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Abstract

Projection-free first-order methods, e.g., the celebrated Frank-Wolfe (FW) algo-
rithms, have emerged as powerful tools for optimization over simple convex sets
such as polyhedra, because of their scalability, fast convergence, and iteration-wise
feasibility without costly projections. However, extending these methods effec-
tively to general compact convex sets remains challenging and largely open, as FW
methods rely on expensive linear optimization oracles (LOO), while penalty-based
methods often struggle with poor feasibility. We tackle this open challenge by
presenting Hom-PGD, a novel projection-free method without expensive (opti-
mization) oracles. Our method constructs a homeomorphism between the convex
constraint set and a unit ball, transforming the original problem into an equivalent
ball-constrained formulation, thus enabling efficient gradient-based optimization
while preserving the original problem structure. We prove that Hom-PGD attains
optimal convergence rates matching gradient descent with constant step-size to
find an ϵ-approximate (stationary) solution: O(log(1/ϵ)) for strongly convex ob-
jectives, O(ϵ−1) for convex objectives, and O(ϵ−2) for non-convex objectives.
Meanwhile, Hom-PGD enjoys a low per-iteration complexity of O(n2), without
expensive oracles like LOO or projection, where n is the input size. Our framework
further extends to certain non-convex sets, broadening its applicability in practical
optimization scenarios with complex constraints. Extensive numerical experiments
demonstrate that Hom-PGD achieves comparable convergence rates to state-of-the-
art projection-free methods, while significantly reducing per-iteration runtime (up
to 5 orders of magnitude faster) and thus the total problem-solving time.

1 Introduction

We consider constrained optimization where the objective is smooth, possibly non-convex, and the
constrained set is compact convex. Although popular second-order methods, such as interior-point
methods [PW00, Wri97] and cutting plane methods [B+15], achieve linear convergence rates, their
per-iteration computational complexity scales super-linearly with the problem size, typically on the
order of O(n3) due to solving a linear system. Consequently, these methods become impractical
for large-scale problems. Alternative approaches, such as projection-based gradient descent (PGD)
first-order methods (see, e.g., [Bec17, ZPL22, ZL22]), provide a computational benefit for simple
convex sets where orthogonal projections can be performed efficiently, such as Euclidean balls and
boxes. Despite their slower convergence rate of O(1/ϵ) in the convex smooth setting and O(1/ϵ2) in
the non-convex smooth setting, these methods are favorable in practice due to their relatively low
per-iteration cost. However, the projection operation, i.e., solving a convex problem with a quadratic
objective over constraints, is computationally expensive except for simple constraint sets.
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Table 1: Summary of existing projection-free methods for solving optimization problems.

Reference Settings: Key Assumption Algorithm Step-size[2] Per-iteration Convergence
Obj. Ctr. Complexity Rate[3]

[LMY23] NC Simplex -
Hadamard
Parameterization
+ Pertubed PGD

Constant O(n) O(ϵ−2)

[LG23] C C
SC (Obj + Ctr Set) Sub-GD Alg.

for the RD[4]
Implicit and
Diminishing QOO

O(ϵ−1)
S (Obj + Ctr Set) O(ϵ−0.5)
SC & S (Obj + Ctr Set) O(log ϵ−1)

[Gri24b] C C Upper Radial Obj
Accelerate Sub-GD
Alg. for the RD[4]

Implicit or
Vanishing MO O(ϵ−0.5)

[MHSY25] DC C - Frank-Wolfe Diminishing LOO O(ϵ−2)

Theorem 1
Theorem 2
Theorem 3

C C ND Minimizer Hom-PGD
(Sec. 3) Constant MO

O(ϵ−1)
SC C - O(log ϵ−1)
NC C - O(ϵ−2)

1 Abbreviations: C = “convex”, NC = “non-convex”, DC = “difference of convex”, SC = “strongly convex”, S = “Smooth”, Obj =
“objective”, Ctr = “constraint”, GD = “gradient descent”, ND = “non-degenerate”, RD= “radial dual”, LOO = “linear optimization
oracle”, QOO = “quadratic optimization oracle”, MO = “membership oracle”.

2 Step-size: (i) vanishing step-size: depends on ϵ, (ii) diminishing step-size: decreases as poly(1/K) with the number of iterations K,
(iii) constant step-size: is independent of both ϵ and K, and (iv) implicit step-size: has implicit parameters such as smoothness and
optimal objective.

3 Convergence Rate: number of iterations for finding an ϵ-approximate stationary point for non-convex optimizations or an ϵ-
approximate optimum for convex optimizations.

4 The radial dual (RD) of a convex constrained problem is an unconstrained min-max problem [Gri24a, Gri24b].

To circumvent these issues, projection-free methods based on the Frank-Wolfe (FW) algorithm
[FW+56] have been widely studied (e.g., [MZWG16, THZK21, Mha22, MHSY25]). These methods
employ a linear optimization oracle (LOO) at each iteration instead of projections, with the former
often being performed efficiently [CP21]. However, LOO can still be computationally expensive over
complex constrained sets; therefore, FW methods are confined to scenarios where the LOO is efficient.
Moreover, they exhibit oscillatory behavior near the solution, resulting in slow convergence [BRZ24,
FG16]. Beyond FW methods, penalty-based approaches [Ber76, SCB+97, LMX22] struggle with
ill-conditioning as penalty parameters increase and perform poorly, particularly when dealing with
complex constraints. Recent advances explore projection-free strategies leveraging techniques such as
reparameterization [LMY23, TT24, CV25] and radial dual reformulation [Gri24a, Gri24b]. These
methods highlight recent efforts to address the limitations of classical projection-free methods, but
remain restricted to structured constraint sets and may suffer from practical drawbacks, such as
impractical step-size choices (see Table 1). Please refer to Appendix A for a detailed discussion
of related work to reduce the per-iteration cost and accelerate convergence for solving convex-
constrained optimization. Despite the success of existing projection-free methods, the research gap
still remains:

Can we design a projection-free approach for optimization over a general compact convex set with
desirable properties, including fast convergence and cheap per-iteration cost?

In this paper, we propose a novel projection-free framework that positively answers this question.
Concretely, we make the following contributions:

▷ In Sec. 3, we design the novel projection-free method, termed as Hom-PGD, that re-parameterizes
the optimization over convex compact sets to equivalent ball-constrained optimization. By solving
the equivalent problem with gradient descent with closed-form projection and mapping the converged
solution back, we obtain the solution to the original constrained problem.

▷ In Sec. 4, we establish convergence and complexity analysis for Hom-PGD: O(1/ϵ) in the convex
setting, O(log 1/ϵ) in the strongly convex setting, and O(1/ϵ2) in the non-convex setting, where
established convergence rates are optimal 2 under unaccelerated settings. Moreover, the per-iteration
complexity of Hom-PGD is cheap as O(n2) without linear/quadratic optimization oracles. We also
extend our framework to optimization over certain non-convex sets in Sec. 5.

2Optimal convergence rate means it matches the lower bound on iteration complexity. (i) The optimal
convergence is O(ϵ−2) in the non-convex smooth setting [CDHS20]; (ii) For constant step-size, the optimal
convergence rate for GD is O(log 1/ϵ) in the strongly convex smooth setting and O(1/ϵ) in the convex smooth
setting; see e.g. [AP23].
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▷ In Sec. 6, through extensive numerical experiments over convex and non-convex problems,
including applications to max-cut SDP problems, we demonstrate Hom-PGD outperforms existing
first-order approaches in computational efficiency, which achieve similar convergence rate but
significantly lower per-iteration cost (up to 3-5 orders of magnitude).

To the best of our knowledge, the proposed Hom-PGD is the first projection-free, first-order frame-
work capable of solving optimization over general convex compact sets while achieving the optimal
convergence rate under unaccelerated settings without expensive optimization oracles.

2 Problem Statement
We consider the following continuous convex constrained optimization problem:

min
x

f(x), s.t. x ∈ K, (P)

where x ∈ Rn is the decision variable, f(·) is the objective function, and the constraint set K ⊂ Rn

is compact and convex. For ease of analysis and without loss of generality, we assume the constraint
set K is defined by inequalities3 as K = {x ∈ Rn | g(x) ≤ 0} with g = (g1, · · · , gm), where
gi : Rn → R are functions.

Open Issues: Although convex optimization has been extensively studied, existing methods face
significant limitations when dealing with complex constraints. As discussed in Sec. 1, projection-
based approaches incur high computational costs beyond simple sets, while projection-free methods
such as FW and primal-dual approaches are largely restricted to structured convex sets. For example,
when solving semidefinite programming (SDP), the LOO required by FW involves solving an SDP
itself, defeating its purpose as a low-cost alternative. These challenges underscore the need for
projection-free algorithms that preserve fast convergence and maintain computational efficiency
across broader convex programs.

3 Homeomorphic Optimization Approach
Motivated by recent advances in low-complexity schemes and reparameterization techniques for
solving constrained optimization problems [LCL23, LMY23, PP23, LCL24, RSW24, LC25], we
propose a novel approach that transforms the original constrained problem via a homeomorphic
mapping between the convex constraint set K and the unit ball B. This transformation preserves the
essential problem structure while replacing the potentially complex constraint set with the geomet-
rically simple unit ball, thereby enabling efficient gradient-based optimization without expensive
projection operations.
Definition 3.1 (Homeomorphic Constrained Optimization). Given a homeomorphism ψ : B → K,
we define the transformed optimization problem with objective function h(z) = (f ◦ ψ)(z) and
constraint set B = ψ−1(K) as:

min
z

h(z), s.t. z ∈ B (H)

Homeomorphism (or homeomorphic mapping) is a bi-continuous bijection from two topological
spaces, guaranteeing the topological equivalence. It is a classic result that any compact convex set
is homeomorphic to a unit ball [Ges12, Bre13], i.e., there exists a homeomorphism ψ such that
B = ψ−1(K) and K = ψ(B). Thus, we can transform any optimization problem P over a compact
convex set into a ball-constrained program H. In practice, this transformation relies on an explicit
homeomorphic mapping, which we will discuss how to obtain in Sec. 3.2.

Remark: The transformed problem H has a non-convex objective function h(·) due to the non-linear
mapping ψ even though the original objective is convex, but it features a simple constraint set as a
unit ball, leading to a closed-form projection. Moreover, under the homeomorphic transformation,
the original problem and its homeomorphic counterpart are equivalent, i.e., there exists a bijective
correspondence between their optimal solution sets P∗ and H∗, where P∗ = {x | x ∈ argmin{P}}
and similarly for H∗. Specifically, for any x ∈ P∗, there exists a unique z ∈ H∗ such that x = ψ(z),
and vice versa. Thus, we can solve the transformed problem H without expensive projection to obtain
the corresponding optimal solution of the original problem P.

3Linear equality constraints can be removed without loss of generality, see Appendix B.1 for discussions.
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Figure 1: Hom-PGD Framework: Hom-PGD conducts the standard PGD algorithm in the trans-
formed space by a homeomorphic mapping ψ(·), where the transformed constraint set B is a simple
unit ball, and the transformed objective function h(·) is non-convex but structured.

3.1 Algorithm Overview

Algorithm 1 Hom-PGD
Input: initial point z0, problem H with ψ
and maximum iteration number K
for k = 0 to K do

Compute stepsize αk

Update: zk+1 = ΠB (zk − αk∇h(zk))
end for
Output: xK = ψ(zK)

As illustrated in Fig. 1, PGD in the original space
suffers from expensive projection operations during
iteration over the constraint boundary. To solve prob-
lem P without expensive projection, we transform
problem P into a ball-constrained optimization H by
a homeomorphic mapping ψ. Then we apply regular
PGD to efficiently solve the homeomorphic optimiza-
tion H with a closed-form projection, thereby termed
projection-free4 methods. Finally, we map the ob-
tained solution back to the original space to recover
the corresponding solution for the original problem.
We call the combination of homeomorphic transformation and regular PGD as Hom-PGD, shown in
Alg. 1. Next, we discuss how to construct an explicit ψ for a general compact convex set K.

3.2 Construction of Homeomorphism

We introduce an explicit-form homeomorphic mapping between convex set K and unit ball B as
follows, termed Gauge mapping [TZ22, LLC25]:
Definition 3.2 (Gauge Mapping). Let γK(x,x◦) = inf{λ ≥ 0 | x ∈ λ(K − x◦)} be the
Gauge/Minkowski function [BM08] given an interior point x◦ ∈ int(K). The gauge mapping
ψ : B → K is defined between a unit ball and a compact convex set:

ψ(z) =
∥z∥

γK(z,x◦)
z+ x◦, ∀z ∈ B; ψ−1(x) =

γK(x− x◦,x◦)

∥x− x◦∥
(x− x◦), ∀x ∈ K. (1)

Figure 2: Gauge mapping illustration.

First, gauge mapping ψ establishes a homeomorphism
between any compact convex set and the unit ball, ensur-
ing that K = ψ(B) and B = ψ−1(K). Intuitively, this
mapping transforms the unit ball by first translating it to
align with an interior point of the convex set, then scaling
points radially outward from this interior point until the
ball’s boundary conforms to the convex set’s boundary
(illustrated in Fig. 2). Moreover, the gauge mapping has
closed-form expressions for common convex sets (linear,
quadratic, second-order cone, and linear matrix inequality
constraints) and can be efficiently computed via bisection methods for general convex constraints.
For a comprehensive property and computation of gauge mapping, we refer readers to Appendix B.

4The term “projection-free” specifically refers to avoiding expensive projections onto original complex
constraint sets, a usage that aligns with standard conventions in the literature [LMY23, LBGH23].
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Leveraging this explicit homeomorphic gauge mapping ψ, we transform problem P to problem
H, and apply Hom-PGD (Alg. 1) to solve it without expensive projection. However, the gauge
mapping ψ depends on the choice of interior point x◦ (shown in Def. 3.2). Different choices of x◦

yield distinct gauge mappings that alter the landscape of the transformed problem H and affect the
convergence behavior of Hom-PGD. As we will establish rigorously in Sec. 4, gauge mappings with
smaller Lipschitz constants favor faster convergence of Hom-PGD. Thus, we proceed to analyze the
Lipschitz properties of the gauge mapping as:
Proposition 3.3 (Bi-Lipschitz Constants of the Gauge Mapping). Let K ⊂ Rn be a compact convex
set and let x◦ ∈ int(K) be an interior point. Define the inner and outer radii with respect to x◦ as

ri := sup{r ≥ 0 : B(x◦, r) ⊆ K}, ro := inf{r ≥ 0 : K ⊆ B(x◦, r)},

such that B(x◦, ri) ⊆ K ⊆ B(x◦, ro). Then the Lipschitz constant (denoted as L(·)) of gauge
mapping ψ associated with K satisfies the following bounds:

Forward Lipschitz: κ2 := L(ψ) ≤ 2 ro + r2o/ri, Inverse Lipschitz:
1

κ1
:= L(ψ−1) ≤ 2/ri.

Therefore, to reduce the Lipschitz constant of the gauge mapping and boost the convergence of
Hom-PGD, we can select a “central” interior point with large inner radius ri or small outer radius ro.
In practice, we may solve a convex problem by minimizing the constraint residual to find a “central”
interior point approximately following [THH23] (refer to Appendix B for details).

