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Abstract

Conditional Semantic Textual Similarity (C-001
STS) introduces specific limiting conditions002
to the traditional Semantic Textual Similarity003
(STS) task, posing challenges for various main-004
stream models. Language models employing005
cross-encoding demonstrate satisfactory perfor-006
mance in STS, yet their effectiveness signifi-007
cantly diminishes in C-STS. In this work, we ar-008
gue that the failure of cross-encoding language009
models in C-STS is not due to their inabil-010
ity to extract effective features, but rather be-011
cause they extract an excessive number of fea-012
tures, thereby diluting the impact of condition-013
relevant features. To alleviate this, we propose014
Self-Augmentation via Self-Reweighting, which015
does not require the introduction of any ex-016
ternal auxiliary information. Instead, it am-017
plifies the impact of condition-relevant fea-018
tures and suppresses condition-irrelevant fea-019
tures through model’s intrinsic information.020
The self-reweighted outputs are used as a self-021
augmentation signal to enhance the model’s022
original outputs. On the C-STS test set, our pro-023
posed method consistently improves the perfor-024
mance of all fine-tuning baseline models (up to025
around 3 points). Remarkably, it even enables026
models with smaller parameter scales to sur-027
pass the performance of zero-shot and few-shot028
prompted large language models (such as GPT-029
4) with substantially larger parameter scales.030

1 Introduction031

Semantic textual similarity (STS) has been a cor-032

nerstone task in NLP for years(Agirre et al., 2014,033

2015, 2016; Cer et al., 2017; Abdalla et al., 2021),034

which is to measure the semantic similarity be-035

tween two sentences. With the emergence of pre-036

trained language models, such as BERT(Devlin037

et al., 2018), RoBERTa(Liu et al., 2019), GPT-038

3(Brown et al., 2020) and T5(Raffel et al., 2020),039

etc., the STS task seems to have been almost040

solved. However, STS is an inherently ambigu-041

ous task(Wang et al., 2023), for the varying aspects042

that can influence sentence similarity, uncondition- 043

ally measuring this similarity is irrational and un- 044

explainable. To solve the ambiguity of STS task 045

itself, Deshpande et al. (2023) proposed a novel 046

task called conditional semantic textual similarity 047

(C-STS), which incorporates specific conditions to 048

highlight aspects of interest in sentence pair similar- 049

ity assessment, enables a more grounded, precise 050

and multi-faceted evaluation. 051

Given that C-STS introduces additional com- 052

plexity into STS, researchers have explored various 053

encoding strategies, including cross-encoder(Liu 054

et al., 2019), bi-encoder(Reimers and Gurevych, 055

2019), and tri-encoder(Deshpande et al., 2023). 056

However, the results obtained have been less than 057

satisfactory. The current state-of-the-art models 058

on STS tasks, such as SimCSE(Gao et al., 2021) 059

can only achieve relatively low performances on 060

C-STS, even large language models with few-shot 061

prompts perform poorly on C-STS task. 062

As noted in the previous study, pre-trained lan- 063

guage models have already gained the ability to cap- 064

ture most kinds of potential semantic information 065

in sentences effectively(Rogers et al., 2021; Gessler 066

and Schneider, 2021; Vig, 2019; Clark et al., 2019; 067

Hewitt and Manning, 2019; Davison et al., 2019; 068

Petroni et al., 2019; Wang et al., 2020). Accord- 069

ingly, in this paper, we argue that the reason they 070

do not perform well on C-STS is that they attend 071

to excessive semantic information, resulting in the 072

introduction of numerous condition-irrelevant fea- 073

tures when measuring similarity through simple 074

cross-encoding, which in turn dilutes the impact of 075

condition-relevant features, namely, dilution effect. 076

To address this issue, we need to seek a method 077

capable of selectively capturing salient features 078

based on the condition. Such tasks are more com- 079

mon in vision and multimodal fields. Previous 080

work(Mirza et al., 2019; Lu et al., 2017; Yang et al., 081

2016; Jaegle et al., 2021; Shi et al., 2023) in these 082

domains has also yielded effective results by inte- 083
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Method Encoder Type #CM #FF Reweight Main Field
Vanilla LMs (Gao et al., 2021) cross-encoder 1 1 ✗ text
PerceiverIO (Jaegle et al., 2021) cross-encoder 3 1 ✓ multimodal
AbSViT (Shi et al., 2023) bi-encoder 2 2 ✓ vision
Self-Augmentation (Ours) cross-encoder 1 1 ✓ text

Table 1: Comparison of related work. "#CM" and "#FF" represent the number of computational modules required
for a single feedforward pass and the number of feedforward passes needed for one prediction, respectively.

