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ABSTRACT

Given an edge-incomplete graph, how can we accurately find the missing links? The
link prediction in edge-incomplete graphs aims to discover the missing relations be-
tween entities when their relationships are represented as a graph. Edge-incomplete
graphs are prevalent in real-world due to practical limitations, such as not checking
all users when adding friends in a social network. Addressing the problem is
crucial for various tasks, including recommending friends in social networks and
finding references in citation networks. However, previous approaches for link
prediction rely heavily on the given edge-incomplete (observed) graph, making
it challenging to consider the missing (unobserved) links during training. In this
paper, we propose PULL (PU-LEARNING-BASED LINK PREDICTOR), an accurate
link prediction method based on the positive-unlabeled (PU) learning. PULL treats
the observed edges in the training graph as positive examples, and the unconnected
node pairs as unlabeled ones. PULL effectively prevents the link predictor from
overfitting to the observed graph by proposing latent variables for every edge, and
leveraging the expected graph structure with respect to the variables. Extensive
experiments on five real-world datasets show that PULL consistently outperforms
the baselines for predicting links in edge-incomplete graphs.

1 INTRODUCTION

Given an edge-incomplete graph, how can we accurately find the missing links among the unconnected
node pairs? Edge-incomplete graphs are easily encountered in real-world networks. In social
networks, connections between users can be missing since we do not check every user when adding
friends. In the context of citation networks, there may be missing citations as we do not review all
published papers for citation. The objective of the link prediction in edge-incomplete graphs is to
discover the undisclosed relationships between examples when we are provided with a graph that
represents the known relationships among them (Liben-Nowell & Kleinberg, 2007). Such scenarios
include finding uncited references in citation networks (Shibata et al., 2012; Liu et al., 2019), and
recommending new friends in social networks (Wang et al., 2015; Daud et al., 2020a).

The main limitation of previous works (Kipf & Welling, 2016b; 2017; Pan et al., 2018; Zhang & Bai,
2023) for link prediction problem is that they rely strongly on the given edge-incomplete graph. They
presume the edges of the given graph are fully observed ones, and do not consider the unobserved
missing links while training. However, this does not always reflect the real-world scenarios where
the presence of missing edges is frequently observed. This limits the model’s ability to propagate
information through unconnected node pairs, which may potentially form edges, overfitting a link
predictor to the given edge-incomplete graph. Thus, it is important to consider the uncertainties of
the given graph to obtain accurate linking probabilities between nodes.

In this work, we propose PULL (PU-LEARNING-BASED LINK PREDICTOR), an accurate method
for link prediction in edge-incomplete graphs. To account for the uncertainties in the given graph
structure while training a link predictor f , PULL exploits PU learning (see Section 2.2 for details).
We treat the observed edges within the graph as positive examples and the unconnected node pairs,
which may contain hidden connections, as unlabeled examples. We then construct an expected
graph Ḡ while proposing latent variables for the unlabeled (unconnected) node pairs to consider the
hidden connections among them. This enables us to effectively propagate information through the
unconnected edges, improving the prediction accuracy of f . Since the estimated linking probabilities
of f are prior knowledge for constructing the expected graph structure Ḡ, improved link predictor f
enhances the quality of Ḡ. Thus, PULL employs an iterative learning approach with two-steps to
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achieve a repeated improvement of the link predictor f : a) constructing an expected graph structure
Ḡ based on the linking probabilities between nodes from the link predictor f , and b) training f
exploiting the expected graph Ḡ. Note that the updated f is used to update Ḡ in the next iteration.

Our contributions are summarized as follows:

• Method. We propose PULL, an accurate method for link prediction in graphs. PULL
effectively overcomes a primary limitation of previous methods, which is their heavy reliance
on the provided graph structure. This is achieved by training a link predictor with an expected
graph structure while treating the unconnected edges as unlabeled ones.

• Theory. We theoretically analyze PULL, studying its relationship with the EM algorithm.
• Experiments. We perform various experiments on five real-world datasets, and show that

PULL achieves the state-of-the-art link prediction performance.

The code and datasets are available at https://github.com/graphmaster2023/pull.
The symbols used in this paper is in Table 2 (Appendix B.1).

2 RELATED WORKS AND PROBLEM DEFINITION

2.1 LINK PREDICTION IN GRAPHS

Link prediction in graphs has garnered significant attention in recent years, due to its successful
application in various domains including social networks (Backstrom & Leskovec, 2011; Wang
et al., 2016a; Daud et al., 2020b), recommendation systems (Afoudi et al., 2023; Kurt et al., 2019),
and biological networks (Sulaimany et al., 2018; Long et al., 2022). Previous approaches for link
prediction are categorized into two groups: embedding-based and autoencoder-based approaches.

Embedding-based approaches strive to create compact representations of nodes within a graph
via random walk or propagation. These representations are subsequently employed to estimate
the probability of connections between nodes. Deepwalk (Perozzi et al., 2014) and Node2Vec
(Grover & Leskovec, 2016) create embeddings by simulating random walks on the graph. The
concept is to generate embeddings in a way that nodes frequently appearing together in these random
walks end up having similar representations. GCN (Kipf & Welling, 2017), LINE (Xu, 2017),
GraphSAGE (Hamilton et al., 2017), and GAT (Velickovic et al., 2017) aggregate information from
neighboring nodes to learn the embeddings, assuming adjacent nodes are similar. SEAL (Zhang &
Chen, 2018) extends the link prediction problem into a subgraph classification problem.

The autoencoder-based methods exploit autoencoders to train a link predictor. GAE (Kipf & Welling,
2016a) is an autoencoder-based unsupervised framework for link prediction. VGAE is a variational
graph autoencoder, which is a variant of GAE. VGAE explicitly models the uncertainty by introducing
a probabilistic layer. ARGA and ARGVA (Pan et al., 2018) exploit adversarial training strategy to
improve the performance of GAE and VGAE, respectively. GNAE and VGNAE (Ahn & Kim, 2021)
found that autoencoder-based methods produce embeddings that converge to zero for isolated nodes,
regardless of their input features. They utilize L2-normalization to get better embeddings for these
isolated nodes. However, those embedding-based and autoencoder-based approaches assume that
the edges of the given graph are fully observed. This overfits the node embeddings to the given
edge-incomplete graph, degrading the link prediction performance.

2.2 PU LEARNING

The objective of PU (Positive-Unlabeled) learning is to train a binary classifier that effectively
distinguishes positive and negative instances when only positive and unlabeled examples are available.
Many algorithms are developed to address the uncertainty introduced by the lack of labeled negative
examples. Unbiased risk estimator (URE) (du Plessis et al., 2014) considers the probability that each
unlabeled example is a positive instance and adjusts the risk estimate accordingly. Non-negative risk
estimator (Kiryo et al., 2017) improves the classification accuracy of URE by preventing the risk of
unlabeled instances from going negative. However, those risk-based approaches require the ratio of
real positive examples (class prior) among the whole ones in advance, which is not realistic.

