leverage task distribution shortcuts to guess partial answers without whole multi-step
reasoning. Increasing the number of Chain-of-Thought (CoT) steps doesn’t constantly improve
results, especially for larger input sizes (deeper computation graphs). If the model encounters relevant
subgraphs during training, its inference seems highly compositional but is based on shortcuts (Geirhos
et al., 2020; Liu et al., 2023a; Tang et al., 2023; Du et al., 2022). These experiments indicate that
when an output element heavily relies on a few input features, SSMs recognize this correlation during
training and map these features to predict the output during testing. This gives the false impression
of performing compositional reasoning while bypassing rigorous multi-hop reasoning (Yang et al.,
2024).
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B.4 LEARNING ALGORITHMIC COMPOSITIONS

Finally, we conduct a comprehensive analysis of the capabilities of SSM-based models, along with
GPT-4o (OpenAI, 2023), to "learn" discrete algorithms. This analysis is performed using two tasks
that require the composition of multiple discrete sub-tasks. By empirically examining the models’
algorithmic learning through compositionality testing, we observe their inability to effectively perform
these tasks, even when provided with few-shot prompts and CoT examples (Wei et al., 2022). This
suggests that within the framework of in-context learning, SSM and Transformer-based models fail
to attain compositional learning when constrained to a fixed number of samples. Details in the A-E.

C COMPOSITIONAL TASKS DETAILS

C.1 MULTIPLICATION

We show examples of few-shot and CoT prompting methods for multiplication task (Figs. 6 & 7).

To multiply two numbers, start by multiplying the rightmost digit of
the multiplicand by each digit of the multiplier, writing down the
products and carrying over any remainders. Repeat this process for each
digit of the multiplicand, and then add up all the partial products to
obtain the final result. Here are examples:

Question: what's 32 times 8? Answer 256.
Question: what's 69 times 3? Answer 207.
Question: what's 93 times 6? Answer 558.

Question: what's 76 times 8? Answer:

Figure 6: Example prompt for the multiplication task used for the few-shot prompting.
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Question: What is 904 times 74?

Scratchpad: Let's perform the multiplication step by step:

Let's multiply 904 by the digit in the ones place of 74, which is 4.

1. Multiply 4 by the digit in the ones place of 904, which is 4. This
gives 4 x 4 = 16. Write down the result 6 and carry over the 1 to the
next step.
2. Multiply 4 by the digit in the tens place of 904, which is 0. Add
the carryover from the previous step to account for this. This gives (0
x 4) + 1 = 1. Write down the result 1.
3. Multiply 4 by the digit in the hundreds place of 904, which is 9.
This gives 9 x 4 = 36. Write down the result 36.
4. The partial product for this step is A=3616 which is the
concatenation of the digits we found in each step.

Now, let's multiply 904 by the digit in the tens place of 74, which is
7.

5. Multiply 7 by the digit in the ones place of 904, which is 4. This
gives 4 x 7 = 28. Write down the result 8 and carry over the 2 to the
next step.
6. Multiply 7 by the digit in the tens place of 904, which is 0. Add
the carryover from the previous step to account for this. This gives (0
x 7) + 2 = 2. Write down the result 2.
7. Multiply 7 by the digit in the hundreds place of 904, which is 9.
This gives 9 x 7 = 63. Write down the result 63.
8. The partial product for this step is B=6328 which is the
concatenation of the digits we found in each step.

Now, let's sum the 2 partial products A and B, and take into account
the position of each digit: A=3616 (from multiplication by 4) and
B=6328 (from multiplication by 7 but shifted one place to the left, so
it becomes 63280). The final answer is 3616 x 1 + 6328 x 10 = 3616 +
63280 = 66896.

Figure 7: A sample scratchpad for the multiplication task.