grating modules that calculate similarities between084

input objects and specified conditions, utilizing085

these scores to reweight the outputs for prediction,086

which effectively adjusts the distribution of salient087

regions in the model’s attention maps to make the088

model focus more on specific objects with higher089

similarity to the conditions, thereby reducing the090

interference of other objects during prediction.091

Inspired by the "reweighting" strategy, to alle-092

viate the dilution effect mentioned above, we pro-093

pose a method provides a stronger guide signal094

for fine-tuning language model, further exploiting095

the intrinsic potential of language models to solve096

the C-STS task. We combine the reweighted signal097

with the original output using a specific scale factor,098

making the condition-relevant features contribute099

more when predicting. Given that the correlation100

information used for reweighting is directly derived101

from the last-layer attention computed in the feed-102

forward pass, we refer to this as Self-Augmentation103

via Self-Reweighting, eliminating the need to intro-104

duce external auxiliary information, thereby mak-105

ing the fine-tuning process more efficient.106

Retaining an architecture that is relatively con-107

sistent with that of the pre-trained language model,108

our proposed method exhibits the capability to out-109

perform the fine-tuning baselines on the C-STS test110

set. Remarkably, with a significantly smaller pa-111

rameter scale, it also surpasses the performance of112

most zero-shot and few-shot prompted large lan-113

guage models, highlighting its significant potential114

in advancing C-STS measurement.115

2 Related Work116

Pre-trained Language Model. There is substan-117

tial evidence indicating that throughout the pre-118

training, language models learn not only contex-119

tualized text representations, but also a grasp of120

grammar(Vig, 2019), syntax(Hewitt and Manning,121

2019), even commonsense(Davison et al., 2019)122

and world knowledge(Petroni et al., 2019; Wang123

et al., 2020). This multifaceted learning under- 124

scores the depth and breadth of understanding that 125

language models achieve during pre-training. 126

In this paper, we adopt this idea and argue that 127

the poor performance of current language models 128

on C-STS tasks can be attributed to the models’ 129

focus on excessive amount of such semantic infor- 130

mation across multiple condition-irrelevant aspects 131

during similarity measurement employing cross- 132

encoding, thereby diluting the essential correlation 133

between sentence pairs and the conditions, ulti- 134

mately leading to suboptimal performance. 135

Conditional Reweighted Feedforward. Tasks 136

similar to C-STS (Deshpande et al., 2023) find 137

more common application in fields like vision (e.g., 138

multi-object image recognition(Deng et al., 2009)) 139

and multimodal tasks (e.g., visual question answer- 140

ing(Antol et al., 2015; Carrasco, 2011; Li, 2014)). 141

In these contexts, a specific condition is essential 142

for directing the model’s focus towards objects that 143

are relevant to the given condition. 144

Previous work employing such methods has 145

yielded effective results. PerceiverIO(Jaegle et al., 146

2021) introduced multiple cross-attention modules 147

to compute the relevance to reweight the output 148

tokens, which were directly used for prediction. 149

Conversely, AbSViT(Shi et al., 2023) proposed a 150

feedback mechanism to feed the relevance com- 151

puted during the first feedforward phase back to 152

the preceding modules, then the second feedfor- 153

ward were conducted for prediction. 154

Inspired by previous work, we adapt the 155

"reweighting" strategy to C-STS. As shown in Ta- 156

ble 1, compared to PerceiverIO, our method elim- 157

inates the need for multiple modules, simplifies 158

the workflow, and achieves a higher degree of 159

model integration. And compared to AbSViT, our 160

method eliminates the feedback modules and only 161

reweights the final output, which maintains the con- 162

sistency of the pre-trained language models, mak- 163

ing the training process more efficient. 164
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Figure 1: Self-Reweighting flow (from left to right). (i) Self-Extraction: extract own attention sub-matrix, which
represents the interaction between the sentence and the condition. (ii) Output Reweighting: compute correlation
matrices, serving to reweight the original output of the sentence and the condition, respectively, then concatenate
them, culminating in the acquisition of a self-reweighted output.

