
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DEVOPS-GYM: BENCHMARKING AI AGENTS IN
SOFTWARE DEVOPS CYCLE

Anonymous authors
Paper under double-blind review

ABSTRACT

Even though demonstrating extraordinary capabilities in code generation and soft-
ware issue resolving, AI agents’ capabilities in the full software DevOps cycle are
still unknown. Different from pure code generation, handling the DevOps cycle
in real-world software, including developing, deploying, and managing, requires
analyzing large-scale projects, understanding dynamic program behaviors, lever-
aging domain-specific tools, and making sequential decisions. However, existing
benchmarks focus on isolated problems and lack environments and tool interfaces
for DevOps. We introduce DEVOPS-GYM, the first end-to-end benchmark for
evaluating AI agents across core DevOps workflows: build and configuration,
monitoring, issue resolving, and test generation. DEVOPS-GYM includes 700+
real-world tasks collected from 30+ projects in Java and Go. We develop a semi-
automated data collection mechanism with rigorous and non-trivial expert efforts
in ensuring the task coverage and quality. Our evaluation of state-of-the-art mod-
els and agents reveals fundamental limitations: they struggle with issue resolving
and test generation in Java and Go, and remain unable to handle new tasks such
as monitoring and build and configuration. These results highlight the need for
essential research in automating the full DevOps cycle with AI agents.

1 INTRODUCTION

Software DevOps refers to the end-to-end process of developing, delivering, deploying, and man-
aging software projects. It is a critical yet labor-intensive process. With recent advances in LLMs
and AI agents, the development part can be largely automated (e.g., LLMs can automatically gen-
erate code, resolve GitHub issues) (Xia et al., 2024; Zhang et al., 2024c; Yang et al., 2024a; Wang
et al., 2025a; Li et al., 2025; Tang et al., 2025). However, the subsequent operational stages, such as
system building, deployment, and monitoring, still demand substantial manual intervention.

Automating these complex operational tasks presents a distinct set of challenges that transcend tra-
ditional code generation. It requires the ability to analyze system runtime behavior, interact with
domain-specific tools, and execute multi-step plans. For instance, diagnosing a memory leak ne-
cessitates a sequence of actions: repeatedly invoking monitoring tools (e.g., using ps to inspect
process state, iostat to identify I/O bottlenecks) to track memory resource usage and interpret-
ing the output to identify signals of potential anomalies. Such tasks, which depend on complex
tool use, dynamic interaction with a live environment, and coherent decision-making, make them a
compelling application domain for autonomous AI agents.

While numerous benchmarks exist for evaluating LLMs and AI agents, they predominantly focus
on software development tasks such as code generation (e.g., HumanEval (Chen et al., 2021)), issue
resolving (e.g., SWE-bench (Jimenez et al., 2024)), and test generation (e.g., SWT-bench (Mündler
et al., 2024)). In contrast, work on the operational side remains limited and is often confined to sim-
ulated environments (Jha et al., 2025) or narrow infrastructure settings (Chen et al., 2025). Conse-
quently, there exists a significant gap for a benchmark capable of evaluating the end-to-end DevOps
capabilities of agents in realistic software projects. Furthermore, few benchmarks are explicitly de-
signed for agentic systems, which must execute multi-step workflows that integrate code reasoning
and generation with tool usage. Existing benchmarks also lack dynamic execution environments
with tool-calling interfaces that enable realistic agent interaction and evaluation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address these gaps, we introduce DEVOPS-GYM, the first benchmark designed to evaluate AI
agents across core DevOps workflows using real-world repositories and various DevOps tools.
Unlike existing benchmarks that focus on single tasks in isolation with synthetic environment,
DEVOPS-GYM provides: (1) Coverage of four essential DevOps stages that form the minimum
viable pipeline: build and configuration for project deployment, monitoring for runtime problem de-
tection, issue resolving for problem fixing, and test generation for patch validation; (2) Real-world
tasks sourced from GitHub issues or synthesized tasks that mimic the complex real-world issue
patterns; (3) Agentic workflows that require extensive tool use and multi-step planning; (4) A tool-
augmented dynamic evaluation environment with standardized tool-calling interfaces and detailed
metrics for different types of tasks.

We make several design choices and efforts to address the key technical challenges of constructing
DEVOPS-GYM. First, we manually analyze a large set of real-world issues, particularly for moni-
toring, build and configuration stage, to categorize representative issue types and summarize failure
patterns for crafting synthetic tasks. Second, we apply a rigorous filtering process to prevent data
contamination. Third, we invest extensive expert engineering effort to reproduce tasks to ensure
their correctness, which required reconstructing environments, dependencies, configurations, and
specific inputs. This was a multi-round, time-consuming process. Even with coding agent assis-
tance, it often exceeds 10 hours of expert work per task, especially with incomplete reports. Finally,
we carefully designed our evaluation metrics to enable rigorous and scalable evaluation, and pro-
vided standardized tool interfaces in the terminal-bench format (TerminalBench, 2025). With these
extensive efforts, we craft 708 tasks collected from 30+ real-world projects in Java and Go.

Our evaluation of three widely used coding agents across 5 LLMs and 4 agentic frameworks shows
that even state-of-the-art systems fall short. The top-performing agent achieves success rates of just
51.85% on build and configuration, 20.56% on monitoring, 23.87% on issue resolving, and 13.87%
on test generation. To the best of our knowledge, DEVOPS-GYM is the first end-to-end DevOps
benchmark featuring agent-specific tasks alongside a comprehensive evaluation platform, including
environments, tool interfaces, and metrics. We will open-source DEVOPS-GYM, together with its
evaluation framework and baseline implementations, and will continue to improve it to facilitate
future research on AI agents for broader software engineering. The key findings are shown below.

• Agents frequently fail at high-level planning, struggling to formulate correct sequences of actions
for multi-step building and monitoring workflows.

• Agents consistently fail to use DevOps-specific tools correctly, particularly for building and moni-
toring. We hypothesize that these tools are out-of-distribution (OOD) for the base LLMs, which are
seldom trained on relevant tool-use trajectories.

• Agents exhibit a limited ability to parse and reason about dynamic information, such as program
states, runtime logs, and system status. They also struggle with long-context reasoning required for
complex tasks such as monitoring.

• For issue resolving and test generation, although SOTA agents report strong performance on ex-
isting Python-based benchmarks, their performance drops significantly on our Java and Go tasks.
We believe this may be due in part to data contamination. It also indicates that LLMs are not
well-equipped to handle non-script languages (e.g., Java and Go), which involve compilation, more
complex dependencies, and syntax.

2 RELATED WORK

Coding benchmarks. Function-level coding benchmarks (Chen et al., 2021; Majd et al., 2019;
Jain et al., 2024; Liu et al., 2023) are widely used as standard benchmarks for evaluating LLMs’
code generation capabilities. Some recent efforts move toward repository-level evaluation, which
is more complex and relevant to real-world applications (Zhang et al., 2023; Zhuo et al., 2025;
Ding et al., 2023; Li et al., 2024b; Liang et al., 2024; Han et al., 2025; Le Hai et al., 2024; Zhuo
et al., 2024; Zhang et al., 2024a). For example, RepoCod (Liang et al., 2025) assesses whether
LLMs can handle multi-file code generation rather than isolated functions. Another line of work
extends general code generation to specific real-world tasks. For example, SWE-bench (Jimenez
et al., 2024) targets issue resolving in real-world repositories for Python, and its follow-ups extend
the effort to multilingual (Jimenez et al., 2024), multimodal (Zan et al., 2025; Ni et al., 2025),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Issue Resolving

patch

- buggy lines

+ fix lines
issue

project

Input Output

sed, grep, awk, …

Tools

Monitoring
Input Output

top, iostat, pprof, …

Tools

report

anormalies

evidence

buggy
env

Test Generation

regression

assertion

coverage
issue

project

Input Output

JUnit, Maven, Go test…

Tools

Build and Configuration
Input Output

maven, npm, gradle, …

Tools

build succ.

config

artifacts
build
spec

project

Figure 1: Overview of DEVOPS-GYM. It includes four core stages of DevOps: Build & Configura-
tion, Monitoring, Issue Resolving, and Test Generation. Each stage requires an AI agent to leverage
a distinct set of command-line tools to solve realistic tasks.

live settings (Jain et al., 2024), and security vulnerabilities (Yang et al., 2024b). Beyond issue
resolving, task-specific benchmarks also include infrastructure (Kon et al., 2024; Munshi et al., 2025;
Srivatsa et al., 2024), backend (Vero et al., 2025), or website and software development (Xu et al.,
2025; Li et al., 2024a), database (Li et al., 2023), ML (Nathani et al., 2025) etc. Although offering
more realistic evaluations, these benchmarks only cover the development side of DevOps instead
of a holistic cycle. Furthermore, their main target is to evaluate model reasoning and generation
capabilities rather than agentic systems with sequential decision-making and tool calls.