4 Performance Analysis

In this section, we present a comprehensive performance analysis for Hom-PGD, including the
landscape analysis, convergence rate, and run-time complexity.

General Assumptions (with details in Appendix C.2): The objective f and constrained functions gi
in P are continuously differentiable and smooth. The homeomorphic mapping ψ is invertible with
a non-singular Jacobian matrix and is (κ1, κ2)-bi-Lipschitz continuous. Additionally, the Jacobian
matrix of ψ (denoted as Jψ) exists and is Lipschitz continuous.

We remark that our theoretical results hold for any homeomorphism satisfying these assumptions, and
we construct a specific homeomorphism, the gauge mapping, in practice. Moreover, gauge mapping
meets these assumptions (with details in Appendix B.3).

4.1 Landscape Analysis

First, under general assumptions, the composite function h = f ◦ψ in problem H inherits favorable
properties as follows (more properties of h are included Lemma D.1).
Lemma 4.1. Denote Lh,0, Lh, κ2, Lψ as the Lipschitz constant of f,∇f,ψ, Jψ respectively. Then h
is Lh,0 := Lf,0κ2 Lipschitz continuous and h is Lh-smooth with Lh = κ22Lf + LψLf,0.

Next, recall that a point x∗ is said to be a stationary point of problem minx∈K f(x) with convex set
K, if ∇f(x∗)⊤(x− x∗) ≥ 0 for any x ∈ K. It is well-known that any stationary point is a global
optimum for a convex constrained optimization problem. A natural question arises: does this property
also hold for the non-convex optimization problem H under convex problem P? For unconstrained
cases, this property does hold, as the function h is invex with the property that every stationary point
of an invex function is a global optimum [Mar85]. For the constrained case, we provide the following
formal statement where the proof is deferred to Appendix D.6.
Proposition 4.2 (Global Optimality of H). Suppose problem P is a convex optimization. If z∗ is a
stationary point of problem H and LICQ (Def. D.3) holds at z∗, then x∗ = ψ(z∗) is a stationary
point of problem P (thus a global optimum). Hence, z∗ is a global optimum.

We remark that the LICQ assumption is mild in our setting. For problem (H), the only constraint is
∥z∥2 ≤ 1, so LICQ holds at any boundary point where the constraint is active. Moreover, since there
are no equality constraints, LICQ trivially holds at any interior point. Moreover, we derive that there
is a one-to-one correspondence for KKT points and non-degenerate stationary points between P and
H. The relevant definitions, formal statements, and proofs are provided in Appendix D.5.
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4.2 Convergence Analysis

In this section, we provide a theoretical convergence analysis of Hom-PGD (Alg. 1) for solving
problem H. Our main result demonstrates that: Hom-PGD achieves the same convergence rate as the
standard PGD for the (non-)convex problem P under mild regularity conditions, despite operating
on the non-convex formulation H.

Before moving on, we recall some basic definitions. An ϵ-stationary point x∗ for problem P is defined
by ∥G(x∗)∥ ≤ ϵ where the gradient mapping G(x) := G1/α(x) = 1

α [x−ΠK (x− α∇f(x))].
Note that in the definition, we omit the dependence of the function G on K and α.

4.2.1 (Strongly) Convex Objective f

The following theorem provides the convergence analysis of Hom-PGD for convex optimization P.

Theorem 1. Suppose the strict complementary slackness condition (Def. D.4) holds for both problem
P and H, and the problem P is convex with a non-degenerate5 minimizer x∗. Let {zk} be the
sequence generated by Hom-PGD with step-size α ∈ (0, 2

Lh
]. For sufficient small ϵ > 0, {zk}Kk=1

with K = O(Lh/ϵ) contains z′ such that h(z′)− h⋆ ≤ ϵ.

Proof Intuition. Under the invertible mapping, z∗ = ψ(x∗) is also a non-degenerate point from
Lemma D.10. Consequently, it satisfies local strong convexity or local PL condition, meaning
that h(z) − h∗ ≤ O(∥G(z)∥2) holds within a sufficiently small ball centered at z∗. As a result,
it follows from Theorem 3 that PGD only requires O(1/ϵ) complexity to find a O(

√
ϵ)-stationary

point z′ such that h(z′)− h(z∗) ≤ O(ϵ). The idea is motivated by [LMY23], which applies specific
Hadamard parameterization to transform a simplex-constrained optimization to a sphere-constrained
optimization. We extend their results to a general homeomorphic mapping ψ, and proof details can
be found in Appendix E.1.

If the objective in P is strongly convex, we will have a faster (i.e., linear) convergence rate as:

Theorem 2. Suppose problem P is convex with µf -strongly convex objective f . Let {zk}k≥0 be
generated by Hom-PGD with proper constant step-size α ∈ (0, 2

Lh
]. With K = O(κ log 1/ϵ) where

κ = Lh/(µfκ1), we have h(zK)− h(z∗) ≤ ϵ, and ∥zK − z∗∥ ≤ ϵ.

Proof Intuition. If f is a strongly convex function over a convex set, it satisfies a generalized PL
condition. The homeomorphic mapping preserves this generalized PL condition such that the linear
convergence can be established for H. Details can be found in Appendix E.2.

Remark. (i) The convergence rates derived in Theorem 1 and 2 match the lower bounds in the
unacclerated convex and strongly convex settings (referring to e.g., [AP23]). (ii) Theorem 1 and
Theorem 2 demonstrate that the Hom-PGD algorithm not only maintains projection-free properties
over the unit ball, reducing per-iteration computational complexity; but also achieves the same
convergence rates as standard PGD when applied to the original convex optimization problem P,
which is non-trivial since Hom-PGD operates on the non-convex objective in problem H.

4.2.2 Non-convex Objective f

For a non-convex objective f , a classical result (e.g., Theorem 9.15 [Bec14]) can be leveraged to
show that Hom-PGD algorithms can converge to an ϵ-stationary point with O(1/ϵ2) iterations.

Theorem 3. Consider a problem minz∈Z h(z) with a convex set Z . Suppose h is non-convex
and differentiable with Lh-Lipschitz continuous gradient. Then the sequence {zk}Kk=0 with K =
O(Lh/ϵ

2) generated by Hom-PGD algorithm with a constant step-size α ∈ (0, 2
Lh

] contains an
ϵ-stationary point z′, i.e, ∥G(z′)∥ ≤ ϵ for some z′ ∈ {zk}Kk=0.

Remark. (i) The convergence rate in Theorem 3 matches the optimal rate for smooth non-convex
optimization problems [CDHS20]. (ii) While Theorem 3 also applies to (strongly) convex objectives,
it yields slower convergence than standard PGD in these cases, as it fails to exploit the convex structure
of problem P and the hidden convexity of problem H [FHH23]. This highlights the significance of

5A minimizer of an optimization problem is non-degenerate if the Hessian of the Lagrangian function is
positive definite in the critical cone of the minimizer. See Appendix D.4 for details.

6



our results in Theorems 1 and 2, where Hom-PGD achieves the same convergence rates of standard
PGD while avoiding expensive projection in the transformed domain. (iii) For non-convex objectives
satisfying regularity conditions such as the KL property or error bound conditions, linear convergence
rates as in Theorem 2 can also be achieved. See Remark E.5 for further discussion.

In these sections, we establish convergence results for Hom-PGD across different problem classes
(Theorems 1, 2, and 3). The convergence rates depend on the Lipschitz constants of the constructed
gauge mapping, specifically: (i) the forward Lipschitz constant κ2, which relates to the parameter Lh

established in Lemma 4.1 and appears in Theorems 1 and 3; and (ii) the inverse Lipschitz constant
1/κ1, which appears in Theorem 2. As demonstrated in Prop. 3.3, the choice of interior point
directly influences the Lipschitz constants of the gauge mapping ψ. Consequently, different interior
points modify the Hom-PGD convergence rate by constant factors while preserving the fundamental
convergence order.

Additionally, our theoretical analysis assumes access to exact gradients and gauge mappings, which is
consistent with standard practice in the optimization literature (e.g., [LBGH23]). However, for general
convex sets, the gauge mapping is numerically approximated using the bisection algorithm (Alg. 2)
to compute both its value and gradient within a specified error tolerance δ at each iteration. This
numerical approximation introduces an additional O(δ) term in the optimality gap of convergence
results [DGN14]. Since δ can be chosen arbitrarily small, this additional error term remains negligible
and does not affect the fundamental convergence guarantees of our algorithm.

4.3 Complexity Analysis
In this subsection, we analyze the total run-time complexity of Hom-PGD, including initialization
complexity, per-iteration complexity, and last-step complexity.

Oracles. We list specific oracles in Hom-PGD besides general ones (e.g., zeroth-order oracle for
explicit function evaluation).
• Membership oracle: Given x ∈ Rn, this oracleMK(x) := I(x ∈ K) : Rn → {0, 1} returns 1 if

and only if x ∈ K. This oracle performs only feasibility checking without requiring the solution of
optimization subproblems. For common convex sets including polyhedra and second-order cones,
the membership oracle can be implemented with computational complexity not exceeding O(n2)
[Mha22], with significantly lower computational burden than LOO or projection in practice.

• Interior point oracle: This oracle returns an interior point of K by solving a convex feasibility
problem. This requirement, common in projection-free frameworks [Mha22, Gri24a, Gri24b], can
be addressed using first-order methods with Õ(n2)6 complexity or interior-point methods with
Õ(n3.5) complexity. Notably, this oracle is only called once for the entire optimization algorithm.

Basic operations in Hom-PGD (with details in Appendix B.4). Hom-PGD requires computing the
gradient of h = f ◦ψ per iteration and transforming the final solution via the gauge mapping.

• Computing gauge mapping ψ: Õ(n). To compute the gauge mapping in the general case, one may
evaluate the gauge function γK(·,x◦) to an accuracy ϵ with O(log 1/ϵ) membership oracle calls,
plus O(n) operations for the scalar-vector product in Def. 3.2.

• Computing gradient of h: Õ(n2). Numerical differentiation techniques (finite/automatic dif-
ferentiation [BF97, BPRS18, LBGH23]) can be applied, e.g., computing each component ∇ih
(i = 1, 2, · · · , n) requires O(1) zeroth-order oracle calls of f and Õ(n) cost for evaluating ψ,
yielding a total complexity of Õ(n2).

Total run-time complexity of Hom-PGD.
• Initialization complexity (IC): One interior point oracle call to obtain an interior point of K.

• Per-iteration complexity (PiC): Each iteration cost Õ(n2), comprising gradient computation∇h(z)
at Õ(n2) and unit ball projection at O(n).

• Last-step complexity (LsC): It costs O(n2) to map the converged solution z∗ back to the original
space via x∗ = ψ(z∗).

• Number of iterations (#I): Convergence rate varies from different settings, referring to Sec. 4.2.

6Here Õ(·) hides polynomial logarithmic factors.
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In conclusion, the total complexity of Hom-PGD equals to IC +#I ·Pic + LsC = O(n2 ·#I). This
complexity is significantly lower than that of second-order methods, which typically incur O(n3)
per-iteration cost, thereby highlighting the scalability of Hom-PGD to high-dimensional problems.
Moreover, our method achieves an optimal convergence rate under the first-order setting, ensuring
both efficiency and theoretical soundness.

5 Discussions

5.1 Beyond Vanilla Gradient Methods
Mirror gradient methods: Mirror descent methods use a mirror map to transform points into a
dual space, where optimization steps are performed. Essentially, these methods can be viewed as
generalized projection methods [BT03]. For example, with a quadratic mirror map, it becomes
standard PGD; with a negative entropy mirror map, it recovers exponential gradient descent for
simplex-constrained problems. However, for general convex constraints, mirror descent often lacks
explicit mirror maps and suffers from high projection complexity, despite having convergence rates
comparable to ours [Bec17].

Advanced gradient methods. One may note that we can replace the unaccelerated gradient methods
with any advanced optimizers, such as momentum-based or Nesterov-accelerated methods, or the
Adam optimizer popular in deep learning [KB14]. Despite their potential for accelerating optimization
of the non-convex landscape in problem H, analyzing the convergence behavior by utilizing the
hidden convexity structure remains challenging, which opens directions for future research. We also
conduct illustrative experiments comparing vanilla gradient descent and Adam in Section 6.4.

Second-order methods. We may also consider second-order methods with projection to optimize
problem H. However, significant challenges arise from both computational and theoretical perspec-
tives. From a computational standpoint, evaluating the Hessian of the composite objective h = f ◦ψ
requires computing a third-order tensor of the gauge mapping, which is both computationally ex-
pensive and memory intensive. From a convergence perspective, analyzing convergence over the
non-convex landscape to a global optimum becomes substantially more difficult.

5.2 Extension to Non-Convex Constraints
Star-shaped set. Our framework can naturally extend to optimization over non-convex sets where an
explicit homeomorphism ψ exists such that ψ(B) = K. For star-shaped sets, all points are visible
from a star center x◦ [Lee10], allowing the construction of a gauge mapping that bijectively maps a
standard ball to the set. Such star-shaped constrained problems arise in machine learning tasks such
as ℓp-constrained adversarial attacks in neural networks [EBMA21]. Applying Hom-PGD to such
problems maintains the O(1/ϵ2) convergence rate for finding an ϵ-stationary point per Theorem 3.

Ball-homeomorphic set. Our framework may also extend to non-convex sets that are homeomorphic
to a unit ball. However, determining if a non-convex set is ball-homeomorphic requires examining its
topological properties, which is challenging. While a homeomorphism exists for such sets, there is
generally no explicit form for the homeomorphism. Learning-based methods for approximating such
homeomorphisms [LCL23, LCL24] present promising directions for future research.

General non-convex set. For more general non-convex sets that may not be ball-homeomorphic
(e.g., disconnected sets), our framework remains applicable but without optimality guarantees. Given
an interior point x◦ in K, we can define X as the largest contained star-shaped set with center x◦.
Similar to constraint restriction methods [LNDT19], the optimality gap depends on the Hausdorff
distance between K and X .

6 Empirical Study
In this section, we conduct simulations to demonstrate the effectiveness of Hom-PGD on both convex
and non-convex constrained optimization problems. The detailed problem formulations, experimental
settings, algorithm hyperparameters, and supplementary experiment results are in Appendix F.

Baselines: (i) PGD: Regular projected gradient descent applied to problem P, where the projection
operation is called at each iteration. (ii) FW: Frank-Wolfe methods, which solve an update direction
with a linearized objective and update the decision variables. (iii) ALM: Augmented Lagrangian
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(a) convergence rate (b) running time (s) (c) PGD iteration (d) Hom-PGD iteration

(e) convergence rate (f) running time (s) (g) PGD iteration (h) Hom-PGD iteration
Figure 3: Performance for optimization over polyhedron (a-d) and star-shaped set (e-h), respectively.
All methods are executed with the same initial points and terminated by a maximum number of
iterations (103). Complete results are in Appendix G.1 (Fig. 8 - 11).

methods for problem P that alternately update primal and dual coefficients for the unconstrained
formulation to problem P. (iv) RD: Radial-Dual framework, which applies radial-dual to formulate
the constrained problem into unconstrained min-max optimization. (v) Hom-PGD: Projected gradient
descent applied to the transformed problem H shown in Sec. 3.

