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ABSTRACT

We study spectral algorithms in the setting where kernels are learned from data. We
introduce the effective span dimension (ESD), an alignment-sensitive complexity
measure that depends jointly on the signal, spectrum, and noise level σ2. The
ESD is well-defined for arbitrary kernels and signals without requiring eigen-decay
conditions or source conditions. We prove that for sequence models whose ESD
is at most K, the minimax excess risk scales as σ2K. Furthermore, we analyze
over-parameterized gradient flow and prove that it can reduce the ESD. This finding
establishes a connection between adaptive feature learning and provable improve-
ments in generalization of spectral algorithms. We demonstrate the generality of
the ESD framework by extending it to linear models and RKHS regression, and we
support the theory with numerical experiments. This framework provides a novel
perspective on generalization beyond traditional fixed-kernel theories.

1 INTRODUCTION

Neural networks excel across many applications, yet a complete theoretical understanding of their
efficiency remains an open problem. In the infinite-width limit, the Neural Tangent Kernel (NTK)
theory approximates training dynamics as kernel regression (Jacot et al., 2018; Allen-Zhu et al., 2019),
and it enables the study of generalization by leveraging the classical theory of kernel regression and
Reproducing Kernel Hilbert Spaces (RKHS) (Bauer et al., 2007; Yao et al., 2007). However, the NTK
theory does not explain why finite-width networks, which adapt their features during training, often
outperform traditional methods (Ghorbani et al., 2020; Gatmiry et al., 2021; Karp et al., 2021; Shi
et al., 2023; Wenger et al., 2023; Seleznova & Kutyniok, 2022).

A growing line of work directly studies adaptivity, i.e., learning representations or kernel properties
during training (Ba et al., 2022; Kunin et al., 2024; Liu et al., 2024; Bordelon et al., 2025; Xu &
Ziyin, 2025; Zhang et al., 2024). Simplified models show that learning eigenvalues (with eigen-
functions fixed) can align the kernel with the signal and improve performance (Li & Lin, 2024;
2025). The common thread is signal-kernel alignment: performance improves when the target’s
energy concentrates on leading eigenfunctions (Arora et al., 2019; Woodworth et al., 2020; Kornblith
et al., 2019; Radhakrishnan et al., 2024). However, classical RKHS theory relies heavily on fixed
spectral assumptions (e.g., polynomial eigenvalue decay) and specific signal regularity conditions
(e.g., source conditions) (Engl et al., 1996), which do not apply to learned spectra. To explain the
observed advantages of adaptive kernel methods, we need a refined theoretical framework that goes
beyond fixed-kernel assumptions.

In this paper, we propose the Effective Span Dimension (ESD), which is a population complexity
measure for the analysis of signal-kernel alignment. ESD counts the smallest number of leading
eigenfunctions required so that the remaining signal energy matches the estimation variance. Unlike
classical measures that ignore the signal, ESD depends on the signal, spectrum, and noise level. Our
framework provides new theoretical insights that are absent in classical analyses. In particular, we
achieve the following:

(i) We establish a sharp minimax optimal convergence rate using ESD.
(ii) We explain how gradient-based learning algorithms such as the one in Li & Lin (2024) adaptively
achieve superior generalization by reducing the ESD.
(iii) We extend our definitions and theory from sequence models to linear regression and kernel
regression, which demonstrates the broad applicability of our framework.
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Our ESD framework bridges fixed-kernel theory and adaptive learning by quantifying signal-kernel
alignment. We hope it will open avenues for deeper understanding of neural networks and novel
adaptive algorithms.

Notations. Write a ≲ b if there exists a constant C > 0 such that a ≤ Cb, and write a ≍ b if a ≲ b
and b ≲ a, where the dependence of the constants on other parameters is determined by the context.
For d ∈ N+, let [d] = {1, 2, . . . , d}; for d = ∞, let [d] = N+. 1{·} denotes an indicator function.

2 BACKGROUND ON KERNEL METHODS

We first review kernel regression to provide context. Let (xi, yi)
n
i=1 be i.i.d. samples from y =

f∗(x)+ϵ, where x ∼ µ on a compact space X , ϵ is an independent noise with E[ϵ] = 0,Var(ϵ) = σ2
0 .

For an estimator f̂ of the target function f∗, the excess risk is R(f̂ ; f∗) = Ex∼µ

[
(f̂(x)− f∗(x))2

]
.

A symmetric, positive-definite, and continuous kernel k(·, ·) : X × X → R induces an RKHS
H ⊂ L2(X , µ) with inner product ⟨·, ·⟩H and norm ∥ · ∥H (Wahba, 1990; Schölkopf & Smola, 2002).
Assuming k is bounded, Mercer’s theorem yields

k (x,x′) =

∞∑
j=1

λjψj(x)ψj (x
′) , x,x′ ∈ X , (1)

where {λj}j≥1 are eigenvalues and {ψj}j≥1 ⊂ H are eigenfunctions forming an orthonormal basis
of L2(X , µ). For background, see Steinwart & Christmann (2008); Steinwart & Scovel (2012).

Kernel regression estimates f∗ using f =
∑

j βjψj and regularizes via a filter of the kernel spectrum
{λj}(Rosasco et al., 2005; Caponnetto & Vito, 2007; Gerfo et al., 2008). If f∗ satisfies the Hölder
source condition

∑
j⟨f∗, ψj⟩2/λsj ≤ Rs for some positive constants s and Rs (Engl et al., 1996;

Mathé & Pereverzev, 2003) and the spectrum decays polynomially λj ≍ j−γ , then the minimax
rate is n−sγ/(sγ+1) (Yao et al., 2007; Li et al., 2024; Wang et al., 2024). The choice of kernels can
significantly affect the performance (Li & Lin, 2024; Zhang et al., 2024), so it is beneficial when the
kernel eigenvalues align well with the expansion of the target function.

Since the kernel is usually chosen without knowing f∗, fixed-kernel methods may encounter mis-
alignment. To address this limitation, adaptive methods have recently emerged. For instance, Li
& Lin (2025) propose adapting kernel eigenvalues while fixing eigenfunctions. Specifically, they
consider the kernel ka (x, x′) =

∑
j≥1 a

2
jψj(x)ψj (x

′) indexed by a = (aj)j≥1 and the candidate
f =

∑
j≥1 βjajψj , where aj’s and βj’s are learned jointly via gradient flow. Such adaptation often

improves performances, yet classical analyses built on fixed spectral assumptions do not explain these
gains, because (a) adapted eigenvalues typically deviate from standard eigenvalue decay assumptions,
and (b) it is unclear whether the classical source condition holds with respect to the adapted kernel,
and if so, what the value of s is. We therefore seek a refined theoretical framework that explicitly
captures signal-kernel alignment and explain the gains achieved by kernel adaptation.

Bridge to the sequence model. We next connect the RKHS regression with the sequence model to
motivate our analysis in the next section. For any j ∈ N+, define

θ∗j = ⟨f∗, ψj⟩, zj = n−1
∑
i

yiψj(xi), and ξj = n−1
∑
i

ϵiψj(xi). (2)

For large n, we have n−1
∑

i ψj(xi)ψk(xi) ≈ E[ψj(x)ψk(x)] = 1{j=k}, which implies that

zj ≈ θ∗j + ξj , and E [ξj ] = 0,Cov(ξj , ξk) ≈ n−1σ2
01{j=k}, ∀j, k ∈ N+. (3)

This reduction connects RKHS regression to a sequence model where the observations are zj =
θ∗j + ξj and the noise terms {ξj} are uncorrelated with variance σ2 := n−1σ2

0 . The error in the
approximation due to finite n will inflate the estimation variance compared to the sequence model.
This approximation error can be controlled if f∗ is bounded; see Appendix B for a rigorous treatment.
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3 EFFECTIVE SPAN DIMENSION AND SPAN PROFILE

To bridge existing theory and adaptive kernel methods as discussed in Section 2, we propose a novel
framework to characterize the alignment between spectrum and signal. To focus on the main idea, we
use the reduction in Equation (3) and first present our framework using sequence models.

Sequence models. A sequence model assumes observations are sampled as follows:

zj = θ∗j + ξj , 1 ≤ j ≤ d, (4)

where d ∈ {∞} ∪ N+, θ∗ = (θ∗j )
d
j=1 is a sequence of unknown parameters, ξj’s are uncorrelated

random variables with mean zero and variance σ2 (the noise level). For an estimator θ̂ = (θ̂j)
d
j=1, we

consider the loss L(θ̂;θ∗) =
∑d

j=1(θ̂j − θ∗j )
2 and risk R(θ̂;θ∗) = EL(θ̂;θ∗). The sequence model

captures core estimation phenomena while permitting explicit analysis (Brown et al., 2002; Johnstone,
2017). In Appendix A, we use whitening to deal with correlated noise and analyze fixed-design
linear regression. In Appendix B, we leverage the approximation in Equation (3) to analyze RKHS
regression and random-design linear regression.

Spectral estimators. Given eigenvalues λ = (λj)
d
j=1, spectral estimators take the form θ̂j =(

1− ψν(λj)
)
zj , where ψν(λ) is a filter such that larger ν induces more shrinkage. Some examples

are:

Ridge (R): ψR
ν (λ) =

1

1 + λ/ν
, θ̂R,ν

j =
λj

λj + ν
zj . (5)

Gradient Flow (GF): ψGF
ν (λ) = e−λ/ν , θ̂GF,ν

j =
(
1− e−λj/ν

)
zj . (6)

Principal Component (PC): ψPC
ν (λ) = 1{λ<ν}, θ̂PC,ν

j = 1{λj≥ν} zj . (7)

For spectral estimators, the risk decomposes into squared bias
∑

j

(
ψν(λj)

)2
θ2j and variance

∑
j

(
1−

ψν(λj)
)2
σ2, where ν controls the bias-variance trade-off. Classical analyses often assume θ∗ lies in

an ellipsoid Θa =
{
θ :
∑∞

j a2jθ
2
j ≤ C2

}
and derives convergence rates for sequences with ai ≍ iα

(Johnstone, 2017). Our theoretical framework aims to bypass these assumptions.