Many graph-based PU learning approaches have been studied recently (Li et al., 2016; Zhang et al.,
2019; Wu et al., 2019). PU-LP (Ma & Zhang, 2017) finds relatively positive examples from the
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Figure 1: Overall structure of PULL. Given an edge-incomplete graph GP with a set P of observed
edges, PULL first computes the expected graph structure Ḡ by proposing latent variables for the
edges. Then PULL utilizes Ḡ to update the link predictor f . The marginal linking probabilities ŷ
obtained by the updated f are used to compute Ḡ in the next iteration.

unlabeled ones utilizing the given graph structure, and treats the rest as relatively negative ones.
GRAB (Yoo et al., 2021) is the first approach to solve the graph-based PU learning problem without
knowing the class prior in advance. However, those graph-based PU learning methods cannot be
directly used in the link prediction problem since they aim to classify nodes, not edges, while
considering the edges of the given graph as fully observed ones. Hao (2021) and Gan et al. (2022)
proposed PU learning frameworks for link prediction considering the given edges as observed
positive examples. However, their link prediction performance is constrained by the propagation of
information through the edge-incomplete graph for obtaining node and edge representations.

3 PROPOSED METHOD

We propose PULL (PU-LEARNING-BASED LINK PREDICTOR), an accurate method for link pre-
diction in edge-incomplete graphs. PULL effectively exploits the missing links for training the link
predictor based on PU-learning approach. We illustrate the entire process of PULL in Figure 1 and
Algorithm 1. The main challenges and our approaches are as follows:

1. How can we consider the missing links while training? We treat the given edges as
observed positive examples, and the rest as unlabeled ones. We then propagate information
through an expected graph structure by proposing latent variables to the unconnected node
pairs. (Section 3.1).

2. How can we effectively model the expected graph structure? Computing the expected
graph structure is computationally expensive since there are 2|EU | possible graph structures
where EU is the set of unconnected edges. We effectively compute the expectation of graph
structure by carefully designing the probabilities of graphs (Section 3.2).

3. How can we gradually improve the performance of the link predictor? PULL iteratively
improves the quality of the expected graph structure, which is the evidence for training the
link predictor (Section 3.3).

3.1 MODELING MISSING LINKS

In the problem of link prediction in edge-incomplete graph, we are given a feature matrix X and an
edge-incomplete graph GP consisting of two sets of edges, EP and EU . The set EP contains observed
edges, and EU consists of unconnected node pairs; EP ∪ EU is a set of all possible node pairs. Then
we aim to find unobserved connected edges among EU accurately (see Appendix A for a formal
problem definition). Existing link prediction methods treat the given edges of EP as fully observed
ones, and they propagate information through it to train a link predictor f . This overfits f to the
edge-incomplete graph, degrading the link prediction performance.

To prevent the overfitting problem of f to the edge-incomplete graph, PULL models the given graph
based on PU-learning approach. Since there are hidden connections in EU , we treat the unconnected
edges in EU as unlabeled examples, and the observed edges in EP as positive ones. Then we propose
a latent variable zij ∈ {1, 0} for every edge eij , indicating whether there is a link between nodes i
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Algorithm 1: PULL (PU-LEARNING-BASED LINK PREDICTOR).
Input :Edge-incomplete graph GP = (V, EP), feature matrix X, set EU of unconnected edges,

hyperparameter r, and link predictor fθ(i, j) parameterized by θ
Output :Best parameters θ of link predictor fθ(i, j)

1 Randomly initialize θnew , and initialize K as |EP |;
2 repeat
3 θ ← θnew;
4 Ḡ ← Ez∼p(z|X,EP ,θ)[A(z)] = AḠ ; // compute expected graph structure by Equations (3), (4)
5 Approximate Ḡ to Ḡ′ by selecting top-K edges with the largest weights;
6 K ← K + |EP | ∗ r ;
7 θnew ← arg minθ L(θ; Ḡ′,X); // update θ using Equations (6), (7)
8 until the maximum number of iterations is reached or the early stopping condition is met;

and j to consider the hidden connections; zij = 1 for every eij ∈ EP , but not always zij = 0 for
eij ∈ EU . We denote the graph GP with latent variable z = {zij for eij ∈ (EP ∪ EU )} as GP(z).

A main challenge is that we cannot propagate information through the variablized graph GP(z) while
training f since every edge eij ∈ EU of GP(z) is probabilistically connected. Instead, PULL exploits
the expected graph structure Ḡ over the latent variables z. This enables us to train a link predictor f
accurately, considering the hidden connections in EU . Since the link predictor gives prior knowledge
for constructing the expected graph, improved f enhances the quality of Ḡ. Thus, PULL trains the
link predictor f by iteratively performing the two steps: a) constructing an expected graph structure Ḡ
given marginal linking probabilities of trained f , and b) updating the link predictor f using Ḡ, which
is used to improve the quality of the expected graph in the next iteration.

3.2 EXPECTATION OF GRAPH STRUCTURE

PULL propagates information through the expected graph structure Ḡ of GP(z) over the latent
variable p(z | X, EP , θ) while training a link predictor fθ with learnable parameter θ. Ḡ requires
computing the joint probabilities p(z | X, EP , θ) for all possible graph structures GP(z). This is
intractable since there are 2|EU | possible states of z in GP(z). Instead, PULL efficiently computes
the expected graph structure by carefully designing the joint probability p(z | X, EP , θ).

We convert the graph GP(z) with latent variables z into a line graph L(GP(z)) = (VL, EL) where
nodes in L(GP(z)) represent the edges of GP(z), and two nodes in L(GP(z)) are connected if
their corresponding edges in GP(z) are adjacent. Note that VL contains both EP and EU of GP(z)
since every node pair (i, j) in GP(z) is correlated with variable zij . We then consider the line
graph as a pairwise Markov network, which assumes that any two random variables in the network
are conditionally independent of each other given the rest of the variables if they are not directly
connected (Parsons, 2011). This simplifies the probabilistic modeling on graph-structured random
variables, and effectively marginalizes the joint distribution of nodes in L(GP(z)), which corresponds
to the distribution p(z | X, EP , θ) of edges in GP(z).

With the Markov property, the joint distribution of nodes in the line graph L(GP(z)) = (VL, EL) is
computed by the multiplication of all the node and edge potentials:

p(z | X, EP , θ) =
1

F

∏
ij∈VL

φij(zij | X, θ)
∏

(ij,jk)∈EL

ψij,jk(zij , zjk | X, θ) (1)

where φij and ψij,jk are node and edge potentials for each transformed node ij and edge (ij, jk),
respectively. The node potential φij represents the unnormalized marginal linking probability between
nodes i and j in the original graph GP(z). The edge potential ψij,jk denotes a degree of homophily
between the edges containing a common node in GP(z). F is the normalizing factor that ensures the
distribution adds up to one. For simplicity, we omit X in φij and ψij,jk in the rest of the paper.