DevOps-related benchmarks. Beyond code development, there is an increasing effort in bench-
marking other steps along the DevOps cycle, including test case generation (Zhang et al.,
2024b; Wang et al., 2025b; 2024), build and configuration, and monitoring. Specifically, SWT-
bench (Mündler et al., 2024) evaluates test case generation in Python, with metrics that measure
functionality and code coverage. For build and configuration, existing benchmarks (Eliseeva et al.,
2025) mainly focus on initial project configuration, evaluated by static and compilation checks for
the repository. For monitoring, IT-bench (Jha et al., 2025) constructs tasks on monitoring and re-
solving issues during project operations. AIOpsLab (Chen et al., 2025) focuses on microservice
environments and cloud-based incident detection, localization, and root cause analysis (e.g., net-
work issues, authentication errors). Their evaluation metrics focus on the agent efficiency and costs
such as the steps and time of actions, as well as the tokens consumed.

Limitations. There is no benchmark that covers the end-to-end DevOps cycle on real-world repos-
itories. Most existing efforts focus on individual tasks (coding, testing, monitoring). Moreover,
few benchmarks are explicitly designed for agentic systems, which have multi-step workflows that
combine code reasoning and generation with tool callings. They also lack dynamic execution en-
vironments with tool calling interfaces for agent interaction and evaluation. To fill the gap, we
construct DEVOPS-GYM, enabling the evaluation of AI agents on end-to-end real-world DevOps
tasks with proper metrics, tool call support, and execution environments.

3 CONSTRUCTION OF DEVOPS-GYM

3.1 OVERVIEW

Design principle. We construct DEVOPS-GYM based on the following principles. ❶ Realism. We
aimed to include real-world tasks that DevOps engineers encounter in practice. To achieve this, we
collect real-world GitHub projects and construct tasks based on actual GitHub issues or synthetic
failures. The synthetic ones are injected by experts, which replicate common production problems,
e.g., dependency conflicts from version incompatibilities. ❷ Agentic evaluation. We design our
tasks to be sequential decision-making processes that involve various command-line tools. Solving
these tasks requires domain-specific agentic systems capable of analyzing large projects, selecting
proper tools and interpreting their returns, and conducting multi-step planning. For instance, to diag-
nose performance issues in a large project, such as abnormal memory or I/O utilization, agents must

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

plan a multi-step procedure and invoke appropriate tools (e.g., iostat, top). ❸ Complete DevOps
cycle coverage. We distill four critical stages: Build and configuration: configuring and migrating
build systems, compiling the project, and fixing build failures; Monitoring: dynamically detecting
runtime performance and resource issues during project executions; Issue resolving: debugging and
patching bugs in projects; Test generation: creating regression tests that verify bug fixes.

Benchmark overview. We select Java and Go as our target program languages because they repre-
sent large-scale enterprise SE projects that have standardized, non-trivial build systems, as well as
robust monitoring infrastructure and tooling. To ensure diverse coverage of realistic DevOps scenar-
ios—particularly in monitoring and build, which are not covered in existing benchmarks—we man-
ually analyze over 1, 000 GitHub issues from repositories cited in DevOps technical reports (DORA,
2024) and categorize the tasks for each stage. For build and configuration, we established two task
categories: (i) repair tasks that rebuild the project to fix common failures in the general building pro-
cess; and (ii) implementation tasks that build from scratch to incorporate new functionalities. For
monitoring, we cover six anomalies: performance anomalies (I/O bottlenecks, query inefficiencies)
and resource anomalies (memory leaks, disk exhaustion, CPU saturation, handle depletion). We
follow Multi-SWE-bench (Zan et al., 2025) and SWT-bench (Mündler et al., 2024) to collect tasks
for issue resolving and test generation. Fig. 1 shows the pipeline of DEVOPS-GYM, comprising
54 build and configuration tasks (20 synthetic tasks and 34 real-world tasks), 34 monitoring tasks
(29 synthetic tasks and 5 real-world tasks), 310 issue resolving tasks, and 310 test generation tasks,
across 30+ repositories. The process begins with building the project, where the agent must invoke
build-related tools to either migrate an existing build or rebuild the project to incorporate new func-
tionalities while resolving issues. After the build stage, the agent monitors the system’s status and
identifies runtime anomalies. When issues are detected, the agent is then responsible for resolving
them and generating tests. Detailed benchmark statistics are in Appendix Table 4.

Technical challenges and solutions. Besides task selections and collection, which already require
extensive expert efforts, constructing DEVOPS-GYM also encounters three key technical challenges.
❶ Data contamination prevention. Large-scale pre-training of LLMs poses significant contamina-
tion risks to new benchmarks. To address this, we applied a systematic prefix-completion analy-
sis (Carlini et al., 2021; Staab et al., 2023) to identify and filter repositories potentially present in
training corpora. Additionally, we sanitized the repositories by removing git metadata to prevent
agents from accessing solutions through git version history (Kahn, 2025). Details are provided in
Appendix B. ❷ Task reproduction. Reproducing real-world failures, especially for monitoring and
building, imposes substantial challenges. We need to fully reconstruct the corresponding environ-
ments with correct run-time dependencies and configurations, as well as find the necessary inputs to
trigger the issues. To make it even worse, the natural language issue descriptions typically do not
provide the full information necessary for issue reproduction. Resolving this challenge also requires
essential expert efforts to conduct extensive trial and error, i.e., it takes one expert SE researcher
more than 10 hours to fully reproduce and validate one monitoring or building issue. Although
coding agents (e.g., cursor and Claude code) can facilitate the process with hints, they still cannot
fully finish the reproduction due to a lack of capabilities, as well as seeking shortcuts (we observe
that instead of reproducing current errors, coding agents tend to inject other easier-to-trigger errors.
Similar behavior has also been observed in other SE and security-related benchmarks (Wang et al.,
2025c; Yang et al., 2024b)). ❸ Enable rigorous evaluation. After reproducing the issues, designing
and implementing rigorous and scalable evaluation is also challenging, especially for building tasks.
As detailed in Section 3.2, building tasks necessitate both dynamic execution validation and static
configuration analysis. Besides, to provide a standardized interface for agent execution, we provide
necessary tool sets (Figure 1) for each stage and convert our benchmark format into the terminal
bench format (TerminalBench, 2025). In summary, the end-to-end task, selection, construction, and
evaluation pipeline requires extensive system design, engineering, and manual efforts that otherwise
cannot be accomplished by SOTA automated agents.

3.2 TASK CONSTRUCTION FOR BUILD AND CONFIGURATION

Overall task design. Build and configuration is a critical step during the DevOps cycle, encom-
passing code compilation, dependency management, testing, and artifact creation within controlled
environments. It is also a major step that various errors can happen, including dependency conflicts,
version incompatibilities, and configuration errors, frequently disrupting development workflows.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To concretely understand agents’ capability to perform complex build and configuration tasks, we
evaluate the following two categories of build challenges that reflect routine DevOps scenarios. ❶
Repair tasks that address five prevalent project building error types: dependency version conflicts,
build misconfiguration, compilation errors, tool-chain mismatches, and dependency resource un-
availability. Agents must diagnose build failures by analyzing error logs, identifying root causes
among these error categories, applying targeted fixes, and rebuilding the project to complete a cor-
rect build. ❷ Implementation tasks that incorporate new functionalities, which include the following
scenarios: build system migration between frameworks (e.g., Maven to Gradle for Java), target re-
lease (i.e., release for specific use cases), plugin integration, and dependency version upgrades. Both
categories require agents to understand build system semantics and configuration best practices es-
sential to maintain reliable deployment pipelines.

For repair tasks, we follow the workflow of the BugSwarm framework for task collection (Tomassi
et al., 2019), i.e., mining recent build failure-success pairs from CI logs and filtering for
configuration-level fixes. For implementation tasks, three domain experts synthesize scenarios based
on production environment patterns, ensuring coverage of frequent real-world build challenges.