6.1 Illustrative Examples: Optimization over Polyhedron and Star-shaped Set
We examine a two-dimensional illustrative optimization problem involving quadratic optimization
over both a (convex) polyhedron and a (non-convex) star-shaped set to demonstrate our method’s
efficiency. As shown in Fig. 3, Hom-PGD outperforms other first-order algorithms in both settings.
The iteration trajectories in the transformed space reveal the mechanism behind this efficiency:
Hom-PGD avoids complex projections while effectively performing gradient descent in a structured
landscape of problem H to the optimum, even though it is non-convex.

6.2 Solving Second-order Cone Programming (SOCP)
We next evaluate the performance of algorithms on SOCP, which encompasses fundamental convex
programs (LP, QP, convex QCQP) and has widespread applications in portfolio optimization [BBV04]
and optimal power flow problems [Low14a]. Problem instances are randomly generated following
the CVXPY documents. As shown in Fig. 4, our method not only converges rapidly to the target
error tolerance but also demonstrates significantly lower per-iteration costs (up to 3-5 orders of
magnitude) compared to projection-based or Frank-Wolfe methods, since Hom-PGD does not need
complex optimization oracles such as projection or LOO during iterations. Further, we also use a
commercial solver, MOSEK, which typically applies primal-dual interior point methods to solve
convex programs. Notably, the solver costs 5424 seconds to solve the 1000-dim instance, while
Hom-PGD takes less than 600 seconds to reach a 10−3 objective optimality gap.

6.3 Solving Max-Cut Semi-Definite Programming (SDP)
We further evaluate our method on the more challenging max-cut SDP problem. While max-cut is an
NP-hard combinatorial problem, SDP relaxation with randomized rounding achieves an expected
approximation ratio of 0.878 [GW95]. We generate random Erdős-Rényi graphs as test instances
[HSS08]. Since the optimum of the max-cut SDP is typically low-rank, the gauge mapping encounters
non-differentiability at these solutions. To address this practical issue, we apply the smoothing
techniques described in Appendix B.3.2. As shown in Figure 5, our approach demonstrates efficient
optimization even in high-dimensional decision spaces (502 variables) with positive semi-definite cone
constraints. Notably, Hom-PGD exhibits a slower convergence rate on SDP with linear objectives
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(a) (n,m) = (100, 1000) (b) (n,m) = (1000, 2500)

Figure 4: Performance over SOCP: n is the number of decision variables and m is the number of
constraints. All methods are executed with the same initial points and terminated by a maximum
iterations (105) or running time (600 seconds). Complete results are in Appendix G.2 (Fig. 12-14).

(a) n = 302 (b) n = 502

Figure 5: Performance over SDP: there are n = O(N2) decision variables where N is the graph
size. All methods are executed with the same initial points and terminated by a maximum of iterations
(105) or running time (600 seconds). Complete results are in Appendix G.3 (Fig. 15-19).

compared to SOCP with quadratic objectives. This behavior aligns with our theoretical analysis in
Theorems 1 and 2, where strongly convex (quadratic) objectives yield faster convergence rates than
convex (linear) objectives. The ALM methods solve the Burer-Monteiro SDP formulation [BM03]
with log-rank (logN ) and Barvinok-Pataki (bp)-rank (

√
2N ) [Bar95, Pat98, BVB20]. Despite the

scalability of this low-rank formulation, it incurs violation on additional equality constraint and high
iteration cost for each inner minimization. However, the per-iteration complexity of our method still
outperforms other approaches, resulting in comparable convergence in terms of total running time.

6.4 Scalability Tests and Ablation Study
We first evaluate the scalability of gauge mapping computation across various constraints and
dimensions in Fig. 6, demonstrating efficiency (less than 0.01 seconds) up to 3000-dimensional
constraints. Our ablation study further examines critical framework components: (i) interior point
selection (Fig. 20), confirming that central points (smaller Lipschitz) accelerate convergence as
predicted by our theory analysis in Sec. 4.2; and (ii) gradient method variants (Fig. 21), revealing
that advanced optimization techniques (e.g., Adam [KB14]) further enhance performance for solving
non-convex problem H, suggesting promising directions for future research.

7 Conclusion and Limitations
In this work, we propose Hom-PGD, a projection-free method that transforms constrained opti-
mization over general convex (and certain non-convex) sets into a ball-constrained problem via a
homeomorphism. Hom-PGD achieves optimal convergence rates with O(n2) per-iteration com-
plexity without expensive projections or oracles. Numerical results show competitive convergence
with significantly lower iteration costs. Despite its efficiency, there are several limitations to be
addressed in future work: (i) Extending Hom-PGD to more general non-convex sets is non-trivial, as
discussed in Sec. 5. (ii) From the convergence theory perspective, while Hom-PGD achieves optimal
convergence rates under unaccelerated settings, it remains an open question whether acceleration
techniques (e.g., Nesterov-style methods) can be incorporated to attain optimal accelerated rates. The
challenge stems from the non-convexity of the transformed problem H. (iii) The gauge mapping
used in this work serves as a simple and explicit homeomorphism but may not be the optimal choice
in terms of conditioning or convergence behavior. Exploring alternative homeomorphisms tailored to
specific problem structures could further improve performance.
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[ÑFSA14] Ricardo Ñanculef, Emanuele Frandi, Claudio Sartori, and Héctor Allende. A novel
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A Related Work

We discuss related work on methods for reducing computational costs and achieving speedups in
constrained optimization, organized into three parts: (i) classical projection and projection-free
methods, (ii) recent advances, and (iii) work related to ball-constrained optimization.

A.1 Classical Methods

In convex optimization, three classical approaches have been widely studied: Frank-Wolfe methods
[FW+56], which avoids projection through linear minimization oracles over constrained sets; primal-
dual methods [DFF56], which address primarily linear constraints through simultaneous updates
to primal and dual variables; and penalty methods [Ber76], which incorporate constraints into the
objective function using penalty functions [SCB+97]. Each approach has its limitations.

Frank-Wolfe methods. Frank-Wolfe (FW) methods are first-order optimization algorithms that offer
several attractive properties: they are easy to implement, projection-free, affine-invariant [Lan13,
KLLJS21, Pen23],and their iterates naturally form sparse convex combinations of extreme points
in the feasible region, making them particularly valuable for various machine learning applications
[ÑFSA14, JTFF14, BZK18, MHK20, THZK21]. Convergence analysis of classic FW methods
have been widely studied [LP66, DR70, Dun79, GM86]. However, FW methods face two key
limitations: they require an efficient linear minimization oracle [CP21], and they often exhibit slower
convergence rates [BRZ24, FG16]. Specifically, under the Wolfe’s lower bound setting [Wol70], the
FW algorithm cannot achieve convergence rates better than O(ϵ−1+δ) for any δ > 0. Overcoming
this fundamental barrier requires either algorithmic modifications or additional strong assumptions
[GH15, GH16, BPTW19, CP20, WKP23, WPP25]. For advanced convergence analysis, one could
refer to [Pen23, WPP24, MHSY25].

Penalty methods. Penalty methods struggle with ill-conditioning as penalty parameters increase and
perform badly, especially for complex constraints. Primal-dual methods are primarily used to handle
linear constraints [Koj89, Meh92, CP11], and their second-order variants face scalability issues due
to high computational complexity.

First-order primal-dual methods. First-order primal-dual methods iteratively update primal and
dual variables using inexact gradient steps (see, e.g., [HHZ17, CP11]). However, analyzing the
convergence of such methods remains a challenging problem, particularly for nonconvex objectives
[ZL22]. Most existing convergence results focus on problems with linear constraints [LT93b, CP11].
A widely used technique to address this challenge is error-bound analysis [LT93a, Pan97], which
has been effective in establishing convergence rates for first-order methods in the convex setting
[LT92, HL17]. However, these results typically provide only local convergence guarantees—ensuring
convergence only when iterates are sufficiently close to the solution set—and depend on an error-
bound constant that is often unknown or difficult to estimate. Recent work [ZL20, ZL22, ZPL22]
introduces the smooth augmented Lagrangian primal-dual algorithm for constrained optimization.
While this method achieves an optimal convergence rate matching the lower bound of optimization
complexity for nonconvex objectives, it incurs additional projection complexity in each iteration.

A.2 Recent Advances

To reduce the cost and accelerate the convergence for solving (non-)convex optimization over convex
sets, recent novel projection-free methods and other advanced techniques involve inexact projection,
radial dual formulation, re-parameterizing optimization problems, and uncovering hidden convexity.

Inexact projection. In many cases, the projection operator lacks an analytic solution or is com-
putationally expensive to compute exactly, motivating the analysis of inexact projected methods.
For convex optimization, such methods achieve the same convergence rate as PGD if the cumula-
tive projection error is bounded [SRB11, PN18], with new results derived under specific settings
[PI21]. For nonconvex objectives with convex constraints, their convergence has been analyzed in
[BMR03, WL06, ZWWY20]. Recent advances further generalize inexact projection operators to
broader settings [FLP22, AFP23].

Radial duality. Beyond classical projection-free methods, recent advancements have introduced
novel approaches based on gauge and radial duality theory. Radial duality theory for nonnegative
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optimization problems [Gri24a, Gri24b] demonstrates that constrained optimization problems can be
reformulated as unconstrained problems using the gauge of their constraints. This framework has led
to the development of new families of projection-free methods with optimal convergence guarantees
[LG23], as well as relaxed conditions [SG24] that enable more efficient line search operators for the
reformulated unconstrained problems.

Reparameterization. Reparameterization optimization problems aim to mitigate challenging prop-
erties, such as non-smoothness or non-convexity, via invertible transformations while preserving
equivalent optima. Parameterization is widely used in optimization and learning tasks, including
semi-definite programming [Cif21], low-rank optimization [MMBS14, HLB20], and risk minimiza-
tion [BRTW22]. Recent advancements include parameterizing simplex [LMY23] and polyhedron
[TT24] optimization via Hadamard transformation to reduce projection complexity, smooth over-
parameterization to accelerate non-smooth optimization algorithms [PP23], parameterizing discrete
data as continuous for generative learning [DKP+24], and analyzing the optimization landscape
under parameterization transformations in non-convex settings [LKB24].

Hidden convexity. Hidden convexity refers to transformations that reveal the convex structure of non-
convex sets or functions, which has been exploited in problems such as rotation matrix optimization
[RSW24], non-linear least squares [DP19], revenue management and inventory control [CHHY22],
and quadratically constrained quadratic programming (QCQP) with Toeplitz-Hermitian quadratics
[KS15]. For non-convex stochastic optimization with hidden structure, projected gradient-based
algorithms can achieve the same convergence rate as in convex optimization for both strongly convex
[FHH23] and convex objectives [CHHY22] under certain assumptions. Furthermore, QCQP, which
is generally NP-hard, can be solved in polynomial time when hidden convexity is present [KS15].

A.3 Ball-Constrained Optimization

To improve algorithmic performance and reduce the computational cost of constrained optimization,
recent work has explored the use of ball-constrained optimization. The idea dates back to the ellipsoid
method [GLS81], which iteratively encloses the feasible region in shrinking ellipsoids that contain the
optimal solution. Despite its theoretical appeal and linear convergence, the ellipsoid method suffers
from high computational complexity asO

(
n4
)
, making it impractical for large-scale problems. More

recently, [CJJ+20, GLRR25] studied acceleration techniques using ball-optimization oracles for
specific problem settings. Inherently, ball-constrained optimization exhibits favorable properties;
for example, solving quadratic problems over a ball using a combination of bisection and Newton’s
method can achieve a convergence rate of O(log log(1/ϵ)) [Ye94, Ye01], which matches the fast
rate of Newton’s method for unconstrained problems [BBV04]. These developments highlight the
potential of ball-constrained techniques in designing efficient and scalable optimization algorithms.
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B Homeomorphism of Convex set via Gauge Mapping

In this section, we provide the omitted details in Sec. 2 and Sec. 3.

B.1 Handling Constraint Set with Equality

We first explain how to apply our framework to handle constraints with linear equality constraints as
mentioned in Sec. 2. Consider the constrained set K as follows

K = {x | q(x) = 0, g1(x) ≤ 0, · · · , gm(x) ≤ 0}

where q(·) = (q1, q2, · · · , qmeq
) with qi : Rn → R are linear/affine functions.

Note that the rank of Jq is constant for all x, i.e.,

rank (Jq(x)) = r, ∀x ∈ K.

Then {q(x) = 0} is of dimension n− r by the Constant-Rank Level Set Theorem [LL12]. In other
words, we can use a subset of decision variables x1 ∈ Rn−r and reconstruct full decision variable
[x1,x2] ∈ Rn via the equality constraint, where x2 = ϕ (x1) and q ([x1,ϕ (x1)]) = 0. Such a
reconstruction process ensures the feasibility of the equality constraint. Then the constraint K can be
reformulated as

Ks = {x1 ∈ Rn−r | g1(x1,ϕ(x1)) ≤ 0, · · · , gm(x1,ϕ(x1)) ≤ 0}.

It follows from the reconstruction that

(x1,x2 = ϕ (x2)) ∈ K ⇔ x1 ∈ Ks.

Thus, we can assume the constrained set has no inequalities without loss of generality.

B.2 Gauge Mapping for Convex Set

We first recall the definitions of gauge function/mapping.

Definition B.1 (Gauge/Minkowski Function [BM08]). Let C ⊂ Rn be a compact convex set with a
non-empty interior. The gauge/Minkowski function γC : Rn × int(C)→ R≥0 is defined as

γC(x,x
◦) = inf{λ ≥ 0 | x ∈ λ(C − x◦)},

where x◦ ∈ int(C).

Building upon this foundation, we define the gauge mapping between two compact convex sets:

Definition B.2 (Gauge Mapping [TZ22]). Let Z, C ⊂ Rn be compact convex sets with interior points
z◦ ∈ int(Z) and x◦ ∈ int(C), respectively. Then

1) the gauge mapping ψ : Z → C is defined as:

ψ(z) =
γZ(z− z◦, z◦)

γC(z− z◦,x◦)
(z− z◦) + x◦, z ∈ Z,

2) and the inverse gauge mapping ψ−1 : C → Z is given by:

ψ−1(x) =
γC(x− x◦,x◦)

γZ(x− x◦, z◦)
(x− x◦) + z◦, x ∈ C.

We have the following remarks based on the definition.

• In essence, the gauge mapping scales the boundary of a convex set from an interior point to another
convex set and with translation to its interior point.

• When Z is a unit ball, the gauge mapping in Def. B.2 is simplified as Def. 3.2:

ψ(z) =
∥z∥

γC(z,x◦)
z+ x◦, ∀z ∈ B, ψ−1(x) =

γC(x− x◦,x◦)

∥x− x◦∥
(x− x◦), ∀x ∈ C.
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B.3 Properties of Gauge Mapping

The gauge function satisfies the following properties.
Proposition B.3 (Basic Properties of Gauge Function). Let C be a compact and convex set. For all
x,y ∈ Rn and α ≥ 0, gauge function γC(·,x◦) given an interior point x◦ ∈ int(C) satisfies:

• Non-negativity: γC(x,x◦) ≥ 0.

• Positive homogeneity: γC(αx,x◦) = αγC(x,x
◦).