C.2 EINSTEIN’S PUZZLE

Data Construction Following Dziri et al. (2023), we first define a set of properties such as "Color",
"PhoneModel", and "Pet", along with their corresponding values in natural language templates (e.g.,
"The house has a red color."). We then create a basic and clear set of clue types:
1. found_at: For example, “Alice lives in House 2.”
2. same_house: For example, “The person who is a cat lover lives in the house that has a red color.”
3. direct_left: For example, “The person who has a dog as a pet lives to the left of the person who
lives in a red house.”
4. besides: For example, “The person who has a dog as a pet and the person who has a red house live
next to each other.”

Additionally, we introduce more challenging clue types for auxiliary experiments, such as not_at,
left_of (not necessarily directly left), and two_house_between. These harder clues are used
to test the robustness and versatility of our models.

Graph Construction To address the complex compositional reasoning required for a logical grid
puzzle, we utilize existing puzzle solvers de Moura & Bjørner (2008) to generate the computation
graph. Our algorithm follows a basic greedy principle: it applies the minimum number of rules
necessary to solve any cell. Specifically, if a single rule can solve a cell, that rule is applied.
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The algorithm iterates through all clues in the clue set, seeking combinations that can solve any cell
in the table. Although this approach may not be the most efficient, it enables models to have explicit
scratchpad verbalization via an intuitive computation graph. Fig 8 shows an example of a scratchpad.
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This is a logic puzzle. There are 3 houses (numbered 1 on the left, 3
on the right). Each has a different person in them. They have different
characteristics:
- Each person has a unique name: peter, eric, arnold
- People have different favorite sports: soccer, tennis, basketball
- People own different car models: tesla model 3, ford f150, toyota
camry

1. The person who owns a Ford F-150 is the person who loves tennis.
2. Arnold is in the third house.
3. The person who owns a Toyota Camry is directly left of the person
who owns a Ford F-150.
4. Eric is the person who owns a Toyota Camry.
5. The person who loves basketball is Eric.
6. The person who loves tennis and the person who loves soccer are next
to each other.

Let's think step by step. Please first briefly talk about your
reasoning and show your final solution by filling the blanks in the
below table.

$ House: ___ $ Name: ___ $ Sports: ___ $ Car: ___
$ House: ___ $ Name: ___ $ Sports: ___ $ Car: ___
$ House: ___ $ Name: ___ $ Sports: ___ $ Car: ___

Reasoning:
Step 1: First apply clue <Arnold is in the third house.> We know that
The Name in house 3 is arnold.
Step 2: Then combine clues: <The person who loves tennis and the person
who loves soccer are next to each other.> <The person who loves
basketball is Eric.> Unique Values Rules and the fixed table
structure. We know that The Name in house 1 is eric. The FavoriteSport
in house 1 is basketball. The Name in house 2 is peter.
Step 3: Then apply clue <Eric is the person who owns a Toyota Camry.>
We know that The CarModel in house 1 is toyota camry.
Step 4: Then apply clue <The person who owns a Toyota Camry is directly
left of the person who owns a Ford F-150.> and Unique Values We know
that The CarModel in house 2 is ford f150. The CarModel in house 3 is
tesla model 3.
Step 5: Then apply clue <The person who owns a Ford F-150 is the person
who loves tennis.> and Unique Values We know that The FavoriteSport in
house 2 is tennis. The FavoriteSport in house 3 is soccer.
The puzzle is solved.

Final solution:
$ House: 1 $ Name: Eric $ Sports: Basketball $ Car: Camry
$ House: 2 $ Name: Peter $ Sports: Tennis $ Car: Ford
$ House: 3 $ Name: Arnold $ Sports: Soccer $ Car: Tesla

Figure 8: A sample scratchpad for the Einstein’s puzzle task.

C.3 DYNAMIC PROGRAMMING

We show examples of zero/few-shot and CoT prompting methods for dynamic programming task
(Figs. 9 & 10), following Dziri et al. (2023).
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Given a sequence of integers, find a subsequence with the highest sum,
such that no two numbers in the subsequence are adjacent in the
original sequence.

Output a list with "1" for chosen numbers and "2" for unchosen ones. If
multiple solutions exist, select the lexicographically smallest. input
= [3, 2, 1, 5, 2].

