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Abstract

Conditional Semantic Textual Similarity (C-
STS) introduces specific limiting conditions
to the traditional Semantic Textual Similarity
(STS) task, posing challenges for various main-
stream models. Language models employing
cross-encoding demonstrate satisfactory perfor-
mance in STS, yet their effectiveness signifi-
cantly diminishes in C-STS. In this work, we ar-
gue that the failure of cross-encoding language
models in C-STS is not due to their inabil-
ity to extract effective features, but rather be-
cause they extract an excessive number of fea-
tures, thereby diluting the impact of condition-
relevant features. To alleviate this, we propose
Self-Augmentation via Self-Reweighting, which
does not require the introduction of any ex-
ternal auxiliary information. Instead, it am-
plifies the impact of condition-relevant fea-
tures and suppresses condition-irrelevant fea-
tures through model’s intrinsic information.
The self-reweighted outputs are used as a self-
augmentation signal to enhance the model’s
original outputs. On the C-STS test set, our pro-
posed method consistently improves the perfor-
mance of all fine-tuning baseline models (up to
around 3 points). Remarkably, it even enables
models with smaller parameter scales to sur-
pass the performance of zero-shot and few-shot
prompted large language models (such as GPT-
4) with substantially larger parameter scales.

1 Introduction

Semantic textual similarity (STS) has been a cor-
nerstone task in NLP for years(Agirre et al., 2014,
2015, 2016; Cer et al., 2017; Abdalla et al., 2021),
which is to measure the semantic similarity be-
tween two sentences. With the emergence of pre-
trained language models, such as BERT(Devlin
et al., 2018), RoBERTa(Liu et al., 2019), GPT-
3(Brown et al., 2020) and T5(Raffel et al., 2020),
etc., the STS task seems to have been almost
solved. However, STS is an inherently ambigu-
ous task(Wang et al., 2023), for the varying aspects

that can influence sentence similarity, uncondition-
ally measuring this similarity is irrational and un-
explainable. To solve the ambiguity of STS task
itself, Deshpande et al. (2023) proposed a novel
task called conditional semantic textual similarity
(C-STS), which incorporates specific conditions to
highlight aspects of interest in sentence pair similar-
ity assessment, enables a more grounded, precise
and multi-faceted evaluation.

Given that C-STS introduces additional com-
plexity into STS, researchers have explored various
encoding strategies, including cross-encoder(Liu
et al., 2019), bi-encoder(Reimers and Gurevych,
2019), and tri-encoder(Deshpande et al., 2023).
However, the results obtained have been less than
satisfactory. The current state-of-the-art models
on STS tasks, such as SimCSE(Gao et al., 2021)
can only achieve relatively low performances on
C-STS, even large language models with few-shot
prompts perform poorly on C-STS task.

As noted in the previous study, pre-trained lan-
guage models have already gained the ability to cap-
ture most kinds of potential semantic information
in sentences effectively(Rogers et al., 2021; Gessler
and Schneider, 2021; Vig, 2019; Clark et al., 2019;
Hewitt and Manning, 2019; Davison et al., 2019;
Petroni et al., 2019; Wang et al., 2020). Accord-
ingly, in this paper, we argue that the reason they
do not perform well on C-STS is that they attend
to excessive semantic information, resulting in the
introduction of numerous condition-irrelevant fea-
tures when measuring similarity through simple
cross-encoding, which in turn dilutes the impact of
condition-relevant features, namely, dilution effect.

To address this issue, we need to seek a method
capable of selectively capturing salient features
based on the condition. Such tasks are more com-
mon in vision and multimodal fields. Previous
work(Mirza et al., 2019; Lu et al., 2017; Yang et al.,
2016; Jaegle et al., 2021; Shi et al., 2023) in these
domains has also yielded effective results by inte-



Method Encoder Type #CM #FF Reweight Main Field
Vanilla LMs (Gao et al., 2021) cross-encoder 1 1 X text
PerceiverlO (Jaegle et al., 2021)  cross-encoder 3 1 v multimodal
AbSVIT (Shi et al., 2023) bi-encoder 2 2 v vision
Self-Augmentation (Ours) cross-encoder 1 1 v text

Table 1: Comparison of related work. "#CM" and "#FF" represent the number of computational modules required
for a single feedforward pass and the number of feedforward passes needed for one prediction, respectively.

grating modules that calculate similarities between
input objects and specified conditions, utilizing
these scores to reweight the outputs for prediction,
which effectively adjusts the distribution of salient
regions in the model’s attention maps to make the
model focus more on specific objects with higher
similarity to the conditions, thereby reducing the
interference of other objects during prediction.