3.1 EFFECTIVE SPAN DIMENSION

Our goal is to develop a measure that captures the interplay between signal structure θ∗, spectrum λ,
and noise variance σ2. To start, we examine the Principal Component (PC) estimator analytically. PC
operates by truncating coordinates with small eigenvalues. Its risk is composed of variance from the
retained components and squared bias from those truncated. By trading variance against tail bias, PC
admits the optimal truncation point. This motivates our core definition.
Definition 3.1. Suppose {λj}j∈[d] are distinct, with πi indexing the i-th largest so that λπ1 > λπ2 >

. . . . We define the Effective Span Dimension (ESD) d† of θ∗ w.r.t. the spectrum λ and variance σ2 as

d† = d†(σ2;θ∗,λ) = min{k ∈ [d] :
1

k

d∑
i=k+1

(
θ∗πi

)2 ≤ σ2}.

Intuitively, the ESD d† is the number of leading coordinates (with leading eigenvalues λi) that are
most critical for estimation at a given noise level σ2. It is the truncation point where the squared tail
bias of the PC estimator first becomes comparable to (or less than) the estimation variance. The next
theorem shows that d† describes the best achievable risk for the PC estimator.
Theorem 3.2 (Optimal PC Estimator Risk). Let θ̂PC,ν be the PC estimator for the sequence model in
Equation (4). Denote by RPC

∗ the minimal possible risk over all choices of ν. Let d† = d†(σ2;θ∗,λ)
be the ESD of θ∗ w.r.t. the spectrum λ and the variance σ2. It holds that

(d† − 1)σ2 ≤ RPC
∗ ≤ 2 d† σ2.

3
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The well-tuned PC estimator is known to be minimax rate optimal under classical assumptions in
sequence models that are analogous to the polynomial eigen-decay condition and the source condition
in kernel regression (see Propositions 3.11 and 4.23 of Johnstone (2017)). In contrast, Theorem 3.2
suggests that we can instead use O(d†σ2) to upper bound the minimax estimation error with no
reliance on particular spectral decay or source conditions. Moreover, the following theorem confirms
that d†σ2 indeed characterizes the intrinsic difficulty of estimation.
Theorem 3.3. For any K ∈ [d], spectrum λ = {λj}j∈[d], and variance σ2, define

F (n)
K,λ =

{
θ ∈ Rd : d†(σ2;θ∗,λ) ≤ K

}
. (8)

Suppose the sample Z is drawn from the sequence model in Equation (4). We have

inf
θ̂

sup
θ∗∈F(n)

K,λ

R(θ̂,θ∗) ≍ Kσ2,

where inf is taken over any estimator θ̂ based on Z.

Theorem 3.3 considers the minimax risk over F (n)
K,λ, a class of distributions whose ESDs are at most

K. We interpret K as the quota for ESD: the larger K, the larger F (n)
K,λ and thus the higher the

minimax risk. By Theorem 3.2, it is clear that 2Kσ2 is an upper bound on the minimax risk, and we
only need to establish a matched lower bound.

Theorem 3.3 highlights the usefulness of ESD: although we motivate its definition using a specific
estimator, it quantifies the best possible (worst-case) performance of any estimator. Therefore, the
ESD is a fundamental measure for signal-spectrum alignment.

We emphasize that ESD is a population-level complexity measure that depends on the signal and
spectrum. It is not a tuning parameter and does not need to be estimated. Its purpose here is
explanatory and comparative: it yields a sharp lower bound on the minimax risk and lets us quantify
why adaptive learning can outperform fixed-kernel baselines. This mirrors common practice in
statistics: sparsity justifies the Lasso, yet practitioners do not estimate the sparsity level before
running the method. Estimating ESD from data is an interesting separate problem but orthogonal to
our goals in this work.

Comparisons to other alignment measures. Alternative alignment measures exist. The cosine
similarity-based kernel-target alignment yields generalization bounds (Cortes et al., 2012; Cristianini
et al., 2001), but these bounds are typically too loose to explain fast rates in adaptive kernel methods.
Recently, Barzilai & Shamir (2023) extended benign-overfitting analyses (Bartlett et al., 2020b;
Tsigler & Bartlett, 2023) to kernel ridge regression, which may encounter saturation effects that
prevent optimal rates for overly smooth target functions.

Comparisons to other effective dimensions. There are some well-known measures used in the
classical analysis of spectral methods. We discuss the differences between ESD and these measures.

Zhang (2005) introduces the effective dimension to quantify the complexity of any regularized method.
For ridge regularization in Equation (5), the effective dimension is defined as deff(ν) =

∑
j

λj

λj+ν

(see Proposition A.1 in Zhang (2005)). deff(ν) depends only on the spectrum λ and the regularization
parameter ν, but not on the signal θ∗ or the noise level σ2. Consequently, the effective dimension is
not suitable for measuring signal-spectrum alignment. Furthermore, the effective dimension, as a
function of ν, does not directly connect to any minimax risk.

In linear regression, Bartlett et al. (2020a) analyze the minimum-norm interpolator via the effective
rank rk =

∑
i>k λπi

λπk+1
(using the relationship in Equation (3)). They define the splitting index

k∗ = min{k ≥ 0 : σ2rk ≥ b} for some constant b and establish risk bounds using σ2k∗. While k∗
may resemble ESD since both depend on λ and σ2, they differ in two important aspects: (i) k∗ does
not involve the signal and thus cannot measure signal-spectrum alignment; and (ii) k∗ is tailored to
the minimum-norm estimator and does not characterize the minimax risk over a class.

Both deff (ν) and k∗ are signal-agnostic: they depend on the spectrum λ (and either ν or σ2) only,
and therefore remain invariant under any change in the alignment between the signal and the kernel’s

4
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eigenfunctions. For instance, if adaptive training improves alignment by reordering the eigenfunctions
to better align with the signal while preserving the set of eigenvalues, then both deff (ν) and k∗ are
unchanged. In contrast, the ESD d†

(
σ2;θ∗,λ

)
is signal-aware, because it is defined by the bias-

variance crossing for the specific θ∗. As signal-kernel alignment improves, the ESD decreases.
Consequently, the ESD can mechanistically explain the generalization benefits of adaptive kernel
learning, a phenomenon that signal-agnostic complexity measures like deff (ν) and k∗ cannot capture.

Examples. For the following canonical settings, the optimal PC risk satisfies

RPC
∗ ≍


min

{
σ

2sβ
1+sβ , d σ2

}
, (1) λi = i−β ,

∑d
i=1 λ

−s
i θ∗2i ≤ R, β, s > 0,

min
{
σ 2− 2

α , d σ2
}
, (2) θ∗i = i−α/2, α > 1, {λi} ↓,

min
{
d σ2, log

(
dσ2/ log

(
dσ2
))}

, (3) d <∞, θ∗i = i−1/2, {λi} ↓,
d min

{
d−α, σ2

}
, (4) d <∞, 0 < α < 1, θ∗i = i−α/2, {λi} ↓,

(9)
where {λi} ↓ means λi is decreasing. Details and proofs are deferred to Appendix D.3.

In Setting (1), we may take σ2 = σ2
0/n in view of Equation (3), and then the upper bound becomes

σ2
0 min

(
n−

sβ
1+sβ , d/n

)
, which matches the well-known optimal rate under the source condition and

the polynomial eigen-decay condition in the case when d = ∞. When d < ∞, there is a phase
transition around d0 ≍ n

1
1+sβ : if d ≲ d0, the upper bound is dσ2

0/n; if d ≳ d0, the upper bound is
the same as if d = ∞.

Appendix C.1 illustrates a sparse signal example where the ESD provides a quantitative comparison
of two different spectra while the existing measures like deff (ν) and k∗ do not. These examples
suggest that the notion of ESD allows us not only to recover classical results but also to explore new
settings where the classical framework is inapplicable.

3.2 SPAN PROFILE

The definition of ESD explicitly depends on the noise level σ2, which distinguishes it from other
complexity measures in the literature. The dependence on σ2 reflects the bias-variance trade-off
nature of ESD: as σ2 decreases, more coordinates can be unbiasedly estimated while controlling the
overall variance, thereby more bias is removed. To focus on the alignment between a given signal θ∗

and a spectrum λ, we examine the ESD by varying the noise level.
Definition 3.4. We define the span profile of θ∗ w.r.t. the spectrum λ as Dθ∗,λ : τ 7→ d†(τ ;θ∗,λ).

The span profile Dθ∗,λ is a well-defined object that depends only on θ∗ and the ordering of λ, and it
summarizes how σ2 affects the ESD. Theorem 3.2 suggests that for two spectra λ(1) and λ(2), we
can compare their alignments with the signal by the ratio of r(τ) = Dθ∗,λ(1)(τ)/Dθ∗,λ(2)(τ) for
small τ , because, if this ratio is very small (and in particular if the limit is 0 for τ → 0), then a kernel
method using λ(1) can achieve a smaller risk than one that uses λ(2). Such comparisons are not as
convenient in classical theory. See Appendix C for more illustrations.

A closely related object is the trade-off function of θ∗ relative to λ, which is defined as

Hθ∗,λ(k) =
1

k

d∑
i=k+1

(
θ∗πi

)2
=

1

k

∑
i:λi<λπk

(θ∗i )
2
, k ∈ [d]. (10)

The quantity σ−2Hθ∗,λ(k) equals the bias-variance ratio of the PC estimator using the k leading
coordinates. Properties of span profiles and trade-off functions are summarized as follows.
Proposition 3.5. (1) Both Dθ∗,λ : τ 7→ [d] and Hθ∗,λ : [d] 7→ [0,∞) are nonincreasing. (2) For
any τ , it holds that Dθ∗,λ(τ) = min{k ∈ [d] : Hθ∗,λ(k) ≤ τ}. (3) For two spectra λ(1) and λ(2),
if Hθ∗,λ(1)(k) ≤ Hθ∗,λ(2)(k) for all k ∈ [d], then Dθ∗,λ(1)(τ) ≤ Dθ∗,λ(2)(τ), ∀τ > 0.

Property (3) in Proposition 3.5 suggests that the faster Hθ∗,λ(·) decreases, the better the spectrum λ
aligns with the signal θ∗. In the extreme case where the ordering of λi matches the ordering of |θ∗i |2,
the decay of Hθ∗,λ(·) is the fastest, which leads to the most favorable span profile.

5
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Extensions. To save space, we defer the extensions to linear models and kernel regression to
Appendices A and B, respectively. For the kernel regression model in Equations (1) and (2), we
define the ESD of f∗ w.r.t. the kernel k and the effective noise variance σ2 := (σ2

0 + ∥f∗∥2∞)/n as

d†(σ2; f∗,k) = min{k ∈ N+ ∪ {∞} : Hθ∗,λ(k) ≤ σ2}.