Key technical challenge and solutions. Constructing build and configuration tasks present three
key challenges that distinguish this domain from traditional code benchmarks. ❶ Issue reproduction:
Real GitHub issues provide incomplete environment specifications, requiring careful reconstruction
of tool-chain dependencies, compilation configurations, and version control to reproduce the issues.
This challenging process requires extensive expert efforts; approximately 40% of initially selected
issues required multiple iterations to achieve consistent reproducibility. ❷ Synthetic task design:
Creating a comprehensive synthesis build task presents significant challenges. Implementing re-
alistic build processes requires a deep understanding of repository configurations and compilation
mechanisms, along with extensive DevOps experimentation to construct meaningful and challeng-
ing real-world scenarios. ❸ Enable accurate evaluation. Different from other steps, build requires
a complex evaluation pipeline with multi-dimensional evaluation metrics. It requires designing dif-
ferent metrics for different task scenarios (detailed below). For example, for migration tasks, we
need to design unified metrics that involve multiple configuration tools. Constructing an effective
evaluation process for each selected task scenario also requires extensive engineering and manual
effort for each individual task, e.g., designing unified metrics for multiple configurations requires
manually analyzing the joint features with domain-specific tools.

Task details. The inputs, expected outputs, ground truth, and evaluation metrics are as follows:

• Input: (1) Repository with failing build configuration (repair tasks) or specification for new build
setup (implementation tasks). (2) Terminal access with build tools (maven, gradle, npm), text
utilities, and package managers.

• Expected Output: For repair tasks: patch (in the diff format) fixing build failure; for implementa-
tion tasks: complete configuration files meeting specifications.

• Ground Truth: For repair tasks: developer fixes from real repositories; For implementation tasks:
expert-created configurations validated for correctness (implementation tasks).

• Evaluation metrics: At a high level, judging whether a build process is successful contains two
sub-metrics: 1) the build process is executed without any errors; 2) the built artifacts correctly
realize their required functionalities. For repair tasks, as the build command is standardized, as
long as the agent executes the project’s original build commands without errors, it can be consid-
ered as a successful build. For implementation tasks, different scenarios have different metrics
for ensuring functionalities: migration between frameworks – whether the migrated implemen-
tation maintains functional equivalence with the original framework while successfully adapting
to the target framework’s conventions and capabilities; target release – whether the released arti-
facts satisfied the required features; plugin integration – whether the plugin functions correctly;
dependency version upgrades – successfully build the upgraded version; config initialization –
successfully generate the configuration with all the functionalities we want. All these metrics are
concretized as whether the built artifacts pass their dedicated testing cases.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 TASK CONSTRUCTION FOR MONITORING

Overall task design. Given a running project application inside a controlled environment (e.g., a
container), monitoring requires agents to (a) capture the runtime execution and underlying system
states by using external command-line tools, and (b) detect potential performance and resource uti-
lization anomalies during execution. Such a setting mirrors the role of real-world DevOps engineers,
enabling agents to demonstrate their ability to diagnose realistic and complex production issues.

Importantly, our tasks focus on performance and resource anomalies rather than system failures or
crashes. This is because immediate crashes can be simply identified through console outputs or
error logs, limiting the opportunity to evaluate an agent’s diagnostic capability. In contrast, perfor-
mance and resource anomalies manifest as subtle system degradations that require careful analysis
to uncover. Take memory leakage as an example. In a file-system server, developers introduce an
in-memory cache for large file downloads (e.g., ≥2 MB) but neglect to release it, which causes
memory leakage when requesting various large files. While this leak eventually exhausts memory,
the early symptoms appear as abnormal memory leak patterns relative to normal behavior (i.e., small
file requests). Detecting such anomalies requires agents to capture system behaviors across requests
and analyze subtle variances between normal and buggy cases.

Specifically, we consider two types of performance anomalies. ❶ Resource usage problems: Mem-
ory leaks, disk leaks, system handle (e.g., file and socket) exhaustion, and CPU spikes that gradually
degrade system reliability. These issues represent the most common resource-related failures in
production systems. Moreover, these problems exhibit gradual degradation patterns; for example,
memory leaks may take hours or days to exhaust resources, and CPU spikes often manifest inter-
mittently under specific load patterns. ❷ Performance degradations: We select I/O bottlenecks and
inefficient SQL query handling that degrade user experience without causing immediate failures.
For instance, a project mishandles I/O requests by opening files with O SYNC|O DIRECT without
using proper OS-level caching or file-backend memory mappings. This would trigger extremely
slow I/O paths when the request I/O payload size is large. Such degradations manifest as increased
latency or reduced throughput, e.g., a 10× slower request may still complete successfully. We also
include cases where the system operates without any anomalies, requiring agents to correctly iden-
tify the absence of issues and avoid false positive diagnoses when monitoring healthy systems. Our
tasks mix with real-world GitHub issues and expert-injected synthetic anomalies. In total, we collect
30 monitoring tasks, with the distribution of anomaly types shown in Fig. 3.

Task-specific challenges and solutions. Constructing monitoring tasks share similar challenges
with build on ❶ Issue reproduction and ❷ Synthetic task design. Creating realistic expert-injected
anomalies demands deep repository understanding to instrument source code without disrupting
normal application behavior. We design anomalies that manifest within 5-15 minutes through stan-
dard monitoring tools while requiring sophisticated analytical reasoning rather than trivial detection.
❸ Observability validation: We manually validate that each task ensures anomalies while remaining
detectable through monitoring toolsets (e.g, top, free, ps) without access to the source code.

Task details. The inputs, expected outputs, ground truth, and evaluation metrics are as follows:

• Input: (i) Containerized environment running an application with bugs; (ii) Terminal access (e.g.,
top, free, ps, netstat), with no access to source code, configuration files, or trigger scripts.

• Expected Output: Structured diagnostic report: specific issue (e.g., memory leak), and support-
ing evidence with quantitative metrics (e.g., memory growth rate, affected process ID).

• Ground Truth: For real GitHub issues, we select only closed issues where the problem has been
identified and resolved, and then the DevOps experts classify the issue based on the description
and resolution. For expert-injected anomalies, ground truth is predetermined by the injection
methodology as we know the exact problem type and manifestation because we control the failure
injection. To ensure reproducibility and observability, three senior DevOps engineers indepen-
dently validate that each problem can be reliably detected using the provided monitoring tools.

• Evaluation metrics: The primary metric is binary accuracy, requiring agents to correctly identify
the specific type of anomaly. In the prompt, we define the five anomaly types and explicitly
instruct the model to write its diagnosis into a specified file in a single line without any explanation.
Evaluation is performed using automated pytest scripts that check: (1) whether the diagnosis file
exists, and (2) whether the diagnosed anomaly type matches the ground truth.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.4 TASK CONSTRUCTION FOR ISSUE RESOLVING AND TEST GENERATION

Overall task design. These two stages represent well-established evaluation domains with exist-
ing benchmarks, such as SWE-bench (Jimenez et al., 2024) for issue resolving, as well as SWT-
bench (Mündler et al., 2024) for test generation. Issue resolving requires agents to translate bug
descriptions into code fixes, while test generation creates regression tests to prevent issue recur-
rence and ensure functionality correctness. Both tasks are essential components of the DevOps
pipeline: fixes address problems identified through monitoring or user reports, and tests validate
solutions before deployment. Following established methodologies, issue resolving agents receive
buggy repositories with natural language descriptions and must generate patches that pass fail-to-
pass test transitions (Jimenez et al., 2024). Test generation agents create tests based solely on bug
descriptions to ensure comprehensive validation coverage.

Key differences from existing benchmarks. ❶ DEVOPS-GYM implements comprehensive decon-
tamination procedures (Section 3.1) to mitigate potential training data contamination, ensuring more
reliable evaluation than existing benchmarks. ❷ Cross-language performance gaps. As discussed
in Table 1, LLM agents perform significantly worse on non-Python languages. This degradation
likely stems from Python’s dominance in training data.

Data collection and evaluation. We adapt the Multi-SWE-bench (Zan et al., 2025) collection
pipeline for issue resolving tasks, targeting well-maintained Java and Go projects with compre-
hensive test suites. The pipeline filters GitHub pull requests that resolve issues with test-validated
fixes, ensuring reproducible fail-to-pass transitions. Test generation tasks derive from the same issue
set, creating corresponding validation scenarios. Regarding metrics, issue resolving success requires
patches that pass all given test cases, while test generation success demands that generated tests fail
on buggy code but pass the patched code. Task details can be found in Appendix C.

4 EVALUATION

In this section, we conduct a comprehensive evaluation on DEVOPS-GYM using a suite of state-of-
the-art agentic frameworks and reasoning models to identify their current strengths and weaknesses
in automating the end-to-end DevOps lifecycle.