Inspired by the "reweighting" strategy, to alle-
viate the dilution effect mentioned above, we pro-
pose a method provides a stronger guide signal
for fine-tuning language model, further exploiting
the intrinsic potential of language models to solve
the C-STS task. We combine the reweighted signal
with the original output using a specific scale factor,
making the condition-relevant features contribute
more when predicting. Given that the correlation
information used for reweighting is directly derived
from the last-layer attention computed in the feed-
forward pass, we refer to this as Self-Augmentation
via Self-Reweighting, eliminating the need to intro-
duce external auxiliary information, thereby mak-
ing the fine-tuning process more efficient.

Retaining an architecture that is relatively con-
sistent with that of the pre-trained language model,
our proposed method exhibits the capability to out-
perform the fine-tuning baselines on the C-STS test
set. Remarkably, with a significantly smaller pa-
rameter scale, it also surpasses the performance of
most zero-shot and few-shot prompted large lan-
guage models, highlighting its significant potential
in advancing C-STS measurement.

2 Related Work

Pre-trained Language Model. There is substan-
tial evidence indicating that throughout the pre-
training, language models learn not only contex-
tualized text representations, but also a grasp of
grammar(Vig, 2019), syntax(Hewitt and Manning,
2019), even commonsense(Davison et al., 2019)
and world knowledge(Petroni et al., 2019; Wang

et al., 2020). This multifaceted learning under-
scores the depth and breadth of understanding that
language models achieve during pre-training.

In this paper, we adopt this idea and argue that
the poor performance of current language models
on C-STS tasks can be attributed to the models’
focus on excessive amount of such semantic infor-
mation across multiple condition-irrelevant aspects
during similarity measurement employing cross-
encoding, thereby diluting the essential correlation
between sentence pairs and the conditions, ulti-
mately leading to suboptimal performance.

Conditional Reweighted Feedforward. Tasks
similar to C-STS (Deshpande et al., 2023) find
more common application in fields like vision (e.g.,
multi-object image recognition(Deng et al., 2009))
and multimodal tasks (e.g., visual question answer-
ing(Antol et al., 2015; Carrasco, 2011; Li, 2014)).
In these contexts, a specific condition is essential
for directing the model’s focus towards objects that
are relevant to the given condition.

Previous work employing such methods has
yielded effective results. PerceiverlO(Jaegle et al.,
2021) introduced multiple cross-attention modules
to compute the relevance to reweight the output
tokens, which were directly used for prediction.
Conversely, AbSViT(Shi et al., 2023) proposed a
feedback mechanism to feed the relevance com-
puted during the first feedforward phase back to
the preceding modules, then the second feedfor-
ward were conducted for prediction.

Inspired by previous work, we adapt the
"reweighting" strategy to C-STS. As shown in Ta-
ble 1, compared to PerceiverlO, our method elim-
inates the need for multiple modules, simplifies
the workflow, and achieves a higher degree of
model integration. And compared to AbSViT, our
method eliminates the feedback modules and only
reweights the final output, which maintains the con-
sistency of the pre-trained language models, mak-
ing the training process more efficient.
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Figure 1: Self-Reweighting flow (from left to right). (i) Self-Extraction: extract own attention sub-matrix, which
represents the interaction between the sentence and the condition. (ii) Output Reweighting: compute correlation
matrices, serving to reweight the original output of the sentence and the condition, respectively, then concatenate
them, culminating in the acquisition of a self-reweighted output.

3 Method

This section starts with self-reweighting, which di-
rectly extracts correlation information between sen-
tences and the conditions to reweight the outputs
(Section 3.1), then we use the reweighted outputs
to enhance the original outputs in a specific propor-
tion (Section 3.2), namely self-augmentation.

3.1 Self-Reweighting

When utilizing cross-encoding, we compute the at-
tention matrix of concatenated sentence pair and
the condition. The resulting attention matrix ac-
tually encapsulates multi-faceted information, en-
compassing both the self-attention of each input
item and the cross-attention among input items.

To utilize the condition-relevant information,
as shown in Fig. 1, we specifically extract the
cross-attention between the sentences and the con-
ditions from the whole attention matrix. Then
we divide them into two distinct aspects of atten-
tion, namely Sentence2Condition Attention (abbre-
viated as SCAttn) and Condition2Sentence Atten-
tion (abbreviated as CSAttn), respectively. Here,
SCAttn € Rls*le and CSAttn € Rle*!s where
ls indicates the length of the concatenated sentence
pair, and /.. indicates the condition length.