Figure 9: Example prompt for the DP task, used for zero-shot and few-shot settings.

Question: Let's solve input = [3, 2, 1, 5, 2].

Scratchpad: dp[4] = max(input[4], 0) = max(2, 0) = 2
dp[3] = max(input[3], input[4], 0) = max(5, 2, 0) = 5
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(5, 1 + 2, 0) = 5
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(5, 2 + 5, 0) = 7
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(7, 3 + 5, 0) = 8

Finally, we reconstruct the lexicographically smallest subsequence that
fulfills the task objective by selecting numbers as follows. We store
the result on a list named "output".

Let can_use_next_item = True.
Since dp[0] == input[0] + dp[2] (8 == 3 + 5) and can_use_next_item ==
True, we store output[0] = 1. We update can_use_next_item = False.
Since dp[1] != input[1] + dp[3] (7 != 2 + 5) or can_use_next_item ==
False, we store output[1] = 2. We update can_use_next_item = True.
Since dp[2] != input[2] + dp[4] (5 != 1 + 2) or can_use_next_item ==
False, we store output[2] = 2. We update can_use_next_item = True.
Since dp[3] == input[3] (5 == 5) and can_use_next_item == True, we
store output[3] = 1. We update can_use_next_item = False.
Since dp[4] != input[4] (2 != 2) or can_use_next_item == False, we
store output[4] = 2.

Reconstructing all together, output=[1, 2, 2, 1, 2].

Figure 10: A sample scratchpad for the DP task.

D DETAILS OF COT EXPERIMENTS

D.1 MAIN COT EXPERIMENTS

We plot the performance of Jamba Lieber et al. (2024) on multiplication and puzzle tasks and various
models on DP tasks after using CoT.

The leftmost heatmap on Fig. 11 represents the Jamba Lieber et al. (2024) model’s multiplication
performance, showing a consistently high performance for multipliers of 1 and 2, but a noticeable
decline as the multipliers increase, particularly beyond 3. The middle heatmap compares the
performance of four models—GPT-4o OpenAI (2023), Jamba Lieber et al. (2024), Mamba Gu
& Dao (2023), and S4-H3 Gu et al. (2022); Fu et al. (2023)—on dynamic programming tasks
with CoT prompting Wei et al. (2022). GPT-4o OpenAI (2023) consistently outperforms the other
models, maintaining high performance even for larger problem list sizes, while the performance of
the other models decreases more rapidly. The rightmost heatmap displays Jamba’s puzzle-solving
performance, indicating high accuracy for simpler puzzles with fewer attributes but a steep decline as
the complexity increases. These visualizations highlight that while CoT prompting Wei et al. (2022)
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Figure 11: Jamba’s Lieber et al. (2024) performance on multiplication and puzzle tasks improves
with CoT, though not fully solved. Other models were tested on the DP task, where they failed at
higher input sizes, despite CoT.

generally enhances model performance; its effectiveness varies significantly across different models
and task complexities.

D.2 PERFORMANCE OF OTHER MODELS ON MULTIPLICATION AND PUZZLE TASKS

We observe the same pattern on both tasks, for all the models - Figs. 12 & 13. GPT-4o OpenAI (2023)
is always the best model, followed by Jamba Lieber et al. (2024), then Mamba Gu & Dao (2023),
then S4-H3 Fu et al. (2023); Gu et al. (2022). While CoT helps, it is not enough to solve the task.
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Figure 12: Comparison of different models on multiplication task using CoT.
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Figure 13: Comparison of different models on puzzle task using CoT.

D.3 FEW-SHOT PROMPTING MULTIPLICATION RESULTS

We investigate whether few-show prompting (giving a model few input/output pairs) and then asking
for the answer to the new problem help. Fig. 14 shows the results, and consistently CoT outperforms
Few-shot prompting, and Few-shot prompting outperforms Zero-shot prompting.
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Figure 14: Comparison of different models on multiplication task using few-shot prompting.