4.1 EXPERIMENTAL SETUP

Agents and Models. We evaluate three best-performing agentic frameworks: OpenHands (Wang
et al., 2025a), mini-SWE-agent (Yang et al., 2024a), and Claude Code (Anthropic, 2025b). To
comprehensively assess the impact of underlying backbone LLMs, we pair these frameworks with
different LLMs. Specifically, we evaluated the OpenHands framework with five leading models:
Claude-4-sonnet (Anthropic, 2025a), o4-mini (OpenAI, 2025), Gemini-2.5-Pro (Google, 2025),
Deepseek-v3.1, and Qwen3-Coder-30B (Qwen-Team, 2025). This setup allows for a direct com-
parison of models within a single agent architecture. For the comparison of different agentic frame-
works powered by the same underlying model, both mini-swe-agent and Claude Code are evaluated
with Claude-4-sonnet as their backbone LLM. Our initial evaluation focuses on the most advanced
agents and models to establish an upper bound on DEVOPS-GYM. We will continue to extend it to
weaker models and agents to highlight the challenges in DevOps cycle automation.

Generation and Environment. We use vLLM (Kwon et al., 2023) to host Qwen3-Coder-30B on
our local server, and all other models are accessed via their official APIs. For the hyper-parameters of
model settings, we employ a temperature of 0.7 and top-p sampling of 0.95, with a maximum context
length of 256K tokens. Additionally, we implement a 60-second timeout with up to 3 retry attempts
to ensure robust inference. All experiments are executed within the isolated and reproducible Docker
container environments provided by DEVOPS-GYM.

4.2 RESULTS

Cross-tool builds and configurations present new challenges to LLMs. As a new yet comple-
mentary evaluation to existing benchmarks, DEVOPS-GYM provides the unique chance to evaluate
agents’ ability to reason about heterogeneous build ecosystems and switch across tools (e.g., Maven

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Evaluation results on DEVOPS-GYM for different agent frameworks and different LLMs.
The best result for each stage are marked as bold.

Agent Model Build & Config Monitoring Issue Resolving Test Generation

OpenHands

Qwen3-Coder-30B 20.37% 5.89% 13.22% 6.13%
o4-mini 24.07% 8.82% 10.32% 8.70%
DeepSeek-V3.1 11.11% 0.00% 14.20% 3.22%
Gemini-2.5-Pro 16.66% 11.76% 10.96% 2.90%
Claude-4-Sonnet 42.59% 5.89% 23.87% 11.61%

mini-SWE-Agent Claude-4-Sonnet 29.62% 2.91% 5.16% 0.98%

Aider Claude-4-Sonnet 5.55% 0.00% 9.67% 2.25%

Claude Code Claude-4-Sonnet 51.85% 20.56% 23.87% 13.87%

to Gradle) while repairing failures and implementing new functionalities, which remains largely
under-evaluated. As shown in Table 1, model performance varies significantly during the build
and configuration stage. Claude-4-Sonnet outperforms other state-of-the-art models by more than
20%, demonstrating its superior capabilities in large project configuration management and debug-
ging. Regarding agent performance, even when using the same powerful Claude-4-Sonnet model,
Claude-Code performs substantially better than the simpler mini-SWE-Agent. This performance
gap indicates that complex build and configuration tasks require agents with sophisticated tool-call
capabilities and well-designed architectures to manage challenging, multi-step processes effectively.
Furthermore, all of the models perform poorly in the build implementation tasks, especially in mi-
gration tasks and target release tasks (see Appendix Table 5). From our observations, agents struggle
with understanding the internal mechanisms of build tools like Maven and goreleaser (GoReleaser
Team, 2024), as well as their practical usage patterns in real-world projects, rather than simply pars-
ing error logs. This deeper knowledge gap becomes evident when agents attempt to configure or
debug complex build processes. Detailed examples can be found in Appendix D.1. This is funda-
mentally different from fixing a bug in source code, where the context is more self-contained. This
result demonstrates that while agents are improving at manipulating source code, they are far from
capable of managing the software’s build and deployment environment.

After examining the agent run logs, we primarily identified three common error types. First,
toolchain and environment instrumentation limitations (33%). A common example is unused-import
violations. Similar trends appear in missing-dependency errors, malformed build files, and XML
parsing failures, all of which reflect the agent’s inability to validate or inspect configuration artifacts
because the environment does not expose the necessary validators or schema checkers. These kinds
of errors happen in the agent Openhands more than in Claude code. Second, multi-step reasoning
and sequential planning failures (23%). In multi-step build repairs and build-system migrations,
agents often resolve an initial error but lose track of remaining issues, revealing limitations in con-
text retention. Many failures also occur because prompts do not enforce an iterative “fix-run-verify”
loop, causing the agent to stop after addressing only part of the pipeline or to terminate prematurely
despite remaining failures. Third, domain-specific knowledge gaps (37%). Failures reflect gen-
uine domain knowledge and deep technical understanding requirements that exceed current model
capabilities. These include inherently complex tasks such as Maven-to-Gradle migrations that re-
quire understanding of build-system semantics, implicit plugin behaviors, dependency resolution,
or platform-specific constraints. Other failures arise from misunderstanding Java generics, type
compatibility, JVM version differences, or subtle runtime behaviors such as NullPointerExceptions.
These tasks represent the upper bound of DevOps complexity in our benchmark and quantify where
agent abilities fundamentally fall short. Notably, 17% of all failures fall into the “inherently diffi-
cult” category, confirming that the benchmark captures real-world, high-difficulty DevOps scenarios
rather than contrived or artificially simple problems.

The dynamic nature of system monitoring reveals critical agent failures in processing contin-
uous, temporal inputs. As shown by Table 1, agents perform exceptionally poorly on monitoring
tasks, even reporting 0% with the state-of-the-art models. This failure stems from the dynamic na-
ture of monitoring, which poses three fundamental challenges to current LLM-based agents. First,
monitoring requires the continuous processing of evolving system state information. Anomalies like
memory leaks often manifest gradually over time, producing a long stream of observations. Agents

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Qwen3-Coder-30B
o4-mini

DeepSeek-V3.1

Gemini-2.5-Pro

Claude-4-Sonnet

Monitoring

Issue Resolving

Test Generation

Build & Config

5.9 8.8 0.0 11.8 5.9

13.2 10.3 14.2 11.0 23.9

6.1 8.7 3.2 2.9 11.6

20.4 24.1 11.1 16.7 42.6

(a) OpenHands Performance Across Different LLMs

OpenHands

mini-SWE-Agent
Aider

Claude Code

Monitoring

Issue Resolving

Test Generation

Build & Config

5.9 2.9 0.0 20.6

23.9 5.2 9.7 23.9

11.6 1.0 2.2 13.9

42.6 29.6 5.5 51.9

(b) Agent Framework Comparison (Claude-4-Sonnet)

0

10

20

30

40

50 Success Rate (%
)

0

10

20

30

40

50

60 Success Rate (%
)

Figure 2: Performance comparison across different agentic frameworks and LLMs.

must ingest this constant flow of new tokens, exhausting their context limit quickly even before a
discernible issue appears. Second, we observe that agents struggle to consistently focus on monitor-
ing, even though we prompt them to. Specifically, as we show in Appendix D.2, agents frequently
become distracted, focusing excessively on analyzing earlier observations, which causes them to
stop actively monitoring the live system state. This inability to balance long-term analysis with
real-time awareness prevents them from detecting the subtle and sudden signals that define many
real-world performance and resource issues. Third, agents exhibit poor baseline discrimination,
generating significant false positives by misinterpreting normal operational variance as anomalies in
healthy system environments. These monitoring failures reveal that current agents lack the temporal
reasoning and sustained attention mechanisms essential for dynamic system observation.

We also identified four common error types from the agent run logs. First, inadequate monitoring
methodology (37%): Agents used one-time commands (e.g., top) instead of continuous monitor-
ing (e.g., watch -n 1), occasionally yielding coincidental correct results on error-free instances.
Second, pemature conclusion (26%): Agents submitted answers without performing monitoring or
completing diagnostic procedures. Third, insufficient temporal granularity (11%): Agents moni-
tored correctly but used overly coarse sampling intervals (10-60s), missing transient anomalies like
CPU spikes. Lastly, interpretation failure (26%): Agents collected metrics correctly but failed to
analyze them accurately or provided no analysis.

Unlike SWE-Bench, LLM agents perform poorly on DEVOPS-GYM for issue resolving. As we
can see from Table 1, the resolve rate drops significantly when moving from Python repositories, as
we have seen in SWE-Bench (Jimenez et al., 2024), to other languages, such as Java and Go. This
performance degradation is particularly striking when examining specific configurations: using the
same agent and model combination (OpenHands + Claude-4-Sonnet), the resolving rate achieves
70.4% on the SWE-Bench-Verified leaderboard, yet drops dramatically to 23.87% when applied to
Java and Go repositories in our benchmark. This indicates that the existing LLMs struggle with
the cross-language capability gap, which might be largely due to the dominance of Python code
in the training data. Also, results suggest that those complex compilation processes, dependency
management, and environment build and configuration in Java and Go pose major challenges to
Python-centric agents to overcome.