We define the node potential φij of L(GP(z)) as follows to make nodes in GP(z) with similar hidden
representations have a higher likelihood of connection:

φij(zij = 1 | θ) =

{
1 if eij ∈ EP
fθ(i, j) = sigmoid(hi · hj) otherwise

4



Under review as a conference paper at ICLR 2024

where hi is the hidden representation of node i in GP(z) parameterized by θ, and φij(zij = 0 | θ) =
1− φij(zij = 1 | θ). We use a GCN that propagates information through Ḡ followed by a sigmoid
function as fθ(i, j). We set φij(zij = 1 | θ) = 1 for eij ∈ EP since the linking probability of an
observed edge of GP is 1. We define ψij,jk as a constant c to make the joint distribution focus on
the marginal linking probabilities. Then the normalizing constant F in Equation (1) becomes c|EL|
since

∑
z

∏
ij∈VL φij(zij | θ) = 1 (see Lemma 1 in Appendix C for proof). As a result, the joint

probability p(z | X, EP , θ) is expressed by the multiplication of node potentials of the line graph:

p(z | X, EP , θ) =
∏
ij∈VL

φij(zij | θ) =
∏

eij∈(EP∪EU )

φij(zij | θ) =
∏

eij∈EU

φij(zij | θ). (2)

Using the marginalized joint probability p(z | X, EP , θ) in Equation (2), we express the expected
graph structure Ḡ with regard to the latent variables z. Let A(z) be the adjacency matrix representing
the state z where the (i, j)-th component of A(z), which we denote as A(z)ij , is zij ∈ {1, 0}. Then
the corresponding weighted adjacency matrix AḠ of the expected graph Ḡ is computed as follows:

AḠ = Ez∼p(z|X,EP ,θ)[A(z)] =
∑
z

p(z | X, EP , θ)A(z) =
∑
z

∏
eij∈EU

φij(zij | θ)A(z). (3)

The (i, j)-th component AḠij of AḠ is simply expressed as follows:

AḠij = φij(zij = 1 | θ)
∑

z|zij=1

∏
ekl∈EU\{eij}

φkl(zkl | θ)A(z)ij = φij(zij = 1 | θ) (4)

since A(z)ij = 1 for zij = 1, and
∑

z|zij=1

∏
ekl∈EU\{eij} φkl(zkl | θ) = 1 (see Lemma 1 in

Appendix C for proof). As a result, we simply express the expected graph Ḡ by an weighted adjacency
matrix AḠ where AḠij = φij(zij = 1 | θ).

Using the expected graph Ḡ directly to train the link predictor f may lead to oversmoothing problem,
as Ḡ is a fully connected graph represented by AḠ . Moreover, the training time increases exponentially
with the number of nodes. To address these challenges, PULL utilizes an approximated one of Ḡ for
training f , which contains edges with high confidence. Specifically, we approximate Ḡ by keeping
the top-K edges with the largest weights, while removing the rest. We refer to this approximated
one as Ḡ′, and its corresponding adjacency matrix as AḠ

′
. From the perspective of PU learning,

selecting edges in Ḡ can be viewed as selecting relatively connected edges among the unlabeled
ones, while treating the rest as relatively unconnected edges. We gradually increase the number K of
selected edges in proportion to that of observed edges through the iterations, which is expressed by
K ← K + r|EP |, giving more trust in the expected graph structure Ḡ. This is because the quality of
Ḡ improves through the iterations (see Figure 2). We set r = 0.05 in our experiments.

3.3 ITERATIVE LEARNING

At each iteration, PULL computes the expected graph Ḡ with respect to p(z | X, EP , θ) given a
trained link predictor fθ with current parameter θ. Then PULL propagates information through Ḡ′
instead of the given edge-incomplete graph GP to train a new link predictor fθ with new parameter
θnew. This prevents PULL from overfitting to GP , thus improving the link prediction performance.

To optimize the new parameter θnew, we propose the binary cross entropy loss LE in Equation (5)
by treating the given edges in EP and the unconnected edges in EU as positive and unlabeled (PU)
examples, respectively. For the unconnected edges, we use the expected linking probability AḠ

′

ij ,
which are obtained from the current link predictor fθ, as pseudo labels for each eij :

LE = −
∑

eij∈EP

log ŷij −
∑

eij∈EU

(
AḠ

′

ij log ŷij + (1−AḠ
′

ij ) log(1− ŷij)
)

= −
∑

eij∈EP

log ŷij −
∑

eij∈ErP

(
AḠ

′

ij log ŷij + (1−AḠ
′

ij ) log(1− ŷij)
)
−
∑

eij∈ErU

log(1− ŷij)
(5)

where ŷij = fθnew(i, j). ErP is the set of relatively connected edges selected from EU when approxi-
mating the expected graph structure Ḡ to Ḡ′ in Section 3.2, and ErU = EU \ ErP .

However, in real-world graphs, there is a severe imbalance between the numbers of connected edges
and unconnected ones. We balance them by randomly sampling |EP ∪ ErP | unconnected edges among
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ErU for every epoch. Then Equation (5) is written as follows:

L′E = −
∑

eij∈EP

log ŷij −
∑

eij∈ErP

(
AḠ

′

ij log ŷij + (1−AḠ
′

ij ) log(1− ŷij)
)
−
∑

eij∈EsU

log(1− ŷij) (6)

where EsU is the set of randomly sampled edges among ErU with size |EsU | = |EP ∪ ErP |.
If the current parameter θ of the link predictor are inaccurate, the quality of the expected graph
structure deteriorates, leading to the next iteration’s parameter θnew becoming even more inaccurate.
Thus, we propose another loss term LC for correction, which measures the binary cross entropy for
all observed edges and randomly sampled unconnected edges from EU :

LC = −
∑

eij∈EP

log ŷij −
∑

ekl∈E′U

log(1− ŷij). (7)

where E ′U is the set of randomly sampled node pairs from EU with size |E ′U | = |EP |. LC effectively
prevents excessive self-reinforcement in the link predictor of PULL (see Figure 4).

As a result, PULL finds the best parameter θnew for each iteration by minimizing the sum of the two
loss terms in Equations (6), (7). We denote the final loss function as L(θnew; Ḡ′,X) = L′E + LC .
The new parameter θnew is used as the current parameter θ for the next iteration. The iterations stop if
the maximum number of iterations is reached or the early stopping condition (see Section 4.1) is met.

3.4 THEORETICAL ANALYSIS

We theoretically analyze the connection between PULL and the EM (Expectation-Maximization)
algorithm. EM is an iterative method used for estimating model parameter θ when there are missing or
unobserved data. It assigns latent variables z to the unobserved data, and maximizes the expectation
of the log likelihood log p(y, z | X, θ) in terms of z to optimize θ where y and X are target and input
variables, respectively.

In our problem, the target variables are represented as EP . Thus, the expectation of the log likelihood
given current parameter θ is written as follows:

Q(θnew | θ) = Ez∼p(z|X,EP ,θ)[log p(EP , z | X, θnew)] (8)
where θnew is the new parameter. The EM algorithm finds θnew that maximizes Q(θnew | θ), and
they are used as θ in the next iteration. The algorithm is widely used in situations involving latent
variables since it always improves the likelihood Q(θnew | θ) through the iterations (Murphy, 2012).

PULL iteratively optimizes the parameter θ of a link predictor f by minimizing both L′E and LC
where L′E is the approximation of LE in Equation (5). We compare Equations (5) and (8) to show
the similarity between the iterative minimization of LE in PULL and the iterative maximization of
Q(θnew | θ) in the EM algorithm.