E ALGORITHMIC COMPOSITIONS

Following Thomm et al. (2024), we evaluate the models using the PE’s Neighbour (PEN) task.
This task involves navigating from one word to the next based on a specified matching criterion and
outputting all the neighbors encountered along the way. The PEN task, inspired by Abnar et al. (2023)
and rooted in the Pointer Value Retrieval framework Zhang et al. (2022), is particularly compelling
due to its four sub-tasks, which test the necessary sub-operations for PEN. These sub-tasks are: (i)
Copy words, (ii) Reverse Copy (copying words in reverse order, where words consist of multiple
tokens), (iii) PE (outputting words in the matching chain instead of neighbors), and (iv) PE Verbose
(PEV) - outputting both the words of the matching sequence and their neighbors. These sub-tasks
are essential because, to predict the next word, the model must: take the current word in the answer,
obtain the left neighbor (learned in Reverse Copy), match it (learned in PE), and then obtain the
right neighbor (learned in Copy). PEV is considered a sub-task because it requires solving the
same problem as PEN but with the added complexity of providing both matching words and their
neighbors. PEN, on the other hand, only requires outputting the neighbors. For accurate next-token
prediction the model cannot simply replicate the last matching sequence word from the previous
answers, it must first infer it from the neighbour. To increase the task’s complexity, "attention traps"
or "doppelgangers" are introduced. These traps create additional matching possibilities by allowing
each neighbor to match two other words, thus tempting the model to match from the neighbor of a
matching sequence instead. This added layer of difficulty further challenges the models’ ability to
learn and compose discrete algorithms effectively. Pointer Execution Reverse Multicount (PER
Multi) shares conceptual similarities with the PEN task; however, instead of matching forward and
predicting the current word or its neighbor, the task involves first outputting the last word in the
matching sequence and then proceeding backward. Consequently, to accurately predict the first word,
the model must identify the end of the matching sequence and output that word. The model needs to
count the total number of matchings and the number of matchings that align to the left in the given
word order. The answer requires multiplying these two counts, introducing a non-linearity. For this
task, we omit any attention traps, as there are no neighbors involved. In the A- E we show concrete
prompt examples and share the code.

We conducted extensive evaluations on 500 test samples using various models under different condi-
tions: zero-shot, few-shot (providing a limited number of input-output pairs), and CoT prompting Wei
et al. (2022). Remarkably, none of the models, including the state-of-the-art GPT-4o OpenAI (2023),
succeeded in solving the PEN task Thomm et al. (2024). Typically, models correctly generated the
initial strings but then halted prematurely or produced random strings. The same pattern of failure
was observed with the PER Multi-task. Specifically, GPT-4o achieved only 1% and 9% accuracy
using few-shot and CoT prompting, respectively, failing to solve the task. The marginal success of
GPT-4o is attributed to its substantially larger parameter count compared to SSM-based models (B.1).
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Table 3: Model Accuracy for PEN task

Model Prompt Setting Accuracy [%]

GPT-4o
Zero-shot 0.00
Few-shot 0.00

CoT 0.00

Jamba
Zero-shot 0.00
Few-shot 0.00

CoT 0.00

Mamba
Zero-shot 0.00
Few-shot 0.00

CoT 0.00

S4-H3
Zero-shot 0.00
Few-shot 0.00

CoT 0.00

Table 4: Model Accuracy for PER Multi task

Model Prompt Setting Accuracy [%]

GPT-4o
Zero-shot 0.00
Few-shot 0.01

CoT 0.09

Jamba
Zero-shot 0.00
Few-shot 0.00

CoT 0.00

Mamba
Zero-shot 0.00
Few-shot 0.00

CoT 0.00

S4-H3
Zero-shot 0.00
Few-shot 0.00

CoT 0.00

In the following subsections, we focus on showing the prompts in few-shot and CoT settings for PEN
and PER Multitasks. Moreover, we show the code we used to generate the samples.