Though similar trends have also been reported by Multi-SWE-Bench(Zan et al., 2025), our evalua-
tion provides a more definitive validation with a more thorough data decontamination (Section 3.1)
provided by DEVOPS-GYM. Furthermore, by comparing our results using Claude-4 with those re-
ported by Zan et al. (2025) using Claude 3.7, we confirm that, despite the significantly improved
reasoning and tool-using capabilities of newer models, they still fail to overcome the major chal-
lenges in navigating the non-Python ecosystems.

Generating high-quality tests for the issue is even more challenging than resolving the issue.
Interestingly, when using the exact same set of issues for evaluation, we find that the accuracy of
generating high-quality tests is notably lower than the issue resolving rate. This highlights the gen-
eral difficulty of test generation, which requires agents to not only have a static understanding of
the whole repository but also the dynamic analysis capabilities that could reason about how the de-
scribed bug would be triggered during execution. The agent also needs to reason about how the bug
might be resolved, so that the generated tests could not only reproduce the described failure but also

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: Performance across five independent runs on a sampled subset of 50 tasks.
Agent Model Round1 Round2 Round3 Round4 Round5 Mean(STD) Pass@5

Claude Code Claude-4-Sonnet 16.00% 16.00% 20.00% 20.00% 22.00% 18.80% (2.40) 26.00%
OpenHands o4-mini 14.00% 16.00% 18.00% 20.00% 16.00% 16.80% (2.04) 20.00%

validate the correctness of the patch. In contrast, generating a patch can sometimes be accomplished
through more straightforward, static code analysis when the issue description potentially discusses
the expected fix. These results suggest that while agents are becoming proficient at predicting coding
patterns, reasoning about runtime behavior remains a significantly more challenging goal to achieve.

Compared to SWT-Bench (Mündler et al., 2024), DEVOPS-GYM is more challenging for LLM
agents to achieve satisfactory performance (as illustrated in Table 1) for two reasons. First,
DEVOPS-GYM focuses on compiled languages (Java and Go), where reasoning about dynamic pro-
gram behavior is inherently more complex than in interpreted languages like Python, which SWT-
Bench evaluates, since understanding a multi-stage compilation and linking process adds obvious
difficulties for agents. Second, while SWT-Bench incorporates code coverage as a soft metric for
test effectiveness, we focus on the strict metric that a generated test must precisely reproduce the
failure described in the issue and subsequently pass on the patched code.

Analysis Across Different Agentic Frameworks and Models Fig. 2 shows that Claude Code
achieves the best overall performance, while Claude-4-Sonnet is the top-performing LLM across
most tasks. Claude Code consistently outperforms other agentic frameworks, reaching 58.33% suc-
cess in build and configuration. The substantial gaps between different agentic frameworks suggest
that agent design is crucial for automated software engineering performance.

4.3 STABILITY OF AGENT PERFORMANCE ACROSS INDEPENDENT RUNS

To evaluate the stability of agent performance, we randomly sampled 50 tasks from DEVOPS-GYM
and executed two representative agent–model pairs—Claude Code + Claude-4-Sonnet and Open-
Hands + o4-mini—across five independent runs. Table 2 summarizes the results. Both agents exhibit
consistent single-run performance, with Claude Code ranging between 16–22% and OpenHands be-
tween 14–20%. The mean accuracies across the five runs are 18.8% and 16.8% with the standard
deviation of 2.40 and 2.04, respectively, indicating that run-to-run variance is relatively small. When
aggregating over the five trajectories, success rates increase modestly (Claude Code: 26%, Open-
Hands: 20%), but this improvement does not materially affect the relative ranking of the agents or
the conclusions of our study. These findings confirm that DEVOPS-GYM yields stable results and
that model performance is not sensitive to randomness in agent execution.

5 CONCLUSION AND FUTURE WORKS

We present DEVOPS-GYM, a comprehensive benchmark that evaluated agentic systems across the
complete DevOps cycle through four critical stages: build and configuration, monitoring, issue re-
solving, and test generation. The evaluation results revealed substantial limitations in current agentic
systems, with agents demonstrating particularly poor performance on monitoring and build and con-
figuration tasks, highlighting a critical disconnect between current AI capabilities and real-world
DevOps requirements. Our goal in DevOps-Gym is to cover some core workflows. Stages such
as CI/CD automation, or infrastructure management strongly depend on mutable external systems
(cloud APIs, Kubernetes clusters, etc.), which make both task creation and evaluation difficult. In
contrast, the four stages we selected represent the core reasoning and tool-using capabilities re-
quired in DevOps automation while remaining feasible for rigorous, reproducible benchmarking.
Our work points to a few promising directions for future works. First, we will follow our proposed
methodology to construct more tasks in each stage, covering more error types as well as broader
projects. Second, we will also extend DEVOPS-GYM to other programming languages and more
DevOps stages. Finally, we call for community-wide efforts to advance full DevOps automation by
enriching DEVOPS-GYM with additional scenarios and metrics, developing more capable agents,
and training specialized models optimized for agent workflows.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Introducing claude 4, 2025a. URL https://www.anthropic.com/news/
claude-4.

Anthropic. Claude code. GitHub, 2025b. URL https://github.com/anthropics/
claude-code.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In USENIX security symposium, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Yinfang Chen, Manish Shetty, Gagan Somashekar, Minghua Ma, Yogesh Simmhan, Jonathan Mace,
Chetan Bansal, Rujia Wang, and Saravan Rajmohan. AIOpslab: A holistic framework to evaluate
AI agents for enabling autonomous clouds. In Eighth Conference on Machine Learning and
Systems, 2025.

Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Krishna
Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, et al. Crosscodeeval: A diverse
and multilingual benchmark for cross-file code completion. Advances in Neural Information
Processing Systems, 36:46701–46723, 2023.

DORA. 2024 accelerate state of devops report. Technical report, Google Cloud, October 2024.
URL https://cloud.google.com/devops/state-of-devops. Available in multi-
ple languages: English, Spanish, French, Portuguese, Chinese, Japanese, Korean.

Aleksandra Eliseeva, Alexander Kovrigin, Ilia Kholkin, Egor Bogomolov, and Yaroslav Zharov.
Envbench: A benchmark for automated environment setup. arXiv preprint arXiv:2503.14443,
2025.

Google. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and
next generation agentic capabilities, 2025. URL https://arxiv.org/abs/2507.06261.

GoReleaser Team. Goreleaser, 2024. URL https://github.com/goreleaser/
goreleaser. Accessed: 2024-09-24.

Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational
Biology. Cambridge University Press, Cambridge, 1997.

Hojae Han, Seung-won Hwang, Rajhans Samdani, and Yuxiong He. Convcodeworld: Bench-
marking conversational code generation in reproducible feedback environments. arXiv preprint
arXiv:2502.19852, 2025.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Saurabh Jha, Rohan R. Arora, Yuji Watanabe, Takumi Yanagawa, Yinfang Chen, Jackson Clark,
Bhavya Bhavya, Mudit Verma, Harshit Kumar, Hirokuni Kitahara, Noah Zheutlin, Saki Takano,
Divya Pathak, Felix George, Xinbo Wu, Bekir O Turkkan, Gerard Vanloo, Michael Nidd, Ting
Dai, Oishik Chatterjee, Pranjal Gupta, Suranjana Samanta, Pooja Aggarwal, Rong Lee, Jae wook
Ahn, Debanjana Kar, Amit Paradkar, Yu Deng, Pratibha Moogi, Prateeti Mohapatra, Naoki
Abe, Chandrasekhar Narayanaswami, Tianyin Xu, Lav R. Varshney, Ruchi Mahindru, Anca
Sailer, Laura Shwartz, Daby Sow, Nicholas C. M. Fuller, and Ruchir Puri. ITBench: Evalu-
ating AI agents across diverse real-world IT automation tasks. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
jP59rz1bZk.

11

https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://github.com/anthropics/claude-code
https://github.com/anthropics/claude-code
https://cloud.google.com/devops/state-of-devops
https://arxiv.org/abs/2507.06261
https://github.com/goreleaser/goreleaser
https://github.com/goreleaser/goreleaser
https://openreview.net/forum?id=jP59rz1bZk
https://openreview.net/forum?id=jP59rz1bZk

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Jacob Kahn. Repo state loopholes during agentic evaluation. GitHub Issue, 2025. URL https://
github.com/SWE-bench/SWE-bench/issues/465. Issue 465, SWE-bench repository.