4 MINIMAX OPTIMAL CONVERGENCE RATES

When using the span profile to characterize the signal-spectrum alignment, it is of interest to establish
the optimal convergence rates. Since the setting where d = dn grows along with n has been studied
in Theorem 3.3, we focus on the case where d = ∞ and the spectrum λ is given with ordering
denoted by {πj} such that λπ1

> λπ2
> . . .. For the convenience of the asymptotic analysis, we

examine the span profile at τ = σ2
0/n, where σ2

0 is fixed and n enumerates N+.

We begin by defining a class of populations whose span profile is bounded by a sequence of quotas
K = {Kn}∞n=1. This leads to the following class of parameters:

FK,λ :=
{
θ ∈ R∞ : Dθ,λ

(
σ2
0

n

)
≤ Kn, ∀ n ≥ n0 for some n0

}
. (11)

For each θ ∈ FK,λ, the sequence model in Equation (4) with θ∗ = θ and σ2 = σ2
0/n will have an

ESD no greater than Kn. For a sample Z(n) from this sequence model and any estimator θ̂ based on
Z(n), we aim to determine the convergence rate of the following minimax risk:

inf
θ̂

sup
θ∈FK,λ

R(θ̂,θ). (12)

We emphasize that K is a model-class descriptor. It is not a parameter of the distribution, but rather
describes a condition on the distribution. For example, the sparsity assumption in high-dimensional
regression states that ∥β∥0 ≤ s, so s describes a class of distributions; yet s is not a parameter of
the distribution. Our minimax result requires a regularity condition on the quota sequence K. Let
K̄ := sup{Kn} ∈ N ∪ {∞}. For any k ∈ [K̄], let Mk := max{n : Kn = k} (the largest n such
that Kn = k).
Condition 4.1. (1) Kn+1 −Kn ≤ 1 for all n sufficiently large. (2) For all k ∈ [K̄], it holds that
(k + 1)/Mk+1 ≤ k/Mk.

Condition 4.1 ensures that Kn does not grow faster than n, and the ratio sequence {k/Mk} is
nonincreasing. Condition 4.1 is easily satisfied by common growth laws.
Example 4.2. (1) Suppose Kn ≍ na where 0 < a < 1. For any k, we have Lk ≍Mk ≍ k1/a. Since
k/k1/a is decreasing, Condition 4.1 holds.
(2) Suppose Kn ≍ (log n)b where b > 0. For any k, we have Lk ≍ Mk ≍ ek

1/b

. Since k/ek
1/b

is
decreasing, Condition 4.1 holds.

The next theorem provides a lower bound on the minimax risk in Equation (12).
Theorem 4.3. Suppose Condition 4.1 holds for a quota sequence K = {Kn}∞n=1. Let c0 = 1/4. If
Z(n) is drawn from the sequence model with θ∗ = θ and σ2 = σ2

0/n, it holds that

inf
θ̂

sup
θ∈FK,λ

R(θ̂,θ) ≥ c0σ
2
0

Kn

n
.

Theorem 4.3 shows that given a quota sequence K, no estimator can, uniformly over the class FK,λ,
achieve a faster convergence rate of risk than σ2

0Kn/n. On the other hand, Theorem 3.2 (using
σ2 = σ2

0/n) provides a matched upper bound on the risk of the optimal PC estimator, which is
2σ2

0Kn/n. We thus conclude that the minimax optimal rate over FK,λ is σ2
0Kn/n.

Since our theory does not invoke any source condition or eigenvalue-decay condition, it goes beyond
the classical analysis in the literature. It suggests that the ESD is an essential quantity, and the span
profile provides a useful characterization of the attainable error rate for spectral methods.

To see why our framework is more general, the next example presents a case where the minimax
convergence rate is slower than the rate in the fixed-dimensional setting while being faster than the
standard rate in classical infinite-dimensional settings.

6
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Example 4.4. Let b ≥ 1 be a constant and Kn = ⌈(log n)1/b⌉ for n ∈ N+. Suppose {λj}∞j=1 is

decreasing and θ∗j+1 =
√
σ2
0

[
je−jb − (j + 1)e−(j+1)b

]
for j ≥ 1 and θ∗1 = 0. Then, θ∗ ∈ FK,λ

and the optimal rate is σ2
0 (log n)

1/b n−1. In contrast, the traditional convergence rate based on the
source condition is σ2

0 n
−α/(1+α) for arbitrary α > 0, which is not sharp.

5 ADAPTIVE EIGENVALUES VIA OVER-PARAMETERIZED GRADIENT FLOW

This section will investigate the benefits of learning eigenvalues via over-parameterized gradient flow
(OP-GF) in sequence models (Li & Lin, 2024) through the lens of ESDs. Appendix C.2 outlines
the framework to explain the benefits of adaptive kernels and presents an experiment using a linear
network. Analyzing eigenfunction evolution theoretically is more difficult and is left for future work.

Inspired by the over-parameterized nature of deep neural networks, Li & Lin (2024) parameterized
θj = ajbj,1 · · · bj,Dβj , where D stands for the number of layers and (aj , bj,i, βj) are parameters to
be learned. The gradient flow w.r.t. the empirical loss L = 1

2

∑
j(θj − yj)

2 is given by

ȧj = −∇ajL, ḃj,i = −∇bj,iL (i ∈ [D]), β̇j = −∇βjL, (13)

aj(0) = λ
1/2
j , bj,i(0) = b0 > 0, (i ∈ [D]), βj(0) = 0, j ∈ [d],

where λj’s are the initial eigenvalues and b0 is the common initialization of all bj,i. At time t, the
learned eigenvalues are given by λ̃j(t) = (aj(t)bj,1(t) · · · bj,D(t))2 and the OP-GF estimates are

θ̂OP
j (t) = λ̃

1
2
j (t)βj(t) for j ∈ [d]. Li & Lin (2024) consider infinite-dimensional sequence models

with a polynomial decay condition on the initial eigenvalues and establish upper bounds on the risk
of the OP-GF estimator with proper early stopping.

Here we study the dynamics of eigenvalues in OP-GF and how it changes the ESD. At time t, the
learned eigenvalues are λ̃(t) := (λ̃j(t))j∈[d], and the ESD is d†(t) = d†(σ2;θ∗, λ̃(t)). We aim to
show that under some regularity conditions, OP-GF can adjust the ordering of eigenvalues λ̃(t) to
reduce the ESD d†(t), which leads to a better signal-spectrum alignment.

We begin with some notations for the sequence model in Equation (4). We focus on the large-sample
case where σ2 =

σ2
0

n and σ0 = 1 without loss of generality. Denote d̃ =
∑d

i=1 λi (i.e., sum of initial
eigenvalues). Let π−1

t (i) denote the rank of λ̃i(t) at time t.
Assumption 5.1. We assume (1) Each noise ξj in Equation (4) is sub-Gaussian with variance proxy

bounded by Cproxyσ
2. (2) Let ε = 2C

−1/2
proxy n−1/2

√
lnnd̃ · lnn and ε′ = 2C

−1/2
proxy n−1/2

√
lnn.

Define S := {j ∈ [d] : |θ∗j | > ε}. We have |S| ≤ n. (3) infj∈S λj > n−δ for some δ ∈ (0, 1).
Theorem 5.2. Suppose that Assumption 5.1 holds and the initialization in Equation (13) is b0 =

cBD
D+1
D+2 ε

1
D+2 . Define t2 = C ·D

D
D+2 (ε)−

2D+2
D+2 . There exist some constants c, C, CM , Cmax, Cη,

cη , cB , and c′, such that with probability larger than 1− 4/n, we have

d†(t2) ≤ d†(t1)

for any t1 ∈ [0, t2) if the followings hold:

1. For any j ∈ S, we have M ≤ |θ∗j |, where M := CMε;

2. For any j ∈ Sc, we have |θ∗j | ≤ σ̃, where σ̃ = c′ε.

3. For any i, j ∈ S, let ηi,j := |θ∗i | − |θ∗j |. At least one of the followings hold: (a) ηi,j ≤ 0, (b)

ηi,j ≥ Cηε and |θ∗i | ≤ CmaxM , or (c) |θ∗
i |

|θ∗
j |
> (1 +

cη
D ).

4. At time t1, define two subsets of Sc: A1 := {i ∈ Sc : π−1
t1 (i) < d†(t1), λi < c ·D− D

D+2 ·
M

2
D+2 } and B1 := {i ∈ Sc : π−1

t1 (i) > d†(t1)}, and define a subset of S: B2 := {i ∈ S :

π−1
t1 (i) > d†(t1)}. It holds that |B2|+min [(|A1| − |B2|)+, |B1|] ≤ |B2|(CM/c

′)2.

Theorem 5.2 shows that OP-GF reduces the ESD. The conditions ensure that strong signals with
small initial eigenvalues have larger adapted eigenvalues than weak signals.
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6 NUMERICAL EXPERIMENTS

Data Generation. We utilize the misalignment setting in Li & Lin (2024) to specify a d-dimensional
sequence model. We fixed the eigen-decay rate γ > 0, the signal decay rate p > 0, and the number of
nonzero signals J . Given any misalignment parameter q ≥ 1, we set eigenvalues as λj = j−γ , j ∈ [d],
and set the true nonzero parameters as θ∗ℓ(j) = C ·j−

p+1
2 , where ℓ(j) = [jq] and j ≤ J . Here all other

elements of θ∗j are zero and d ≥ Jq so ∥θ∗∥0 = J . The observations are sampled as yi ∼ N(θ∗i , σ
2).

This setting provides a flexible way to control the alignment between the signal structure and the
spectrum. When q = 1, the ordering of θ∗ align perfectly with the ordering of λ. As q increases,
more nonzero elements of θ∗ are located on the tail where the eigenvalues are smaller, and more
large eigenvalues are associated with zero signals, creating a worse signal-spectrum alignment.
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Figure 1: Evolution of span profiles during the training of an over-parameterized gradient flow. The misalignment
level q varies from 1 to 3. Fixed parameters are n = 10000, σ0 = 1, d = 5000, J = 15, p = 2.5, and γ = 1.

Evolution of Span Profile The first experiment visualizes the span profile of the signal w.r.t.
the learned spectrum at various stages in the OP-GF process with D = 0. Given a sample, we
approximate the gradient flow in Equation (13) by discrete-time gradient descent and obtain the
solution {(aj(t), βj(t))t≥0 : j ∈ [d]}. The trained eigenvalue sequence λ̃(t) at time t is given by
λ̃j(t) = a2j (t) for j ∈ [d]. Here we focus on time points before the optimal stopping time. Figure 1
illustrates the evolution of the span profile w.r.t. the learned spectrum for different training times t
and various values of q.