• Subadditivity: γC(x+ y,x◦) ≤ γC(x,x◦) + γC(y,x
◦).

• Convexity.

• Differentiability: Gauge function is twice differentiable almost everywhere.

• Upper/lower bounds: γC(x,x◦) ∈ [∥x∥/ro, ∥x∥/ri].

• Lipschitz continuous: ∥γC(x,x◦)− γC(y,x◦)∥ ≤ 1
ri
∥x− y∥.

Proof. We show them one by one in the following.

1)2) The definition can directly derive non-negativity and positive homogeneity.

3)To show subadditivity, let
λx = γC (x,x

◦) and λy = γC (y,x
◦) .

By the definition of the gauge function, there exist points u,v ∈ C − x◦ such that x = λxu and
y = λyv. Now, consider the sum:x+ y = λxu+ λyv. Write this sum as

x+ y = (λx + λy)

(
λx

λx + λy
u+

λy
λx + λy

v

)
.

Since C − x◦ is convex (as a translation of the convex set C ), the convex combination
λx

λx + λy
u+

λy
λx + λy

v ∈ C − x◦.

Thus, x + y ∈ (λx + λy) (C − x◦) which implies by the definition of γC that γC (x+ y,x◦) ≤
λx + λy. Since λx and λy can be arbitrarily approximated by sequences converging to γC (x,x◦)
and γC (y,x◦) (if the infimum is not attained exactly), we conclude γC (x+ y,x◦) ≤ γC (x,x◦) +
γC (y,x

◦) .

4) Convexity is induced by Positive homogeneity and Subadditivity.

5) Differentiability is from the fact that Convex functions over a compact set are twice differentiable
almost everywhere [Eva18].

6) By the definition of gauge function (Def. B.5), we have:

γC(x,x
◦) =

∥x∥
dC(x◦,x/∥x∥)

∈ [∥x∥/ro, ∥x∥/ri]

7) By the subadditivity, we have:
γC(x,x

◦)− γC(y,x◦) ≤ γC(x− y,x◦) + γC(y,x
◦)− γC(y,x◦) = γC(x− y,x◦) ≤ ∥x− y∥/ri

Similarly, we have:
γC(y,x

◦)− γC(x,x◦) ≤ γC(y − x,x◦) ≤ ∥x− y∥/ri
Thus, we have

∥γC(x,x◦)− γC(y,x◦)∥ ≤ 1

ri
∥x− y∥.

Based on the non-negativity, positive homogeneity, and subadditivity, the gauge function generalizes
the concept of a norm. For a set C that is symmetric about the origin, the gauge function γC(x,0)
defines a norm. In particular, when C = Bp = {x ∈ Rn | ∥x∥p ≤ 1} is the unit ball of the p-norm,
we have γBp

(x,0) = ∥x∥p.
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B.3.1 Proof of Proposition 3.3: Bi-Lipschitz Constants of Gauge Mapping

Next, we prove Proposition 3.3, stating that the gauge mapping is bi-Lipschitz continuous with
constant depending on ri and ro.

Proof of Proposition 3.3. We begin with the forward gauge mapping from the 2-norm ball B to C as

ψ(z) =
∥z∥

γC(z,x◦)
z+ x◦, ∀z ∈ B

Differentiating ψ(z) with respect to z (using the product and quotient rules) yields

Jψ(z) =
∥z∥

γC(z,x◦)
I+

zz⊤

γC(z,x◦)
− ∥z∥
γC(z,x◦)2

z
(
∇zγC(z,x

◦)
)⊤
.

Taking the operator norm and applying the triangle inequality gives∥∥∥Jψ(z)∥∥∥ ≤ ∥z∥
γC(z,x◦)

+
∥z∥

γC(z,x◦)
+

∥z∥2

γC(z,x◦)2

∥∥∥∇zγC(z,x
◦)
∥∥∥

≤ ro + ro +
r2o
ri
,

where in the last inequality we have used the facts that (i) for z ∈ B one has ∥z∥ ≤ 1, (ii) the
gauge function satisfies γC(z,x◦) ∈ [∥z∥/ro, ∥z∥/ri], and (iii) ∥∇zγC(z,x

◦)∥ is bounded by 1/ri.
In summary, we obtain ∥∥∥Jψ(z)∥∥∥ ≤ 2ro +

r2o
ri
,

which proves that the forward Lipschitz constant of ψ satisfies

Lip(ψ) ≤ 2ro +
r2o
ri
.

Next, consider the inverse gauge mapping from C to the 2-norm ball as

ψ−1(x) =
γC(x− x◦,x◦)

∥x− x◦∥
(x− x◦), ∀x ∈ C.

Differentiating with respect to x gives

Jψ−1(x) = ∇γC(x− x◦,x◦)

(
x− x◦

∥x− x◦∥

)⊤

+ γC(x− x◦,x◦) ·
I − (x−x◦)(x−x◦)⊤

∥x−x◦∥2

∥x− x◦∥
.

Taking norms and again using the triangle inequality leads to

∥∥∥Jψ−1(x)
∥∥∥ ≤ ∥∥∥∥∥∇γC(x− x◦,x◦)

(
x− x◦

∥x− x◦∥2

)⊤
∥∥∥∥∥+ γC(x− x◦,x◦)

∥∥∥∥∥∥I −
(x−x◦)(x−x◦)⊤

∥x−x◦∥2

∥x− x◦∥

∥∥∥∥∥∥ .
Using the bound γC(x − x◦,x◦) ∈ [∥x − x◦∥/ro, ∥x − x◦∥/ri] and the projection matrix related
term has norm at most 1/∥x− x◦∥), we have∥∥∥Jψ−1(x)

∥∥∥ ≤ 1

ri
+

1

ri
=

2

ri
.

Thus, the inverse Lipschitz constant is bounded by

Lip(ψ−1) ≤ 2

ri
.

This completes the proof.
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B.3.2 Smoothing Technique for Gauge Mapping

Moreover, we have the following property for gauge mapping as a corollary from Proposition B.3.

Corollary B.4. The gauge mapping ψ defined in Def. B.2 is twice differentiable almost everywhere.

This corollary follows directly from Proposition B.3 and aligns with our general assumptions (see
Appendix C.2). However, the existence of a zero-measure set of non-differentiable points creates a
gap between our theoretical requirements and the current formulation. For instance, in max-cut SDP
problems, low-rank optimal solutions lead to non-differentiable points on the PSD cone constraint
boundary due to eigenvalue multiplicity at the maximum eigenvalue, causing convergence behavior to
oscillate around the optimum. While these points may have no practical impact on most engineering
problems, mathematical rigor demands that we address this discrepancy.

To bridge this gap, we introduce a smoothing technique. Recall that the gauge mapping ψ from the
unit ball B to a convex set C is computed (see Appendix B.4) as:

ψ(z) =
1

κC (x◦, z/∥z∥)
· z+ x◦

where κC is the inverse distance function (Def. B.5).

In practice, most constraints we encounter are listed in Table 2. The non-smoothness of κC (and
thus ψ) arises from the use of the max operator (including the ReLU operator [·]+) when handling
multiple constraints. We define κi(x◦,v) such that κCi

(x◦,v) = [κi(x
◦,v)]+ in Table 2. Hence,

each κi is smooth. We then express κC(x◦,v) = max
1≤i≤m

{κi(x◦,v), 0} and, letting κm+1 = 0, we

simplify this as
κC(x

◦,v) = max
1≤i≤m

{κi(x◦,v)},

with loss of generality. In the following, for convenience, we fix x◦ and write κi(v) instead of
κi(x

◦,v).

We smooth κC using the log-sum-exp approximation (also called Nesterov smoothing) with parameter
η > 0 following [Gri24b, Nes05]:

κη(v) = η log

(
n∑

i=0

exp

(
κi(v)

η

))
,

with the corresponding gradient

∇κη(v) =
m∑
i=1

λi∇κi(v) where λi =
exp (κi(v)/η)∑m
j=1 exp (κj(v)/η)

.

By replacing the objective h = f ◦ψ with hη = f ◦ψη where ψη(z) =
1

κη(x◦,z/∥z∥) · z+ x◦, we
obtain a twice-differentiable homeomorphism. The smoothing introduces an optimality gap of O(η)
[Nes05, Gri24b] (here the hidden constant is dependent on the Lipschitz constant of f ), which can be
made arbitrarily small by choosing η sufficiently small.

B.4 Computation of Gauge Mapping

For computational purposes, we introduce a point-to-boundary distance function and its inverse.

Definition B.5 (Point-to-Boundary Distance [THH23]). Let C ⊂ Rn be a compact convex set and
x◦ ∈ int(C). For any unit vector v ∈ Sn−1 = {u ∈ Rn | ∥u∥ = 1}, we define the interior-point-to-
boundary distance function dC : int(C)× Sn−1 → R≥0 along direction v as

dC(x
◦,v) = sup{λ ≥ 0 | x◦ + λv ∈ C}.

The inverse distance function κC : int(C)× Sn−1 → R≥0 is defined as κC(x◦,v) := 1/dC(x
◦,v).

We then have the following rules for computing the gauge mapping with the help of the point-to-
boundary distance function.
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• This distance function relates to the gauge function as:

γC(x,x
◦) = κC(x

◦,x/∥x∥) · ∥x∥ = ∥x∥
dC(x◦,x/∥x∥)

.

• Further, considering the positive homogeneity, we have:

γC(x/∥x∥,x◦) = κC(x
◦,x/∥x∥) = 1

dC(x◦,x/∥x∥)
.

• The gauge mapping between B and C can be simplified as:

ψ(z) = dC(x
◦, z/∥z∥) · z+ x◦, ∀z ∈ B

ψ−1(x) =
x− x◦

dC(x◦, (x− x◦)/∥x− x◦∥)
, ∀x ∈ C.

Therefore, we can compute the inverse distance function to obtain the gauge mapping. In practice,
we can compute the inverse distance function κC(x◦, ·) as follows.

• Closed-form for common constrained set. For various common constraint types, Table 2 provides
closed-form expressions of the inverse distance function and Fig. 6 show the actual computational
cost for it. Most matrix calculations can be computed and stored offline before being applied online
given v.

• Bisection-based algorithm for general constrained set . When the inverse distance function lacks
a closed-form expression, we employ an efficient bisection algorithm detailed in Alg. 2. This
algorithm supports batch processing, enabling efficient parallel computation for multiple inputs
simultaneously.

Figure 6: Illustration of gauge function calculation time as constraint dimension varies.

B.5 Gauge Mapping in Hom-PGD

Optimizing the interior point in Hom-PGD. As shown in Sec. 4, one can select a central interior
point with large inner radius ri or smaller outer radius ro to reduce the Lipschitz constant of the
gauge mapping ψ thereby boosting the convergence rate of Hom-PGD. Here, we introduce two types
of interior points which maximize ri and minimize ro, respectively, below.

• Chebyshev center: maximizes the minimum distance from the point to the boundary of the set for a
large inner radius ri:

x◦ = argmax
x∈K

min
y∈∂K

∥x− y∥.

• Min-max center: minimizes the maximum distance from the point to the boundary of the set for a
smaller outer radius ro:

x◦ = argmin
x∈K

max
y∈∂K

∥x− y∥.
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Table 2: Closed-form Expressions for Inverse Distance Functions [THH23]

Constrained Set C Formulation Inverse Distance Function
κC(x

◦,v)

Linear {x : a⊤x ≤ b} ( a⊤v
b−a⊤x◦ )

+

Quadratic {x : x⊤Qx+ a⊤x ≤ b} (1/root (AQ, BQ, CQ))+

Second Order Cone {x : ∥A⊤x+ p∥2 ≤ a⊤x+ b} (1/root(AS, BS, CS))
+

Linear Matrix Inequality {x :
∑n

i=1 xi · Fi + F0 ⪰ 0}
(
eig

(
L⊤ (−S)L

))+
Intersections C =

⋂m
i=1 Ci max

1≤i≤m
{κCi(x

◦,v)}

1 Notation: x, a ∈ Rn, b ∈ R, Q ∈ Sn+, A ∈ Rn×m, p ∈ Rm, F0, · · · ,Fn ∈ Rm×m, X ∈ Rn×n, (·)+ =

max(·, 0).

2 root(x1, x2, x3) =
−x2±

√
x2
2−4x1x3

2x1
denotes the roots for quadratic equation.

3 AQ = v⊤Qv, BQ = 2x◦⊤Qv + a⊤v, CQ = x◦⊤Qx◦ + a⊤x◦ − b.
4 AS = (A⊤v)⊤(A⊤v) − (a⊤v)2, BS = 2(A⊤x◦ + p)⊤(A⊤v) − 2(a⊤x◦ + b)(a⊤v), CS = (A⊤x◦ +

p)⊤(A⊤x◦ + p) − (a⊤x◦ + b)2.
5 H = F0 +

∑n
i=1 x◦

i Fi ,H−1 = L⊤L ,S =
∑n

i=1 viFi. eig(X) = λ1, · · · , λn denotes the eigenvalues satisfying
det(X− λI) = 0. Note that only the maximum eigenvalue is needed. Thus, power iteration methods can be applied to compute
it efficiently.

6 Note that all v-independent terms can be computed only once and stored for use.

Algorithm 2 Bisection Algorithm for Inverse Point-to-Boundary Distance
Input: A compact convex set C, an interior point x◦ ∈ C, and a unit vector v.

1: αl = 0, and αu = 1
2: while |αl − αu| ≥ 10−3 do
3: if x◦ + αu · v ∈ C then
4: increase lower bound: αl ← αu

5: double upper bound: αu ← 2 · αm

6: else
7: bisection: αm = (αl + αu)/2
8: if x◦ + αm · v ∈ C then
9: increase lower bound: αl ← αm

10: else
11: decrease upper bound: αu ← αm

12: end if
13: end if
14: end while
Output: inverse distance: κC(x◦,v) ≈ 1/αm

According to the definitions, the Chebyshev center maximizes ri and the min-max center minimizes
ro. For certain convex sets, one can efficiently compute these centers. For instance, for a polyhedron,
one can find the Chebyshev center by solving an LP (see e.g., [BBV04]). However, for general
convex sets, computing the Chebyshev center entails solving a convex optimization problem that may
be very hard due to the infinitely many constraints where each corresponding to a boundary point of
the set.

In practice, we may minimize the constraint residual to find an approximate central interior point
following [THH23]. Concretely, we solve the following convex program to obtain an interior point
x◦ ∈ K := {g(x) ≤ 0}.

(x◦, ϵ) = argmax
x,ϵ

ϵ

s.t. g(x) ≤ −ϵ1,
ϵ > 0.

Note that in the main experiments, we set ϵ = 10−3 as a constant to solve this convex feasibility
problem to obtain an interior point (which may be close to the boundary). In the ablation study, we
solve this residual maximization problem to obtain a “central” interior point for comparison.

26



Computation of basic operations in Hom-PGD. We now summarize the practical methods used to
compute the key operations in Hom-PGD, including the gauge function/mapping and the gradient of
h = f ◦ψ:

• Computing the gauge function γK(·,x◦): Compute the inverse distance function κK(x◦, ·) via
Algorithm 2 or using the closed form when available.