Patrick T Kon, Jiachen Liu, Yiming Qiu, Weijun Fan, Ting He, Lei Lin, Haoran Zhang, Owen M
Park, George S Elengikal, Yuxin Kang, et al. Iac-eval: A code generation benchmark for
cloud infrastructure-as-code programs. Advances in Neural Information Processing Systems, 37:
134488–134506, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

VI Lcvenshtcin. Binary coors capable or ‘correcting deletions, insertions, and reversals. In Soviet
physics-doklady, volume 10, 1966.

Nam Le Hai, Dung Manh Nguyen, and Nghi DQ Bui. Repoexec: Evaluate code generation with a
repository-level executable benchmark. arXiv e-prints, pp. arXiv–2406, 2024.

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao, Chen Qian,
Binyuan Hui, Qicheng Zhang, et al. Prompting large language models to tackle the full software
development lifecycle: A case study. arXiv preprint arXiv:2403.08604, 2024a.

Hongwei Li, Yuheng Tang, Shiqi Wang, and Wenbo Guo. Patchpilot: A cost-efficient software
engineering agent with early attempts on formal verification. arXiv preprint arXiv:2502.02747,
2025.

Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and Zhi Jin. Evocodebench: An evolving code gen-
eration benchmark aligned with real-world code repositories. arXiv preprint arXiv:2404.00599,
2024b.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36:42330–42357, 2023.

Shanchao Liang, Yiran Hu, Nan Jiang, and Lin Tan. Can language models replace programmers for
coding? repocod says’ not yet’. arXiv preprint arXiv:2410.21647, 2024.

Shanchao Liang, Nan Jiang, Yiran Hu, and Lin Tan. Can language models replace programmers for
coding? REPOCOD says ‘not yet’. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 24698–24717, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
2025.acl-long.1204. URL https://aclanthology.org/2025.acl-long.1204/.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. arXiv preprint arXiv:2306.03091, 2023.

Amirabbas Majd, Mojtaba Vahidi-Asl, Alireza Khalilian, Ahmad Baraani-Dastjerdi, and Bahman
Zamani. Code4bench: A multidimensional benchmark of codeforces data for different program
analysis techniques. Journal of Computer Languages, 53:38–52, 2019.

Niels Mündler, Mark Müller, Jingxuan He, and Martin Vechev. Swt-bench: Testing and validating
real-world bug-fixes with code agents. Advances in Neural Information Processing Systems, 37:
81857–81887, 2024.

12

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://github.com/SWE-bench/SWE-bench/issues/465
https://github.com/SWE-bench/SWE-bench/issues/465
https://aclanthology.org/2025.acl-long.1204/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sarthak Munshi, Swapnil Pathak, Sonam Ghatode, Thenuga Priyadarshini, Dhivya Chan-
dramouleeswaran, and Ashutosh Rana. Acse-eval: Can llms threat model real-world cloud in-
frastructure? arXiv preprint arXiv:2505.11565, 2025.

Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vincent
Moens, Amar Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia, et al. Ml-
gym: A new framework and benchmark for advancing ai research agents. arXiv preprint
arXiv:2502.14499, 2025.

Ziyi Ni, Huacan Wang, Shuo Zhang, Shuo Lu, Ziyang He, Wang You, Zhenheng Tang, Yuntao Du,
Bill Sun, Hongzhang Liu, et al. Gittaskbench: A benchmark for code agents solving real-world
tasks through code repository leveraging. arXiv preprint arXiv:2508.18993, 2025.

OpenAI. Introducing openai o3 and o4-mini, 2025. URL https://openai.com/index/
introducing-o3-and-o4-mini/.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

Qwen-Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Kalahasti Ganesh Srivatsa, Sabyasachi Mukhopadhyay, Ganesh Katrapati, and Manish Shrivastava.
A survey of using large language models for generating infrastructure as code. arXiv preprint
arXiv:2404.00227, 2024.

Robin Staab, Mark Vero, Mislav Balunović, and Martin Vechev. Beyond memorization: Violating
privacy via inference with large language models. arXiv preprint arXiv:2310.07298, 2023.

Yuheng Tang, Hongwei Li, Kaijie Zhu, Michael Yang, Yangruibo Ding, and Wenbo Guo. Co-
patcher: Collaborative software patching with component (s)-specific small reasoning models.
arXiv preprint arXiv:2505.18955, 2025.

TerminalBench. Terminal-bench: A benchmark for ai agents in terminal environments, Apr 2025.
URL https://github.com/laude-institute/terminal-bench.

David A Tomassi, Naji Dmeiri, Yichen Wang, Antara Bhowmick, Yen-Chuan Liu, Premkumar T
Devanbu, Bogdan Vasilescu, and Cindy Rubio-González. Bugswarm: Mining and continuously
growing a dataset of reproducible failures and fixes. In 2019 IEEE/ACM 41st International Con-
ference on Software Engineering (ICSE), pp. 339–349. IEEE, 2019.

Mark Vero, Niels Mündler, Victor Chibotaru, Veselin Raychev, Maximilian Baader, Nikola Jo-
vanović, Jingxuan He, and Martin Vechev. Baxbench: Can llms generate correct and secure
backends? arXiv preprint arXiv:2502.11844, 2025.

Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng Huang, Zhaoyang Chu, Da Song, Lingming
Zhang, An Ran Chen, and Lei Ma. Testeval: Benchmarking large language models for test case
generation. arXiv preprint arXiv:2406.04531, 2024.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for AI soft-
ware developers as generalist agents. In The Thirteenth International Conference on Learning
Representations, 2025a. URL https://openreview.net/forum?id=OJd3ayDDoF.

Yibo Wang, Congying Xia, Wenting Zhao, Jiangshu Du, Chunyu Miao, Zhongfen Deng, Philip S
Yu, and Chen Xing. Projecttest: A project-level llm unit test generation benchmark and impact of
error fixing mechanisms. arXiv preprint arXiv:2502.06556, 2025b.

Zhun Wang, Tianneng Shi, Jingxuan He, Matthew Cai, Jialin Zhang, and Dawn Song. Cybergym:
Evaluating ai agents’ cybersecurity capabilities with real-world vulnerabilities at scale. arXiv
preprint arXiv:2506.02548, 2025c.

13

https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://arxiv.org/abs/2505.09388
https://github.com/laude-institute/terminal-bench
https://openreview.net/forum?id=OJd3ayDDoF

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. arXiv preprint arXiv:2407.01489, 2024.

Kai Xu, YiWei Mao, XinYi Guan, and ZiLong Feng. Web-bench: A llm code benchmark based on
web standards and frameworks. arXiv preprint arXiv:2505.07473, 2025.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik R Narasimhan,
and Ofir Press. SWE-agent: Agent-computer interfaces enable automated software engineering.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024a. URL
https://arxiv.org/abs/2405.15793.

Yu Yang, Yuzhou Nie, Zhun Wang, Yuheng Tang, Wenbo Guo, Bo Li, and Dawn Song. Seccodeplt:
A unified platform for evaluating the security of code genai. arXiv preprint arXiv:2410.11096,
2024b.

Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu,
Xiaojian Zhong, Aoyan Li, et al. Multi-swe-bench: A multilingual benchmark for issue resolving.
arXiv preprint arXiv:2504.02605, 2025.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval
and generation. arXiv preprint arXiv:2303.12570, 2023.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
with tool-integrated agent systems for real-world repo-level coding challenges. arXiv preprint
arXiv:2401.07339, 2024a.

Quanjun Zhang, Ye Shang, Chunrong Fang, Siqi Gu, Jianyi Zhou, and Zhenyu Chen. Testbench:
Evaluating class-level test case generation capability of large language models. arXiv preprint
arXiv:2409.17561, 2024b.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement. In Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis, pp. 1592–1604, 2024c.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

Terry Yue Zhuo, Vu Minh Chien, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen GONG, James
Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
David Lo, Binyuan Hui, Niklas Muennighoff, Daniel Fried, Xiaoning Du, Harm de Vries, and Le-
andro Von Werra. Bigcodebench: Benchmarking code generation with diverse function calls and
complex instructions. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=YrycTjllL0.

A CLARIFICATION ON THE USE OF LLMS

The authors acknowledge the use of large language models, employed exclusively to assist with
grammar correction, proofreading, and minor stylistic refinements throughout the manuscript. The
use of LLMs was strictly limited to language polishing and did not contribute to the research content
itself. All core research, methodology, experimental design, and substantive findings represent the
original work of the authors, who retain full responsibility for the content and conclusions presented.