3 Method165

This section starts with self-reweighting, which di-166

rectly extracts correlation information between sen-167

tences and the conditions to reweight the outputs168

(Section 3.1), then we use the reweighted outputs169

to enhance the original outputs in a specific propor-170

tion (Section 3.2), namely self-augmentation.171

3.1 Self-Reweighting172

When utilizing cross-encoding, we compute the at-173

tention matrix of concatenated sentence pair and174

the condition. The resulting attention matrix ac-175

tually encapsulates multi-faceted information, en-176

compassing both the self-attention of each input177

item and the cross-attention among input items.178

To utilize the condition-relevant information,179

as shown in Fig. 1, we specifically extract the180

cross-attention between the sentences and the con-181

ditions from the whole attention matrix. Then182

we divide them into two distinct aspects of atten-183

tion, namely Sentence2Condition Attention (abbre-184

viated as SCAttn) and Condition2Sentence Atten-185

tion (abbreviated as CSAttn), respectively. Here,186

SCAttn ∈ Rls×lc and CSAttn ∈ Rlc×ls , where187

ls indicates the length of the concatenated sentence188

pair, and lc indicates the condition length.189

We use the extracted SCAttn as the condition-190

guided signal for the concatenated sentence pair191

and CSAttn as the sentence-guided signal for192

the condition. Utilizing these, we construct the193

reweighting matrices for the sentences and the con-194

ditions, respectively, which are computed as195

WS = softmax(SCAttn ·CSAttn) (1)196

WC = softmax(CSAttn · SCAttn), (2)197

where WS ∈ Rls×ls indicates the reweighting ma- 198

trix for the sentence pair and WC ∈ Rlc×lc indi- 199

cates the reweighting matrix for the condition. 200

Applying the obtained reweighting matrices WS 201

and WC , we perform self-reweighting on the trun- 202

cated model outputs. This allows us to obtain the 203

reweighted outputs of both the sentence pair and 204

the condition parts, which can be computed as 205

ROS = WS ·O[t
(1)
1 , ..., t

(N1)
1 ; t

(1)
2 , ..., t

(N2)
2 ]

(3)
206

ROC = WC ·O[c(1), ..., c(Nc)], (4) 207

where O ∈ Rl×d indicates the last hidden state of 208

the language model, which we subsequently refer 209

to as the original output in the following text. l and 210

d represent the length of the concatenated input 211

(comprising the sentence pair and the condition) 212

and the dimension of the language model’s hidden 213

state, respectively. Here we represent the i-th token 214

of sentence k (k ∈ {1, 2}) as t(i)k . ROS ∈ Rls×d 215

and ROC ∈ Rlc×d represent the reweighted output 216

of the sentence pair and the condition, respectively. 217

After acquiring the reweighted outputs for both 218

the sentence pair and the condition, we then con- 219

catenate them to form the concatenated reweighted 220

output, as shown below: 221

RO = [ROS ;ROC ], (5) 222

where RO ∈ Rl×d indicates the concatenated 223

reweighted output, which is of the same size with 224

the original output O. Then, we utilize the obtained 225

concatenated reweighted output RO as an augmen- 226

tation signal to perform the self-augmentation as 227

described in Section 3.2. 228
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Furthermore, it is important to note that the229

reweighting matrices are derived directly from the230

attention matrices returned by the last layer of the231

language model. Since this does not introduce an232

external information, we refer to this process as233

self-reweighting.234

3.2 Self-Augmentation235

We consider the multi-head self-attention mech-236

anism of the language model, which ultimately237

yields H attention matrices, where H is the number238

of attention heads. Here, we refer to the reweighted239

output obtained after applying the reweighting ma-240

trices constructed from the attention matrix re-241

turned by the i-th attention head as ROi. Fol-242

lowing a method similar to that used in Transform-243

ers for processing outputs from multiple attention244

heads(Vaswani et al., 2017), we concatenate these245

H reweighted outputs. Subsequently, they are pro-246

jected through a projection matrix to match the247

dimension of a single reweighted output, which248

can be computed as249

RO = [RO1;RO2; ...;ROH ] ·Wo, (6)250

where Wo ∈ RHd×d indicates the projection ma-251

trix. To be more specific, the RO here indicates252

the projected reweighted output. Each ROi is com-253

puted through Eq. 5, where it should be noted254

that the RO in Eq. 5 denotes the case for a single255

attention head.256

We utilize the final reweighted output RO as257

an augmentation signal, aimed at enhancing parts258

of the original output O where there is a signif-259

icant semantic association between the sentence260

pair and the condition. To achieve this, we perform261

a weighted addition of the augmentation signal262

RO with the original output O. This results in the263

self-augmented output, which is then utilized for264

predicting similarity, which can be computed as265

AO = RO+ αO, (7)266

where AO ∈ Rl×d indicates the self-augmented267

output and α ≥ 0 denotes the hyperparameter that268

controls the ratio between the weight of reweighted269

output RO and the original output O, which is270

discussed in detail in Section 4.2.271

The overall architecture of the model is as de-272

picted in Fig. 2, where the final regressor connected273

behind the pre-trained language model is a single-274

hidden-layer MLP structure. It is important to note275
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Figure 2: Overall architecture of our Self-Augmentation
model. A self-augmented output is derived through the
addition of the self-reweighted output to the original
output(scaled by a factor of α). This self-augmented
output is subsequently fed into a regressor (a single-
hidden-layer MLP), predicting the semantic similarity.

that since the augmentation signal is directly de- 276

rived from the attention matrix computed by the 277

language model itself, and no external augmenta- 278

tion information is introduced in this process, we 279

refer to this as self-augmentation. 280

4 Experiments 281

In this section, we first demonstrate that the self- 282

reweighting operation can be conceptualized as a 283

soft mask mechanism, which amplifies the parts of 284

the output where the sentence pair and the condi- 285

tion are highly related, while suppressing the parts 286

where the relevance is low (Section 4.1). Then 287

we provide a comprehensive quantitative analysis, 288

discussing how the combined augmentation signal 289

and original signal at varying ratios influence the 290

model’s final predictive behavior (Section 4.2). 291

Dataset. In this study, we employ C-STS-2023 292

dataset collected by Deshpande et al. (2023) for 293

training and testing, which consists of quadru- 294

ples, formatted as (sentence1, sentence2, 295

condition, label). In which sentence1, 296

sentence2 and condition are all presented 297

in natural language form, and label represents 298

the level of similarity between sentence1 and 299

sentence2 under condition, converted into 300

a Likert scale(Likert, 1932) with values ranging 301

from 1 to 5, which is common with semantic tex- 302
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Sentence 1 Sentence 2 Condition Output
A boy is in midair do-
ing a skateboard trick
at a skate park while
two women and a tod-
dler walk behind him.