E.1 PROMPTS FOR SSM AND ATTENTION-BASED MODELS FOR PEN TASK

Example: eg jy vm3zc si2zf nn4ll zf5ka ki7xd ew0si xp3og il5js xn6yx
my7ec xu2gb if2my fy3so ec2il ob5ch kt5if zc4xp ka3mj og1ud zf2ka yh3ux
hx2kt vc2pf jy4qd lj1xu wy5hx bd4xa my4ec at1kb jy3qd ux1fl ew3si ds2qz
qd7ew xa1ay si1zf ch4lj js3rf fl6xn mj7wy zy6rq zh2gu bj3rb if0my pg5ds
yv3hs zu3ob ta7qi ji2bj mj1wy rq7ul mn3fw ay4qu kt2if kr3qb pr0ah tg0at
uc1vx xd1pd wy4hx dr6fy mk0vj sm0pg jl2mo rb1bd il2js vn6kr km4aq eg7nn
ka6mj qu4vc hx7kt ll2lb ec6il ud2vn di3xs pd6ji qd6ew yx7zu rh4qn lb1ki
js5rf iv3yh jj0fa kb3sm lh6yk so0iv bx6rs qz1vm mw7bm gb2xo uy0ms qb2zy
zm0pz xo4tg zx5jm

Answer: jy ka6mj zf5ka ec6il js5rf ew0si wy4hx qd6ew mj1wy if0my il2js
my4ec si1zf kt2if hx7kt jy4qd

<FEW MORE EXAMPLES>

Your question: ey wt kj5yo jz0aa nu4yw gp2ro mv6kj nk2qz tr3mp ro7rk
tu5xj rk0sj ad2lx up3vd ta7rv qz6ob rc7nt aa4nk mb6mm ob7us jw5wb wt4jz
nn4sr wt0jz ev0fa gp1ro sr1nu sj0ku xs0ta us5up mp6jw vd1gp xj3cs sj7ku
ol3vv vd3gp wd2mv wr4cz dg0py ro5rk jt6ev bv0cf yb2qv ch2ss xa3be nb5id
lx4jt dz5ht wb5wd fb3ax fa0tu jn5ps rv7qj qa7el rn7ad lz3fk mm1tr yd3lv
nt0xs lh4zk mr3ou ja5sn gi5ub rk4sj wm7zm jz3aa be4mb kw3bh qj4xa cg0mi
jl2rn kv1wg qt5mr ye3kg yr5ol nk7qz ub1dg ob3us cs7so gw4vk ey4wm qz2ob
qv4jl xz4hc li0yb oy4qu zm2yr up7vd ou7li rx4wc yw7gi aa2nk yo3qt yz5cx
vv6nn us7up

Clearly mark your answer by writing 'Answer: <your answer>' as last
line.

Figure 15: Prompt for the PEN task, showcasing few-shot learning examples. Each word’s start
and end are encoded as distinct tokens, so a model can pattern-match the respective token to do the
matching operation.
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Prompt for the PEN task with few-shot CoT examples and a description.

I give you a sequence of words. Each word has four characters plus a middle, words are separated by spaces. Start with the leftmost word.
Output its neighbor. Then, match the last two characters of the current word (i.e., not the neighbor) to the word starting with those two
characters. Again, output the neighbor. Do this until your current word (not the neighbor) has no match anymore.