PULL effectively expresses the distribution p(z | X, EP , θ) in Equation (8) by the multiplication
of node potentials in Equation (2). For the joint probability p(EP , z | X, θnew) in Equation (8), we
approximate it using a link predictor fθnew with new parameter θnew. We consider the link predictor
fθnew as a marginalization function that gives marginal linking probabilities for each node pair. We
also assume that the marginal distributions obtained by fθnew are mutually independent. Then the
joint probability p(EP , z | X, θnew) is approximated as follows:

p(EP , z | X, θnew) ≈
∏

eij∈EP

ŷij
∏

eij∈EU

(
zij ŷij + (1− zij)(1− ŷij)

)
(9)

where ŷij = fθnew(i, j), and zij ∈ {1, 0} represents the connectivity between nodes i and j.

Using Equations (2) and (9), we derive Theorem 1 that shows the similarity between the iterative
minimization of LE in PULL and the iterative maximization of Q(θnew | θ) in the EM algorithm.

Theorem 1. Given the assumption in Equation (9), the expected log likelihood Q(θnew | θ) of the
EM algorithm reduces to the negative of the loss function LE of PULL with the expected graph Ḡ:

Q(θnew | θ) ≈
∑

eij∈EP

log ŷij +
∑

eij∈EU

(
AḠij log ŷij + (1−AḠij) log(1− ŷij)

)
(10)

where ŷij is the estimated linking probability between nodes i and j by fθnew , and AḠ is the
corresponding adjacency matrix of Ḡ (see Appendix D for proof).
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4 EXPERIMENTS

We conduct diverse experiments on real-world datasets to provide answers to the following questions.

Q1 Link prediction performance (Section 4.2). How accurate is PULL compared to the
baselines for predicting links in edge-incomplete graphs?

Q2 Effect of iterative learning (Section 4.3) How does the accuracy change over iterations?
Q3 Effect of additional loss (Section 4.4). How does the additional loss term LC of PULL

contribute to the performance?
Q4 Scalability (Section 4.5). How does the runtime of PULL change as the graph size grows?

4.1 EXPERIMENTAL SETTINGS

Datasets. We use five real-world datasets from various domains which are summarized in Table 3
(Appendix B.2). PubMed and Cora-full are citation networks where nodes correspond to scientific
publications and edges denote citation between the papers. Each node has binary bag-of-words
features indicating the presence or absence of specific words from a predefined dictionary. Chameleon
and Crocodile are Wikipedia networks, with nodes representing web pages and edges representing
hyperlinks between them. Node features include keywords or informative nouns extracted from the
Wikipedia pages. Facebook are social networks where each node represents a user, and edges indicate
follower relationships. Node features represent user-specific information such as age and gender.

Baselines. We compare PULL with previous approaches for link prediction in graphs. GCN+CE,
GAT+CE, and SAGE+CE use GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2017), and
GraphSAGE (Hamilton et al., 2017) for computing linking probabilities, respectively. They utilize
cross entropy (CE) for training, while randomly sampling |EP | non-edges from EU for every epoch to
balance the ratio between edge and non-edge examples. GAE (Kipf & Welling, 2016b) utilizes an
autoencoder to compute the linking probabilities, forcing the predicted graph structure to be similar
to the given graph. VGAE (Kipf & Welling, 2016b) exploits a variational autoencoder to learn the
embedding of edges based on the given graph structure and node features. ARGA and ARGVA (Pan
et al., 2018) improve the performance of GAE and VGAE, respectively by introducing adversarial
training strategy. GNAE and VGNAE (Ahn & Kim, 2021) utilize L2-normalization to obtain better
node embeddings for isolated nodes. BaggingPU (Gan et al., 2022) classifies node pairs into observed
and unobserved, and approximates the linking probabilities using the ratio of observed links. All of
them including PULL are implemented in Python.

Evaluation and Settings. We evaluate the performance of PULL and the baselines in classifying
edges and non-edges correctly. We use AUROC score (AUC score) as the main evaluation metric, but
also report the AUPRC score for a thorough evaluation following Kipf & Welling (2017). The models
are trained using graphs that lack some edges, while preserving all node attributes. The validation
and test sets consist of the missing edges and an equal number of randomly sampled non-edges. We
vary the ratio rm of test missing edges in {0.1, 0.2}. The ratio of valid missing edges are set to
0.1 through the experiments. The validation set is used for early stopping with patience 200 while
the number of maximum epochs is set to 2,000. For PULL, we set the number of inner loops for
training a link predictor f as 200, and the number of iterations as 10. We use Adam optimizer with a
learning rate of 0.01, and set the numbers of layers and hidden dimensions as 2 and 16, respectively,
following Kipf & Welling (2017) for fair comparison between the methods. For ARGA and ARGVA
which utilize adversarial training strategy, we use the default settings described in the paper. We
conduct experiments ten times with different random seeds, and present the results in terms of both
the average and the standard deviation.

4.2 LINK PREDICTION PERFORMANCE (Q1)

We compare the link prediction performance of PULL with the baselines for various ratio rm
of missing edges in Table 1. Note that PULL achieves the highest AUROC and AUPRC scores
among the methods in most of the cases. Furthermore, PULL presents the lowest standard deviation
compared to the baselines. This highlights the significance of considering the uncertainty of the
provided graph structure during the training of the link predictor f to enhance prediction performance.
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Table 1: The link prediction accuracy of PULL and baselines in terms of AUROC and AUPRC.
Bold numbers denote the best performance, and underlined ones represent the second-best accuracy.
Note that PULL outperforms all the baselines in most of the cases.

Missing ratio rm = 0.1

Model PubMed Cora-full Chameleon Crocodile Facebook
AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

GCN+CE 96.4 ± 0.3 96.5 ± 0.3 95.6 ± 0.5 95.2 ± 0.8 96.5 ± 0.3 96.1 ± 0.2 95.9 ± 0.6 95.5 ± 1.6 96.6 ± 0.2 96.9 ± 0.1
GAT+CE 89.9 ± 0.5 89.4 ± 0.8 94.1 ± 0.5 93.4 ± 0.4 90.3 ± 0.1 90.2 ± 0.3 90.2 ± 0.2 92.4 ± 0.1 92.1 ± 0.5 92.1 ± 0.7
SAGE+CE 86.3 ± 0.7 88.1 ± 0.2 94.5 ± 0.5 94.9 ± 0.5 96.0 ± 0.7 94.9 ± 0.1 95.1 ± 0.7 95.8 ± 0.4 95.1 ± 0.3 94.8 ± 0.6
GAE 96.3 ± 0.2 96.5 ± 0.1 95.7 ± 0.7 95.2 ± 0.9 96.5 ± 0.3 96.3 ± 0.3 95.9 ± 0.7 96.2 ± 0.5 96.6 ± 0.2 97.0 ± 0.2
VGAE 94.4 ± 0.9 93.9 ± 1.0 93.0 ± 3.0 88.8 ± 6.4 96.1 ± 0.3 96.0 ± 0.2 94.9 ± 0.4 93.9 ± 0.1 93.9 ± 1.5 95.2 ± 0.4
ARGA 93.6 ± 0.3 93.5 ± 0.1 91.3 ± 0.7 91.1 ± 0.3 94.9 ± 0.7 94.5 ± 0.2 96.1 ± 0.3 95.7 ± 0.4 92.0 ± 0.8 92.2 ± 0.4
ARGVA 93.9 ± 1.1 94.2 ± 0.3 90.9 ± 1.6 89.5 ± 1.7 93.8 ± 0.9 93.9 ± 0.2 95.0 ± 0.2 94.4 ± 0.4 92.7 ± 2.4 89.4 ± 2.8
GNAE 96.0 ± 0.4 95.8 ± 0.6 95.8 ± 0.6 94.9 ± 0.8 97.8 ± 0.1 97.6 ± 0.1 97.7 ± 0.3 97.7 ± 0.2 96.0 ± 0.2 96.2 ± 0.1
VGNAE 94.3 ± 1.4 94.2 ± 0.6 93.2 ± 1.8 93.1 ± 0.5 96.2 ± 1.0 96.2 ± 1.0 94.6 ± 1.0 92.6 ± 0.4 93.8 ± 1.1 95.0 ± 0.3
Bagging-PU 94.6 ± 0.4 94.9 ± 0.4 92.6 ± 0.6 93.9 ± 0.5 97.4 ± 0.6 97.4 ± 0.7 97.4 ± 0.3 97.7 ± 0.3 97.0 ± 0.1 97.4 ± 0.1