We use the extracted SCAttn as the condition-
guided signal for the concatenated sentence pair
and CSAttn as the sentence-guided signal for
the condition. Utilizing these, we construct the
reweighting matrices for the sentences and the con-
ditions, respectively, which are computed as

W = softmax(SCAttn - CSAttn) (1)
W¢ = softmax(CSAttn - SCAttn), (2)

where Wy € Rls*s indicates the reweighting ma-
trix for the sentence pair and W € Rle*le indi-
cates the reweighting matrix for the condition.

Applying the obtained reweighting matrices W g
and W, we perform self-reweighting on the trun-
cated model outputs. This allows us to obtain the
reweighted outputs of both the sentence pair and
the condition parts, which can be computed as

ROg = Wy - O[t{), . (") 4 (V)]
(3)
ROc = We - O, .., V)], (4)

where O € R"*? indicates the last hidden state of
the language model, which we subsequently refer
to as the original output in the following text. [ and
d represent the length of the concatenated input
(comprising the sentence pair and the condition)
and the dimension of the language model’s hidden
state, respectively. Here we represent the ¢-th token
of sentence k (k € {1,2}) as t,(;). ROg € Risxd
and RO¢ € R4 represent the reweighted output
of the sentence pair and the condition, respectively.

After acquiring the reweighted outputs for both
the sentence pair and the condition, we then con-
catenate them to form the concatenated reweighted
output, as shown below:

RO = [RO5; RO(], 6)

where RO € R!*? indicates the concatenated
reweighted output, which is of the same size with
the original output O. Then, we utilize the obtained
concatenated reweighted output RO as an augmen-
tation signal to perform the self-augmentation as
described in Section 3.2.



Furthermore, it is important to note that the
reweighting matrices are derived directly from the
attention matrices returned by the last layer of the
language model. Since this does not introduce an
external information, we refer to this process as
self-reweighting.

3.2 Self-Augmentation

We consider the multi-head self-attention mech-
anism of the language model, which ultimately
yields H attention matrices, where H is the number
of attention heads. Here, we refer to the reweighted
output obtained after applying the reweighting ma-
trices constructed from the attention matrix re-
turned by the i-th attention head as RO;. Fol-
lowing a method similar to that used in Transform-
ers for processing outputs from multiple attention
heads(Vaswani et al., 2017), we concatenate these
H reweighted outputs. Subsequently, they are pro-
jected through a projection matrix to match the
dimension of a single reweighted output, which
can be computed as

RO = [RO{;RO,;...;ROy]- W,, (6)

where W, € R”4%4 indicates the projection ma-
trix. To be more specific, the RO here indicates
the projected reweighted output. Each RO; is com-
puted through Eq. 5, where it should be noted
that the RO in Eq. 5 denotes the case for a single
attention head.

We utilize the final reweighted output RO as
an augmentation signal, aimed at enhancing parts
of the original output O where there is a signif-
icant semantic association between the sentence
pair and the condition. To achieve this, we perform
a weighted addition of the augmentation signal
RO with the original output O. This results in the
self-augmented output, which is then utilized for
predicting similarity, which can be computed as

AO =RO + a0, @)

where AO € R*? indicates the self-augmented
output and o > 0 denotes the hyperparameter that
controls the ratio between the weight of reweighted
output RO and the original output O, which is
discussed in detail in Section 4.2.

The overall architecture of the model is as de-
picted in Fig. 2, where the final regressor connected
behind the pre-trained language model is a single-
hidden-layer MLP structure. It is important to note
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Figure 2: Overall architecture of our Self-Augmentation
model. A self-augmented output is derived through the
addition of the self-reweighted output to the original
output(scaled by a factor of o). This self-augmented
output is subsequently fed into a regressor (a single-
hidden-layer MLP), predicting the semantic similarity.

that since the augmentation signal is directly de-
rived from the attention matrix computed by the
language model itself, and no external augmenta-
tion information is introduced in this process, we
refer to this as self-augmentation.

4 Experiments

In this section, we first demonstrate that the self-
reweighting operation can be conceptualized as a
soft mask mechanism, which amplifies the parts of
the output where the sentence pair and the condi-
tion are highly related, while suppressing the parts
where the relevance is low (Section 4.1). Then
we provide a comprehensive quantitative analysis,
discussing how the combined augmentation signal
and original signal at varying ratios influence the
model’s final predictive behavior (Section 4.2).