Example: xh jz qw4se zs1qh xv4vn me3af vs1nh ok3ks sn6iv qh1va da5gy ks1ew tw7ik em5zs xs5qu ft3me gt3bc em3zs zn5qv ks5ew by7kn
me7af je0wt cb0ft pw6hg rk7cb dv2sn ew3rk yg1by va1cq qu7fp qh4va vn5zn ok1ks cc7tw rk0cb bc7qi jz7em qz2cs ew6rk qv6gt ft7me fp1qw
sa6ok sd7pn jz3em wi3da cq7sa iv0vl zs7qh vl2kc va5cq fe5wi xl1zh hg0dv cq4sa ja2nb wh5vv ot4sh qe0jx yt6xs vc0qx nb1am rf2zl kn5hq
xg5hk mz7yg aq3uw xh7pw sa7ok wt5ot io6hd pn1je lo6vx hq5cc wp6fc cs7fe yw2ka gy3sd nr0ry am3yt pl0rl ik0tn ub5tq sh0ja ee2it nh6qz
xz1ma se0rx is7rn kc1xv cb6ft rx2mz wj7qf.
The leftmost word is xh. Its right neighbor is jz, so the first output word is jz.
Now, we need to find a word that starts with xh. The word is xh7pw. Its right neighbour is sa7ok, so the next output word is sa7ok.
Now, we need to find a word that starts with pw. The word is pw6hg. Its right neighbour is rk7cb, so the next output word is rk7cb.
Now, we need to find a word that starts with hg. The word is hg0dv. Its right neighbour is cq4sa, so the next output word is cq4sa.
Now, we need to find a word that starts with dv. The word is dv2sn. Its right neighbour is ew3rk, so the next output word is ew3rk.
Now, we need to find a word that starts with sn. The word is sn6iv. Its right neighbour is qh1va, so the next output word is qh1va.
Now, we need to find a word that starts with iv. The word is iv0vl. Its right neighbour is zs7qh, so the next output word is zs7qh.
Now, we need to find a word that starts with vl. The word is vl2kc. Its right neighbour is va5cq, so the next output word is va5cq.
Now, we need to find a word that starts with kc. The word is kc1xv. Its right neighbour is cb6ft, so the next output word is cb6ft.
Now, we need to find a word that starts with xv. The word is xv4vn. Its right neighbour is me3af, so the next output word is me3af.
Now, we need to find a word that starts with vn. The word is vn5zn. Its right neighbour is ok1ks, so the next output word is ok1ks.
Now, we need to find a word that starts with zn. The word is zn5qv. Its right neighbour is ks5ew, so the next output word is ks5ew.
Now, we need to find a word that starts with qv. The word is qv6gt. Its right neighbour is ft7me, so the next output word is ft7me.
Now, we need to find a word that starts with gt. The word is gt3bc. Its right neighbour is em3zs, so the next output word is em3zs.
Now, we need to find a word that starts with bc. The word is bc7qi. Its right neighbour is jz7em, so the next output word is jz7em.
There is no word that starts with qi, so we are done with the matching.
Therefore the answer is: jz sa7ok rk7cb cq4sa ew3rk qh1va zs7qh va5cq cb6ft me3af ok1ks ks5ew ft7me em3zs jz7em.

<FEW MORE EXAMPLES>

Your question: ap cb ch5ya gb6lt uu6le vn0pc og0ef md6ki jx0ph md4ki mq5ox vp1rx zp1xj is5am uq5fb te3rz eq3he cb0md he2zp fe2re
ef6yp vn5pc ui3yt kb1ji qg2mq am4vp ez3eq lt5fi hw4eg lz2te wn5kd kb2ji le6wk vp3rx yt3lq rx6gb ey4dx ji3fe lq1dq lz0te wk7sl am6vp
zi0up ki5kb ek7uu re0vq cs3ez vq5lz dx6se lt3fi xp2km fe3re bz7hw rx2gb yp6qg gb4lt at4cs fi7vn ox1nl fi5vn ph3zi rz4is kd2bz ji1fe nl3kk
ki2kb yo6ey te1rz fd5at qb7ia bn2xp cb4md ya2wn gd7sq xj2jg rp6bl ap1bn is4am se5ui re5vq eg4uq cf6fj fb6jx ll4ic sl4ch qs3nf sp5fd qj6bf
dq1og rz1is km6yo vq3lz up5sp wc5iv
Reason step by step. Clearly mark your answer by writing ’Answer: <your answer>’ as last line.
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E.2 PEN GENERATION CODE

import itertools
import numpy as np
letter_chars = list("abcdefghijklmnopqrstuvwxyz")
big_letter_chars = list("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
number_chars = list("0123456789")
class DataConfig:

def __init__(self, min_len, max_len, min_hops, max_hops, learn_mode, ambiguous, no_green_confusion):
self.min_len = min_len
self.max_len = max_len
self.min_hops = min_hops
self.max_hops = max_hops
self.learn_mode = learn_mode
self.ambiguous = ambiguous
self.no_green_confusion = no_green_confusion

def get(self, key, default):
return getattr(self, key, default)

class PointerExecutionNeighbour:
def __init__(self, data_cfg):

self.length_low = data_cfg.min_len
self.length_high = data_cfg.max_len + 1
self.hops_low = data_cfg.min_hops
self.hops_higher = data_cfg.max_hops + 1
self.all_2tuples = ["".join(t) for t in itertools.product(letter_chars, repeat=2)]
self.learn_mode = data_cfg.get("learn_mode", "next")
self.data_choices = list(number_chars[:8])
self.ambiguous = data_cfg.get("ambiguous", False)
self.no_green_confusion = data_cfg.get("no_green_confusion", False)

def generate_double_pointer_execution(self, n_samples):
lengths = np.arange(self.length_low, self.length_high)
samples = []
answers = []
while len(samples) < n_samples:

length = np.random.choice(lengths)
n_matching_hops = np.random.choice(np.arange(self.hops_low, min(self.hops_higher, length // 2)))
tuple_choices = np.random.choice(self.all_2tuples, length * 7, replace=False)
# select the positions where the green matching sequence will be
positions = np.random.choice(np.arange(1, length), size=n_matching_hops, replace=False)
cnt = 0
question_words1 = ["" for _ in range(length)]
question_words2 = ["" for _ in range(length)]
remaining_positions = np.random.permutation([i for i in range(1, length) if i not in positions])
question_words1[0] = tuple_choices[cnt]
answer_learnseq = [question_words1[0]]
for pos in positions:

question_words1[pos] = (tuple_choices[cnt] + np.random.choice(self.data_choices) + tuple_choices[cnt + 1])
answer_learnseq.append(question_words1[pos])
cnt += 1

cnt += 1
cnt_confuse = cnt + length
positions_next = np.random.permutation(positions)
question_words2[0] = tuple_choices[cnt]
answer = [question_words2[0]]
# select the positions where the doppelgangers of the neighbours will be
positions_confuse = np.setdiff1d(np.arange(1, length), positions_next)[0 : len(positions_next)]
np.random.shuffle(positions_confuse)
for i, pos in enumerate(positions_next):

two_big_letters = np.random.choice(self.data_choices, size=2, replace=self.ambiguous)
question_words2[pos] = (tuple_choices[cnt] + two_big_letters[0] + tuple_choices[cnt + 1])
question_words2[positions_confuse[i]] = (tuple_choices[cnt] + two_big_letters[1] + tuple_choices[cnt + 1])
answer.append(question_words2[pos])
cnt += 1
cnt_confuse += 1

cnt = max(cnt, cnt_confuse) + 1
remaining_next_positions = np.random.permutation([i for i in range(1, length) if i not in positions_next and \
i not in positions_confuse])
for pos in remaining_positions:

question_words1[pos] = (tuple_choices[cnt] + np.random.choice(self.data_choices) + tuple_choices[cnt + 1])
cnt += 1
if self.no_green_confusion:

cnt += 1
cnt += 1
for pos in remaining_next_positions:

question_words2[pos] = (tuple_choices[cnt] + np.random.choice(self.data_choices) + tuple_choices[cnt + 1])
cnt += 2

answer_learnnext = [question_words2[0]]
for pos in positions:

answer_learnnext.append(question_words2[pos])
answer_seqnext = []
for i in range(len(answer_learnseq)):

answer_seqnext.append(answer_learnseq[i])
answer_seqnext.append(answer_learnnext[i])

answer.reverse()
question_words = []
for i in range(length):

question_words.append(question_words1[i])
question_words.append(question_words2[i])

question_str = (f"pe {self.learn_mode}: " + " ".join(["".join(x) for x in question_words]) + " answer: ")
samples.append(question_str)
if self.learn_mode == "seq":

answers.append(" ".join(answer_learnseq))
elif self.learn_mode == "seqnext":

answers.append(" ".join(answer_seqnext))
elif self.learn_mode == "next":

answers.append(" ".join(answer_learnnext))
return samples, answers

def generate(self, n_samples):
samples, answers = self.generate_double_pointer_execution(n_samples)
return samples, answers