PULL (ours) 96.6 ± 0.2 96.9 ± 0.1 96.1 ± 0.3 96.4 ± 0.4 97.9 ± 0.2 97.9 ± 0.2 98.3 ± 0.1 98.5 ± 0.1 97.4 ± 0.1 97.7 ± 0.1

Missing ratio rm = 0.2

Model PubMed Cora-full Chameleon Crocodile Facebook
AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

GCN+CE 96.0 ± 0.2 96.0 ± 0.3 95.1 ± 0.7 95.2 ± 0.5 96.4 ± 0.2 96.2 ± 0.1 96.1 ± 0.6 96.5 ± 0.7 96.5 ± 0.3 96.8 ± 0.2
GAT+CE 89.7 ± 0.2 89.5 ± 0.4 94.1 ± 0.3 93.6 ± 0.2 90.7 ± 0.1 90.7 ± 0.7 91.0 ± 0.1 92.1 ± 0.2 91.9 ± 0.5 92.0 ± 0.2
SAGE+CE 84.8 ± 0.5 87.3 ± 0.8 93.8 ± 0.7 94.7 ± 0.3 95.8 ± 0.5 95.0 ± 0.4 95.0 ± 0.7 95.7 ± 0.8 94.7 ± 0.4 94.8 ± 0.3
GAE 96.0 ± 0.1 95.9 ± 0.2 95.1 ± 0.5 95.1 ± 0.4 96.4 ± 0.2 96.3 ± 0.2 95.8 ± 0.6 96.2 ± 0.6 96.6 ± 0.2 96.9 ± 0.1
VGAE 93.8 ± 1.3 93.7 ± 1.1 91.5 ± 3.0 88.1 ± 5.3 95.9 ± 0.6 95.9 ± 0.2 94.7 ± 0.3 94.3 ± 0.9 94.3 ± 0.9 94.5 ± 0.4
ARGA 93.2 ± 0.7 93.1 ± 0.4 90.4 ± 1.0 90.2 ± 0.5 94.8 ± 0.4 94.7 ± 0.3 95.9 ± 0.5 95.5 ± 0.6 91.8 ± 0.7 91.8 ± 0.2
ARGVA 93.5 ± 1.2 93.4 ± 0.4 88.2 ± 3.8 84.3 ± 4.3 93.6 ± 0.5 93.8 ± 0.2 94.9 ± 0.3 94.1 ± 0.1 92.5 ± 2.4 92.7 ± 1.8
GNAE 95.7 ± 0.3 95.6 ± 0.3 95.5 ± 0.7 94.8 ± 1.0 97.7 ± 0.3 97.5 ± 0.1 97.6 ± 0.2 97.7 ± 0.2 95.8 ± 0.3 96.1 ± 0.1
VGNAE 93.3 ± 1.2 93.7 ± 1.1 92.5 ± 2.1 93.8 ± 0.5 95.6 ± 0.6 95.4 ± 0.8 94.6 ± 0.9 91.7 ± 1.4 93.7 ± 1.0 94.1 ± 1.2
Bagging-PU 94.0 ± 0.3 94.4 ± 0.4 92.3 ± 0.7 94.2 ± 0.6 97.4 ± 0.3 97.4 ± 0.3 97.5 ± 0.4 97.8 ± 0.4 96.9 ± 0.2 97.2 ± 0.1

PULL (ours) 96.3 ± 0.1 96.5 ± 0.1 95.4 ± 0.3 95.7 ± 0.4 97.9 ± 0.1 97.7 ± 0.2 98.3 ± 0.1 98.4 ± 0.1 97.4 ± 0.1 97.6 ± 0.1

converges slightly
increases

increases

Figure 2: AUC score of PULL through the iterations. The gray dashed lines denote the ground-truth
numbers of edges. The performance of PULL increases as the iteration proceeds. The accuracy
converges or slightly increases as the number K of sampled edges exceeds the ground-truth one.

It is also noteworthy that GCN+CE model, which propagates information through the edge-incomplete
graph using GCN, shows consistently lower performance than PULL. This shows that the propagation
of PULL with the expected graph structure effectively prevents f from overfitting to the given graph
structure, whereas the propagation of GCN+CE with the given graph leads to overfitting.

4.3 EFFECT OF ITERATIVE LEARNING (Q2)

For each iteration, PULL computes the expected graph Ḡ utilizing the trained link predictor f from
the previous iteration. Then PULL retrains f with Ḡ to prevent the link predictor from overfitting
to the given graph, thus enhancing the link prediction performance. We study how the prediction
accuracy of PULL evolves as the iteration proceeds in Figure 2. PULL increases the number K of
selected edges for the approximation of Ḡ as the iteration progresses. The gray dashed lines indicate
the points at which K becomes equal to the ground-truth number of edges for each dataset.

The AUC score of PULL in Figure 2 increases through the iterations, reaching its best performance
when the number K of selected edges closely matches the ground-truth one. This shows that PULL
enhances the quality of the expected graph as the iterations progress, and eventually makes accurate
predictions of the true graph structure. In PubMed, Cora-full, and Chameleon, the accuracy converges
or slightly decreases when the number K exceeds that of ground-truth edges. This is due to the
oversmoothing problem caused by propagating information through a graph with more edges than the
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drops
drops
rapidly

Figure 4: The effect of LC on the link prediction performance of PULL. PULL-LC represents
PULL without LC . PULL consistently shows superior performance than PULL-LC . In PubMed
and Crocodile, the accuracy of PULL-LC drops rapidly after exceeding the gray dashed lines which
indicate the true number of edges.

true graph. In Crocodile and Facebook, the prediction accuracy increases even with larger number
of edges than the ground-truth one. This observation indicates that both the ground-truth graph
structures of Crocodile and Facebook inherently contain missing links.