14

https://arxiv.org/abs/2405.15793
https://openreview.net/forum?id=YrycTjllL0

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B DATASET CONTAMINATION PREVENTION

To prevent data contamination from pre-training corpora, we implement a systematic detection pro-
tocol to select repositories for DEVOPS-GYM. For each candidate repository, we sample 20 unique
code snippets from CI/CD configurations, build files, and test files, which are domain-specific
artifacts less likely to appear in general pre-training data. Following the prefix completion ap-
proach (Carlini et al., 2021; Staab et al., 2023), we first randomly select a start point, then extract a
50-token prefix from each snippet and prompt the model to generate a continuation. We then assess
contamination by comparing the model’s 50-token prediction a with the ground truth suffix g from
the original code.

We measure similarity using five complementary metrics: (1) normalized Levenshtein distance ratio
s (Lcvenshtcin, 1966), (2) consecutive matching token count from the prefix t, (3) position of the
first token mismatch p, (4) longest common substring length l measured in tokens (Gusfield, 1997),
and (5) sentence-level BLEU score b (Papineni et al., 2002). A snippet is classified as high-risk if
any metric exceeds its respective threshold: s > 0.7, t > 30, p > 30, l > 30, or b > 0.5. These
thresholds are calibrated to identify cases where the model demonstrates suspiciously accurate re-
production, indicating potential memorization. The repository-level contamination rate C is defined
as the proportion of high-risk snippets among the 20 samples.

The results for different repositories are shown in Table 3. To ensure evaluation integrity while
maintaining sufficient dataset scale, we exclude repositories with C ≥ 0.2 and retain only those
with LOW or LOW-MODERATE contamination levels. This protocol ensures that our benchmark
measures genuine reasoning and problem-solving capabilities rather than memorized patterns from
pre-training. The 20% threshold balances contamination control with dataset scale. Our analysis
shows that even the cleanest repositories (e.g., junit-framework) exhibit 10% contamination due to
unavoidable surface-level similarities in public code (e.g., common API patterns, standard config-
urations). The 20% threshold ensures that 80%+ of code snippets show no memorization while
maintaining sufficient scale for meaningful evaluation.

To prevent data leakage through repository history, we implement strict isolation measures. Fol-
lowing reports of contamination in SWE-bench where agents could access future repository states
containing solutions or implementation hints (Kahn, 2025), we sanitize all repositories by remov-
ing git metadata and provide only the codebase state at the point of issue creation, ensuring agents
cannot query future commits and branches containing fixes.

C TASK DETAILS FOR ISSUE RESOLVING AND TEST GENERATION

C.1 ISSUE RESOLVING

In typical DevOps workflows, once problems are identified, whether through monitoring alerts, user
reports, test failures, or system crashes, engineers must translate these diverse diagnostic inputs
into code fixes. This task evaluates agents’ ability to resolve bugs regardless of their discovery
method. While issue resolving has been explored in benchmarks like SWE-bench, its inclusion
here is essential for comprehensive DevOps evaluation, as fixing code remains a core responsibility
whether the bug was found through sophisticated monitoring or a simple error log. Agents must
understand existing codebases, locate bugs based on provided descriptions, and implement minimal
fixes that resolve issues while preserving the normal functionalities.

• Input: (i) A buggy repository; (ii) Natural language bug description; (iii) Development
tools (git, grep, sed, awk) and language-specific test runners.

• Expected Output: Patch file in unified diff format that resolves the issue.

• Ground Truth: Developer-provided fixes from merged GitHub pull requests or expert-
written patches for injected bugs.

• Evaluation: Pass the Fail-to-pass test and didn’t introduce new fails.

• Data Collection: We adapt the Multi-SWE-bench Zan et al. (2025) collection pipeline for
data collection. The pipeline consists of three stages: (i) repository selection: we target
well-maintained Java/Go projects with comprehensive test suites and active development

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 3: Contamination risk analysis for different repositories across LLMs. The highest contami-
nation rate for each repository is marked as bold.

Repository Max Contamination Avg Contamination GPT-4o Claude-Sonnet-4

act 0.2000 0.1000 0.0000 0.2000
beego 0.5625 0.2812 0.0000 0.5625
caddy 0.2667 0.2000 0.1333 0.2667
checkstyle 0.5000 0.4583 0.4167 0.5000
echo 0.2000 0.1000 0.0000 0.2000
etcd 0.2222 0.1389 0.0556 0.2222
fastjson2 0.7333 0.5667 0.4000 0.7333
frp 0.2500 0.1250 0.0000 0.2500
fzf 0.1875 0.1562 0.1875 0.1250
gin 0.4000 0.2667 0.1333 0.4000
go-zero 0.1765 0.1471 0.1176 0.1765
gorm 0.2500 0.1562 0.0625 0.2500
hugo 0.1250 0.0625 0.0000 0.1250
istio 0.3000 0.2000 0.1000 0.3000
junit-framework 0.1000 0.1000 0.1000 0.1000
lazygit 0.2308 0.1154 0.0000 0.2308
logstash 0.2222 0.1944 0.1667 0.2222
mockito 0.4000 0.3000 0.2000 0.4000
spotbugs 0.3333 0.2778 0.2222 0.3333

(commits within 6 months), (ii) PR filtering: we select pull requests that resolve GitHub
issues and include test modifications, indicating test-validated fixes, and (iii) execution
validation: we verify that associated tests demonstrate fail-to-pass transitions, where tests
fail on the pre-patch codebase and succeed after patch is applied, thereby ensuring both
issue reproducibility and patch correctness.

C.2 TEST GENERATION

The third stage ensures that resolved issues cannot recur by creating comprehensive unit tests. While
test generation has been explored in prior work Mündler et al. (2024), its inclusion here serves the
DevOps pipeline where fixes must be validated before deployment. Our setting mirrors real-world
scenarios where test developers cannot assume patch correctness. Agents must generate tests in-
dependently based solely on bug descriptions and source code examination, without access to the
proposed fixes. This approach reflects common DevOps practice where unit tests serve as indepen-
dent validation of patch quality rather than mere confirmation of known solutions. Furthermore,
this constraint also requires agents to fully understand the bug’s root cause from description alone
and create tests that would have caught the original issue, particularly challenging for performance
and resource issues identified through monitoring, which require specialized test assertions beyond
functional correctness.

• Input: (i) Buggy repository; (ii) Bug description; (iii) File manipulation tools (touch,
echo, cat) and test frameworks. Following established settings (Mündler et al., 2024),
agents receive only the buggy repository and issue description without access to the ground
truth patch or fix implementation.

• Expected Output: Patch file for the test in diff format (e.g., pytest, JUnit) that cap-
tures the bug’s behavior.

• Ground Truth: Developer-provided tests from GitHub PRs (when available) or expert-
written regression tests validated to detect the specific bug.

• Evaluation: Following SWT-Bench Mündler et al. (2024), we measure test effectiveness
through fail-to-pass transitions. A test generation attempt succeeds when: (i) at least one

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

generated test fails on the original buggy codebase and passes after patch application (fail-
to-pass transition), and (ii) no tests exhibit failures on the patched code. This metric ensures
that generated tests accurately capture the bug’s behavior while avoiding false positives. We
report the success rate as the percentage of tasks where agents produce valid fail-to-pass
tests without introducing spurious failures.

• Data Collection: Test generation tasks are derived from the same issues collected for issue
resolving phase. For each issue resolving task, we create a corresponding test generation
task.

D CASE STUDY

D.1 BUILD

This case shows that the agent fails to properly handle test execution failures while still achieving
the core migration objectives.

(Task):

You are tasked with migrating the MobArena plugin build system
from Maven to Gradle while maintaining functional equivalence.

The environment contains:

A Maven project at /app/mobarena/ - this is your starting point

Build artifacts and logs from the Maven build in
/app/results/old build/ and /app/results/old-.log

Your task is to:

Start with the Maven project at /app/mobarena/

Create a complete Gradle build configuration (build.gradle,
gradle.properties, etc.)

Migrate all Maven functionality to Gradle equivalents

Ensure the migrated build maintains functional equivalence with
the original Maven build

Success criteria:

The Gradle build completes successfully with ./gradlew clean
build

All tests pass with ./gradlew test

The generated JAR is functionally equivalent to the original
Maven JAR

Build produces the same core artifacts as the Maven version

(Agent Action):

I’ll start by examining the Maven project structure and
understanding the current build configuration to plan the
migration to Gradle.

function=codebase search

query="What is the current Maven build configuration and
project structure?"

target directories=["/app/mobarena"]

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(Agent Action):

Now I need to understand the Maven build configuration by
examining the pom.xml file to see what dependencies, plugins,
and build settings need to be migrated.

function=read file

target file="/app/mobarena/pom.xml"

[... extensive migration work creating build.gradle,
configuring dependencies, setting up Gradle wrapper ...]