• Computing the gauge mapping ψ: Derived from Definition B.2, given γK(·,x◦).
• Computing the gradient of h = f ◦ψ: Approximated using numerical differentiation methods. If h

has a closed-form, the gradient can be computed using automatic differentiation methods (see e.g.,
[BPRS18]). For general cases, we adopt the finite difference method for computing the gradient of
the gauge function in [LBGH23], i.e., for i = 1, 2, . . . , n:

∇ih(x) =
h(x+ λei)− h(x)

λ

given a proper small number λ > 0 where ei denotes the standard basis over Rn.

Next, we summarize the complexity for computing the above basic operations.
Proposition B.6. With the zeroth-order oracle of f and the membership oracle, the computational
complexity of the basic operations in Hom-PGD is as follows.

(i) Computing gauge function γK(·,x◦) to an error ϵ costs O(log 1/ϵ).

(ii) Computing gauge mapping ψ(x) costs Õ(n).

(iii) Computing the gradient of h = f ◦ψ costs Õ(n2).

Proof. We show them one by one in the following.

(i) This is a classical result of the bisection-based algorithm. Using O(log 1/ϵ) number of calls to the
membership oracle, we can get an ϵbis-approximate solution to the gauge function γK(·,x◦). One
could refer to, e.g., [LCL23, LBGH23, Mha22] for a detailed proof.

(ii) From Def. B.2, computingψ requires Õ(1) complexity to evaluate γC(·,x◦) andO(n) complexity
to compute the scalar-vector product dC(x◦, ·) · z.

(iii) From the finite difference method described above, computing each partial derivative ∇ih
requires evaluating h, which involves a zeroth-order oracle call to f and a computation of the gauge
mapping ψ. Therefore, computing each ∇ih(x) (i = 1, 2, . . . , n) costs Õ(n), leading to a total of
Õ(n2) to compute the gradient mapping∇h.

C Preliminaries for Technical Proof

In this section, we summarize the related basic concepts, notations, assumptions, and fundamental
propositions and lemmas.

C.1 Basic Concepts

We list the basic concepts used in this paper below.

• Indicator function. For a set X ⊂ Rn, the indicator function δX : Rn → R is defined as

δX (x) :=

{
1 if x ∈ X ,
∞ if x /∈ X .

• Distance between a point and a set. For a closed set X ∈ Rn and any x ∈ Rn, the distance between
x and X is defined as dist(x,X ) = infy∈X ∥x− y∥.

• Orthogonal projection. For a closed set X , the orthogonal projection of a point x ∈ Rn onto X is
defined as ΠX (x) = argminy∈X ∥x− y∥.

• Function convexity. For a differentiable function f : X ⊆ Rn → R, it is said to be convex if one
of the following holds:
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1) Jensen’s inequality. For θ with 0 ≤ θ ≤ 1, we have f(θx+(1− θ)y) ≤ θf(x)+ (1− θ)f(y)
for all x,y ∈ X .

2) first-order condition. f(y) ≥ f(x) + ⟨∇f(x),y − x⟩,∀x,y ∈ X .
3) monotone gradient. (∇f(x)−∇f(y))T (x− y) ≥ 0 for all x,y ∈ X .

• L-Smoothness. A differentiable function f : X ⊆ Rn → R is said be L-smooth if one of the
following holds:

1) zeroth-order condition. f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)− L
2 λ(1− λ)∥y − x∥2,

for all x,y ∈ X , λ ∈ [0, 1].
2) first-order condition. f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2 ∥y − x∥2, for all x,y ∈ X .
3) Lipschitz gradient. ∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥, for all x,y.

• µ-Strong convexity. A differentiable function f : X ⊆ Rn → R is said be µ-strongly convex holds
if one of the following holds:

1) zeroth-order condition. f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− µ
2λ(1− λ)∥y − x∥2,

for all x,y ∈ X , λ ∈ [0, 1].
2) first-order condition. f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2 ∥y − x∥2, for all x,y ∈ X .
3) strictly monotone gradient. ⟨∇f(y)−∇f(x),y − x⟩ ≥ µ∥y − x∥2, for all x,y ∈ X .

• Stationary point. Consider a program {minx f(x), s.t., x ∈ X} where f is differentiable and X
is a convex set. Let α > 0. Then a point x∗ is called a stationary point for the program if

ΠX (x− α∇f(x)) = x,

or equivalently (see e.g. [Bec14])
⟨∇f (x∗) ,x− x∗⟩ ≥ 0, ∀x ∈ X .

• Jacobian matrix. Suppose f : Rn → Rm is a function such that each of its first-order partial
derivatives exists on Rn. Then the Jacobian matrix of f , denoted Jf ∈ Rm×n, is defined as
Jf = ( ∂fi

∂xj
)ij .

• A Hessian of a function f : Rn → R is defined as∇2f = ( ∂2f
∂xi∂xj

)ij ∈ Rn×n, if its second-order
partial derivatives exist. Moreover, for a mapping f : Rn → Rm with existed second-order partial
derivatives of each component fi (i = 1, 2, · · · ,m). The Hessian of f is defined as

H(f) = (∇2f1, · · · ,∇2fm).

C.2 Basic Assumptions and Notations

In the following, we make assumptions throughout the paper.

• Assumptions on f and constraints gi (i = 1, 2, · · · ,m) in problem P:
1) f is Lf,0 Lipschitz continuous, i.e., ∥f(x)− f(y)∥ ≤ Lf,0∥x− y∥ for any x,y.
2) f in problem P is differentiable and Lf smooth.
3) f∗ > −∞ where f∗ := minx∈K f(x).
4) Each gi is Lgi,0-Lipschitz continuous, differentiable, and Lgi -smooth.

• Assumptions on the homeomorphic mapping ψ : Rn → Rn:
1) ψ is differentiable with non-singular Jacobian Jψ(·),
2) ψ is (κ1, κ2)-bi-Lipschitz continuous for κ2 ≥ κ1 > 0, i.e.,

κ1∥u− v∥ ≤ ∥ψ(u)−ψ(v)∥ ≤ κ2∥u− v∥.
Then the Jacobian matrix, Jψ(·) and Jψ−1(·) will satisfy

∥Jψ(z)∥ ≤ κ2, ∀z, ∥Jψ−1(x)∥ ≤ 1

κ1
, ∀x.

3) ψ has Lψ-Lipschitz continuous Jacobian matrix, i.e.,
∥Jψ(u)− Jψ(v)∥ ≤ Lψ∥u− v∥, ∀u,v.

4) ψ has continuous Hessian, i.e.,
Hψ(z) = (∇2ψ1, · · · ,∇2ψn)

exists and is continuous.

In addition, we summarize the commonly used notations in this paper in Table 3.
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Table 3: Summary of Notations. The notations shown in the table is for problem P and we use the
same type notations for problem H.

Notation Definition

∥ · ∥ l2-norm ∥ · ∥2
B unit ball centered at 0
Lf,0 Lipschitz constant of f
Lf Lf -smooth property of f
µf µf -strong convexity of f
κ1, κ2 bi-Lipschitz constant of ψ
D distortion of ψ, i.e., κ2/κ1
Lψ Lipschitz constant of Jψ
int(K),∂K the interior,boundary of K

C.3 Basic Facts

In this section, we list the fundamental facts we will use in this paper.
Proposition C.1 (Global Optimality Condition, see e.g., [BBV04, Bec17]). For convex constrained
optimization {minx f(x), s.t. x ∈ X}, x∗ is a global optimum if and only if x∗ is a stationary point
of the problem, i.e.,

⟨∇f(x∗),x− x∗⟩ ≥ 0.

Proposition C.2 (Properties of Orthogonal Projection, see e.g., [Bec14]). The projection operator
ΠC over a closed and convex set C satisfies the following properties.

1) Optimality condition: ∀y ∈ C, ⟨x−ΠC(x),y −ΠC(x)⟩ ≤ 0.

2) Non-Expansiveness: ∥ΠC(x)−ΠC(y)∥ ≤ ∥x− y∥.

3) Monotonicity: ⟨ΠC(x)−ΠC(y),x− y⟩ ≥ 0.

We have the following lemma related to ψ to help with the computation.
Lemma C.3. Suppose Jψ is Lψ Lipschitz, i.e., ∥Jψ(u)− Jψ(z)∥ ≤ Lψ∥u− z∥ for any u and z.
Then, we have

∥ψ(u)−ψ(z)− Jψ(z)(u− z)∥ ≤ Lψ∥u− z∥2

2
, ∀u, z.

One can refer to Lemma 1.2.3 [N+18] for the proof.

Next, we list the following rules for basic computation:

• Jacobian equivalence: Jψ−1(x) = J−1
ψ (z) for z = ψ(x).

• Chain rule for computing gradient of h = f ◦ψ:

∇h(z) = Jψ(z)
⊤∇f(ψ(z)) = Jψ(z)

⊤∇f(x).

• Chain rule for computing gradient of f :

∇f(x) = Jψ−1(x)⊤∇h(z) = J−1
ψ (z)⊤∇h(z).

• Chain rule for computing Hessian of h = f ◦ψ:

∇2h(z) = Jψ(z)
⊤∇2f(ψ(z))Jψ(z) +

n∑
i=1

∂f

∂xi
(ψ(z))∇2ψi(z).

D Landscape Analysis

In this section, we provide landscape analysis to understand important relationships between problem
P and H.
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Figure 7: Illustration of the action of homeomorphism on a polyhedron. The left figure is the
polyhedral constraints of problem P. Each color of line represents a constraint inequality {a⊤i x ≤ bi}
for some i. Under the homeomorphic mapping ψ, the constrained set is transformed to a ball (right
figure). Each constraint inequality {Gi(z) ≤ 0} (colored differently) is non-convex in general.

D.1 Action of Homeomorphism on a Constrained Set

Recall that the constrained set is K = {x ∈ Rn | g(x) ≤ 0} with g = (g1, g2, · · · , gm) where gi
(i = 1, 2, · · · ,m) is a convex function. For problem H,

B = ψ−1(K) = {z ∈ Rn | ψ(z) ∈ K} = {z ∈ Rn | G(z) := g(ψ(z)) ≤ 0}

where Gi might be non-convex even for convex gi. However, B is assumed to be convex (actually a
ball set) in this paper. One can refer to Fig. 7 for an illustration.

Moreover, we assume there are no redundant inequalities in K, i.e., there is no gi such that it can be
represented as the positive linear combination of other inequalities. In this case, any feasible point x
satisfying gi(x) = 0 for some i is on the boundary of the set K. Moreover, we have

{x ∈ K | gj(x) = 0, gk(x) ̸= 0}
⋂
{x ∈ K | gk(x) = 0, gj(x) ̸= 0} = ∅

for any k ̸= j. Note B = {z | Gi(z) ≤ 0, i = 1, 2, · · · ,m} = {z | ∥z∥2 ≤ 1}. Moreover,
{Gi(z) ≤ 0, i = 1, 2, · · · ,m} also has no redundant constraints by the non-singularity of the
Jacobian of ψ and similarly,

{z ∈ B | Gj(z) = 0, Gk(z) ̸= 0}
⋂
{z ∈ B | Gk(z) = 0} = ∅

for any j ̸= k. Hence if z ∈ B satisfies Gi(z) = 0 for some i, it lies on the boundary of B. Clearly,
we have

Gi(z) = ∥z∥2 − 1 at z′ ∈ B, Gi(z
′) = 0, (2)

and
∇Gi(z) = 2z,∇2Gi(z) = 2In at z′ ∈ B, Gi(z

′) = 0. (3)

where In is the identity matrix of n by n.

D.2 Properties of Function h = f ◦ψ

Lemma D.1 (Properties of h = f ◦ ψ). Under the general assumptions C.2, h = f ◦ ψ has the
following properties.

1) h is Lh,0 := Lf,0κ2 Lipschitz continuous.

2) h is Lh-smooth with Lh = κ22Lf + LψLf,0.

3) If f is convex, then h is ℓh-weakly convex with ℓh = Lf,0Lψ .

4) If f is µf -strongly convex. Then h satisfies the quadratic growth condition with mh =
µfκ1

2 on
the ball set B, i.e.,

h(z)− h∗ ≥ mh∥z− z∗∥2, ∀z ∈ B. (4)
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Proof. We prove them one by one in the following.

1) We can directly derive from basic definitions:

∥h (u)− h (v)∥ ≤ ∥f (ψ (u))− f (ψ (v))∥
≤ Lf,0 ∥ψ (u)−ψ (v)∥
≤ Lf,0Lψ ∥u− v∥ .

2) From Lf -smoothness of f , we have

∥∇f(x)−∇f(y)∥ ≤ Lf∥x− y∥. (5)

Then we derive with x = ψ(z),v = ψ(y),

∥∇h(z)−∇h (v)∥ =
∥∥∥Jψ(z)⊤∇f(x)− Jψ (v)

⊤∇f (y)
∥∥∥

=
∥∥∥Jψ(z)⊤ (∇f(x)−∇f (y)) + (Jψ(z)− Jψ (v))

⊤∇f (y)
∥∥∥

≤
∥∥Jψ(z)⊤ (∇f(x)−∇f (y))

∥∥+ ∥∥∥(Jψ(z)− Jψ (v))
⊤∇f (y)

∥∥∥
≤ κ2Lf ∥ψ(z)−ψ (v)∥+ LψLf,0 ∥z− v∥
≤
(
κ22Lf + LψLf,0

)
∥z− v∥ .

Let Lh = κ22Lf + LψLf,0. We have the conclusion.

3) One hope to show h(·) + ℓh
2 ∥ ·+v∥2 is a convex function, i.e.,

h(v) +
ℓh
2
∥v∥2 ≥ h(z) + ℓh

2
∥z∥2 + ⟨∇h(z) + ℓhz,v − z⟩, ∀z,v.

This is equivalent to show

h(v) +
ℓh
2
∥v − z∥2 ≥ h(z) + ⟨∇h(z),v − z⟩, ∀z,v.

We drive with x = ψ(z),y = ψ(v) as follows,

⟨∇h(z),v − z⟩ =
〈
∇Jψ(z)⊤f(x),v − z

〉
= ⟨∇f(x), Jψ(z)(v − z)⟩
= ⟨∇f(x),−ψ(v) +ψ(z) + Jψ(z)(v − z)⟩+ ⟨∇f(x),ψ(v)−ψ(z)⟩
≤ ∥∇f(x)∥ · ∥ψ(v)−ψ(z)− Jψ(z)(v − z)∥+ ⟨∇f(x),y − x⟩
≤ Lf,0Lψ∥z− v∥2 + f(y)− f(x)
= Lf,0Lψ∥z− v∥2 + h(v)− h(z)

where the first inequality is from triangular inequality and the second inequality is from Lemma C.3
and the convexity of f .

4) Note that optimality implies stationarity. By the strong convexity of f , for any x ∈ K and x∗ ∈ K∗,
we have

f(x) ≥ f (x∗) + ⟨∇f (x∗) ,x− x∗⟩+ µf

2
∥x− x∗∥2 ≥ f (x∗) +

µf

2
∥x− x∗∥2 .

Here the last inequality is from the global optimality condition C.1.