Dataset. In this study, we employ C-STS-2023
dataset collected by Deshpande et al. (2023) for
training and testing, which consists of quadru-
ples, formatted as (sentencel, sentence2,
condition, label). In which sentencel,
sentence? and condition are all presented
in natural language form, and label represents
the level of similarity between sentencel and
sentence?2 under condition, converted into
a Likert scale(Likert, 1932) with values ranging
from 1 to 5, which is common with semantic tex-



Sentence 1

Sentence 2

A boy is in midair do-
ing a skateboard trick
at a skate park while
two women and a tod-
dler walk behind him.

A boy in yellow pants
and a blue shirt is
rollerblading on the side
of his black skates.

Two people are near a
wooden building wear-
ing backpacks.

A couple of people
working around a pile of
rocks.

Condition Output
w/o: 4.00
The type of skating. w/: 1.46
Label: 1.00
w/o: 2.60
The number of peo- w46
ple.
Label: 5.00

Table 2: Two cases from the C-STS validation set. "Output" refers to the predicted and the ground-truth similarity,
where the notation "w/o" represents the prediction from the baseline model, and "w/" denotes the prediction from
our proposed Self-Augmentation model (based on RoBERTa-base). More cases are available in Appendix A.1.

tual similarity tasks(Agirre et al., 2013).

Experimental Setup. We conduct a comparative
analysis between various baselines and our pro-
posed method, which can be categorized into:

(i) Fine-tuning baselines, which are fine-tuned
on the entire training partition. We select
RoBERTa(Liu et al., 2019) and SimCSE(Gao
et al., 2021) as our baselines, encompassing
both the base and 1arge scale models.

(i) Prompting baselines, which refer to general-
purpose large language models, are recog-
nized for their zero-shot or few-shot learn-
ing capabilities. For a comprehensive per-
formance analysis, we select Flan-T5(Wei
etal., 2021) (in both base and 1arge con-
figurations), GPT-J(Wang and Komatsuzaki,
2021), GPT-3.5(Brown et al., 2020), and GPT-
4(Achiam et al., 2023) as our baselines.

It is important to note that due to observed vari-
ances in experimental results across different mod-
els of GPUs, to ensure reproducibility, all exper-
iments were conducted on a single RTX A5000.
More details are available in Appendix A.2.

4.1 Correlation Dilution Effect and
Self-Reweighting Alleviation

From the Table 2, it is observed that, moving
from top to bottom, for the first case, the predic-
tions made by the baseline model are higher in
comparison to the ground-truth. This intuitively
suggests that, within the relevant features cap-
tured by the baseline model, sentencel and
sentence?2 exhibit a higher semantic similar-
ity under the condition. Conversely, for the

second case, the baseline model’s predictions are
lower relative to the ground-truth. However, the
predictions from our proposed Self-Augmentation
method align more closely with the ground-truth.

To elucidate the feature capture mechanism of
the baseline model in this task, and to under-
stand the reasons behind the baseline model’s
prediction failures as well as the success of our
Self-Augmentation model, we extracted and av-
eraged the multi-headed attention matrices from
the last layer of the baseline model and the self-
reweighting weights for the sentence part in the
Self-Augmentation model. Subsequently, these
were visualized for analysis. As illustrated in Fig.
3, this allows us to more intuitively analyze the
differing feature capture modes of the models.

It is important to note that, as our objective is
to discuss and analyze the model’s feature capture
patterns, since SImCSE is a model fine-tuned on
the STS task, its feature capture preferences might
significantly deviate from those of a pre-trained
model directly fine-tuned on the C-STS dataset. To
avoid ambiguity, we have chosen ROBERTa-base
as the model for our case study. This selection
allows for a more equitable and lucid analysis of
the feature capture patterns of the baseline model
and our Self-Augmentation model.

From the average attention matrix of the last
layer of the baseline model shown in Fig. 3(a) (left),
it is observable that the attention map of the fine-
tuned baseline model does not contain any specific
salient regions. However, previous studies(Clark
et al., 2019) have confirmed that the pre-trained
language model should possess the capability to
capture multifaceted features. While it is acknowl-
edged that the fine-tuning process may somewhat
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Figure 3: Average attention matrix(left: obtained from
the baseline model) and self-reweighting weight(right:
obtained from our proposed Self-Augmentation model)
of the first-row case(a) and the second-row case(b) pre-
sented in Table 2. The darker the color, the larger the
corresponding value.

impair this capability, it appears to be markedly
diminished in these cases.

We argue that the reason for the baseline model’s
predictive failure does not lie in its inability to cap-
ture relevant features, but rather due to its exces-
sive capture of condition-irrelevant features, which,
after being normalized by the softmax function,
dilute the impact of condition-relevant features on
the final prediction. This correlation dilution effect,
leading to the baseline model’s predictive failure,
which is also observable in Fig. 3(b) (left).