4.4 EFFECT OF ADDITIONAL LOSS (Q3)

We study the effect of the additional loss term LC of PULL on the link prediction performance. We
report the AUC scores through the iterations in Figure 4. PULL-LC represents PULL trained by
minimizing only LE . Note that PULL-LC consistently shows lower prediction accuracy than PULL.
In PubMed and Crocodile, the AUC scores of PULL-LC drop rapidly after the fifth iteration, where
the number K of selected edges exceeds the ground-truth one. This indicates that LC effectively
safeguards PULL against performance degradation when the expected graph structure contains more
number of edges than the actual one.

4.5 SCALABILITY (Q4)

Linearly
increases

Figure 3: Runtime of PULL on sam-
pled subgraphs. The time increases lin-
early with the size growth.

We investigate the running time of PULL on subgraphs
with different sizes to show its scalability to large graphs
in Figure 3. To generate the subgraphs, we randomly sam-
ple edges from the original graphs with various portions
rp ∈ {0.1, ..., 0.9}. Thus, each induced subgraph has
rp|E| edges where E is the set of edges of the original
graph. Figure 3 shows that the running time of PULL
exhibits a linear increase with the number of edges, show-
ing its scalability to large graphs. This is because PULL
effectively approximates the expected graph Ḡ with |V|2
weighted edges to a graph Ḡ′ with (1 + 0.05t)|EP | edges
where V and EP are sets of nodes and observed edges,
respectively, and t is the number of iterations.

5 CONCLUSION

We propose PULL, an accurate method for link prediction in edge-incomplete graphs. PULL
addresses the limitation of previous approaches, which is their heavy reliance on the observed graph,
by iteratively predicting the true graph structure. PULL proposes latent variables for the unconnected
edges in a graph, and propagate information through the expected graph structure. PULL then uses the
expected linking probabilities of unconnected edges as their pseudo labels for training a link predictor.
Extensive experiments on five real-worlds datasets show that PULL shows superior performance
than the baselines. A potential drawback of PULL is that changing labels and graph structure might
require additional training time for the link predictor to adapt to these modifications. Furthermore,
it is not easy for PULL to be directly applied to multi-relational graphs since PULL predict links
based on the similarity between nodes. Future work includes streamlining the iterative improvement
of the expected graph structure into a single iteration, and extending PULL to multi-relational graphs
that incorporate richer relationships, such as like or hate between nodes.
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A PROBLEM DEFINITION

We formally define the problem of link prediction in Problem 1.
Problem 1 (Link Prediction in Edge-incomplete Graphs). We have an edge-incomplete graph
GP = (V, EP), along with a feature matrix X ∈ R|V|×d where V and EP are the sets of nodes
and observed edges, respectively, and d is the number of features for each node. The remaining
unconnected node pairs are denoted as a set EU . The objective of link prediction in edge-incomplete
graphs is to train a link predictor f that accurately identifies the connected node pairs within EU .

B SYMBOLS AND DATASETS

B.1 SYMBOLS

Table 2: Symbols.

Symbol Description
GP = (V, EP) Edge incomplete graph with sets V of nodes and EP of observed edges

EU Set of unconnected node pairs (unconnected edges)
eij Edge between nodes i and j
L(G) Corresponding line graph of G

AG Corresponding adjacency matrix of G = (V, E) where AGij = 1 if eij ∈ E
X Feature matrix for every node in GP

fθ(·, ·) Link predictor parameterized by θ
ŷij fθ(i, j) representing the marginal linking probabilities between nodes i and j
L(·) Objective function that PULL aims to minimize

B.2 DATASETS

Table 3: Summary of datasets.

Datasets # of nodes # of edges # of features Description

PubMed1 19,717 88,648 500 Citation
Cora-full2 19,793 126,842 8,710 Citation
Chameleon3 2,277 36,101 2,325 Wikipedia
Crocodile3 11,631 191,506 500 Wikipedia
Facebook4 22,470 342,004 128 Social

Physics5 34,493 495,924 8,415 Citation
ogbn-arxiv6 169,343 1,166,243 128 Citation

1 https://github.com/kimiyoung/planetoid
2 https://www.cs.cit.tum.de/daml/g2g/
3 https://snap.stanford.edu/data/
wikipedia-article-networks.html

4 https://github.com/benedekrozemberczki/MUSAE
5 https://github.com/shchur/gnn-benchmark/raw/
master/data/npz/

6 https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
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C LEMMA

Lemma 1. We are given a graph GP and its corresponding line graph L(GP) = (VL, EL) where
VL and EL are sets of nodes and edges in L(GP), respectively. We are also given node potentials
φij(zij | θ) of nodes ij in graph L(GP). Then the following equation holds for

∑
zij
φij(zij | θ) = 1:∑

z

∏
ij∈VL

φij(zij | θ) = 1. (11)

Proof. Let N = |VL|, and E be the set of all observed edges and unconnected edges in GP . Then the
sum of

∏
ij∈VL φij(zij |θ) for all possible z is computed as follows:∑

z

∏
ij∈VL

φij(zij | θ) =
∑
z

∏
eij∈E

φij(zij | θ)

=
∑

z\{z11}

∏
eij∈E\{e11}

φij(zij | θ)
∑
z11

φ11(z11 | θ)

=
∑

z\{z11,z12}

∏
eij∈E\{e11,e12}

φij(zij | θ)
∑
z12

φ12(z12 | θ)

...

=
∑
zNN

φNN (zNN | θ) = 1

(12)

which ends the proof. Similarly, we prove that
∑

z|zij=1

∏
ekl∈EU\{eij} φkl(zkl | θ) = 1.

D PROOF OF THEOREM 1

Proof. Using Equations (2) and (9), the expected log likelihood Q(θnew | θ) is expressed as follows:

Q(θnew | θ) =
∑
z

p(z | X, EP , θ) log p(EP , z | X, θnew)

≈
∑
z

p(z | X, EP , θ)
( ∑
eij∈EP

log ŷij +
∑

eij∈EU

log
(
zij ŷij + (1− zij)(1− ŷij)

))
=

∑
eij∈EP

log ŷij +
∑
z

∏
ekl∈EU

φkl(zkl | θ)
∑

eij∈EU

log
(
zij ŷij + (1− zij)(1− ŷij)

)
.

(13)

The last term
∑

z

∏
ekl∈EU φkl(zkl | θ)

∑
eij∈EU log

(
zij ŷij + (1− zij)(1− ŷij)

)
in Equation (13)

is expressed as follows:∑
z

∏
ekl∈EU

φkl(zkl | θ)
∑

eij∈EU

log
(
zij ŷij + (1− zij)(1− ŷij)

)
=
∑
z

∏
ekl∈EU\{eij}

φkl(zkl | θ)
∑

eij∈EU

φij(zij | θ) log
(
zij ŷij + (1− zij)(1− ŷij)

)
=

∑
eij∈EU

(
φij(zij = 1 | θ) log ŷij + φij(zij = 0 | θ) log(1− ŷij)

)
=

∑
eij∈EU

(
AḠij log ŷij + (1−AḠij) log(1− ŷij)

)
(14)

where the second equality uses the fact that
∑

z\{zij}
∏
ekl∈EU\{eij} φkl(zkl | θ) = 1 (from

Lemma 1), and the third equality uses Equation (4).