A boy in yellow pants
and a blue shirt is
rollerblading on the side
of his black skates.

The type of skating.
w/o: 4.00
w/ : 1.46
Label: 1.00

Two people are near a
wooden building wear-
ing backpacks.

A couple of people
working around a pile of
rocks.

The number of peo-
ple.

w/o: 2.60
w/ : 4.62
Label: 5.00

Table 2: Two cases from the C-STS validation set. "Output" refers to the predicted and the ground-truth similarity,
where the notation "w/o" represents the prediction from the baseline model, and "w/" denotes the prediction from
our proposed Self-Augmentation model (based on RoBERTa-base). More cases are available in Appendix A.1.

tual similarity tasks(Agirre et al., 2013).303

Experimental Setup. We conduct a comparative304

analysis between various baselines and our pro-305

posed method, which can be categorized into:306

(i) Fine-tuning baselines, which are fine-tuned307

on the entire training partition. We select308

RoBERTa(Liu et al., 2019) and SimCSE(Gao309

et al., 2021) as our baselines, encompassing310

both the base and large scale models.311

(ii) Prompting baselines, which refer to general-312

purpose large language models, are recog-313

nized for their zero-shot or few-shot learn-314

ing capabilities. For a comprehensive per-315

formance analysis, we select Flan-T5(Wei316

et al., 2021) (in both base and large con-317

figurations), GPT-J(Wang and Komatsuzaki,318

2021), GPT-3.5(Brown et al., 2020), and GPT-319

4(Achiam et al., 2023) as our baselines.320

It is important to note that due to observed vari-321

ances in experimental results across different mod-322

els of GPUs, to ensure reproducibility, all exper-323

iments were conducted on a single RTX A5000.324

More details are available in Appendix A.2.325

4.1 Correlation Dilution Effect and326

Self-Reweighting Alleviation327

From the Table 2, it is observed that, moving328

from top to bottom, for the first case, the predic-329

tions made by the baseline model are higher in330

comparison to the ground-truth. This intuitively331

suggests that, within the relevant features cap-332

tured by the baseline model, sentence1 and333

sentence2 exhibit a higher semantic similar-334

ity under the condition. Conversely, for the335

second case, the baseline model’s predictions are 336

lower relative to the ground-truth. However, the 337

predictions from our proposed Self-Augmentation 338

method align more closely with the ground-truth. 339

To elucidate the feature capture mechanism of 340

the baseline model in this task, and to under- 341

stand the reasons behind the baseline model’s 342

prediction failures as well as the success of our 343

Self-Augmentation model, we extracted and av- 344

eraged the multi-headed attention matrices from 345

the last layer of the baseline model and the self- 346

reweighting weights for the sentence part in the 347

Self-Augmentation model. Subsequently, these 348

were visualized for analysis. As illustrated in Fig. 349

3, this allows us to more intuitively analyze the 350

differing feature capture modes of the models. 351

It is important to note that, as our objective is 352

to discuss and analyze the model’s feature capture 353

patterns, since SimCSE is a model fine-tuned on 354

the STS task, its feature capture preferences might 355

significantly deviate from those of a pre-trained 356

model directly fine-tuned on the C-STS dataset. To 357

avoid ambiguity, we have chosen RoBERTa-base 358

as the model for our case study. This selection 359

allows for a more equitable and lucid analysis of 360

the feature capture patterns of the baseline model 361

and our Self-Augmentation model. 362

From the average attention matrix of the last 363

layer of the baseline model shown in Fig. 3(a) (left), 364

it is observable that the attention map of the fine- 365

tuned baseline model does not contain any specific 366

salient regions. However, previous studies(Clark 367

et al., 2019) have confirmed that the pre-trained 368

language model should possess the capability to 369

capture multifaceted features. While it is acknowl- 370

edged that the fine-tuning process may somewhat 371
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(a)

(b)

Figure 3: Average attention matrix(left: obtained from
the baseline model) and self-reweighting weight(right:
obtained from our proposed Self-Augmentation model)
of the first-row case(a) and the second-row case(b) pre-
sented in Table 2. The darker the color, the larger the
corresponding value.