With x = ψ(z), we have

h(z) ≥ h(z∗) + µf

2
∥ψ(z)−ψ(z∗)∥2 ≥ h(z∗) + µf

2
κ1∥z− z∗∥2.
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D.3 Stationary Points and KKT Points

Recall that the stationary point x⋆ of a set K is defined by the variational inequality:
⟨∇f (x∗) ,x− x⋆⟩ ≥ 0,∀x ∈ K. (6)

Besides, a tuple (x,λ) is said to satisfy the Karush–Kuhn–Tucker (KKT) condition of problem P if
the following holds

∇f(x) +
m∑
i=1

λi∇gi(x) = 0,

gi(x) ≤ 0, i = 1, 2, · · · ,m
λ ≥ 0, λigi(x) = 0, i = 1, 2, · · · ,m

(7)

where λ is the dual variable corresponding to inequality constraints.
Definition D.2 (KKT Stationary Point). A point x∗ is said to be a KKT stationary point of P if there
exists λ∗ such that (x∗,λ∗) satisfies KKT condition (7).

Actually, these two definitions are equivalent under mild conditions, which will be discussed later.
Before moving on, we introduce related definitions.
Definition D.3 (Constraints Qualification). Let x̄ be feasible for a problem with constraint set

{x | gi(x) ≤ 0, qj(x) = 0, for i = 1, 2, · · · ,m, and j = 1, 2, · · · , p}
and put A(x̄) := {i | gi(x̄) = 0}. We say that

1) the linear independence constraint qualification (LICQ) holds at x̄ (and write LICQ(x̄) ) if the
gradients

∇gi(x̄)(i ∈ A(x̄)), ∇qj(x̄)(j = 1, . . . , p)
are linearly independent.

2) the Mangasarian-Fromovitz constraint qualification (MFCQ) holds at x̄ (and write MFCQ(x̄) ) if
the gradients

∇qj(x̄)(j = 1, . . . , p)
are linearly independent and there exists a vector d ∈ Rn such that

∇gi(x̄)⊤d < 0(i ∈ A(x̄)), ∇qj(x̄)⊤d = 0(j = 1, . . . , p).

Definition D.4 (Strict Slackness). It is said that the strict complementary slackness condition holds
for problem P, if

λ∗i > 0 for gi(x
∗) = 0,

and for problem H, if
ν∗ > 0 for ∥z∗∥ = 1.

Definition D.5 (Slater’s Condition). It is said that the Slater’s condition holds for a problem with
constrained set K := {gi(x) ≤ 0, i = 1, 2, · · · ,m}, if there exists x0 such that for all i =
1, 2, · · · ,m,

gi(x0) < 0.

It is established that the variational inequality (6) and the KKT system (7) coincide with a strong
relationship if certain constraints qualification holds. One could refer to [HP90, FFK98, Tob86] for
detailed discussion. We summarize the conclusion in the following proposition.
Proposition D.6. We have the following relationship between (6) and (7).

1) If x∗ is a solution of the variational inequality (6) and a certain constraint qualification (e.g.,
LICQ, MFCQ, see Def. D.3) holds at x∗, then there exists λ∗ such that the tuple (x∗,λ∗) satisfy the
KKT system (7).

2) Suppose f and gi (i = 1, 2, · · · ,m) are convex and Slater’s condition D.5 is satisfied. If x∗ is a
solution of the variational inequality (6), then there exists λ∗ such that the tuple (x∗,λ∗) satisfy the
KKT system (7).

3) If (x∗,λ∗) satisfies the KKT system (7) and g is convex, then x∗ satisfy the variational inequalities
(6).

Proof. One can refer to e.g. [Tob86, HP90] for item (1) and (3) and refer to e.g. Theorem 3.78
[Bec17] for item (2).
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D.4 KKT Conditions of Problem P and H

We first introduce the following definition.

• The normal cone NS(x) of a closed and convex set K at x ∈ K is defined as

NK(x) = {y : ⟨y, z− x⟩ ≤ 0 for any z ∈ K} .
• The tangent cone TK(x) of a closed and convex set K at x ∈ K is defined as

TK(x) = cl{y : ∃λ > 0 s.t x+ λy ∈ K}
where cl(·) denotes the closure of a set.

• The critical cone CK(x) of a closed and convex set K at x ∈ K with related to a objective function
f is defined as

CK(x) =
{
d ∈ TK(x) : ∇f(x)⊤d = 0

}
.

To define the second-order KKT condition for the optimization problems, we first recall that the
critical cone of problem P can be written as [NW99]

d ∈ CK (x∗)⇔

{
∇gi (x∗)

T
d = 0, for all i ∈ A (x∗) with λ∗i > 0,

∇gi (x∗)
T
d ≥ 0, for all i ∈ A (x∗) with λ∗i = 0.

Here λ∗ is the Lagrangian multiplier of inequality constraints gi and A(x∗) is the index of active
constraints. Moreover, if strict complementary slackness holds, the critical cone is simplified as

CK (x∗) = {d ∈ Rn | ∇gi (x∗)
T
d = 0, for all i ∈ A (x∗)}.

Suppose strict complementary slackness holds for problem P and H. Then, we can write KKT
conditions for problem P and H in the following.

First-order KKT conditions on x∗. The Lagrangian of P is

LP(x,λ) = f(x) +

m∑
i=1

λigi(x).

The first-order KKT conditions of P are: there exists λ∗ such that

∇f(x∗) +

m∑
i=1

λ∗i∇gi(x∗) = 0, (8a)

gi(x
∗) ≤ 0, i = 1, 2, · · · ,m (8b)

λ∗ ≥ 0, λ∗i gi(x
∗) = 0, i = 1, 2, · · · ,m. (8c)

Second-order KKT conditions on x∗. It adds the following condition

w⊤∇2
xLP(x

∗,λ∗)w ≥ 0 (9)

for any w satisfying w⊤∇gi(x∗) = 0 with i ∈ A(x∗).

First-order KKT conditions on z∗. The Lagrangian of H is

LH(z, ν) = h(z) + ν(∥z∥2 − 1).

The first-order KKT conditions of H are: there exists ν∗ such that

∇h(z∗) + 2ν∗z∗ = 0, (10a)

∥z∗∥2 ≤ 1, (10b)

ν∗ ≥ 0, ν∗(∥z∗∥2 − 1) = 0. (10c)

Second-order KKT condition on z∗. It will add the following condition.

d⊤∇2
zLH(z

∗, ν∗)d ≥ 0 (11)

for any d ∈ CB(z
∗). Here recall that

CB(z
∗) =

{
Rn, if z∗ ∈ int(B),
{d : d⊤z∗ = 0}, if z∗ ∈ ∂B.
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D.5 Relationships of KKT Points between Problem P and H

Lemma D.7. We have that x∗ is a KKT stationary point of P if and only if z∗ is also a KKT stationary
point of H.

Proof. 1) First, we assume that z∗ is a KKT stationary point of P. By assumption, there exists λ∗

such that the KKT condition holds (8) holds. Then we have

Jψ(z
∗)⊤∇f(x∗) +

m∑
i=1

λ∗i Jψ(z
∗)⊤∇gi(x∗) = 0,

gi(ψ(z
∗)) ≤ 0, i = 1, 2, · · · ,m

λ∗ ≥ 0, λ∗i gi(ψ(z
∗)) = 0, i = 1, 2, · · · ,m.

This is equivalent to

∇h(z∗) +
m∑
i=1

λ∗i∇Gi(z
∗) = 0, (12a)

Gi(z
∗) ≤ 0, i = 1, 2, · · · ,m (12b)

λ∗ ≥ 0, λ∗iGi(z
∗) = 0, i = 1, 2, · · · ,m. (12c)

Let ν∗ =
∑

i=1 λ
∗
i . According to the eq. (2,3), eq. (12a) is actually

∇h(z∗) + 2ν∗z∗ = 0.

By assumption, eq. (12b) is equivalent to

∥z∗∥2 ≤ 1.

Note that ifGi(z
∗) < 0 for all i, then λ∗ = 0 and thus ν∗ = 0. In this case, ν∗(∥z∗∥2−1) = 0. If z∗

makes at least oneGi(z
∗) = 0, then we have ∥z∗∥2 = 1. In this case, we also have ν∗(∥z∗∥2−1) = 0.

Hence, eq. (12c) imply
ν∗ ≥ 0, ν∗(∥z∗∥2 − 1) = 0.

In conclusion, there exists z∗, ν∗ such the KKT condition holds.

2) Now, we assume z∗, ν∗ satisfy KKT condition for problem H, i.e.,

∇h(z∗) + 2ν∗z∗ = 0,

∥z∗∥2 ≤ 1,

ν∗ ≥ 0, ν∗(∥z∗∥2 − 1) = 0.

If z∗ ∈ int(B), then Gi(z
∗) < 0 for all i and ν∗ = 0. In this case, there exists λ∗ = 0 such that the

KKT condition of problem P holds at x∗ = ψ(z∗),λ∗ as eq. (10).

If z∗ ∈ ∂B, then there exists at least one i ∈ {1, 2, · · · ,m} such that Gi(z
∗) = 0 and ν∗ > 0 from

strict complementary slackness. Denote A = {i : Gi(z
∗) = 0}. Note we define λ∗i = 0 if i /∈ A and

λ∗i = ν∗/|A|. Then we have z∗,λ∗ such that eq. 12 holds which implies x∗ = ψ(z∗),λ∗ make the
KKT condition of problem P holds.

Lemma D.8. Suppose strict complementary slackness condition holds for both problem P and
H. Then x∗ is a second-order KKT stationary point of P if and only if z∗ = ψ−1(x∗) is also a
second-order KKT stationary point of H.

Proof. From Lemma D.7, there exists λ∗ and ν∗ such that (x∗,λ∗) holds for first-order KKT
condition of P if and only if (z∗, ν∗) holds for first-order KKT condition of H. Hence, it suffices to
show the equivalence of condition 11 and 9.

1) Let’s first suppose x∗ is a second-order KKT stationary point, i.e., eq. (9) holds.

Note
∇2

zLH(z
∗, ν∗) = ∇2h(z∗) + 2ν∗In,
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where In is identity matrix of size n × n. We just need to show d⊤∇LH(z
∗, ν∗)d ≥ 0 for any

d ∈ CB(z
∗). Recall that

∇2h(z∗) = Jψ(z
∗)⊤∇2f(ψ(z∗))Jψ(z

∗) +

n∑
i=1

∂f

∂xi
(ψ(z∗))∇2ψi(z

∗),

and

∇2Gi(z
∗) = Jψ(z

∗)⊤∇2gi(ψ(z
∗))Jψ(z

∗) +

n∑
k=1

∂gi
∂xk

(ψ(z∗))∇2ψk(z
∗), k = 1, 2, · · · ,m.

From eq. (2), note that

∇2Gk(z
∗) = 2In,∀k ∈ A(x∗) ∩ {k : Gk(z

∗) = 0}.
From Lemma D.7, ν∗ =

∑
i λ

∗
i . Then we have

∇2LH(z
∗, ν∗) = ∇2h(z∗) +

m∑
i=1

λ∗i∇2Gi(z
∗) (13a)

= Jψ(z
∗)⊤∇2f(ψ(z∗))Jψ(z

∗) +

m∑
i=1

Jψ(z
∗)⊤λ∗i∇2gi(ψ(z

∗))Jψ(z
∗) (13b)

+

n∑
k=1

∂f

∂xk
(ψ(z∗))∇2ψk(z

∗) +

n∑
k=1

m∑
i=1

λ∗i
∂gi
∂xk

(ψ(z∗))∇2ψk(z
∗). (13c)

From first-order KKT stationarity of P, i.e.,

∇f(x∗) +

m∑
i=1

λ∗i∇gi(x∗) = 0,

We have
∂f

∂xk
(x∗) +

m∑
i=1

λ∗i
∂gi
∂xk

(x∗) = 0.

Hence for any d ∈ CB(z
∗), we have the second term (13c) is equal to 0.

Now we note it’s trivial that CK(x)
∗ = CB(z

∗) = Rn if z∗ ∈ int(K) where x = ψ(z∗). Hence in
this case if d ∈ CB(z

∗), we will have Jψ(z
∗)d ∈ CK(x

∗)

If x∗ ∈ ∂K. Then A(x∗) ̸= ∅. For d ∈ CB(z
∗), i.e., d⊤z∗ = 0, we have

(Jψ(z
∗)d)⊤∇gi(x∗) = d⊤Jψ(z

∗)⊤∇gi(x∗) = d⊤Gi(z
∗) = 2d⊤z∗ = 0, for i ∈ A(x∗),

or Jψ(z∗)d ∈ CK(x
∗).

So for d⊤ ∈ CB(z
∗), we have the following holds about the first term of∇2LH(z

∗, ν∗).

(Jψ (z∗)d)
⊤∇2f (ψ (z∗)) Jψ (z∗)d+ (Jψ (z∗)d)

⊤

(
m∑
i=1

λ∗i∇2gi (ψ (z∗))

)
Jψ (z∗)d ≥ 0

where the last ’≥’ is from the assumption that x∗ is the second-order KKT stationary point of
P. Hence, we have d⊤∇2LH(z

∗, ν∗)d ≥ 0 for any dT ∈ CB(z
∗), i.e., z∗ = ψ−1(x∗) is also a

second-order KKT stationary point.

2) Let’s suppose z∗ is a second-order KKT stationary point and show that x∗ is a second-order KKT
stationary point.

If z∗ ∈ int(B), the proof is trivial because ν∗ = 0 according to the similar analysis. So we assume
z∗ ∈ ∂B. Define A(z∗) = {i : Gi(z

∗) = 0}, and λ∗i = 0 for i /∈ A(z∗), λ∗i = ν∗/|A(z∗)| for
i ∈ A(z∗).
Note for any w ∈ CK(x

∗), we have

0 = w⊤∇gi(x∗) = w⊤J−1
ψ (z∗)∇Gi(z

∗) = (J−1
ψ (z∗)w)⊤z∗, for i ∈ A(x∗) = A(z∗).
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Hence J−1
ψ (z∗)w ∈ CB(z

∗). Then for any w ∈ CK(x
∗),

w⊤∇2
xLP(x

∗,λ∗)w

= w⊤∇2f(x∗)w +w⊤
m∑
i=1

λ∗i∇2gi(x
∗)w

= (J−1
ψ (z∗)w)⊤Jψ(z

∗)∇2f(x∗)Jψ(z
∗)J−1

ψ (z∗)w

+ (J−1
ψ (z∗)w)⊤Jψ(z

∗)(

m∑
i=1

λ∗i∇2gi(x
∗))Jψ(z

∗)J−1
ψ (z∗)w

+ (J−1
ψ (z∗)w)⊤[

n∑
k=1

∂f

∂xk
(ψ(z∗))∇2ψk(z

∗) +

n∑
k=1

m∑
i=1

λ∗i
∂gi
∂xk

(ψ(z∗))∇2ψk(z
∗)]J−1

ψ (z∗)w

= (J−1
ψ (z∗)w)⊤LH(z

∗, ν∗)J−1
ψ (z∗)w ≥ 0

where the sum of last term of the second ’=’ is exactly 0 and the last ’≥’ is from the assumption that
z∗ is a second-order KKT stationary point.

Definition D.9 (Non-degenerate KKT Stationary Point). A second-order KKT point x∗ of P is said
to be non-degenerate if there exists λ∗ such that

d⊤∇2L(x∗,λ∗)d > 0

for all 0 ̸= d ∈ CK(x
∗). Here the Lagrangian function is

L(x,λ) = f(x) +

m∑
i=1

λigi(x).