When q = 1 (Top-Left panel), the span profiles at different training times t are nearly identical.
This is because the initial spectrum already aligns perfectly with the signal and there is no room for
improvement. For q > 1 (Top-Right, Bottom-Left, Bottom-Right panels), we observe that as the
training time t increases 0 to 80, the span profile shifts downwards. This suggests that the training
process refines the alignment between the spectrum and the signal. In addition, the reduction in the
span profile is more significant for q = 3 compared to q = 1.5, because q = 3 corresponds to a
greater initial misalignment between the signal and the spectrum, rendering the improvement from
OP-GF more substantial.

Evolution of ESD and Estimation Error of PC Estimators We next empirically investigate the
evolution of the ESD d† and the estimation error as well as the impact of layers D. At any time
t, we compute the ESD d†(t) based on the learned eigenvalue sequence λ̃(t) λ̃(t) and also the PC
estimate θ̂(t) based on λ̃(t), with number of components determined by d†(t). Theorems 3.2 and 3.3
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suggest that the PC estimator tuned by the ESD can achieve the minimax risk rate, so we expect θ̂(t)
to perform well.
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Figure 2: Averaged squared error of the tuned PC estimator and ESD as a function of the training time. Each
average is computed based on 20 replications and each error bar represents a standard deviation.

The empirical evaluation involved 20 Monte Carlo repetitions. Figure 2 displays the averaged d†(t)
and the averaged estimation error of θ̂(t) in Figure 2 as a function of training time t. We observe
that both the ESD and the squared error of the tune PC estimator exhibit a general decay trend
over training time t. Furthermore, for the shallow model with D = 0 (with no bi,j parameters),
the initial decrease in ESD and MSE occurs earlier compared to the deeper models with D = 1 or
D = 3. However, with sufficient training iterations, the deeper models with D = 1 or D = 3 can
achieve lower ESD values than the shallow model with D = 0. These findings suggest that increased
model depth (D > 0) may facilitate a better adaptation of the spectrum, and thus lead to lower
estimation error. This observation offers a perspective on the benefits of depth in spectral learning,
but a comprehensive study for general models is left for future research.

7 DISCUSSION

This paper introduces the effective span dimension (ESD) and span profile to analyze the interplay
between the signal structure and the kernel spectrum. Our framework moves beyond classical static
assumptions relative to a fixed kernel (e.g., source conditions and polynomial eigenvalue decay)
and offers a dynamic, noise-dependent perspective on signal complexity. Unlike traditional source
conditions, the ESD is more flexible and remains applicable when the spectrum itself is learned from
data.

Quantifying adaptivity. Like the sparsity level in high-dimensional statistics, the ESD is a population
quantity for theoretical analyses rather than an input to training. It serves as a quantitative target
for adaptive algorithms on the population level: by comparing the ESD of a particular signal w.r.t.
different kernels, we can determine which kernel permits better generalization for this signal.

Connecting adaptivity and generalization. Our span profile framework clarifies why adaptive
machine learning methods often outperform classical fixed-kernel approaches. In classical methods
with a fixed kernel spectrum λ(0), the target signal θ∗ might exhibit poor alignment, resulting in a
large span profile Dθ∗,λ(0) . Consequently, the signal resides in a class FK(0),λ(0) with a large quota
sequence K(0), which implies high minimax risk. By contrast, adaptive methods modify the kernel
during training. Successful adaptation improves the alignment by reducing the span profile Dθ∗,λ(a)

of the same signal w.r.t. the adapted kernel spectrum λ(a). This adaptation places the signal in a class
FK(a),λ(a) with a smaller quota sequence K(a), which implies lower minimax risk.

In summary, the ESD framework provides a novel view of generalization that connects classical kernel
methods with modern adaptive learning. We expect to relate this framework to learned representations
in neural networks to explain their superior generalization performance.
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A EXTENSION TO CORRELATED NOISE AND FIXED-DESIGN LINEAR MODEL

This section extends the concepts of ESD and span profile, developed in Section 3 for the sequence
model, to the setting of fixed design linear regression. In addition, we demonstrate how the minimax
optimal prediction risk in this setting can be characterized using the span profile, paralleling the
analysis in Section 4.

A.1 STRATEGY OF REDUCTION

Before introducing the linear model, it is helpful to outline our general transformation strategy in the
context of a sequence model with correlated noise. Suppose d ∈ N+ and the observations is

Z = θ⋆ + ξ, ξ ∼ Nd

(
0, σ2Σξ

)
(14)

where Σξ ∈ Rd×d is known, symmetric, and positive definite. For correlated sequence model, it is
usually of interest to measure the estimation error using the squared Mahalanobis distance defined as
L(θ⋆, θ̂⋆) = (θ̂⋆ − θ⋆)⊤Σ−1

ξ (θ̂⋆ − θ⋆).

Let L = Σ
−1/2
ξ be a symmetric square root of Σ−1

ξ . Define the whitened observation and transformed
parameters as

Z̃ = LZ, θ̃⋆ = Lθ⋆.

It follows that Z̃ = θ̃⋆ + ξ̃, where ξ̃ = Lξ ∼ Nd

(
0, σ2Id

)
. Accordingly, any estimator θ̂ for θ⋆ is

equivalent to the estimator ̂̃θ := Lθ̂ for θ̃⋆, whose squared loss is ∥̂̃θ− θ̃⋆∥2 = (θ̂⋆−θ⋆)⊤Σ−1
ξ (θ̂⋆−

θ⋆) = L(θ⋆, θ̂⋆).

Therefore, the transformed model is equivalent to the standard sequence model with uncorrelated
noise in Equation (4) and the estimation is equivalent to the estimation therein. Consequently, the
ESD and span profile for the model in Equation (14) can be naturally defined using the original
definitions for the transformed model. Specifically, for the correlated-noise model, we define the
ESD w.r.t. Σξ as

d†Σξ
(τ ;θ⋆) := d†

(
τ ; θ̃⋆ = Lθ⋆

)
Note that for the risk EL(θ⋆, θ̂⋆), our minimax risk characterization still applies, i.e., the minimax
risk scales as Kσ2 across all distributions whose ESD d†Σξ

(
σ2;θ⋆

)
is bounded by K.

The relationship between Euclidean distance and Mahalanobis distance satisfies that

λmin(Σξ)L(θ
⋆, θ̂⋆) ≤ ∥θ⋆ − θ̂⋆∥2 ≤ λmax(Σξ)L(θ

⋆, θ̂⋆),

so the minimax risk in terms of E∥θ⋆ − θ̂⋆∥2 can still be characterized sharply when the condition
number of Σξ) is bounded.

This strategy of reducing a complex model to a simple model will be used in our analysis of linear
model and also the RKHS regression in Appendix B.

A.2 LINEAR MODEL

Consider the following fixed design linear regression model:

Y = Xβ∗ + ϵ, (15)

where Y ∈ Rn is the vector of observations, X ∈ Rn×p is the fixed design matrix of rank r ≤
min(n, p), β∗ ∈ Rp is the unknown vector of true coefficients, and ϵ ∈ Rn is the noise vector. We
assume the components of ϵ are uncorrelated with mean zero and variance σ2

0 . For this model, we
consider the loss (in-sample prediction error) L(β̂;β∗) = 1

n∥X
(
β̂ − β∗

)
∥2 and risk R(β̂;β∗) =

EL(β̂;β∗). For random design linear regression, we treat it as a special case of RKHS regression
and discuss it in Appendix B.
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To connect this model to the sequence model analysis presented earlier, we utilize the Singular Value
Decomposition (SVD) of the design matrix X as follows:

1√
n
X = USV⊤, (16)

where U ∈ Rn×n and V ∈ Rp×p are orthogonal matrices, and S ∈ Rn×p is a rectangular diagonal
matrix with non-negative singular values s1 ≥ s2 ≥ · · · ≥ sr > 0 on its diagonal, and sj = 0 for
j > r.

For any matrix A and subsets R and T , we write A·,R for the submatrix formed by the columns of
A with indices in R, and write AT,· for the submatrix formed by the rows of A with indices in T .

Multiplying the model Equation (15) by 1√
n
U⊤

·,[r], we obtain a r-dimensional transformed model:

Z = θ∗ + ξ, (17)

where we have defined Z = 1√
n
U⊤

·,[r]Y, θ∗ = 1√
n
U⊤

·,[r]Xβ∗ = S[r],·V
⊤β∗, and ξ = 1√

n
U⊤

·,[r]ϵ.
Since U is orthogonal, the transformed noise vector ξ still has uncorrelated components with mean
zero and variance σ2 := σ2

0/n.

The transformed model in Equation (17) is analogous to the sequence model in Equation (4), where
the signal is θ∗ and the noise variance for each component is σ2. The “spectrum” relevant to this
problem is derived from the singular values of X. Specifically, we define the eigenvalues as λj = s2j
for j = 1, . . . , r, and λj = 0 for j > r. Let {πk}rk=1 denote the indices corresponding to the
eigenvalues sorted in descending order, λπ1 ≥ λπ2 ≥ · · · ≥ λπr > 0.

For any estimator β̂ for the linear model Equation (15), define θ̂ = S[r],·V
⊤β̂. We can then write the

prediction risk as n−1E∥Xβ̂ −Xβ∗∥2 = E∥USV⊤β̂ −USV⊤β∗∥2 = E∥θ̂ − θ∗∥2. Conversely,
given an estimator θ̂ for the sequence model Equation (17), we can define β̃ = VS†θ̂ where
S† ∈ Rp×r is an diagonal matrix whose diagonal elements are {1/sj}j∈[r]. It is easy to check that
S[r],·V

⊤β̃ = θ̂. Therefore, we establish an equivalence between the model Equation (17) and the
model Equation (15).

The usual ridge regression estimator for the linear model Equation (15) is given by

β̂ν =
(
X⊤X+ ν Ip

)−1
X⊤Y,

which transforms into

θ̂ν = S[r],·V
⊤β̂ν =

(
Ir − ψν(Diag (λ1, . . . , λr))

)
Z, where ψν(λ) =

1

λ/ν + 1
.

In the above expression, we have used the identity that S[r],·S
⊤
[r],· = Diag

(
s21, . . . , s

2
r

)
and ψν(·) is

applied element-wise. If we replace ψν(λ) by other functions as discussed in Section 3, we recover
other spectral methods.