Using the result of Equation (14), the expected log likelihood Q(θnew | θ) in Equation (13) reduces
to the negative of the loss function LE of PULL:

Q(θnew | θ) ≈
∑

eij∈EP

log ŷij +
∑

eij∈EU

(
AḠij log ŷij + (1−AḠij) log(1− ŷij)

)
(15)

which ends the proof. Note that Equation (15) uses Ḡ which is approximated to Ḡ′ in PULL.
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E DETAILED SETTINGS OF EXPERIMENTS

We provide detailed settings of hyperparameters for PULL and the baselines, which are not presented
in Section 4.1. All the experiments are conducted under a single GPU machine with GTX 1080 Ti.

GCN+CE. We use GCN code1 implemented with torch-geometric package. For each epoch, the
model randomly samples |EP | negative samples (unconnected node pairs), and minimizes the cross
entropy loss.

GAT+CE. We use GAT code1 implemented with torch-geometric package. For each epoch, GAT+CE
randomly samples |EP | negative samples, and minimizes the cross entropy loss. We set the multi-head
attention number as 8 with mean aggregation strategy, and the dropout ratio as 0.6 following the
original paper (Velickovic et al., 2017).

SAGE+CE. We use GraphSAGE code1 implemented with torch-geometric package. For each epoch,
the model randomly samples |EP | negative samples, and minimizes the cross entropy loss. We use
mean aggregation scheme following the original paper (Hamilton et al., 2017).

GAE & VGAE. We use GAE and VGAE codes2 implemented with torch-geometric package. We
use GCN-based encoder and decoder for both GAE and VGAE following the original paper (Kipf &
Welling, 2016b). The number of layers and units for decoders are set to 2 and 16, respectively.

ARGA & ARGVA. We use ARGA and ARGVA codes2 implemented with torch-geometric package.
We use the same hyperparameter settings for the adversarial training of them as presented in the
original paper (Pan et al., 2018).

GNAE & VGNAE. We use GNAE and VGNAE codes3 implemented by the authors. The scaling
constant s is set to 1.8 following the original paper (Ahn & Kim, 2021).

Bagging-PU. We reimplement Bagging-PU since there is no public implementation of authors. We
use GCN instead of SDNE (Wang et al., 2016b) for the node embedding model since SDNE is
an unsupervised representation-based method, which limits the performance. We use the mean
aggregation following the original paper (Gan et al., 2022), and set the bagging size as three.

PULL. We use torch-geometric (Fey & Lenssen, 2019) package to implement weighted propagation
of GCN. The number of inner epochs is set to 200, while that of outer iteration is set to 10. We
increase the number K of edges in the approximated version of expected graph Ḡ in proportion
to that of observed edges through the iterations: K ← K + r|EP | where r is the increasing ratio.
We set r = 0.05 in our experiments. The code and data for PULL are available at https:
//github.com/graphmaster2023/pull.

1https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/nn/models/basic_gnn.py
2https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/nn/models/autoencoder.py
3https://github.com/SeongJinAhn/VGNAE
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F FURTHER EXPERIMENTS

F.1 APPLYING PULL TO OTHER GCN-BASED METHODS

PULL can be applied to other GCN-based methods including GAE, VGAE, ARGA, and ARGVA that
use GCN-based propagation scheme. It is not easy for PULL to be directly applied to other baselines
such as GAT, GraphSAGE, GNAE and VGNAE. This is because they use different propagation
scheme instead of GCN, posing a challenge for PULL in propagating information through the
expected graph structure during training. For example, GAT propagates information only through the
observed edges using the attention scores as weights. GraphSAGE performs random walks to define
adjacent nodes. GNAE and VGNAE separate the feature mapping and propagation processes.

To demonstrate that PULL improves the performance of existing models, we conduct experiments by
applying our method to GAE, VGAE, ARGA, and ARGVA. We conduct experiments three times
with random seeds, while using the same experimental settings as in Section 4.1. Table 4 summarizes
the results. Note that PULL improves the performance of the baselines in most of the cases, showing
its applicability across various models.

Table 4: The performance improvement of baselines with the integration of PULL. The best
performance is indicated in bold. Note that PULL enhances the performance of baseline models in
most cases, demonstrating its effectiveness across a range of different models.

Missing ratio rm = 0.1

Model PubMed Cora-full Chameleon Crocodile Facebook
AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

GAE 96.0 ± 0.1 95.9 ± 0.2 95.1 ± 0.5 95.1 ± 0.4 96.4 ± 0.2 96.3 ± 0.2 95.8 ± 0.6 96.2 ± 0.6 96.6 ± 0.2 96.9 ± 0.1
GAE+PULL 96.5 ± 0.1 96.7 ± 0.2 95.4 ± 0.5 95.6 ± 0.5 97.8 ± 0.2 97.8 ± 0.2 97.5 ± 0.4 97.3 ± 0.4 97.2 ± 0.3 97.5 ± 0.2
VGAE 93.8 ± 1.3 93.7 ± 1.1 91.5 ± 3.0 88.1 ± 5.3 95.9 ± 0.6 95.9 ± 0.2 94.7 ± 0.3 94.3 ± 0.9 94.3 ± 0.9 94.5 ± 0.4
VGAE+PULL 95.2 ± 0.4 95.2 ± 0.3 93.8 ± 0.3 93.9 ± 0.4 97.0 ± 0.0 97.1 ± 0.1 96.3 ± 0.2 96.3 ± 0.2 96.4 ± 0.3 96.6 ± 0.3
ARGA 93.2 ± 0.7 93.1 ± 0.4 90.4 ± 1.0 90.2 ± 0.5 94.8 ± 0.4 94.7 ± 0.3 95.9 ± 0.5 95.5 ± 0.6 91.8 ± 0.7 91.8 ± 0.2
ARGA+PULL 93.9 ± 0.6 94.6 ± 0.5 94.4 ± 1.0 93.9 ± 1.2 96.3 ± 0.3 96.0 ± 0.3 95.2 ± 0.6 95.7 ± 0.7 93.5 ± 0.6 93.8 ± 0.6
ARGVA 93.5 ± 1.2 93.4 ± 0.4 88.2 ± 3.8 84.3 ± 4.3 93.6 ± 0.5 93.8 ± 0.2 94.9 ± 0.3 94.1 ± 0.1 92.5 ± 2.4 92.7 ± 1.8
ARGVA+PULL 94.8 ± 0.3 94.9 ± 0.4 93.7 ± 0.4 93.6 ± 0.5 95.3 ± 0.3 95.1 ± 0.0 95.4 ± 0.3 95.5 ± 0.3 94.8 ± 0.2 95.2 ± 0.1

Missing ratio rm = 0.2

Model PubMed Cora-full Chameleon Crocodile Facebook
AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