Lemma D.10. Suppose strict complementary slackness holds for problem P and H. Then x⋆ is
a non-degenerate KKT point of optimization P if and only if z⋆ satisfying x⋆ = ψ(z∗) is also a
non-degenerate KKT point of problem H.

Proof. 1) Suppose x∗ is a non-degenerate KKT stationary point. Note that for d ∈ CB(z
∗), we

have Jψ(z
∗)d ∈ CK(x

∗) from the proof of Lemma D.8. Moreover, from Jψ(z
∗) ̸= 0 we have

Jψ(z
∗)d ̸= 0 if and only if d ̸= 0. Then the conclusion is trivial from eq. (13) in the proof of Lemma

D.8.

2) Now, we suppose z∗ is a non-degenerate KKT stationary point. It follows from the proof of
Lemma D.8 that for any w ∈ CK(x

∗), we have J−1
ψ (z∗)w ∈ CB(z

∗). Hence, the conclusion is also
trivial from the proof of item (2) of Lemma D.8.

D.6 Global Optimality Property of Optimization Problem H

Proposition 4.2. Suppose problem P is a convex optimization. Then the following holds.

1) If x∗ is a stationary point (thus a global optimum) in problem P, then z∗ = ψ−1(x∗) is a global
optimum in problem H and ⟨∇h(z∗), z− z∗⟩ ≥ 0.

2) If z∗ is a stationary point of problem H and LICQ holds at z∗, then x∗ is a stationary point of
problem P (thus a global optimum). Hence, z∗ is a global optimum.

Proof. 1) Due to the global optimality of x∗, we have

f(x∗) ≤ f(x),∀x ∈ K.

Hence with the homeomorphism ψ and x = ψ(z), we have

f(ψ(z∗)) ≤ f(ψ(z)),∀z ∈ B,
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that is
h(z∗) ≤ h(z),∀z ∈ B.

Therefore, ⟨∇h(z∗), z− z∗⟩ ≥ 0 referring to Prop. C.1.

2) By assumption, LICQ holds at z∗. Hence by Proposition D.6, there exists a tuple (z∗, ν∗) such
that the KKT condition of problem H holds. It follows from Lemma D.7, there exists λ∗ such
that (x∗,λ∗) also satisfy the KKT condition of problem P. Then it follows from the convexity of
g = (g1, · · · , gm) that x∗ is a global optimum of P. From the above conclusion (item (1)), z∗ is also
a global optimum.

E Convergence Analysis

In this section, we will provide omitted details in Section 4.2.

E.1 Proof of Theorem 1: Convex Case

Define for any z, T(z) := TSn−1(z) = {d : d⊤z = 0} and denote Projz(d) = ProjT(z)(d) =

d− (d⊤z)z. We define
grad h(z) := Projz(∇h(z))

and
hess h(z) = Projz ◦ (∇2h(z)−∇h(z)⊤z · In) ◦ Projz.

Moreover, we define∇Bh(z) = ∇h(z) if z ∈ int(B) and∇Bh(z) = grad h(z) if z ∈ ∂B. Similarly,
define∇2

Bh(z) = ∇2h(z) if z ∈ int(B) and ∇2
Bh(z) = hess h(z) if z ∈ ∂B.

With these notations, the definition of the second-order KKT stationary point z∗ for H is equivalent
to the following (see e.g. [LMY23])

∇B h(z
∗) = 0,min eig(∇2

Bh(z
∗)) ≥ 0,

where min eig(·) represents the minimum eigenvalue. Moreover, z∗ is non-degenerate if in addition
min eig(∇2

Bh(z
∗)) > 0.

We first give some help lemmas in the following.
Lemma E.1 (Local PL Condition). Suppose h is twice continuously differentiable.

1) If z∗ ∈ ∂B is a non-degenerate minimizer for H, there exists δ := δ(z∗) and τ := τ(z∗) such that
PL inequality holds locally, i.e.,

h(z)− h(z∗) ≤ 1

2τ
∥grad h(z)∥2

for any z ∈ B(z∗, δ) ∩ ∂B.

2) If z∗ ∈ int(B) is a non-degenerate minimizer for H, there exists δ := δ(z∗) and τ := τ(z∗) such
that PL inequality holds at the ball B(z∗, δ), i.e.,

h(z)− h(z∗) ≤ 1

2τ
∥∇h(z)∥2

for any z ∈ B(z∗, δ).

Proof. For item (1), z∗ is on the boundary of B. We can consider h : ∂B = Sn−1 → R. Because z∗

is a non-degenerate minimizer, by continuity there exists a ball B(z∗, δ) and upon z ∈ B(z∗, δ) ∩ ∂B
we have hess h(z) is positive definite, i.e., h is τ -strongly convex over the ball. Hence PL inequality
holds over z ∈ B(z∗, δ) ∩ ∂B (refer to e.g. Lemma 11.28 [Bou23]), i.e.,

h(z)− h(z∗) ≤ 1

2τ
∥grad h(z)∥2

for any z ∈ B(z∗, δ) ∩ ∂B.

It’s easy to show item (2). Actually, by continuity there exists a ball B(z∗, δ) upon which∇2h(z) is
positive definite, i.e., h is τ -strongly convex over the ball. Hence PL inequality holds over the ball
(refer to e.g. [KNS16]).
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Definition E.2 (Approximate Stationary Point). A point x∗ is called ϵ-stationary point for problem
minx∈K f(x) with convex set K, if the gradient norm mapping

G(x) := G1/α =
1

α
[x−ΠK(x− α∇f(x))]

satisfies ∥G(x)∥ ≤ ϵ for proper α > 0.
Lemma E.3. Suppose z and z+ = ΠB(z− α∇h(z)) for some α > 0 are both on the boundary of B.
If the gradient norm mapping

G(z) := G1/α(z) =
1

α
[z− z+]

satisfies ∥G(z)∥ ≤ ϵ, then ∥grad h(z)∥ ≤ O(ϵ).

Proof. From properties of the orthogonal projection C.2, we have

z− α∇h(z)− z+ = µz+

for some µ ≥ 0, or
∇h(z) = G(z)− αµG(z) + µ

α
z = c1G(z) + c2z

where c1 = 1− αµ > 0 (for small enough α) and c2 = µ/α. We have then

grad h(z) = ∇h(z)− ⟨∇h(z), z⟩z
= c1G(z)− ⟨c1G(z), z⟩z.

Thus,
∥grad h(z)∥ ≤ 2c1∥G(z)∥ ≤ O(ϵ).

Lemma E.4. Suppose h is twice continuously differentiable and z∗ is a unique minimizer (stationary
point) for H. Then for any δ > 0, there exists an ϵδ > 0 such that z is an ϵδ stationary point can
imply ∥z− z∗∥ < δ.

Proof. We suppose there does not exist such ϵδ > 0. Then for any ϵ := 1/k, we can find an ϵ
stationary point zk such that ∥zk − z∗∥ ≥ δ. As B is compact, we may assume zk → z̄ ∈ B. Then z̄
is a stationary point by continuity of the gradient norm mapping:

∥G(z̄)∥ = ∥G( lim
k→∞

zk)∥ = lim
k→∞

∥G(zk)∥ ≤ lim
k→∞

ϵk = 0.

This contradicts ∥zk − z∗∥ ≥ δ.

Theorem 1. Suppose the strict complementary slackness condition holds for both problem P and H
and we suppose the problem P is convex and has a non-degenerate minimizer x∗. Let {zk} be the
sequence generated by Hom-PGD with step-size α ∈ (0, 2

Lh
]. For sufficient small ϵ > 0, {zk}Kk=1

with K = O(Lh/ϵ) contains z′ such that

h(z′)− h⋆ ≤ ϵ.

Proof. From Lemma D.10, z⋆ is also a non-degenerate stationary point.

1) We first assume z∗ ∈ ∂B.

By Lemma E.1, there exists τ∗ > 0 and δ∗ such that for any z ∈ B(z⋆, δ⋆) ∩ ∂B,

h(z)− h(z∗) ≤ 1

2τ∗
∥ grad h(z)∥2.

Moreover, we assume this δ∗ is small enough to satisfy the condition that for any z ∈ B(z⋆, δ⋆),
z − α∇h(z) is outside the ball, which implies z+ = ΠB(z − αh(z)) ∈ ∂B. This δ∗ exists by the
continuity of∇h and note∇h(z∗) = µz∗ for some µ∗ > 0 (where ’>’ is from strict complementary
slackness condition). Hence if PGD can find an approximate stationary point z′ ∈ B(z⋆, δ⋆), we can
assume z′ ∈ ∂B.
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From Lemma E.4, there exists ϵδ∗ > 0 such that if z is an ϵδ∗ stationary point then z ∈ B (z⋆, δ∗).
So, suppose ϵ > 0 is small enough that c

√
ϵ < ϵδ∗ where c > 0 is a fixed constant determined later.

By Theorem 3, PGD finds a c
√
ϵ-stationary point z′ ∈ ∂B, within K = O

(
Lh/(

√
ϵ)2
)
= O (1/ϵ)

iterations, i.e., ∥G(z′)∥ ≤ c
√
ϵ. From Lemma E.3, we can choose proper c such that ∥grad h(z′)∥ ≤√

2τ∗ϵ.

As c
√
ϵ < ϵδ∗ we know z′ is also an ϵδ∗ -stationary point within B (z⋆, δ∗).

h (z′)− h (z⋆) ≤ 1

2τ∗
∥gradh (z′)∥2 ≤ 1

2τ∗
(
√
2τ∗ϵ)2 ≤ ϵ.

2) The case when z∗ ∈ int(B) is similar.

By Lemma E.1, there exists τ∗ > 0 and δ∗ > 0 such that for any z ∈ B(z⋆, δ⋆),

h(z)− h(z∗) ≤ 1

2τ∗
∥∇h(z)∥2.

From Lemma E.4, there exists ϵδ∗ > 0 such that if z is an ϵδ∗ stationary point then z ∈ B (z⋆, δ).
Similarly, suppose ϵ > 0 is small enough that c

√
ϵ < ϵδ∗ where c > 0 is a fixed constant determined

later. By Theorem 3, PGD finds a c
√
ϵ-stationary point z′, within K = O

(
1/(
√
ϵ)2
)
= O (1/ϵ)

iterations, i.e., ∥G(z′)∥ ≤ c
√
ϵ. Because z∗ is in the interior of B, hence when z′ is close enough

to z∗ (δ is sufficient small), the gradient norm mapping G(z′) is exactly∇h(z′). So we can choose
proper c such that ∥∇h(z′)∥ ≤

√
2τ∗ϵ.

As c
√
ϵ < ϵδ∗ we know z′ is also an ϵδ∗ stationary point within B (z⋆, δ∗). Then we have

h (z′)− h (z⋆) ≤ 1

2τ∗
∥gradh (z′)∥2 ≤ 1

2τ∗
(
√
2τ∗ϵ)2 ≤ ϵ.

E.2 Proof of Theorem 2: Strongly Convex Case

In this section, we show Theorem 2. Actually, Theorem 2 is a corollary of the following theorem.

Theorem 4. Suppose f is µf -strongly convex and K is a convex set. Then the updating sequence
{zk} by Hom-PGD algorithm with a constant step size α ∈ (0, 2

Lh
], converges to a global optimum

point z⋆ linearly, i.e.,

h (zK)− h (z∗) ≤ σK (h (z0)− h (z∗)) ,dist (zK ,B∗) ≤
2

µfκ1
σK (h (z0)− h (z∗))

where σ = 1− µfκ1

Lh
∈ (0, 1).

Proof. By strong convexity of f , and convexity of K, one can show that f satisfy proximal PL
condition over K (see e.g. Appendix G [KNS16]), i.e.,

DδK(x, µf ; f) ≥ 2µf (f(x)− f(x∗))

where

DδK(x, λ; f) = −2λmin
y∈K

[
⟨∇f(x),y − x⟩+ λ

2
∥y − x∥2

]
.
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Next, we show that h = f ◦ ψ also satisfies the proximal-PL condition over B. We derive with
x = ψ(z),y = ψ(u) as follows

⟨∇h(z),u− z⟩+ Lf,0Lψ
2
∥u− z∥2

=
〈
Jψ(z)

⊤∇f(ψ(z)),u− z
〉
+
Lf,0Lψ

2
∥u− z∥2

= ⟨∇f(ψ(z)), Jψ(z)(u− z)⟩+ Lf,0Lψ
2
∥u− z∥2

= ⟨∇f(ψ(z)),−ψ(u) +ψ(z) + Jψ(z)(u− z)⟩+ ⟨∇f(ψ(z)),ψ(u)−ψ(z)⟩+ Lf,0Lψ
2
∥u− z∥2

≤Lf,0Lψ
2
∥u− z∥2 + ⟨∇f(x),y − x⟩+ Lf,0Lψ

2
∥u− z∥2

=⟨∇f(x),y − x⟩+ 2Lf,0Lψ
2

∥∥ψ−1(y)−ψ−1(x)
∥∥2

≤⟨∇f(x),y − x⟩+ 2Lf,0Lψ
2κ1

∥y − x∥2,

where
the 2-nd line is from the chain rule of the gradient,
the 3-rd line is from property of inner product, i.e., for vector a,b and matrixA, ⟨A⊤a,b⟩ = ⟨a, Ab⟩,
the 4-th line is based on simple caculation,
the 5-th line is from Lemma C.3, and the transformation z = ψ(x),y = ψ(u),
the 6-th line is from the inverse transformation ψ−1,
and the last line is from the bi-Lipschitz property of ψ.

Briefly, we get

⟨∇h(z),u− z⟩+ Lf,0Lψ
2
∥u− z∥2 ≤ ⟨∇f(x),y − x⟩+ 2Lf,0Lψ

2κ1
∥y − x∥2 (14)

Next, we assume c1 :=
2Lf,0Lψ

κ1
≥ µf without loss of generality. This is because if c1 < µf , we

have

⟨∇h(z),u− z⟩+ Lf,0Lψ
2
∥u− z∥2 ≤ ⟨∇f(x),y − x⟩+ µf

2
∥y − x∥2

or

−2min
u∈B

{
⟨∇h(z),u− z⟩+ Lf,0Lψ

2
∥u− z∥2

}
≥ −2min

y∈K

{
⟨∇f(x),y − x⟩+ µf

2
∥y − x∥2

}
≥ 2 (f(x)− f∗) = 2 (h(z)− h∗) .

That is, if c1 < µf , we directly get the conclusion that h satisfy proximal PL condition over B:

DδB(z, Lf,0Lψ;h) ≥ 2Lf,0Lψ (h (z)− h (z∗)) .

In the following, we assume c1 ≥ µf . By Lemma 1 in [KNS16], for any convex set K and differ-
entiable function f , DδK(x, µ; f) is monotone increasing in µ, i.e., DδK(x, µ1; f) ≥ DδK(x, µ2; f)
given µ2 ≥ µ1 > 0. Hence, we have

DδK(x, c1; f) ≥ DδK(x, µf ; f) ≥ 2µf (f(x)− f∗).