A.3 ESD FOR LINEAR MODELS

We can now adapt the definitions from Section 3 to linear models.
Definition A.1 (ESD for Linear Regression). Suppose the SVD of the design matrix X is given in
Equation (16). The Effective Span Dimension (ESD) of β∗ with respect to the design X and the per
component variance σ2

0/n is defined as

d† = d†(σ2
0/n;β

∗,X) = min{k ∈ [r] : Hθ∗,λ(k) ≤ σ2
0/n},

where θ∗ = S·,[r]V
⊤β∗ and λj = s2j .

The Principal Component Regression (PCR) estimator for β∗ corresponds to the Principal Component
(PC) estimator in the transformed space Equation (17). Specifically, for any k ∈ [r], define β̂PC,k =
1√
n
VS†

kU
⊤
·,[r]Y, where S†

k ∈ Rp×r is a diagonal matrix whose diagonal elements are { 1
sj
1{sj≥sπk

}}.
In the Z space, this means

θ̂PC,k
j = 1{sj ≥ sπk

}Zj , j ∈ [r]. (18)

14
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Analogous to Theorem 3.2, the minimal prediction risk achievable by PCR over k is characterized by
the ESD.

Proposition A.2 (Optimal PCR Prediction Risk). Let β̂PC,k be the PCR estimator using the first k
principal components. Let RPC

∗ be the minimal possible prediction risk over k ∈ [r], i.e., RPC
∗ =

mink∈[r] R(β̂PC,k;β∗). It holds that

(d† − 1)σ2
0/n ≤ RPC

∗ ≤ 2d†σ2
0/n,

where d† = d†(σ2
0/n;β

∗,X) is the ESD defined in Definition A.1.

Proposition A.2 directly follows from Theorem 3.2 and its proof is omitted. This result shows that the
optimal prediction risk for PCR is determined by the ESD d†, which measures the effective number
of principal components needed to balance the bias-variance trade-off.

We can further extend the minimax analysis from Theorem 3.3. Let K be a quota on ESD. Define a
class of coefficient vectors based on this quota:

B(n)
K =

{
β ∈ Rp : d†(σ2

0/n;β
∗,X) ≤ K

}
, (19)

This class contains signals whose ESD relative to the design X is controlled by K. We can establish
the minimax optimal rate for prediction over this class.

Theorem A.3 (Minimax Prediction Risk for Linear Regression). Suppose K ≤ r. For the linear
model Equation (15) with noise variance σ2

0 , the minimax prediction risk over the class B(n)
K defined

in Equation (19) satisfies:

inf
β̂

sup
β∗∈B(n)

K

R(β̂;β∗) ≍ σ2
0

K

n
.

The proof of Theorem A.3 is essentially the same as that of Theorem 3.3 and is omitted.

Through this extension, the span profile framework connects the optimal prediction performance
in fixed design linear regression to the alignment between the signal structure (transformed via the
design matrix) and the spectrum derived from the design matrix’s singular values.

A.4 NUMERICAL ILLUSTRATION

This section illustrates the ESD in fixed-design linear models in two examples. Throughout, we fix
the noise variance at σ2

0 = 1, the sample size at n = 300, and the dimension at p = 400.

Experimental set-up The baseline design matrix X0 is randomly generated with covariance matrix
Σ = Diag{λj}j∈[p] and then held fixed. We consider two cases:

1. Geometric decay spectrum and polynomial decay signal: λj ∝ 0.95 j and β∗
j = j−0.2;

2. Logarithmic decay spectrum and signal: λj = 1/ log(j + 1) with β∗
j = 1/ log(j + 1).

The response will be generated from Y = X0β
∗ + ϵ with random noise ϵ.

We are interested in the ESD and the minimum risk for different transformation of the design matrix.
For this purpose, we introduce a class of non-orthogonal column transformations indexed by α > 0
as follows:

A(α) = diag
(
exp{α tj}

)
, tj = (j − 1)/(p− 1)− 1/2, j ∈ [p].

The transformed design X(α) = X0A(α) and the correspondingly transformed coefficient vector
is β(α) = A(α)−1β∗. This family of transformation will change the order of spectrum, from
well-aligned to misaligned. We are interested in the following at each α:

• Effective Span Dimension: d†(α) = d†
(
σ2
0/n; β(α),X(α)

)
;

• Minimal PCR risk: R∗(α) = mink E
[
n−1∥X(α)β̂k − X(α)β(α)∥2

]
, where β̂k is the

k-component principal-component estimator based on (Y ,X(α)).

15
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Figure 3: Oracle PCR risk versus Effective Span Dimension for (a) geometric eigen-decay and (b) logarithmic
eigen-decay. The dashed line plots Risk × n/σ2

0 ; the solid line is d†(α). The risk is computed based on 20
replications and the error bar represents the standard deviation.

Figure 3 plots d†(α) (solid) and the rescaled oracle risk defined as nR∗(α)/σ
2
0 (dashed) against α.

The two curves coincide over the entire path, which empirically verifies the bound in Proposition A.2
that R∗(α) ≍ σ2

0

n d†(α). As α grows, the diagonal stretch A(α) shifts signal energy towards
directions that carry smaller singular values. This raises d† as well as the achievable risk increases.

This experiment illustrate that ESD, rather than the raw spectrum decay, is the pivotal measure that
fully governs learnability.

B EXTENSION TO RKHS REGRESSION

This section extends the concepts of Effective Span Dimension (ESD) and span profile, developed
in Section 3, to the setting of RKHS regression. Here we will focus on the simple case where the
eigenfunctions of the kernel are fully known and computable and leave a thorough analysis in future
studies.

B.1 RKHS REGRESSION

We recall the standard random-design kernel regression model from Section 2:

yi = f∗(xi) + ϵi, ϵi
i.i.d.∼ (0, σ2

0), i = 1, . . . , n, (20)
where xi ∼ µ i.i.d., and f∗ ∈ L2(X , µ) is the target function. We use a kernel k(·, ·) with Mercer
decomposition k(x, x′) =

∑∞
j=1 λjψj(x)ψj(x

′), where {ψj}∞j=1 form an orthonormal basis for
L2(X , µ) and λ = {λj}j≥1 is the sequence of eigenvalues not necessarily sorted. For simplicity,
we assume there is no ties among the eigenvalues and let π be the permutation sorting eigenvalues
λj in descending order so that λπ1 > λπ2 > · · · > λπk

> . . .. The coefficients of f∗ in this
basis are θ∗j = ⟨f∗, ψj⟩L2(µ). An estimator f̂ has risk R(f̂ ; f∗) = E∥f̂ − f∗∥2L2(µ). If we define

θ̂j = ⟨f̂ , ψj⟩L2(µ), we can also write the risk as

R(f̂ ; f∗) = E∥f̂ − f∗∥2L2(µ) = E
[ ∞∑
j=1

(
θ̂j − θ∗j

)2]
=

∞∑
j=1

E
(
θ̂j − θ∗j

)2
. (21)

The expression in Equation (21) suggests that we can equivalently estimate each θ∗j separately using
the transformed observation zj = n−1

∑
i yiψj(xi) for any j ≥ 1 as introduced in Equation (2).

Here we kindly remind the reader that in RKHS, we use to the subscript i to index samples while
using j to index eigen-coordinates. The subscript j aligns with the use of notation in the sequence
model, where we use indices j to denote coordinates.
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Inflated variance in Equation (3). Before we introduce the definition of ESD, we demonstrate
that the approximation in Equation (3) can be made exact by increasing the variance to encompass
the approximation error.

For each j ≥ 1, we can write the transformed observation as

zj =
1

n

n∑
i=1

yi ψj(xi)

=
1

n

n∑
i=1

(
f∗(xi) + ϵi

)
ψj(xi)

=
1

n

n∑
i=1

∑
k≥1

θ∗kψk(xi)

ψj(xi) +
1

n

n∑
i=1

ϵi ψj(xi)

=
∑
k≥1

θ∗k

(
1

n

n∑
i=1

ψk(xi)ψj(xi)

)
︸ ︷︷ ︸

:=Gkj

+
1

n

n∑
i=1

ϵi ψj(xi)

=
∑
k≥1

Gkj θ
∗
k + ξj ,

where Gkj := 1
n

∑n
i=1 ψk(xi)ψj(xi) are entries of the empirical Gram matrix. For ξj , we have

E(ξj | {xi}i∈[n]) = 0 and E(ξjξk | {xi}i∈[n]) = n−1σ2
0Gjk.

Since xi
iid∼ µ and {ψj} is orthonormal in L2(X , µ), then E[Gkj ] = 1{k=j}. Hence E[zj ] = θ∗j .

We may further decompose zj as follows

zj − θ∗j = (Gjj − 1)θ∗j +

 ∑
k≥1,k ̸=j

Gkjθ
∗
k

+ ξj = ∆j + ξj ,

where we have defined ∆j = (Gjj − 1)θ∗j +
(∑

k≥1,k ̸=j Gkjθ
∗
k

)
. This term does not appear in the

sequence model, and its randomness purely comes from random covariate xi’s. as n → ∞, this
term vanishes because Gjj = n−1

∑
i ψj (xi)

2 → 1 and Gkj = n−1
∑n

i=1 ψj (xi)ψj′ (xi) → 0.
Furthermore, since E(ξj | {xi}i∈[n]) = 0, we have

E(∆jξj) = E(∆jE(ξj | {xi}i∈[n])) = 0.

The presence of ∆j effectively inflates the variance in zj to σ2
0/n + Var(∆j). One can show that

Var(∆j) = Var(f∗(x)ψj(x)), which is bounded by ∥f∥2∞. This is how we will control the impact
of ∆j in the following development.

B.2 ESD FOR RKHS REGRESSION

We start with analyzing the counterpart of the PC estimator, the Kernel Principal Component
Projection Estimator (KPCPE), defined as

f̂PC,k(x) :=
∑

j:λj≥λπk

zjψj(x), (22)

where k is the number of leading eigenfunctions to be included.

The risk Rk := E∥f̂KPCPE
k − f∗∥2L2(µ) decomposes into squared bias B(k) and variance V (k). Since

E[ψj′(xi)ψj(xi)] = 1{j=j′}, we have E[zj ] = θ∗j . Therefore, the bias is due to truncation as

B(k) =

∞∑
j=k+1

(θ∗j )
2. (23)
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The integrated variance is V (k) =
∑

j:λj≥λπk
Var(zj). Using the law of total variance, we have

Var(zj) =
1

n
Var(yiψj(xi)) =

1

n
(σ2

0 + τ2j ), where τ2j := Var(f∗(x)ψj(x)). (24)

The term τ2j arises from the randomness of the design x. To ensure V (k) grows at the rate of k/n,
we need to uniformly bound the design-induced variance τ2j . To illustrate the idea, we assume f∗ is
bounded in the sense that |f∗(X)| ≤ ∥f∗∥∞, µ-almost surely. Here, ∥f∗∥∞ denotes the essential
supremum of |f∗| w.r.t. the measure µ.