After applying our proposed Self-Augmentation
method, we observe from Fig. 3(a)(right) and Fig.
3(b)(right) that the reweighting weights derived
from Self-Reweighting exhibit distinct salient re-
gions (darker in color) and suppressed areas (lighter
in color). Notably, the formation of such salient
regions is condition-relevant. For instance, for the
first case in Table 2, the salient reweighting regions
of the reweighting weights concentrate on tokens
related to "the type of skating", such as
"rollerblade"; for the second case, the salient
regions focus on tokens related to "the number
of people",suchas"a" and "couple".

The aforementioned further substantiates our
hypothesis: the application of our proposed Self-

Augmentation method, which successfully en-
hances condition-relevant feature regions and sup-
presses condition-irrelevant ones, improves the
predictive capability of the model compared to
the baseline model. Importantly, since our Self-
Reweighting approach for obtaining reweighting
weights does not introduce any external enhance-
ment information, it indicates that the model,
through pre-training and fine-tuning, has already
acquired the capability to extract multifaceted fea-
tures. However, the simultaneous extraction of an
excessive amount of condition-irrelevant features
diluted the effectiveness of valid condition-relevant
features. The application of our proposed Self-
Augmentation method can effectively mitigate this
issue, thereby enhancing the performance and sta-
bility of the model’s predictions.

4.2 Quantitative Results and Analysis

We initially conduct fine-tuning experiments on
the entire training partition of the C-STS dataset,
utilizing prominent sentence encoders: ROBERTa
and SimCSE. We set the range of the scaling factor
a in Eq. 7 from O to 3, to observe the impact on the
overall model performance under different ratios
of the self-augmentation signal combined with the
original output. The detailed quantitative results of
fine-tuning are shown in the Table 3.

RoBERTa has been fine-tuned directly on the C-
STS dataset following pre-training. In contrast, be-
fore being further fine-tuned on the C-STS dataset,
SimCSE has already been fine-tuned on uncondi-
tional STS datasets after the pre-training phase. As
shown in Table 3, by adjusting « to suit different
models, our proposed Self-Augmentation method
can bring stable performance improvements to each
model of different scales.

As RoBERTa has not been fine-tuned on other
STS datasets, it largely retains the multifaceted
feature extraction capability acquired during its
pre-training phase. Therefore, for the base
scale RoBERTa model, solely using the self-
augmentation signal for prediction (i.e., setting «
to 0) can yield its optimal result. Introducing vary-
ing degrees of the original output may, to some
extent, impair this, leading to suboptimal perfor-
mance. Conversely, the 1arge scale ROBERTa,
compared to the base scale, further enhances its
feature extraction ability. With the increased depth
of extracted features, some features suppressed
in the self-augmentation signal can positively in-



Model Scale Spear. T Pears. 1
RoBERTa (Deshpande et al., 2023) Base (125M) 39.07 39.05
Self-Augmented RoBERTa w/o original (Ours) Base (132M) 41.36 .9 41.05. )
Self-Augmented RoBERTa w/ 1*original (Ours) Base (132M) 3993055 39.83.07s8
Self-Augmented RoOBERTa w/ 2*original (Ours) Base (132M) 40.44 137 40.35,1 30
Self-Augmented ROBERTa w/ 3*original (Ours) Base (132M) 38.83 994 3891 (14
RoBERTa (Deshpande et al., 2023) Large (355M) 40.40 40.78
Self-Augmented RoOBERTa w/o original (Ours) Large (372M) 43.16.57 43.2052.40
Self-Augmented ROBERTa w/ 1*original (Ours) Large (372M) 40.69.029 40.56_(99
Self-Augmented RoBERTa w/ 2*original (Ours) Large (372M) 4345 ;5 43.60 .- 3>
Self-Augmented RoOBERTa w/ 3*original (Ours) Large (372M) 3935 105 39.28 159
SimCSE (Deshpande et al., 2023) Base (125M) 38.56 39.00
Self-Augmented SimCSE w/o original (Ours) Base (132M) 37.16 140 36.92 55
Self-Augmented SimCSE w/ 1*original (Ours) Base (132M) 38.48 008 38.08_(.92
Self-Augmented SimCSE w/ 2*original (Ours) Base (132M) 39.59. 105 39.30, 30
Self-Augmented SimCSE w/ 3*original (Ours) Base (132M) 39184062 39.24. 004
SimCSE (Deshpande et al., 2023) Large (355M) 42.28 42.40
Self-Augmented SimCSE w/o original (Ours) Large (372M) 43.06.07s 43.01. 04
Self-Augmented SimCSE w/ 1*original (Ours) Large (372M) 4247019 42.52.0.12
Self-Augmented SimCSE w/ 2*original (Ours) Large (372M) 4370140 43.47.1 34
Self-Augmented SimCSE w/ 3*original (Ours) Large (372M) 43.83,,:5 43.81. .,