GAE 96.0 ± 0.1 95.9 ± 0.2 95.1 ± 0.5 95.1 ± 0.4 96.4 ± 0.2 96.3 ± 0.2 95.8 ± 0.6 96.2 ± 0.6 96.6 ± 0.2 96.9 ± 0.1
GAE+PULL 96.1 ± 0.1 96.2 ± 0.1 94.9 ± 0.4 95.2 ± 0.5 97.9 ± 0.2 97.9 ± 0.1 97.5 ± 0.4 97.4 ± 0.5 97.1 ± 0.2 97.3 ± 0.1
VGAE 93.8 ± 1.3 93.7 ± 1.1 91.5 ± 3.0 88.1 ± 5.3 95.9 ± 0.6 95.9 ± 0.2 94.7 ± 0.3 94.3 ± 0.9 94.3 ± 0.9 94.5 ± 0.4
VGAE+PULL 94.6 ± 0.5 94.5 ± 0.4 90.3 ± 5.2 90.4 ± 4.8 96.9 ± 0.2 97.0 ± 0.2 96.5 ± 0.1 96.5 ± 0.1 96.1 ± 0.3 96.3 ± 0.2
ARGA 93.2 ± 0.7 93.1 ± 0.4 90.4 ± 1.0 90.2 ± 0.5 94.8 ± 0.4 94.7 ± 0.3 95.9 ± 0.5 95.5 ± 0.6 91.8 ± 0.7 91.8 ± 0.2
ARGA+PULL 93.3 ± 0.9 93.6 ± 1.0 91.6 ± 3.3 91.6 ± 3.0 96.8 ± 0.2 96.8 ± 0.2 96.0 ± 0.5 95.9 ± 0.3 93.5 ± 0.1 93.7 ± 0.4
ARGVA 93.5 ± 1.2 93.4 ± 0.4 88.2 ± 3.8 84.3 ± 4.3 93.6 ± 0.5 93.8 ± 0.2 94.9 ± 0.3 94.1 ± 0.1 92.5 ± 2.4 92.7 ± 1.8
ARGVA+PULL 94.7 ± 0.1 94.8 ± 0.1 92.9 ± 1.2 92.7 ± 1.3 95.9 ± 0.2 95.9 ± 0.2 95.4 ± 0.4 95.9 ± 0.3 94.7 ± 0.3 95.1 ± 0.3

F.2 WEIGHTED RANDOM SAMPLING FOR CONSTRUCTING Ḡ′

PULL keeps the top-K edges with highest linking probability to approximate Ḡ. In this section, we
compare PULL with PULL-WS (PULL with Weighted Sampling) that constructs the approximated
version Ḡ′ by performing weighted random sampling of edges from Ḡ based on the linking probabili-
ties. As the weighted random sampling empowers PULL to mitigate the excessive self-reinforcement
in the link predictor, we additionally exclude the loss term LC , which serves the same purpose. We
conduct experiments three times with random seeds, while using the same experimental settings as in
Section 4.1.

Table 5 shows that PULL-WS presents marginal performance decrease compared to PULL. This
indicates that keeping the top-K edges with highest linking probability with an additional loss term
LC shows better link prediction performance than performing weighted random sampling of edges
without LC . However, PULL-WS is an efficient variant of PULL that uses only a single loss term
L′E instead of the proposed loss L = L′E + LC .
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Table 5: The link prediction accuracy of PULL and its variant PULL-WS. PULL-WS is PULL that
approximates Ḡ by performing weighted random sampling of edges based on the linking probabilities.
Bold numbers denote the highest performance.

Missing ratio rm = 0.1

Model PubMed Cora-full Chameleon Crocodile Facebook
AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

PULL-WS 96.5 ± 0.2 96.7 ± 0.1 96.0 ± 0.4 96.3 ± 0.4 97.4 ± 0.1 97.5 ± 0.2 97.6 ± 0.1 98.0 ± 0.1 97.2 ± 0.1 97.6 ± 0.1
PULL (ours) 96.6 ± 0.2 96.9 ± 0.1 96.1 ± 0.3 96.4 ± 0.4 97.9 ± 0.2 97.9 ± 0.2 98.3 ± 0.1 98.5 ± 0.1 97.4 ± 0.1 97.7 ± 0.1

Missing ratio rm = 0.2

Model PubMed Cora-full Chameleon Crocodile Facebook
AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

PULL-WS 96.2 ± 0.1 96.4 ± 0.2 95.2 ± 0.5 95.7 ± 0.5 97.8 ± 0.2 97.8 ± 0.2 97.7 ± 0.1 97.9 ± 0.1 97.1 ± 0.0 97.4 ± 0.1
PULL (ours) 96.3 ± 0.1 96.5 ± 0.1 95.4 ± 0.3 95.7 ± 0.4 97.9 ± 0.1 97.7 ± 0.2 98.3 ± 0.1 98.4 ± 0.1 97.4 ± 0.1 97.6 ± 0.1

F.3 PERFORMANCE OF PULL IN LARGER NETWORKS

We additionally perform link prediction on two larger graph datasets compared to those discussed in
Section 4: ogbn-arxiv (Hu et al., 2020) and Physics4. The ogbn-arxiv dataset is a citation network
consisting of 169,343 nodes and 1,166,243 edges, where each node represents an arXiv paper and
an edge indicates that one paper cites another one. Each node has 128-dimensional feature vector,
which is derived by averaging the embeddings of the words in its title and abstract. Physics is a
co-authorship graph based on the Microsoft Academic Graph from the KDD Cup 2016 challenge 3.
Physics contains 34,493 nodes and 495,924 edges where each node represents an author, and they are
connected if they co-authored a paper. For PULL, we set the maximum number of iterations as 20.
For the baselines, we set the maximum number of epochs as 4,000. This is because larger data size
requires a greater number of epochs to train the link predictor. For other settings, we used the same
experimental settings as in Section 4.1. We conduct experiments three times with random seeds.

Table 6 presents the link prediction performance of PULL and the baselines in ogbn-arxiv and
Physics. Note that PULL consistently shows superior performance than the baselines in terms of
both AUROC and AUPRC. This indicates that PULL is also effective in handling larger graphs.

Table 6: The link prediction accuracy of PULL and the baselines in large graph datasets. Bold
numbers denote the highest performance.

Missing ratio rm = 0.1

Model Physics ogbn-arxiv
AUROC AUPRC AUROC AUPRC

GCN+CE 96.2 ± 0.0 95.9 ± 0.1 80.4 ± 0.3 84.7 ± 0.6
GAT+CE 93.5 ± 0.1 92.1 ± 0.1 82.5 ± 0.2 79.9 ± 0.5
SAGE+CE 95.8 ± 0.3 95.3 ± 0.3 82.4 ± 1.8 80.5 ± 1.2
GAE 96.2 ± 0.1 95.8 ± 0.1 80.4 ± 0.3 85.1 ± 0.2
VGAE 93.3 ± 0.6 92.7 ± 0.6 80.1 ± 0.0 83.7 ± 0.0
ARGA 91.8 ± 0.4 90.7 ± 0.4 82.0 ± 0.0 85.5 ± 0.1
ARGVA 93.6 ± 0.9 93.0 ± 1.0 83.2 ± 0.5 86.0 ± 0.9
GNAE 94.1 ± 0.2 93.1 ± 0.2 82.8 ± 2.1 84.7 ± 1.0
VGNAE 93.2 ± 0.3 92.3 ± 0.3 77.3 ± 0.1 81.4 ± 0.1
Bagging-PU 96.0 ± 0.1 96.2 ± 0.1 80.5 ± 0.2 85.0 ± 0.1

PULL (ours) 97.1 ± 0.0 96.9 ± 0.1 85.9 ± 0.4 88.1 ± 0.3

4https://github.com/shchur/gnn-benchmark/raw/master/data/npz/
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