impair this capability, it appears to be markedly372

diminished in these cases.373

We argue that the reason for the baseline model’s374

predictive failure does not lie in its inability to cap-375

ture relevant features, but rather due to its exces-376

sive capture of condition-irrelevant features, which,377

after being normalized by the softmax function,378

dilute the impact of condition-relevant features on379

the final prediction. This correlation dilution effect,380

leading to the baseline model’s predictive failure,381

which is also observable in Fig. 3(b) (left).382

After applying our proposed Self-Augmentation383

method, we observe from Fig. 3(a)(right) and Fig.384

3(b)(right) that the reweighting weights derived385

from Self-Reweighting exhibit distinct salient re-386

gions (darker in color) and suppressed areas (lighter387

in color). Notably, the formation of such salient388

regions is condition-relevant. For instance, for the389

first case in Table 2, the salient reweighting regions390

of the reweighting weights concentrate on tokens391

related to "the type of skating", such as392

"rollerblade"; for the second case, the salient393

regions focus on tokens related to "the number394

of people", such as "a" and "couple".395

The aforementioned further substantiates our396

hypothesis: the application of our proposed Self-397

Augmentation method, which successfully en- 398

hances condition-relevant feature regions and sup- 399

presses condition-irrelevant ones, improves the 400

predictive capability of the model compared to 401

the baseline model. Importantly, since our Self- 402

Reweighting approach for obtaining reweighting 403

weights does not introduce any external enhance- 404

ment information, it indicates that the model, 405

through pre-training and fine-tuning, has already 406

acquired the capability to extract multifaceted fea- 407

tures. However, the simultaneous extraction of an 408

excessive amount of condition-irrelevant features 409

diluted the effectiveness of valid condition-relevant 410

features. The application of our proposed Self- 411

Augmentation method can effectively mitigate this 412

issue, thereby enhancing the performance and sta- 413

bility of the model’s predictions. 414

4.2 Quantitative Results and Analysis 415

We initially conduct fine-tuning experiments on 416

the entire training partition of the C-STS dataset, 417

utilizing prominent sentence encoders: RoBERTa 418

and SimCSE. We set the range of the scaling factor 419

α in Eq. 7 from 0 to 3, to observe the impact on the 420

overall model performance under different ratios 421

of the self-augmentation signal combined with the 422

original output. The detailed quantitative results of 423

fine-tuning are shown in the Table 3. 424

RoBERTa has been fine-tuned directly on the C- 425

STS dataset following pre-training. In contrast, be- 426

fore being further fine-tuned on the C-STS dataset, 427

SimCSE has already been fine-tuned on uncondi- 428

tional STS datasets after the pre-training phase. As 429

shown in Table 3, by adjusting α to suit different 430

models, our proposed Self-Augmentation method 431

can bring stable performance improvements to each 432

model of different scales. 433

As RoBERTa has not been fine-tuned on other 434

STS datasets, it largely retains the multifaceted 435

feature extraction capability acquired during its 436

pre-training phase. Therefore, for the base 437

scale RoBERTa model, solely using the self- 438

augmentation signal for prediction (i.e., setting α 439

to 0) can yield its optimal result. Introducing vary- 440

ing degrees of the original output may, to some 441

extent, impair this, leading to suboptimal perfor- 442

mance. Conversely, the large scale RoBERTa, 443

compared to the base scale, further enhances its 444

feature extraction ability. With the increased depth 445

of extracted features, some features suppressed 446

in the self-augmentation signal can positively in- 447
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Model Scale Spear. ↑ Pears. ↑
RoBERTa (Deshpande et al., 2023) Base (125M) 39.07 39.05
Self-Augmented RoBERTa w/o original (Ours) Base (132M) 41.36+2.29 41.05+2.00

Self-Augmented RoBERTa w/ 1*original (Ours) Base (132M) 39.93+0.86 39.83+0.78

Self-Augmented RoBERTa w/ 2*original (Ours) Base (132M) 40.44+1.37 40.35+1.30

Self-Augmented RoBERTa w/ 3*original (Ours) Base (132M) 38.83−0.24 38.91−0.14

RoBERTa (Deshpande et al., 2023) Large (355M) 40.40 40.78
Self-Augmented RoBERTa w/o original (Ours) Large (372M) 43.16+2.76 43.20+2.42

Self-Augmented RoBERTa w/ 1*original (Ours) Large (372M) 40.69+0.29 40.56−0.22

Self-Augmented RoBERTa w/ 2*original (Ours) Large (372M) 43.45+3.05 43.60+2.82

Self-Augmented RoBERTa w/ 3*original (Ours) Large (372M) 39.35−1.05 39.28−1.50

SimCSE (Deshpande et al., 2023) Base (125M) 38.56 39.00
Self-Augmented SimCSE w/o original (Ours) Base (132M) 37.16−1.40 36.92−2.08

Self-Augmented SimCSE w/ 1*original (Ours) Base (132M) 38.48−0.08 38.08−0.92

Self-Augmented SimCSE w/ 2*original (Ours) Base (132M) 39.59+1.03 39.30+0.30

Self-Augmented SimCSE w/ 3*original (Ours) Base (132M) 39.18+0.62 39.24+0.24

SimCSE (Deshpande et al., 2023) Large (355M) 42.28 42.40
Self-Augmented SimCSE w/o original (Ours) Large (372M) 43.06+0.78 43.01+0.61