Table 3: Fine-tuning results in Spearman and Pearson correlation coefficient (scaled by 100) on the C-STS test set.
Highlighted rows indicate the highest performance achieved within the same model and scale. "Self-Augmented
[MODEL NAME] w/ a*original" denotes the addition of the self-augmentation signal to the original output (scaled
by a factor of ), and “w/0” is equivalent to the scenario where o = 0. More details are available in Appendix A.3.

fluence the prediction (due to increased learned
semantic complexity; intuitively, some features
may appear condition-irrelevant individually but
become condition-relevant in combination), thus
introducing a certain degree of the original output
(i.e., setting « to 2) can achieve its optimal result.

While SimCSE has already been fine-tuned on
unconditional STS datasets, we believe this slightly
impairs the model’s ability to extract general fea-
tures. However, SimCSE also acquires effective
task-specific features for measuring sentence sim-
ilarity. There exists a certain trade-off between
the negative and positive impacts brought by fine-
tuning on the unconditional STS datasets. Intu-
itively, we suspect this is related to the model’s
scale. The base size SIimCSE is more likely to
be negatively influenced by fine-tuning on the un-
conditional STS datasets compared to the large
scale, resulting in the optimal performance of the
base size SImCSE model being lower than that of

the same scaled ROBERTa. In contrast, the large
scale SimCSE seems to gain more positive bene-
fits than negative impacts from the unconditional
STS fine-tuning process, thereby further enhanc-
ing its capability to extract semantic features and
achieving higher optimal performance.

To further analyze the impact of different ratios
of self-augmentation signal combined with the orig-
inal output on model performance, we visualized
the trend of model performance under various set-
tings of «, as shown in Fig. 4. Both the base
and large scales of the ROBERTa model exhib-
ited similar trends: a significant decrease in perfor-
mance upon the initial introduction of the original
output, followed by a pattern of first increasing and
then continuing to decrease as « increases. How-
ever, a distinction between the base and large
scales of the RoBERTa model is observed in the
performance peak upon increasing the degree of
the original output’s inclusion: the large scale
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Figure 4: Trends in the Spearman’s correlation coeffi-
cient of our Self-Augmentation model under different
settings of «. The red dashed line represents the perfor-
mance of the corresponding baseline model.

of RoBERTa surpasses the performance of using
solely the self-augmentation signal for prediction,
whereas the base scale does not. The base size
SimCSE model shows a trend where performance
continuously grows to a peak and then declines as
« increases. The performance trend of the 1arge
size SIMCSE model is similar to that of RoOBERTa,
but the peak performance appears to be shifted to
the right. It is also observable that at this point, the
performance improvement has begun to converge.

The aforementioned trends confirm that, apart
from the features directly related to the condition,
other features also play a non-negligible role in the
overall semantic similarity measurement in most
cases. Therefore, this is the rationale for using
the self-reweighted output as an augmentation sig-
nal to the original output, rather than as the sole
component utilized in the final similarity predic-
tion. However, it is also important to note that «
increases, the overall performance of the model
gradually degrades back to the unenhanced state.
The ratio of the self-augmentation signal to the
original output also represents a form of trade-off.

Additionally, we compared the performance of
our proposed Self-Augmentation method with that
of zero-shot and few-shot prompted large language
models on the C-STS test set. The performances
of the zero-shot and few-shot prompted large lan-
guage models, as presented in Table 4, represent
the best results obtained after prompting using vari-
ous prompts as applied by Deshpande et al. (2023).

As shown in Table 4, it is evident that despite a
substantial difference in the number of parameters

Model 0-shot T 2-shot{ 4-shot T
Flan-T5-base 11.3 9.1 10.7
Flan-T5-large 11.1 12.3 12.8
GPT-J 74 1.1 2.0
GPT-3.5 15.0 16.6 15.5
GPT-4 39.3 42.6 43.6
fSelf-Augmented SimCSE-large w/ 3*original
43.8

Table 4: Zero-shot and few-shot prompted results on the
C-STS test set using Spearman’s correlation coefficient.
1 indicates fine-tuning on the entire training partition.

between our selected model (372M) and large lan-
guage models such as GPT-J (6B), GPT-3.5 (175B),
and GPT-4 (even larger than GPT-3.5), the best per-
formance of SimCSE-large with our proposed Self-
Augmentation method, still surpasses the optimal
performance achieved by zero-shot and few-shot
prompted large language models. Furthermore, as
the process of zero-shot and few-shot prompting
in large language models also constitutes cross-
encoding, this further confirms the superiority of
our proposed method in cross-encoding models.