Assumption B.1 (Bounded target). f∗ ∈ L∞(X , µ) and ∥f∗∥∞ = ess sup |f∗|.

Assumption B.1 is very mild: for compact X , if f is continuous, then f is bounded.

Under Assumption B.1, τ2j ≤ E[f∗(x)2ψj(x)
2] ≤ ∥f∗∥2∞. Subsequently, the variance is bounded by

V (k) ≤ k
n (σ

2
0 + ∥f∗∥2∞). This motivates use to define the effective noise variance per component as

σ2 :=
σ2
0 + ∥f∗∥2∞

n
. (25)

The effective noise variance σ2 includes the term ∥f∗∥2∞/n, which inflates the noise compared to an
idealized sequence model.

We can now adapt the definitions from Section 3.1 using the effective noise variance σ2.

Definition B.2 (ESD for RKHS Regression). The Effective Span Dimension (ESD) of f∗ with respect
to the kernel k and the effective noise variance σ2 = (σ2

0 + ∥f∗∥2∞)/n is defined as

d† = d†(σ2; f∗,k) = min{k ∈ N+ ∪ {∞} : Hθ∗,λ(k) ≤ σ2}, (26)

where θ∗ = {θ∗j }j≥1 and Hθ∗,λ(k) is defined as in Equation (10).

The risk of the KPCPE estimator can be bounded using this ESD.

Proposition B.3 (Optimal KPCPE Risk Bound). Let f̂PC
k be the KPCPE estimator defined in

Equation (22). Let RPC
∗ = mink≥1 R(f̂PC

k ; f∗). Under Assumption B.1, it holds that:

(d† − 1)
σ2
0

n
≤ RPC

∗ ≤ 2d†σ2 = 2d†
σ2
0 + ∥f∗∥2∞

n
, (27)

where d† = d†(σ2; f∗,k) is the ESD from Definition B.2. In particular, if ∥f∗∥2∞ ≲ σ2
0 , we can

conclude that RPC
∗ ≍ d†σ2

0/n.

We comment that Zhang et al. (2023) have established the minimax optimality of the well-tuned
PC estimator. Proposition B.3 suggests that the risk of the well-tuned PC estimator scales as d†/n.
Therefore, we essentially express the minimax rate therein using the ESD without reliance on the
classical eigen-decay conditions or source conditions.

We can also extend the minimax framework in Section 4 to RKHS regression. Let K be a quota on
the ESD, and let C0 be a constant. Define the class based on the span profile as follows:

F (n)
K,k = {f∗ ∈ L2(X , µ) ∩ L∞(X , µ) : ∥f∗∥∞ ≤ σ0C0, d†(σ̄2/n; f∗,k) ≤ K}, (28)

where σ̄2 = σ2
0(1 + C2

0 ). We further impose the following assumption on the spectrum.

Assumption B.4. The kernel k is said to be (K,n)-regular if there are some constants c1 < 1 and
C1 such that

∑
i≤c1K

λ−1
πi

≤ C1n.

Theorem B.5 (Minimax Risk over Span Profile Classes). If k is (K,n)-regular, then the minimax
risk over F (n)

K,k satisfies:

inf
f̂

sup
f∗∈F(n)

K,k

R(f̂ ; f∗) ≍ σ̄2K

n
, (29)

where the infimum is over all estimators f̂ .

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Combining Theorem B.5 and Proposition B.3, the optimally tuned KPCPE estimator is minimax rate
optimal over F (n)

K,k, with rate σ̄2
0K/n.

The KPCPE serves as a simple benchmark for spectral methods. This analysis, via the ESD,
characterizes the performance of the optimally tuned KPCPE based directly on the properties of
the specific signal f∗ (via θ∗) and kernel spectrum λ, without requiring standard assumptions like
source conditions or polynomial eigenvalue decay. Therefore, we consider the ESD evaluated at the
design-adjusted noise level σ2 as a key measure of statistical complexity in RKHS regression. In
summary, the span profile framework provides a unified perspective on generalization performance
of spectral methods on a variety of models.

Minimax convergence rates. Following the framework in Section 4, we can quantify a class of
populations using a quota sequence K = {Kn}∞n=1. For some n0 ∈ N+, define

FK,k = {f∗ ∈ L2(X , µ) ∩ L∞(X , µ) : ∥f∗∥∞ ≤ σ0C0, d†(σ̄2/n; f∗,k) ≤ Kn,∀n ≥ n0},
(30)

where σ̄2 = σ2
0(1 +C2

0 ). For a sample {(xi, yi)}ni=1 drawn from the model in Equation (20) and any
estimator f̂ , we aim to determine the optimal convergence rate of the following minimax risk:

inf
f̂

sup
f∗∈FK,k

R(f̂ , f∗). (31)

We have the following result.

Theorem B.6. Suppose Condition 4.1 holds for a quota sequence K = {Kn}∞n=1. Furthermore, sup-
pose k is (Kn, n)-regular for all n ≥ n0. If {(xi, yi)}ni=1 is drawn from the model in Equation (20),
it holds that

inf
f̂

sup
f∗∈FK,k

R(f̂ , f∗) ≍ σ̄2Kn

n
.

Assumption B.4 is a mild condition. The following is an example where we use Theorem B.6 to
recover the minimax convergence rate derived under the classical polynomial eigen-decay conditions
and source conditions.

Example B.7. Suppose k admits spectrum such that λπi
≍ i−β with β > 0. Let Kn = ⌊n

1
1+sβ ⌋ for

any s ≥ 1. It is easy to see that∑
i≤c1Kn

λ−1
πi

≍ (c1Kn)
β+1 ≍ n

β+1
sβ+1 ≲ n.

Therefore, the minimax optimal rate for the class FK,k is σ̄2Kn

n ≍ σ2
0n

− sβ
1+sβ , which is the same as

the optimal rate given by the source condition with smoothness parameter s.

Remark B.8. In Section 2, we simplify our discussion by assuming that k is positive definite. In
practice, positive semi-definite (PSD) kernels may also be used. In the case where k has rank d <∞,
spectral algorithms inevitably induce a systematic (squared) bias

∆f∗,k = ∥f∗∥2L2(µ) −
∑
j∈[d]

(
θ∗πi

)2
,

regardless the regularization parameter. In that case, we may modify the definition of ESD by adding
the systematic bias into the summation to the sum of squared tails.

Specifically, for a PSD kernel k of rank d <∞, we modify the definition of ESD in Definition B.2 as

d̄† = d̄†(σ2; f∗,k) = min

j ∈ [d] :
1

j

∆f∗,k +

d∑
i=j+1

(
θ∗πi

)2 ≤ σ2

 .

Again, σ2d̄† characterizes the risk of the well-tuned PC estimator as in Proposition B.3.
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B.3 CONNECTION TO RANDOM DESIGN LINEAR REGRESSION

The treatment of analysis developed in this section covers an important model, the random-design
linear regression in contrast to the fixed-design linear regression. This is because linear regression
can be viewed as a RKHS regression w.r.t. any positive definite linear kernels k(x, x′) = x⊤Kx′ for
x, x′ ∈ Rp, where K ∈ Rp×p is positive definite.

Let the support X be a compact subset of Rp. Suppose Σx = Ex∼µ(xx
⊤) is positive definite and L

is a symmetric square root of Σx. Let the eigen-decomposition of LKL be

LKL =

p∑
j=1

λjvjv
⊤
j = VΛV⊤,

where V is the matrix with columns formed by vj and Λ = Diag(. . . λi . . .).

Define Ψ = L−1V. Then Ψ⊤ΣxΨ = V⊤V = Ip. Furthermore, we have

K = L−1VΛV⊤L−1 = ΨΛΨ⊤,

Suppose the columns of Ψ are ψj . We can then write

Ex∼µ [⟨ψj , x⟩⟨ψj , x⟩] =
(
Ψ⊤ΣxΨ

)
jk

= 1{j=k}, ∀j, k ∈ [p],

so {ψj} is an orthonormal system in L2(X , µ). Furthermore, the kernel can be expressed as

k(x, x′) = x⊤Kx′ =

p∑
j=1

λj⟨ψj , x⟩⟨ψj , x
′⟩.

Hence, ({λi}, {ψj}) is the eigen-pair for k.

For linear regression where y = f∗(x) + ϵ and f∗(x) = ⟨β∗, x⟩. Define θ∗ = Ψ−1β∗ = V⊤Lβ∗.
We can write

f∗(x) = ⟨β∗, x⟩ = ⟨Ψ−1β∗,Ψ⊤x⟩ =
p∑

j=1

θ∗j ⟨ψj , x⟩.

It is also clear that ∥f∗∥∞ ≤ supx∈X ⟨β∗, x⟩ ≤ ∥β∗∥2CX <∞, where CX is finite and depends on
X . We can define the effective noise level σ2 = n−1(σ2

0 + ∥f∗∥2∞).

Therefore, with respect to the kernel k and the basis {ψj}, we define the ESD exactly as in Defini-
tion B.2 using the coefficients {θ∗j } and eigenvalues {λj}.

B.4 NUMERICAL ILLUSTRATION

This section provides numerical validation of the relationship between the ESD and the optimally
tuned KPCPE risk, mirroring the setup for linear models in Appendix A.4. We use the cosine basis
eigenfunctions ψj(x) =

√
2 cos(2πjx) on the domain [0, 1] with inputs sampled as xi

i.i.d.∼ Unif[0, 1].
The sample size is fixed at n = 400, and for numerical purpose, we consider the first J = 800
eigenfunctions. The noise variance is set as σ2

0 = 1.

Experimental Setup: We set the baseline kernel eigenvalue spectrum as λj,0 = j−1.1 and the fixed
signal coefficients as θ∗j = j−4. To study the impact of misalignment between the kernel spectrum
and the signal, we introduce a severity parameter α ≥ 0 and define the modified eigenvalue spectrum
as

λj(α) = λj,0 exp (αtj) , tj =
j − 1

D − 1
for j ≤ D, and tj = 0 otherwise,

with D = 80. As α increases, the leading D eigenvalues become progressively magnified, with the
largest index having the most significant increase. Consequently, the modified kernel will emphasize
more on directions that received less energy of the signal and the optimal KPCPE should require
selecting more principal components.