Self-Augmented SimCSE w/ 1*original (Ours) Large (372M) 42.47+0.19 42.52+0.12

Self-Augmented SimCSE w/ 2*original (Ours) Large (372M) 43.70+1.42 43.47+1.34

Self-Augmented SimCSE w/ 3*original (Ours) Large (372M) 43.83+1.55 43.81+1.41

Table 3: Fine-tuning results in Spearman and Pearson correlation coefficient (scaled by 100) on the C-STS test set.
Highlighted rows indicate the highest performance achieved within the same model and scale. "Self-Augmented
[MODEL NAME] w/ α*original" denotes the addition of the self-augmentation signal to the original output (scaled
by a factor of α), and “w/o” is equivalent to the scenario where α = 0. More details are available in Appendix A.3.

fluence the prediction (due to increased learned448

semantic complexity; intuitively, some features449

may appear condition-irrelevant individually but450

become condition-relevant in combination), thus451

introducing a certain degree of the original output452

(i.e., setting α to 2) can achieve its optimal result.453

While SimCSE has already been fine-tuned on454

unconditional STS datasets, we believe this slightly455

impairs the model’s ability to extract general fea-456

tures. However, SimCSE also acquires effective457

task-specific features for measuring sentence sim-458

ilarity. There exists a certain trade-off between459

the negative and positive impacts brought by fine-460

tuning on the unconditional STS datasets. Intu-461

itively, we suspect this is related to the model’s462

scale. The base size SimCSE is more likely to463

be negatively influenced by fine-tuning on the un-464

conditional STS datasets compared to the large465

scale, resulting in the optimal performance of the466

base size SimCSE model being lower than that of467

the same scaled RoBERTa. In contrast, the large 468

scale SimCSE seems to gain more positive bene- 469

fits than negative impacts from the unconditional 470

STS fine-tuning process, thereby further enhanc- 471

ing its capability to extract semantic features and 472

achieving higher optimal performance. 473

To further analyze the impact of different ratios 474

of self-augmentation signal combined with the orig- 475

inal output on model performance, we visualized 476

the trend of model performance under various set- 477

tings of α, as shown in Fig. 4. Both the base 478

and large scales of the RoBERTa model exhib- 479

ited similar trends: a significant decrease in perfor- 480

mance upon the initial introduction of the original 481

output, followed by a pattern of first increasing and 482

then continuing to decrease as α increases. How- 483

ever, a distinction between the base and large 484

scales of the RoBERTa model is observed in the 485

performance peak upon increasing the degree of 486

the original output’s inclusion: the large scale 487
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Figure 4: Trends in the Spearman’s correlation coeffi-
cient of our Self-Augmentation model under different
settings of α. The red dashed line represents the perfor-
mance of the corresponding baseline model.

of RoBERTa surpasses the performance of using488

solely the self-augmentation signal for prediction,489

whereas the base scale does not. The base size490

SimCSE model shows a trend where performance491

continuously grows to a peak and then declines as492

α increases. The performance trend of the large493

size SimCSE model is similar to that of RoBERTa,494

but the peak performance appears to be shifted to495

the right. It is also observable that at this point, the496

performance improvement has begun to converge.497

The aforementioned trends confirm that, apart498

from the features directly related to the condition,499

other features also play a non-negligible role in the500

overall semantic similarity measurement in most501

cases. Therefore, this is the rationale for using502

the self-reweighted output as an augmentation sig-503

nal to the original output, rather than as the sole504

component utilized in the final similarity predic-505

tion. However, it is also important to note that α506

increases, the overall performance of the model507

gradually degrades back to the unenhanced state.508

The ratio of the self-augmentation signal to the509

original output also represents a form of trade-off.510

Additionally, we compared the performance of511

our proposed Self-Augmentation method with that512

of zero-shot and few-shot prompted large language513

models on the C-STS test set. The performances514

of the zero-shot and few-shot prompted large lan-515

guage models, as presented in Table 4, represent516

the best results obtained after prompting using vari-517

ous prompts as applied by Deshpande et al. (2023).518

As shown in Table 4, it is evident that despite a519

substantial difference in the number of parameters520

Model 0-shot ↑ 2-shot ↑ 4-shot ↑
Flan-T5-base 11.3 9.1 10.7
Flan-T5-large 11.1 12.3 12.8
GPT-J 7.4 1.1 2.0
GPT-3.5 15.0 16.6 15.5
GPT-4 39.3 42.6 43.6
†Self-Augmented SimCSE-large w/ 3*original

43.8

Table 4: Zero-shot and few-shot prompted results on the
C-STS test set using Spearman’s correlation coefficient.
† indicates fine-tuning on the entire training partition.