Figure 16: Code utilized for generating instances of the PEN task and its associated subtasks. The
hyperparameters employed include a length ranging between [40, 50] and a number of hops ranging
between [10, 20].
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E.3 PER MULTI-GENERATION CODE

import itertools
import numpy as np
letter_chars = list("abcdefghijklmnopqrstuvwxyz")
class DataConfig:

def __init__(self, min_len, max_len, logname, learn_mode="seq"):
self.min_len = min_len
self.max_len = max_len
self.logname = logname
self.learn_mode = learn_mode

def get(self, key, default):
return getattr(self, key, default)

class PointerExecutionReverseMulticount:
def __init__(self, data_cfg):

self.length_low = data_cfg.min_len
self.length_higher = data_cfg.max_len + 1
self.logname = data_cfg.logname
self.all_2tuples = ["".join(t) for t in itertools.product(letter_chars, repeat=2)]
self.learn_mode = data_cfg.get("learn_mode", "seq")
assert self.learn_mode in ["seq", "multiseq", "seqrev", "multiseqrev"]

def generate_samples(self, n_samples):
lengths = np.arange(self.length_low, self.length_higher)
samples = []
answers = []
for _ in range(n_samples):

length = np.random.choice(lengths)
tuple_choices = np.random.choice(self.all_2tuples, length + 3, replace=False)
last_word = tuple_choices[-3] + tuple_choices[-2]
shuffled_tuple_choices1 = np.random.permutation(tuple_choices[:-3])
shuffled_tuple_choices2 = np.random.permutation(tuple_choices[:-3])
words = [ch1 + ch2 for ch1, ch2 in zip(shuffled_tuple_choices1, shuffled_tuple_choices2)]
start = np.random.choice(words)
words.append(last_word)
if "rev" not in self.learn_mode:

answer = self.solve_seqnext(words, start, self.learn_mode)
else:

# change the 2tuple of the start of the start word to a random one
idx = words.index(start)
words[idx] = tuple_choices[-1] + words[idx][2:]
start = words[idx]
answer, answer_n_left = self.solve_seqnext(words, start, self.learn_mode)
if self.learn_mode == "seqrev":

answer = reversed([f"{w}" for i, w in enumerate(answer)])
if self.learn_mode == "multiseqrev":

answer = reversed([f"{w}.{i*n}" for i, (w, n) in enumerate(zip(answer, answer_n_left))])
question = (f"prand {self.learn_mode}: " + " ".join(words) + " | " + start + " answer: ")
samples.append(question)
answers.append(" ".join(answer))

return samples, answers
def solve_seqnext(self, words, start, mode):

answer_next = []
matching_seq = []
current_word = start
idx = words.index(current_word)
n_left = 0
answer_n_left = []
while True:

matching_seq.append(current_word)
answer_next.append(words[idx + 1])
answer_n_left.append(n_left)
next_word = [(w, i) for i, w in enumerate(words) if w.startswith(current_word[-2:])]
if len(next_word) == 0 and "rev" in mode:

break
assert len(next_word) == 1
current_word, new_idx = next_word[0]
if new_idx < idx:

n_left += 1
idx = new_idx
if current_word in matching_seq:

break
if "rev" in mode:

return matching_seq, answer_n_left
if "multi" in mode:

answer = []
for i, (w, n) in enumerate(zip(matching_seq, answer_n_left)):

answer.append(f"{w}.{i*n}")
return answer

return matching_seq
def generate(self, n_samples):

samples, answers = self.generate_samples(n_samples)
return samples, answers

Figure 17: Code employed for generating instances of the Pointer Execution Reverse Multicount
task and its associated subtasks. The hyperparameters employed include a length ranging between
[10, 20].
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