As the severity parameter α grows, only the first D eigenvalues are changed while the rest of the
spectrum is untouched. Among the changed ones, the leading eigenvalues are magnified by a smaller
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constant, so that the resulting kernel has its leading subspaces being on the directions in which the
signal has less of its energy and thus increases the misalignment.

For each α in a specified grid, we compute two quantities:

• The Effective Span Dimension

d†eff(α) = d†
(
σ2
eff ; f

∗, λ(α)
)
, σ2

eff :=
σ2
0 + σ2

f,4

n
,

where the design-induced variance σ2
f,4 = maxj≤J Var {f∗(X)ψj(X)} is computed nu-

merically based on the fixed sample of xi and the true f∗.

• The optimally tuned KPCPE risk

R∗(α) = min
k

E∥f̂PC
k (α)− f∗∥2L2(µ),

where the estimator f̂PC
k (α) is computed using the spectrum λ(α) and the expectation is

estimated by averaging prediction error over B = 10 Monte Carlo replications.
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Figure 4: Effective Span Dimension and Optimal KPCPE risk. The dashed line plots Risk ×n/σ2
0 ; the solid line

is d†(α). The risk is computed based on 20 replications and the error bar represents the standard deviation.

Figure 4 plots the empirically computed optimal KPCPE risk (orange solid line) alongside the
theoretical lower bound (d† − 1)σ2

0/n (blue dashed line) and upper bound 2d†σ2
eff (green dotted line).

The empirical risk consistently lies between the two theoretical curves, confirming the validity of the
bounds derived in Proposition B.3.

As the severity parameter α increases, the resulting spectral perturbation shifts energy into higher-
index eigenfunctions. This inflates the ESD and consequently the minimal achievable risk.

Overall, this experiment demonstrates that our span profile framework provides an accurate and
robust characterization of generalization performance in RKHS regression, consistent with earlier
observations made for the sequence and linear regression models.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C MEASURING ALIGNMENT VIA ESD

We illustrate how the notion of ESD can be used to measure the alignment between the signal and the
kernel (spectrum).

C.1 AN EXAMPLE OF COMPARING SIGNAL-SPECTRUM ALIGNMENTS

The following is a simple example to illustrate the idea of comparing the signal-spectrum alignments
for different spectra discussed in Section 3.2.

Suppose θ∗ is s-sparse with support S ⊂ [d] and s = |S| ≪ d. Consider the following two spectra
with the same set of eigenvalues but different allocations:

(1) The first k largest eigenvalues of λ(1) are located on S;
(2) The first k largest eigenvalues of λ(2) are located on Sc = [d] \ S.

Intuitively, λ(1) aligns better with θ∗ than λ(2). However, a quantitative analysis is not obvious
without using the notion of ESD.

Firstly, we note that the effective dimensions (Zhang, 2005) for these two spectra are the same
because the sets of eigenvalues are the same. Similarly, the covariance splitting indices k∗ (Bartlett
et al., 2020a) are the same for the two spectra. We confirm that signal-agnostic complexity measures
do not distinguish the signal-spectrum alignments for these two spectra.

Next, we consider the ESD and span profile. Rigorously, we can show for any τ ,

Dθ∗,λ(1)(τ) ≤ s, and Dθ∗,λ(2)(τ) ≥ min
(
d− s, ∥θ∗∥2/τ

)
.

Hence, for sufficiently small τ , their ratio

r(τ) = Dθ∗,λ(1)(τ)/Dθ∗,λ(2)(τ) ≤ s/(d− s) ≪ 1

In view of Theorem 3.3, this suggests that the minimax estimation using λ(1) is substantially than
using λ(2) when the noise level is small. Therefore, spectral estimators using λ(1) is preferred.

C.2 PATHWISE ESD FOR LEARNED KERNELS

Section 5 analyzes eigenvalue learning because OP-GF admits tractable dynamics under a fixed
eigenbasis. This is a limitation of that specific analysis, not of the ESD concept. In fact, ESD
applies to general representation learning. We illustrate how decreases in ESD explain minimax risk
reduction for learned kernels, whether adaptation acts through eigenvalues, eigenfunctions, or both.

Let kt be the kernel learned at training time t, with eigenvalues {λj(t)} (sorted decreasing) and
L2(X , µ)-orthonormal eigenfunctions {ψ(t)

j }. To understand how the signal-kernel alignment evolves,
we define the pathwise ESD as

d†(t) := d†(σ2; f∗,kt), t ≥ 0,

where we have followed Definition B.2 to define d†(σ2; f∗,kt) as the ESD of f∗ w.r.t. the kernel kt

using θ∗,(t)j = ⟨f∗, ψ(t)
j ⟩ and σ2 = n−1(σ2

0 + ∥f∗∥2∞).

Let Ht(k) :=
1
k

∑
i>k

[
θ
∗,(t)
i

]2
. If training aligns the leading eigenfunctions ψ(t)

j better with f∗,

then {θ∗,(t)j } concentrate more on leading indices, and thus Ht(k) decreases for all k, which implies
the decrease in d†(t).

Experiment on Deep Linear Networks. To demonstrate this pathwise perspective, we simulate a
random-design linear regression.

Each covariate coordinate is drawn independently from {±1}, so Σx = E(XX⊤) = Ip and
∥X∥∞ = 1. We set p = 900, and the true parameters are set as follows: β∗ follows a power-law
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decay with β∗
j = j−1.1 for 1 ≤ j ≤ 200 and β∗

j = 0 for j > 200. The response is Y = ⟨β∗, X⟩+ ε

with ε ∼ N(0, σ2
0) and σ0 = 0.1.

We draw n = 1000 samples and train a deep linear network with D = 4 hidden affine maps without
bias using full-batch Adam with learning rate 10−4. The hidden weight matrices of the network are
Wℓ(t) ∈ Rp×p for ℓ = 1, . . . , D (using a near-identity initialization) and the weight of a final linear
layer is w(t) ∈ Rp.

The estimated function at time t is given by ft(x) = w(t)⊤A(t)x, where A(t) := WD(t) · · ·W1(t).
We form the learned kernel kt(x, x

′) = ⟨A(t)x,A(t)x′⟩ = x⊤Gtx
′ where Gt := A(t)⊤A(t). We

then follow the derivation in Appendix B.3 and define the ESD d†(t) of f∗ w.r.t. the kernel kt. Since
∥X∥∞ = 1 µ-a.s., we have ∥f∥2∞ = ∥β∥21 = ∥β∥21; this is used in computing the effective noise
level.
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Figure 5: Pathwise ESD and risk under a learned kernel using a 4-layer linear network.

Figure 5 shows that adaptive representation learning progressively reduces the ESD d†(t) in t along
with the true risk. This confirms that ESD captures the evolving alignment between signal and kernel.

D PROOF

D.1 PROOFS OF RESULTS ON ESD OF SEQUENCE MODELS

Proof of Theorem 3.2. For any ν > 0, define

kΛ(ν) = #{ j : λj ≥ ν},
which counts how many eigenvalues exceed the threshold ν. The KPCR estimator sets

θ̂νi = 1{λi≥ν} zi, i ∈ [d].

Its squared bias and variance are given by

BPC(v) =
∑

i:λi<v

(θ∗i )
2
, V PC(v) =

∑
i:λi≥v

σ2 = kΛ(v)σ
2.

For any threshold v, we can reparameterize the bias and variance using k = kΛ(v) as

BPC(k) =

d∑
i=k+1

(
θ∗πi

)2
, and V PC(k) = k σ2, k = 0, 1, . . . , d.
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The function BPC(k) decreases in k, while V PC(k) increases in k. The risk function is given by
RPC(k) = BPC(k) + V PC(k).

For any integer k ≥ 1, we have

RPC(k) = k
(
σ2 +

1

k

∑
i:λi<λπk

(θ∗i )
2
)
.

Upper bound For k = d†, we have 1
k

∑
i:λi<λπk

(θ∗i )
2 ≤ σ2. By definition of the optimal risk, we

have
RPC

∗ ≤ RPC(d†) ≤ 2 d† σ2.

Therefore, the upper bound is proved.

Lower bound Without loss of generality, assume d† ≥ 2. For any k ≤ d† − 1, we have

RPC(k) ≥ BPC(k) =

d∑
i=k+1

(
θ∗πi

)2 ≥
d∑

i=d†

(
θ∗πi

)2
> (d† − 1)σ2,

where the last inequality comes from the definition of d†. For any k ∈ [d†, d], we have

RPC(k) ≥ kσ2 ≥ d†σ2.

Therefore, the lower bound is proved.

D.2 PROOF ON MINIMAX RESULTS

Proof of Theorem 4.3. Throughout the proof, the quota sequence is fixed. Recall the definition of
Mk in Condition 4.1. Define ψ(k) = σ2

0
k

Mk
for any k ∈ K̄. Also define Sθ,λ(k) = kHθ,λ(k).

We can express FK,λ as follows.

Lemma D.1. Under Condition 4.1, we have

FK,λ =
{
θ ∈ R∞ : Sθ,λ(k) ≤ ψ(k) for all k ∈ [K̄]

}
.

Proof of Lemma D.1. Observe the relation that

θ ∈ FK,λ ⇐⇒ Dθ,λ

(
σ2
0

n

)
≤ Kn, ∀n ≥ 1 ⇐⇒ Sθ,λ(Kn) ≤ σ2

0

Kn

n
, ∀n ≥ 1.

By (1) of Condition 4.1, we have

Sθ,λ(Kn) ≤ σ2
0

Kn

n
, ∀n ≥ 1 ⇐⇒ Sθ,λ(k) ≤ ψ(k) for all k ∈ [K̄].

Therefore, we can rewrite

FK,λ =
{
θ ∈ R∞ : Sθ,λ(k) ≤ ψ(k) for all k ∈ [K̄]

}
.

Fix any n. Define δ =
√
cσ2

0/n with the constant c = 1
4 ∧ τ , where τ comes from Condition 4.1.

Consider assigning nonzero signals on the block Bn = {π1, . . . , πKn
} to construct a subset of

populations.

Specifically, we define the collection of hypercubes vertices V = {−1, 1}Kn . For every vertex v ∈ V ,
define a parameter vector θ(v) = (θ

(v)
j )dj=1 as follows:

θ(v)πi
= δ vi, for i = 1, . . . ,Kn, and θ(v)j = 0 for j /∈ Bn. (32)

There are 2Kn such vectors {θ(v)}, and they satisfy the following property.
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Lemma D.2. For any v ∈ V , the parameter vector θ(v) constructed in Equation (32) lies in FK,λ.