between our selected model (372M) and large lan- 521

guage models such as GPT-J (6B), GPT-3.5 (175B), 522

and GPT-4 (even larger than GPT-3.5), the best per- 523

formance of SimCSE-large with our proposed Self- 524

Augmentation method, still surpasses the optimal 525

performance achieved by zero-shot and few-shot 526

prompted large language models. Furthermore, as 527

the process of zero-shot and few-shot prompting 528

in large language models also constitutes cross- 529

encoding, this further confirms the superiority of 530

our proposed method in cross-encoding models. 531

5 Conclusion 532

In this work, we argue that language models em- 533

ploying cross-encoding have already acquired the 534

capability to capture multifaceted features during 535

the pre-training phase. The reason for their sub- 536

par performance in the C-STS task is attributed to 537

the dilution effect: the multitude of learned fea- 538

tures dilutes the impact of condition-relevant fea- 539

tures. However, mitigating this dilution through 540

mere fine-tuning is challenging. To address this, we 541

propose Self-Augmentation via Self-Reweighting, 542

which does not require the introduction of any ex- 543

ternal information. Instead, it amplifies the impact 544

of condition-relevant features and suppresses the 545

influence of condition-irrelevant features through 546

model’s intrinsic information. The self-reweighted 547

results are then used as an augmentation signal to 548

enhance the model’s original output, achieving self- 549

augmentation. On the C-STS test set, our method 550

consistently improves the performance of all fine- 551

tuning baseline models. Notably, it even allows 552

smaller-scale models to surpass the performance 553

of zero-shot and few-shot prompted large language 554

models with substantially larger parameter scales. 555
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Limitations556

Although the application of our proposed Self-557

Augmentation method can bring stable perfor-558

mance improvements to models using cross-559

encoding, proving its feasibility, due to con-560

cerns about the method’s complexity, the Self-561

Augmentation method only involves extracting rel-562

evant attention scores from the last layer of the563

language model and calculating the semantic cor-564

relation between sentences and conditions. This565

results in the extracted relevance reflecting more on566

the independent semantic features of the last layer,567

which does not significantly enhance performance.568

In this study, experiments have demonstrated569

that small models applying our proposed method570

can achieve performance surpassing that of zero-571

shot and few-shot prompted large language models.572

However, due to limitations in computational re-573

sources, we did not apply our method to larger574

scale models. And our focus is solely on the text575

field, without extending it to other fields.576

Future work can focus on the comprehensive577

utilization of semantic features captured in other578

layers of the model, as well as the combined se-579

mantic features of the last layer and other layers.580

Furthermore, the adoption of a learned adaptive581

approach to amplify important semantic features of582

each layer can be considered. This would enable583

adaptive amplification of a certain number of se-584

mantic features according to the complexity of dif-585

ferent sentences, thereby achieving more efficiency586

and satisfactory performance improvements. Ad-587

ditionally, future work should consider extending588

this method to larger scale models and additional589

tasks (e.g. multimodal, vision and audio tasks) to590

explore more of the method’s potential.591

Ethical Considerations592

It is widely acknowledged that language models593

are capable of generating predictions that exhibit594

bias. This issue becomes especially pronounced595

when the input sentences possess sensitive char-596

acteristics. While strategies such as data cleaning597

can alleviate these problems, they do not offer a598

complete solution. This study advocates for usage599

under research purposes. Appropriate care should600

thus be taken when applying such approaches for601

any non-research purpose (e.g. in user-oriented602

applications).603

In this study, our use of existing artifacts is604

consistent with their intended purposes. All the605

datasets and models used in this work are publicly 606

available. RoBERTa-* models have MIT license1. 607

Flan-T5-* models have Apache-2.0 license2. The 608

remaining open-source models and datasets used, 609

due to the lack of explicit licensing declarations, 610

have all been credited with their sources in Ap- 611

pendix A.2 in this paper. 612
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A Appendix794