5 Conclusion

In this work, we argue that language models em-
ploying cross-encoding have already acquired the
capability to capture multifaceted features during
the pre-training phase. The reason for their sub-
par performance in the C-STS task is attributed to
the dilution effect: the multitude of learned fea-
tures dilutes the impact of condition-relevant fea-
tures. However, mitigating this dilution through
mere fine-tuning is challenging. To address this, we
propose Self-Augmentation via Self-Reweighting,
which does not require the introduction of any ex-
ternal information. Instead, it amplifies the impact
of condition-relevant features and suppresses the
influence of condition-irrelevant features through
model’s intrinsic information. The self-reweighted
results are then used as an augmentation signal to
enhance the model’s original output, achieving self-
augmentation. On the C-STS test set, our method
consistently improves the performance of all fine-
tuning baseline models. Notably, it even allows
smaller-scale models to surpass the performance
of zero-shot and few-shot prompted large language
models with substantially larger parameter scales.



Limitations

Although the application of our proposed Self-
Augmentation method can bring stable perfor-
mance improvements to models using cross-
encoding, proving its feasibility, due to con-
cerns about the method’s complexity, the Self-
Augmentation method only involves extracting rel-
evant attention scores from the last layer of the
language model and calculating the semantic cor-
relation between sentences and conditions. This
results in the extracted relevance reflecting more on
the independent semantic features of the last layer,
which does not significantly enhance performance.

In this study, experiments have demonstrated
that small models applying our proposed method
can achieve performance surpassing that of zero-
shot and few-shot prompted large language models.
However, due to limitations in computational re-
sources, we did not apply our method to larger
scale models. And our focus is solely on the text
field, without extending it to other fields.

Future work can focus on the comprehensive
utilization of semantic features captured in other
layers of the model, as well as the combined se-
mantic features of the last layer and other layers.
Furthermore, the adoption of a learned adaptive
approach to amplify important semantic features of
each layer can be considered. This would enable
adaptive amplification of a certain number of se-
mantic features according to the complexity of dif-
ferent sentences, thereby achieving more efficiency
and satisfactory performance improvements. Ad-
ditionally, future work should consider extending
this method to larger scale models and additional
tasks (e.g. multimodal, vision and audio tasks) to
explore more of the method’s potential.

Ethical Considerations

It is widely acknowledged that language models
are capable of generating predictions that exhibit
bias. This issue becomes especially pronounced
when the input sentences possess sensitive char-
acteristics. While strategies such as data cleaning
can alleviate these problems, they do not offer a
complete solution. This study advocates for usage
under research purposes. Appropriate care should
thus be taken when applying such approaches for
any non-research purpose (e.g. in user-oriented
applications).

In this study, our use of existing artifacts is
consistent with their intended purposes. All the

datasets and models used in this work are publicly
available. ROBERTa-* models have MIT license'.
Flan-T5-* models have Apache-2.0 license?. The
remaining open-source models and datasets used,
due to the lack of explicit licensing declarations,
have all been credited with their sources in Ap-
pendix A.2 in this paper.
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A Appendix

A.1 Correlation Dilution Effect and
Self-Reweighting Alleviation

Additional cases, along with their corresponding
attention matrices and self-reweighting weights,
are provided in Table 6 and Fig. 5, respectively.
This enables a broader and deeper understanding of
the correlation dilution effect and self-reweighting
alleviation mentioned in Section 4.1.

It must be reiterated that the self-reweighting
weights computed here reflect the modulation of
different features’ intensities. That is, to enhance
condition-relevant features and suppress condition-
irrelevant features, it is necessary to adjust the in-
tensity of the original features. Therefore, in the
heatmap of self-reweighting weights, there may be
instances where the weights of features that are sup-
posed to be enhanced are not as salient. This can
occur not only due to the intrinsic learning quality
of the model but also because the original intensity
of certain features is already relatively strong, thus
requiring less enhancement, and vice versa.

A.2 Implementation Details

The hyperparameter settings shown in Table 5 were
determined to yield the best performance when
evaluating our proposed Self-Augmentation mod-
els on the C-STS validation set. To maintain higher
consistency with the baseline proposed by Desh-
pande et al. (2023), and to maximize the repro-
ducibility of our experimental results, we set the
torch seed to 42 in all our experiments.