Then it following from Eq. (14) that

1

Lf,0Lψ
DδB(z, Lf,0Lψ;h) ≥

1

c1
DδK(x, c1; f) ≥

1

c1
DδK(x, µf ; f) ≥ 2

µf

c1
(f(x)− f∗).

Hence we have h satisfy proximal PL condition over B:

DδB(z, Lf,0Lψ;h) ≥ 2Lf,0Lψ
µf

c1
(h(z)− h(z∗)) = 2

µfκ1
2

(h(z)− h(z∗)). (15)
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Finally, we show the linear convergence rate of the projected gradient descent algorithm. We derive

zk+1 = ΠB (zk − α∇h (zk))
= argmin

u∈B
∥u− (zk − α∇h (zk))∥2

= argmin
u∈B

{
α ⟨∇h (zk) ,u− zk⟩+ ∥u− zk∥2

}
= argmin

u∈B

{
⟨∇h (zk) ,u− zk⟩+

1

α
∥u− zk∥2

}
,

where the 2-nd line is from the definition of orthogonal projection Π, the 3-rd and last line is from
simple calculation.

This implies

−α
2
DδB(z,

2

α
;h) = ⟨∇h(zk), zk+1−zk⟩+

1

α
∥zk+1−zk∥2 ≥ ⟨h(zk), zk+1 − zk⟩+

Lh

2
∥zk+1−zk∥2

(16)

where the last inequality is from the selection of stepsize α ∈ (0, 2
Lh

] and recall Lh = κ22Lf,1 +
LψLf,0 from Prop. D.1.

Then the iterative of PGD satisfies,

h(zk+1) ≤ h(zk) + ⟨∇h(zk), zk+1 − zk⟩+
Lh

2
∥zk+1 − zk∥2

≤ h(zk)−
α

2
DδB(zk,

2

α
;h)

≤ h(zk)−
α

2
DδB(zk, Lf,0Lψ;h)

≤ h(zk)−
αµfκ1

2
(h(zk)− h(z∗)),

where
the 1-st line is from the Lh-smoothness of h,
the 2-nd line is from Eq. (16),
the 3-rd line is from monotone increasing property of DδB(z, ·;h) and the choice of α ∈ (0, 2

Lh
],

and the last line is from the proximal PL condition Eq. (15) of h.

Take α = 2
Lh

,

h(zk+1)− h(z∗) ≤ (1− µfκ1
Lh

)(h(zk)− h(z∗)).

Then we rewrite

h(zK)− h(z∗) ≤ σK(h(z0)− h(z∗)), where σ = 1− µfκ1
Lh

.

From quadratic growth condition D.1, we have

dist(zK ,B∗) ≤
2

µfκ1
(h(zK)− h(z∗)) ≤ 2

µfκ1
σK(h(z0)− h(z∗)).

Let σK(h(z0)− h(z∗)) ≤ ϵ. We have

K = O( log 1/ϵ
log 1/σ

) = O
(
(1− σ)−1

log 1/ϵ
)

where the last ‘=’ holds when σ is closed to 1.

Remark E.5. It follows directly from the proof that the assumption of strong convexity can be relaxed.
It suffices for the objective to satisfy the proximal-PL condition over the convex constraint set K
in order to achieve the convergence rate of O(log 1/ϵ). Moreover, there exist many alternative and
equivalent assumptions for the proximal-PL condition. We list some commonly used equivalent
assumptions below, where the proof of the equivalence can be referred to, e.g, [KNS16].
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• Proximal error bounds (Proximal-EB): There exists c > 0 such that

∥x− xK∗∥ ≤ c
∥∥∥∥x− prox 1

Lf
δK

(
x− 1

Lf
∇f(x)

)∥∥∥∥
where xK∗ is the orthogonal projection of x onto the optimal solution set K∗ and proxg(x) =

argminu

{
g(u) + 1

2 ∥u− x∥2
}

. Moreover, note that for λ > 0, we have proxλδK = ΠK.

• Kurdyka-Łojasiewicz (KL) condition: There exists µf > 0 such that

min
s∈∂F (x)

∥s∥2 ≥ 2µf (F (x)− F ∗)

where F (x) = f(x) + δK(x) and ∂F (x) is the Frechet subdifferential [RW09]. In this case,

∂F (x) = {∇f(x) + ξ | ξ ∈ ∂δK(x)}

where ∂δK(x) can be simlified as NK(x), with NK(x) = {y : ⟨y, z − x⟩ ≤ 0,∀z ∈ K} for
x ∈ K and NK(x) = ∅ for x /∈ K. Note that KL condition can imply PL condition (∥∇f(x)∥2 ≥
2µf (f(x)− f∗)) but the converse does not hold in general.

F Experiments Setting

F.1 Problem Formulations and Instance Generation

Optimization over polyhedron: We first consider a two-dimensional optimization over a convex
polyhedron to illustrate the effectiveness of our methods. The problem is defined as:

min
L≤x≤U

2∑
i=1

wi(xi − 1)2 s.t. a⊤i x ≤ bi, i = 1, . . . , nlin (17)

where x ∈ R2 is the decision variable, wi is the positive coefficients, and L,U ∈ R2 represent the
lower and upper bounds on the variables. ai ∈ R2 and bi ∈ R represents the coefficients in nlin
linear constraints. The homeomorphic counterparts are derived by a closed-form gauge mapping as
discussed in B.4.

Optimization over star-shaped set: We then consider a two-dimensional optimization over a
non-convex star-shaped set to illustrate the effectiveness of our methods. The problem and its
homeomorphic counterpart are defined as:

min
x

∑2
i=1 wi(xi − 1)2

s.t. ∥x∥ ≤ Γα,n(x)

ψ−1

=⇒
⇐=
ψ

min
z

∑2
i=1 wi(zi · Γα,n(z)− 1)2

s.t. ∥z∥ ≤ 1
(18)

ψ(z) = [z1 · Γα,n(z), z2 · Γα,n(z)], ψ−1(x) = [x1/Γα,n(x), x2/Γα,n(x)], (19)

where z,x ∈ R2 and Γα,n is a non-linear function with parameters α > 0 and n ∈ Z+, defined
as Γα,n([x1, x2]) := 1 + α sin(n arctan(x2/x1)). Under the homeomorphic mapping ψ, the non-
convex-constrained optimization problem can be transformed into a ball-constrained non-convex
optimization. We then compared different iterative algorithms over this problem.

Second-order cone programming: We then consider convex second-order cone programming
(SOCP), which encompasses linear programming (LP), quadratic programming (QP), and convex
quadratically constrained quadratic programming (QCQP) problems. This formulation has wide
applications in portfolio optimization and optimal power flow problems [Low14a, Low14b].

min
L≤x≤U

1

2
x⊤Qx+ p⊤x s.t. ∥Gix+ hi∥ ≤ c⊤i x+ di, i = 1, . . . , nsoc (20)

where x ∈ Rn is the decision variable, Q ∈ Rn×n is a symmetric positive semidefinite matrix,
p ∈ Rn is a vector of linear cost coefficients, and L,U ∈ Rn represent the lower and upper bounds
on the variables. For the second-order cone constraints, Gi ∈ Rmi×n and hi ∈ Rmi define the affine
function inside the norm, while ci ∈ Rn and di ∈ R define the affine function on the right-hand side.
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The parameter nsoc represents the number of second-order cone constraints in the problem. The total
number of constraints also includes the upper/lower bound on the decision variables.

Max-cut semidefinite programming: We consider an important class of SDP in the max-cut problem.
Given a graph G = {N , E} with node set i ∈ N and edge set (i, j) ∈ E , the max-cut SDP problem
is formulated as:

max
−1≤X≤1

∑
(i,j)∈E

(1− xij)/2 (21)

s.t. xii = 1, i = 1, · · · , n (22)
X ⪰ 0, (23)

where X ⪰ 0 indicates that X is positive semidefinite. Define the upper triangle off-diagonal
elements in X as y ∈ R(N2−N)/2, then the SDP can be equivalently reformulated in Linear Matrix
Inequality (LMI)-based form as:

max
−1≤y≤1

∑
k=(i,j)∈E

(1− yk)/2 (24)

s.t. I+
∑
k

yk ·Ak ⪰ 0, (25)

where Ak is a symmetric matrix with zeros on the diagonal and with a 1 in the (i, j) and (j, i)
positions corresponding to the k-th off-diagonal entry, and zeros elsewhere. Given such an LMI-
based formulation, we can construct the homeomorphic counterpart based on a closed gauge mapping
as discussed in B.4. Note that a “central” interior point for such a PSD cone is naturally the zero
vector y◦ = 0.

We also consider solving the well-known Burer-Monteiro (BM) factorization-based semidefinite
program via augmented Lagrangian methods [BM03]. Let X = VVT, where V ∈ RN×r and r is
the selected rank, then we have the following low-rank SDP:

max
X=VVT

∑
(i,j)∈E

(1− xij)/2 (26)

s.t. xii = 1, i = 1, · · · , n (27)
− 1 ≤ X ≤ 1 (28)

In our experiments, we consider both log-rank (r = log(N)) and Barvinok-Pataki (bp)-rank (r =√
2N ) factorization-based SDP methods [Bar95, Pat98, BVB20].

F.2 Baseline Algorithms and Hyper-Parameters

We implement the baselines as follows:

• PGD:

xk+1 = ΠK(xk − αk∇f(xk)) (29)

where ΠK denotes the orthogonal projection onto the feasible set K, αk > 0 is the step size
at iteration k, and ∇f(xk) is the gradient of the objective function at point xk. The quadratic
projection problem is solved via MOSEK for convex problems and by ALM for non-convex
problems.

• FW:

sk = argmin
s∈K
⟨∇f(xk), s⟩, (30)

xk+1 = (1− α)xk + αksk, (31)

where αk ∈ [0, 1] is the step size at iteration k. The linear minimization problem is solved via
MOSEK for convex problems and by ALM for non-convex problems.

• ALM:

xk+1 = argmin
x
{f(x) + λT

k g(x) + ρk · 1T [g(x)]2+}, (32)

43



λk+1 = [λk + ρk · g(xk+1)]+, (33)

where λk is the Lagrange multipliers, g(x) represents the constraint functions, and ρk > 0 is the
dual step size. The inner unconstrained optimization problem is solved by gradient descent.

• RD:

yk+1 = yk − αk∇max{fΓ(yk), γK(yk)} (34)

where fΓ is the radial dual of the objective function and γK is the gauge function [Gri24b]. The
solution is mapped to the original space after convergence as x∗ = y∗/fΓ(y∗) via radial dual.

• Hom-PGD:

zk+1 = ΠB(zk − αk∇f(ψ(zk))) (35)

where ΠB denotes the projection onto unit ball B, and ψ is the homeomorphism. The solution is
mapped to the original space after convergence as x∗ = ψ(z∗).

• MOSEK: A commercial interior-point optimizer that solves conic optimization problems efficiently
using highly optimized primal-dual interior-point methods with predictor-corrector techniques and
sparse linear algebra. Note that we use an Academic license for MOSEK.

Gradient calculation: For simple quadratic objective functions, gradients are calculated via closed-
form formulations. Other non-trivial gradient calculations across the various algorithms are im-
plemented using auto-differentiation in PyTorch. We note that replacing auto-differentiation with
closed-form gradient implementations could further improve the computational efficiency of the
algorithms.

Step-size: Theoretically, different algorithms employ their own step size selection strategies, such as
explicit dependence on smoothness and convexity parameters, or implicit step sizes that depend on
the optimal objective value [Gri24b]. For practical implementation, we initialize a fixed step size
(e.g., 10−3) and decay it by a factor of 0.999 if the objective value does not decrease, which helps
identify a sufficient step size for convergence. Although more sophisticated backtracking line search
methods or adaptive step size schemes could accelerate convergence, we do not implement these for
the sake of fair comparison.

Computational Environment: We conduct our experiments across two computational platforms to
accommodate different problem scales. For small-scale illustrative examples, we execute algorithm
comparisons on a MacBook Pro 2023. For larger-scale SOCP and SDP experiments, we implement
all algorithms in PyTorch and execute them on an Ubuntu server equipped with an NVIDIA A800
GPU and an AMD EPYC 7763 64-Core Processor.
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G Supplementary Experiments Results

G.1 Illustrative Examples

(a) convergence rate (b) running time (s) (c) constraint violation (d) per-iter. time (s)

Figure 8: Convergence performance for optimization over polyhedron.

(a) Hom-PGD (b) Hom-PGD (c) PGD (d) FW (e) ALM (f) RD

Figure 9: Iteration trajectory for optimization over polyhedron. Hom-PGD (a) and RD (f) are also
mapped to the original space to visualize their trajectories.

(a) convergence rate (b) running time (s) (c) constraint violation (d) per-iter. time (s)

Figure 10: Convergence performance for optimization over a star-shaped set.

(a) Hom-PGD (b) Hom-PGD (c) PGD (d) FW (e) ALM (f) RD

Figure 11: Iteration trajectory for optimization over a star-shaped set. Hom-PGD (a) and RD (f) are
also mapped to the original space to visualize their trajectories.
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G.2 Second-order Cone Programming

(a) convergence rate (b) running time (s) (c) constraint violation (d) per-iter. time (s)

Figure 12: Convergence performance over SOCP with (n,m) = (100, 1000).

(a) convergence rate (b) running time (s) (c) constraint violation (d) per-iter. time (s)

Figure 13: Convergence performance over SOCP with (n,m) = (500, 1500).

(a) convergence rate (b) running time (s) (c) constraint violation (d) per-iter. time (s)

Figure 14: Convergence performance over SOCP with (n,m) = (1000, 2500).

G.3 Max-Cut Semidefinite Programming

(a) convergence rate (b) running time (s) (c) constraint violation (d) per-iter. time (s)

Figure 15: Convergence performance over SDP with n = 102.
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(a) convergence rate (b) running time (s) (c) constraint violation (d) per-iter. time (s)

Figure 16: Convergence performance over SDP with n = 202.

(a) convergence rate (b) running time (s) (c) constraint violation (d) per-iter. time (s)

Figure 17: Convergence performance over SDP with n = 302.

(a) convergence rate (b) running time (s) (c) constraint violation (d) per-iter. time (s)

Figure 18: Convergence performance over SDP with n = 402.

(a) convergence rate (b) running time (s) (c) constraint violation (d) per-iter. time (s)

Figure 19: Convergence performance over SDP with n = 502.
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G.4 Ablation Study

(a) Convergence comparison. (b) Near-Boundary IP (c) “Central” IP

Figure 20: Effect of interior point (IP) selection on convergence behavior: Gauge mapping with
a near-boundary IP results in larger Bi-Lipschitz constants, which distorts the landscape of the
transformed problem H, consequently reducing convergence speed in practice.

(a) Convergence comparison. (b) Gradient descent (c) Adam [KB14]

Figure 21: Comparison of gradient methods: We evaluate Hom-PGD under Gauge mapping
with a near-boundary IP. In this non-convex landscape, standard gradient descent exhibits slower
convergence, while the Adam optimizer demonstrates superior performance due to its momentum
acceleration and adaptive step size adjustment.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See the abstract part and the introduction part (Sec. 1).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Sec. 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Sec. 4 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Sec. 6 and Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: it does not include code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Sec. 6 and Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Sec. 6 and Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Sec. 6 and Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: It conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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