A.1 Correlation Dilution Effect and795

Self-Reweighting Alleviation796

Additional cases, along with their corresponding797

attention matrices and self-reweighting weights,798

are provided in Table 6 and Fig. 5, respectively.799

This enables a broader and deeper understanding of800

the correlation dilution effect and self-reweighting801

alleviation mentioned in Section 4.1.802

It must be reiterated that the self-reweighting803

weights computed here reflect the modulation of804

different features’ intensities. That is, to enhance805

condition-relevant features and suppress condition-806

irrelevant features, it is necessary to adjust the in-807

tensity of the original features. Therefore, in the808

heatmap of self-reweighting weights, there may be809

instances where the weights of features that are sup-810

posed to be enhanced are not as salient. This can811

occur not only due to the intrinsic learning quality812

of the model but also because the original intensity813

of certain features is already relatively strong, thus814

requiring less enhancement, and vice versa.815

A.2 Implementation Details816

The hyperparameter settings shown in Table 5 were817

determined to yield the best performance when818

evaluating our proposed Self-Augmentation mod-819

els on the C-STS validation set. To maintain higher820

consistency with the baseline proposed by Desh-821

pande et al. (2023), and to maximize the repro-822

ducibility of our experimental results, we set the823

torch seed to 42 in all our experiments.824

As mentioned by Deshpande et al. (2023), the825

C-STS-2023 dataset used in this paper comprises826

a training set (11,342 examples), a validation set827

(2,834 examples), and a test set (4,732 examples),828

all consisting of English sentence examples.829

All pre-trained parameters of the language830

models involved in the experiments are di-831

rectly available on Hugging Face: RoBERTa-832

base3, RoBERTa-large4, SimCSE-base5, SimCSE-833

large6. For GPT-3.5 and GPT-4, consistent with834

the experimental setup described by Deshpande835

et al. (2023), the related test results were ob-836

3https://huggingface.co/FacebookAI/
roberta-base

4https://huggingface.co/FacebookAI/
roberta-large

5https://huggingface.co/princeton-nlp/
sup-simcse-roberta-base

6https://huggingface.co/princeton-nlp/
sup-simcse-roberta-large

tained using the OpenAI API with the static 837

model versions gpt-3.5-turbo-0301 and 838

gpt-4-0314 during the experiments. 839

Configuration Base Large
Batch Size 64 64
Learning Rate 3e-5 1e-5
Weight Decay 0.1 0.1
Seed 42 42
Loss MSE MSE

Table 5: Hyperparameter sweep done for C-STS val-
idation for our proposed Self-Augmentation models.
"Base" and "Large" represent the scale of our proposed
Self-Augmentation models.

A.3 Model Parameter Discussion 840

In Table 3, we can observe that the parameter count 841

of our Self-Augmentation model has increased 842

slightly compared to the similar scale baseline. 843

This increase is due to the application of a pro- 844

jection matrix that maps the concatenated multi- 845

headed vector dimensions back to the model dimen- 846

sion (the slight increase in parameters corresponds 847

to the introduction of this projection matrix). How- 848

ever, since no external information is introduced 849

and the transformation is applied only to the infor- 850

mation originally extracted by the model, our pro- 851

posed Self-Augmentation method still maintains 852

a relatively high degree of consistency with the 853

original baseline model. 854
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Sentence 1 Sentence 2 Condition Output

Two martial artists com-
pete before a referee and
onlookers.

Two people are fighting
in full protective gear
and helmets.

The number of partic-
ipants.

w/o: 2.90
w/ : 4.61
Label: 5.00

A man in a black wet-
suit rides a surfboard on
a wave.

Surfer in black wetsuit
falling off his board into
the water.

The color of cloth-
ing.

w/o: 2.75
w/ : 4.75
Label: 5.00

A man dressed in red
dives for a shuttlecock
with a racket on a court.

A Japanese man in a
red shirt, at the olympics
playing tennis.

The name of the
color.

w/o: 2.35
w/ : 4.08
Label: 5.00

At a rodeo and a cowboy
is riding a bull and other
men are standing by.

A man dressed as a cow-
boy walks away from a
brown horse.

The type of animals.
w/o: 3.35
w/ : 1.54
Label: 1.00

A youth on a skateboard
is doing flips and tricks
over a metal bar.

Young kid in a blue shirt
is doing a trick on his
rollerblades.

What the person is
wearing on their feet.

w/o: 3.07
w/ : 1.28
Label: 1.00

A man with a blue har-
ness climbing a climb-
ing wall.

A young girl wearing a
safety harness climbs a
rock wall.

The sex of the per-
son.

w/o: 3.37
w/ : 1.66
Label: 1.00

A guy in red shirt is
rock-clibbing on a dan-
gerous mountain wall.

A man in a red jacket
mountain climbing an
icy rock mountain.

The color of cloth-
ing.

w/o: 2.18
w/ : 4.12
Label: 5.00

A brown and white dog
running fast in a fenced
yard.

A dog is running while
catching a tennis ball in
its mouth.

The action.
w/o: 2.73
w/ : 4.47
Label: 5.00

A boy wearing a green
shirt rides a scooter
down the sidewalk.

A little boy in a green
jacket is crying on his
tricycle.

The color of the
clothing.

w/o: 2.25
w/ : 4.10
Label: 5.00

A woman in an over-
sized black shirt plays a
black and red guitar in a
musky room.

A bass player girl, who
is performing at a con-
cert one of the bands
songs.

The sex of the musi-
cian.

w/o: 2.58
w/ : 4.20
Label: 5.00

Table 6: 10 additional cases from the C-STS validation set. "Output" refers to the predicted and the ground-truth
similarity, where the notation "w/o" represents the prediction from the baseline model, and "w/" denotes the
prediction from our proposed Self-Augmentation model (based on RoBERTa-base).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5: Average attention matrix(left: obtained from the baseline model) and self-reweighting weight(right:
obtained from our proposed Self-Augmentation model) of each row case ((a) for the first row, (b) for the second
row, etc) presented in Table 6. The darker the color, the larger the corresponding value.
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