As mentioned by Deshpande et al. (2023), the
C-STS-2023 dataset used in this paper comprises
a training set (11,342 examples), a validation set
(2,834 examples), and a test set (4,732 examples),
all consisting of English sentence examples.

All pre-trained parameters of the language
models involved in the experiments are di-
rectly available on Hugging Face: RoBERTa-
base’, RoBERTa-large*, SimCSE-base®, SimCSE-
large®. For GPT-3.5 and GPT-4, consistent with
the experimental setup described by Deshpande

et al. (2023), the related test results were ob-
Shttps://huggingface.co/FacebookAI/
roberta-base
*nttps://huggingface
roberta-large
5https://hugqingface.co/princeton—nlp/
sup-simcse—-roberta-base
®https://huggingface.co/princeton-nlp/
sup-simcse-roberta-large

.co/FacebookAI/
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tained using the OpenAl API with the static
model versions gpt-3.5-turbo-0301 and
gpt—-4-0314 during the experiments.

Configuration Base Large
Batch Size 64 64
Learning Rate  3e-5 1le-5
Weight Decay 0.1 0.1
Seed 42 42
Loss MSE MSE

Table 5: Hyperparameter sweep done for C-STS val-
idation for our proposed Self-Augmentation models.
"Base" and "Large" represent the scale of our proposed
Self-Augmentation models.

A.3 Model Parameter Discussion

In Table 3, we can observe that the parameter count
of our Self-Augmentation model has increased
slightly compared to the similar scale baseline.
This increase is due to the application of a pro-
jection matrix that maps the concatenated multi-
headed vector dimensions back to the model dimen-
sion (the slight increase in parameters corresponds
to the introduction of this projection matrix). How-
ever, since no external information is introduced
and the transformation is applied only to the infor-
mation originally extracted by the model, our pro-
posed Self-Augmentation method still maintains
a relatively high degree of consistency with the
original baseline model.
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Sentence 1 Sentence 2 Condition Output
. . . . w/o: 2.90
Two martial artists com Two people are fighting The number of partic- |
pete before a referee and in full protective gear ioants w/:4.61
onlookers. and helmets. pants. Label: 5.00
A man in a black wet- Surfer in black wetsuit The color of cloth wlo: 2.75
suit rides a surfboard on falling off his board into in w/ 475
a wave. the water. & Label: 5.00
A man dressed in red A Japanese man in a The name of the w/o: 2.35
dives for a shuttlecock red shirt, at the olympics color w/ : 4.08
with a racket on a court. playing tennis. ' Label: 5.00
At arodeo and a cowboy A man dressed as a cow- w/o: 3.35
is riding a bull and other boy walks away from a The type of animals. w/: 1.54
men are standing by. brown horse. Label: 1.00
A youth on a skateboard Young kid in a blue shirt . w/o: 3.07
. . . . . . . . What the person is ,
is doing flips and tricks is doing a trick on his . . w/: 1.28
wearing on their feet.
over a metal bar. rollerblades. Label: 1.00
i : i i w/o: 3.37
A man.W1tI.1 a blue.har A young girl wearing a The sex of the per-
ness climbing a climb- safety harness climbs a son w/: 1.66
ing wall. rock wall. ' Label: 1.00
i irt i i ; w/o: 2.18
A guy in red shirt is A man ina 'red. jacket The color of cloth |
rock-clibbing on a dan- mountain climbing an in w/:4.12
gerous mountain wall. icy rock mountain. & Label: 5.00
A brown and white dog A dog is running while w/o: 2.73
running fast in a fenced catching a tennis ball in The action. wl 447
yard. its mouth. Label: 5.00
i i i w/o: 2.25
A 'boy wearing a green A httle. boy in a green The color of the |
shirt rides a scooter jacket is crying on his . w/:4.10
. . clothing.
down the sidewalk. tricycle. Label: 5.00
A woman in an over- A bass player girl, who w/o: 2.58
sized black shirt plays a is performing at a con- The sex of the musi- ,
oo . w/: 4.20
black and red guitar in a cert one of the bands cian.
Label: 5.00

musky room.

songs.

Table 6: 10 additional cases from the C-STS validation set. "Output" refers to the predicted and the ground-truth
similarity, where the notation "w/0" represents the prediction from the baseline model, and "w/" denotes the
prediction from our proposed Self-Augmentation model (based on RoBERTa-base).
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Figure 5: Average attention matrix(left: obtained from the baseline model) and self-reweighting weight(right:
obtained from our proposed Self-Augmentation model) of each row case ((a) for the first row, (b) for the second
row, etc) presented in Table 6. The darker the color, the larger the corresponding value.
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