(Agent Action):

Now let me run the tests to see if they all pass as expected.

function=bash

command="cd /app/mobarena && ./gradlew test --info | grep -E
(Test|PASSED|FAILED|SKIPPED|BUILD)"

The tests are running but many are failing. This seems to be
related to missing runtime dependencies and mocking issues.
BUILD FAILED in 6s 253 tests completed, 88 failed

⇒ {Comments: Agent successfully migrates the build system
and produces correct artifacts, but fails to resolve all test
failures. The core issue is that while the agent achieves
the primary migration goals (successful build, correct JARs,
functional equivalence), it doesn’t ensure all tests pass,
which was explicitly listed as a success criterion.}

This case shows that the agent fails to include Caddy-specific build tags in the GoReleaser configu-
ration.

(Task):

You are tasked with setting up GoReleaser for the Caddy project
to enable multi-platform releases.

The environment contains:

A Go project at /app/caddy-project - this is your starting
point

Build artifacts and logs from the basic Go build in
/app/results/old build/ and /app/results/old-.log

GoReleaser is pre-installed and available in the PATH

Your task is to:

Start with the basic Go project at /app/caddy-project

Create a .goreleaser.yml configuration file with modern
GoReleaser syntax

Configure multi-platform builds for Linux, Windows, macOS, and
FreeBSD

Set up cross-compilation for multiple architectures (amd64,
arm, arm64, s390x, ppc64le, riscv64) with appropriate platform
exclusions

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Configure archive generation with proper platform naming

Configure build tags and ldflags for optimal binary generation

The configuration should include:

Cross-platform builds with CGO disabled for static binaries

Build configuration for cmd/caddy/main.go structure

Archive replacements for clean platform naming (macOS, Linux,
Windows)

Windows-specific ZIP format override

Changelog generation with proper filtering

Checksum configuration with SHA512 algorithm for release
integrity

Release configuration with draft mode enabled to prevent
accidental releases

Success criteria:

GoReleaser configuration validates successfully with goreleaser
check

Snapshot build completes with goreleaser build --snapshot
--clean

Multiple platform binaries are generated (Linux, Windows,
macOS, FreeBSD)

Generated binaries maintain original functionality

Archive naming follows GoReleaser conventions

(Agent Action):

I need to start by analyzing the codebase structure to
understand the Go project layout and then examine any existing
build artifacts to understand the current build process.

cd /app/caddy-project && find . -type f -name "*.go" | head
-20

(Agent Action):

Good, I can see this is a Caddy project with the main entry
point at ./cmd/caddy/main.go. Now let me examine the project
structure more thoroughly and check if there are any existing
configuration files.

cd /app/caddy-project && ls -la && echo "=== Checking for
existing config files ===" && find . -name "*.yml" -o -name
"*.yaml" -o -name "go.mod" -o -name "Makefile" | head -10

...

(Agent Action):

Now I understand the project structure and version handling.
Caddy uses Go modules for version information, so I don’t
need custom ldflags for version injection. Let me create a
comprehensive GoReleaser configuration file that meets all the
requirements.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

cd /app/caddy-project && cat <<’EOF’ > .goreleaser.yml

GoReleaser configuration for Caddy

This configuration enables multi-platform releases with
proper cross-compilation

project name: caddy

before:

hooks:

Clean up any previous builds

- go mod tidy

- go mod download

builds:

- id: caddy

Build from the main entry point

main: ./cmd/caddy/main.go

binary: caddy

Disable CGO for static binaries

env:

- CGO ENABLED=0

Build flags for optimization

flags:

- -trimpath

Linker flags for smaller binaries

ldflags:

- -s -w

- -extldflags "-static"

Multi-platform builds

goos:

- linux

- windows

- darwin

- freebsd

Multi-architecture builds with appropriate exclusions

goarch:

- amd64

- arm

- arm64

- s390x

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

- ppc64le

- riscv64

...

EOF

⇒ {Comments: The agent creates a comprehensive GoReleaser
configuration but fails to include Caddy-specific build tags
(nobadger, nomysql, nopgx) that are essential for proper Caddy
builds. The configuration validates syntactically but is
functionally incomplete for the Caddy project.}

D.2 MONITORING

This case shows that the agent fails to monitor the system continuously.

(Task):

You are tasked with monitoring a server program execution to
identify any potential unusual patterns and potential issues.

Your environment contains:

- A server setup: a server is running.

- Standard system monitoring tools (curl, ls, top, ps, htop,
watch, etc.)

Your task is to:

1) Monitor the system behavior (e.g., server network requests,
system resource usage) over time,

2) Use standard system monitoring tools to observe system
behavior,

3) Identify any unusual patterns

...

(Agent Action):

I’ll monitor the minio server system behavior over 8 minutes to
identify resource usage patterns and potential issues. Let me
start by setting up a comprehensive monitoring approach.

function=TodoWrite content="1. Check initial system state,
2. Setting up continuous monitoring for CPU, memory, and disk
usage, 3. Monitor network connections and file descriptors, 4.
Monitor I/O operations and latency."

(Agent Action):

Now let me observe the system.

ls -la /proc/14/fd

cat /proc/14/io

⇒ {Comments: Agent should monitor the system continuously,
e.g., watch -n 1 cat /proc/14/io}

(Tool Execution Outputs):

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

...

This case demonstrates that agent wrongly get a final conclusion due to limited context length.

(Task):

You are tasked with monitoring a server program execution to
identify any potential unusual patterns and potential issues.

Your environment contains:

- A server setup: a server is running.

- Standard system monitoring tools (curl, ls, top, ps, htop,
watch, etc.)

Your task is to:

1) Monitor the system behavior (e.g., server network requests,
system resource usage) over time,

2) Use standard system monitoring tools to observe system
behavior,

3) Identify any unusual patterns

...

(Agent Action):

I’ll monitor the server system behavior.

watch -n 1 "echo ’=== $(date) ===’; top -b -n 1 | head -20" >>
/monitor cpu.log

watch -n 1 "echo ’=== $(date) ===’; free -h; echo ’’; ps aux
--sort=-%mem | head -10" >> /monitor memory.log

watch -n 3 "echo ’=== $(date) ===’; echo ’Open FDs:’; ls
/proc/1/fd 2>/dev/null | wc -l; lsof -p 1 2>/dev/null | wc -l"
>> /monitor fd.log

...

(Agent Action): Now let me check the CPU log file to detect
potential system anormalies.

cat /monitor cpu.log

(Tool Execution Outputs):

(CPU log files)...

(Agent Action):

This session is being continued from a previous conversation
that ran out of context. The conversation is summarized below:

...

(Agent Action):

According to the summary I can see that CPU activity is
abnormal. So the answer is cpu usage.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 4: DevOpsBench Dataset Statistics
Stage Languages # Tasks Repo Num Avg. Repo Files Avg. Human Time(min)

Build & Config Java&Go 48 26 1579 53

Monitoring Java&Go 30 7 3343 21

Issue Resolving Java&Go 310 16 2162 35

Test Generation Java&Go 310 16 2162 45

Table 5: Evaluation Results on different error types of build implementation
Agent Model Migration Target Release Plugin Integration Version Upgrades

OpenHands

Qwen3-Coder-30B 1/8 0/5 0/2 1/3
o4-mini 1/8 0/5 1/2 1/3
DeepSeek-V3.1 0/8 0/5 0/2 1/3
Gemini-2.5-Pro 0/8 0/5 0/2 1/3
Claude-4-Sonnet 3/8 0/5 0/2 1/3

mini-SWE-Agent Claude-4-Sonnet 2/8 1/5 1/2 2/3

Claude Code Claude-4-Sonnet 2/8 1/5 1/2 2/3

Memory Leaks
(17.1%)

Disk Leaks
(8.6%)

Handle Exhaustion
(14.3%)

CPU Spikes
(17.1%)

I/O Bottlenecks
(14.3%)

SQL Inefficiencies
(14.3%)

Normal Cases
(14.3%)

Figure 3: Monitoring anomaly distribution.

⇒ {Comments: Agent should check other log files. It
successfully monitor the system but fail to analyze the
results.}

23

	Introduction
	Related Work
	Construction of DevOps-Gym
	Overview
	Task Construction for Build and Configuration
	Task Construction for Monitoring
	Task Construction for Issue Resolving and Test Generation

	Evaluation
	Experimental Setup
	Results
	Stability of Agent Performance Across Independent Runs

	Conclusion and Future Works
	Clarification on the Use of LLMs
	Dataset Contamination Prevention
	Task Details for Issue Resolving and Test Generation
	Issue Resolving
	Test Generation

	Case Study
	Build
	Monitoring