Proof of Lemma D.2. For any k ∈ [K̄], if k ≥ Kn, then Sθ(v),λ(k) is 0.

If 1 ≤ k ≤ Kn − 1, then Sθ(v),λ(k) ≤ Knδ
2 = cσ2

0Kn/n. Denote k0 = Kn − 1 and L = 1+Mk0 .
By definition of Mk0 , we have n ≥ L. Since k ≤ k0, we have L ≥ 1 +Mk. We have

Kn

n
≤ Kn

L

=
k0 + 1

1 +Mk0

≤ 2
k0
Mk0

≤ 2
k

Mk
,

(33)

where the second last inequality is because (1+k0)/(1+m) ≤ 2k0/m⇔ m+k0m ≤ 2k0+2k0m
and the last inequality is due to (2) of Condition 4.1. Since 2c < 1, we see that σ2

0cKn/n ≤ ψ(k) for
all k < Kn.

In either case, we have Sθ(v),λ(k) ≤ ψ(k) for all k ∈ [K̄], and thus θ(v) ∈ FK,λ.

For each v ∈ V , let Pv be the sampling distribution of the sequence model in Equation (4) with
θ∗ = θ(v), σ2 = σ2

0/n, and {ξj}j∈[d] being i.i.d. from N(0, σ2). Let ρ be Hamming distance on V .
If v and w ∈ V differ in exactly one coordinate (i.e., ρ(v, w) = 1), then

• ∥θ(v) − θ(w)∥2 ≥ (2δ)2, and

• the Kullback-Leibler divergence between Pv and Pw satisfies KL
(
Pv ∥Pw

)
= 1

2σ2 (2δ)
2 =

2c ≤ 1
2 , and by the Pinsker’s inequality, ∥Pv ∧ Pw∥ = 1 − TV(Pv, Pw) ≥ 1 −√

KL
(
Pv ∥Pw

)
/2 ≥ 1/2.

By Assouad’s Lemma (Lemma 2 in Yu (1997)), for any estimator θ̂ based on a sample Y (n) drawn
from Pv , we have

sup
v∈V

Ev

∥∥θ̂ − θ(v)
∥∥2 ≥ Kn

(2δ)2

4
= cσ2

0

Kn

n
.

Proof of Theorem 3.3. The upper bound is given by Theorem 3.2, so we only need to prove the lower
bound. The main idea is the same as the proof for Theorem 4.3.

Let δ =
√
cσ2

0/n with the constant c = 1
4 . Let Bn = {π1, . . . , πKn

}. We define the collection
of hypercubes vertices V = {−1, 1}K . For every vertex v ∈ V , define a parameter vector θ(v) =

(θ
(v)
j )dj=1 as in Equation (32). There are 2K such vectors {θ(v)}. For each v ∈ V , let Pv be the

sampling distribution of the sequence model in Equation (4) with θ∗ = θ(v), σ2 = σ2
0/n, and

{ξj}j∈[d] being i.i.d. normal. Let ρ be Hamming distance on V . The rest of the proof is identical to
that of Theorem 4.3 and is omitted.

D.3 DETAILS OF EXAMPLES IN EQUATION (9)

We provide the details of Equation (9) for illustration of the concepts of ESD and span profile through
several examples.
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Example D.3 (Polynomial spectrum with source condition). Assume λi = i−β for some β > 0 and
the source condition

∑d
i=1 λ

−s
i θ∗2i ≤ R with s > 0. The trade-off function satisfies

Hθ∗,λ(k) =
1

k

∑
i>k

θ∗2i ≤ λsk
k

∑
i>k

λ−s
i θ∗2i ≤ Rk−(1+sβ),

which follows that Dθ∗,λ(σ
2) ≲ [σ2]−

1
1+sβ . Since Dθ∗,λ(σ

2) ≤ d, the optimal risk of PC
estimator satisfies

RPC
∗ ≲ min

(
[σ2]

sβ
1+sβ , dσ2

)
.

In Example D.3, we note that for σ2 = σ2
0/n, the upper bound becomes σ2

0 min
(
n−

sβ
1+sβ , d/n

)
.

When d = ∞, this upper bound matches the well-known optimal rate under the source condition and
the polynomial eigen-decay condition. When d <∞, there is a phase transition around d0 ≍ n

1
1+sβ :

if d ≲ d0, the upper bound is dσ2
0/n; if d ≳ d0, the upper bound is the same as if d = ∞. Using the

span profile, we can extend classical results to finite-dimensional models and reveal new phenomena.

Example D.4 (Polynomial signals (α > 1)). Suppose θ∗i = i−α/2 for some constant α > 1, and
{λi}d1 are decreasing. By an integral approximation, we can get Hθ∗,λ(k) ≤ 1

α−1 k
−α. Therefore,

we have Dθ∗,λ(σ
2) ≲ [σ2]−

1
α . The optimal risk of PC estimator satisfies

RPC
∗ ≤ 2σ2Dθ∗,λ(σ

2) ≲ min
(
[σ2] 1−

1
α , dσ2

)
.

Example D.5 (Polynomial signals (α = 1)). Suppose d <∞, θ∗i = i−1/2, and {λi}d1 are decreasing.
We show in the supplementary material that for some constant C, if dσ2 ≤ e, then RPC

∗ ≤ Cdσ2,
and if dσ2 > e, then RPC

∗ ≤ C log
(
dσ2/ log

(
dσ2
))

.

Example D.6 (Polynomial signals (α < 1)). Suppose d <∞, θ∗i = i−1/2, and {λi} is decreasing.
We show in the supplementary material that RPC

∗ ≲ dmin
(
d−α, σ2

)
.

These examples suggest that using our framework of span profile, we are able not only to recover
classical results but also to extend it to various settings where the classical framework is inapplicable.

Details of Example D.5. We have Hθ∗,λ(k) ≤ k−1
∫ d

k
1
xdx = k−1

(
log d− log k

)
.

By dropping the term log k in the numerator, it is easy to see that a sufficient condition for Hθ∗,λ(k) ≤
σ2 is given by k ≥ σ−2 log(d). Therefore, we have Dθ∗,λ(σ

2) ≤ ⌈σ−2 log(d)⌉.

The upper bound can be improved. Suppose A > 1 satisfies dσ2 ≤ A logA. If k ≥ σ−2 logA, then

k

d
≥ logA

dσ2
≥ dσ2/A

dσ2
=

1

A
,

which follows that Hθ∗,λ(k) ≤ k−1 logA ≤ σ2. Therefore,

Dθ∗,λ(σ
2) ≤ min

(
d, ⌈σ−2 logA⌉

)
.

By elementary calculus, if y > e, the solution to x log x = y satisfies that x ∈ (e, y), and
thus log x ∈ (1, log (y)), which implies x > y/ log (y) and thus x < y/ log (y/ log (y)) =
y/ (log y − log log y) < 2y/ log(y).

If dσ2 ≤ e, we can take A = e and conclude

RPC
∗ ≤ 2σ2Dθ∗,λ(σ

2) ≲ dσ2.

If dσ2 > e, then log
(
dσ2
)
> 1 and we can take A = 2dσ2/ log

(
dσ2
)
, which implies that

RPC
∗ ≤ 2σ2Dθ∗,λ(σ

2) ≲ log
(
dσ2
)
− log

(
log
(
dσ2
))
.

Detail of Example D.6. By an integral approximation, we see that

Hθ∗,λ(k) ≍ k−1
(
d 1−α − k 1−α

)
.
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Case 1: σ2dα < 2. We have the default bound Dθ∗,λ(σ
2) ≤ d.

Case 2: σ2dα ≥ 2. If k ≥ d1−α/σ2, then Hθ∗,λ(k) ≤ σ2. Therefore, we have Dθ∗,λ(σ
2) ≤

⌈d1−α/σ2⌉, which is not larger than ⌈d/2⌉.

Combining both cases, we have Dθ∗,λ(σ
2) ≲ dmin(1/(dασ2), 1). Multiplying by 2σ2 on both

sides, we have
RPC

∗ ≤ 2σ2Dθ∗,λ(σ
2) ≲ dmin

(
d−α, σ2

)
.

D.4 DETAIL OF EXAMPLE 4.4

Let f(x) = σ2
0xe

−xb

. Then (θ∗j+1)
2 = f(j)− f(j + 1) for j ≥ 1. Since θ∗1 = 0, for any k ≥ 1, the

tail sum is
∞∑

j=k+1

(θ∗j )
2 =

∞∑
j=k

(f(j)− f(j + 1)) = f(k) = σ2
0ke

−kb

,

since f(N) → 0. As {λj} is assumed to be decreasing, the trade-off function is Hθ∗,λ(k) =
1
k

∑∞
j=k+1(θ

∗
j )

2 = σ2
0e

−kb

.

For any n ≥ 3, let k = Kn. By definition of the ceiling function, k ≥ (log n)1/b, which implies
kb ≥ log n, and thus ek

b ≥ n. Then, Hθ∗,λ(k) = σ2
0e

−kb ≤ σ2
0/n. By Proposition 3.5, we have

Dθ∗,λ(σ
2
0/n) ≤ k = Kn.

Since this holds for all sufficiently large n, we conclude that θ∗ ∈ FK . Theorem 4.3 guarantee the
optimal convergence rate is Θ(σ2

0Kn/n) = Θ(σ2
0(log n)

1/b/n).

Lastly, we consider the standard source condition that for some s > 0, there is some constant Rs

such that
∞∑
j=1

λ−s
j (θ∗j )

2 ≤ Rs. (34)

Let’s assume a polynomial eigenvalue decay λj ≍ j−γ for some γ > 0. Let S be the left hand side
of Equation (34). Since θ∗1 = 0, we have

S =

∞∑
j=2

(j−γ)−s(θ∗j )
2 =

∞∑
j=2

jsγ(θ∗j )
2

=

∞∑
k=1

(k + 1)sγ(θ∗k+1)
2.

Using (θ∗k+1)
2 = f(k)− f(k + 1) with f(x) = σ2

0xe
−xb

:

S =

∞∑
k=1

(k + 1)sγ(f(k)− f(k + 1)).

Using summation by part, we have

S = (1 + 1)sγf(1)− lim
N→∞

(N + 1)sγf(N + 1) +

∞∑
k=1

((k + 2)sγ − (k + 1)sγ)f(k + 1).

Since limN→∞(N + 1)sγNe−Nb

= 0 for b ≥ 1, the limit term vanishes. f(1) = σ2
0e

−1. The
difference term (k + 2)sγ − (k + 1)sγ > 0. f(k + 1) = σ2

0(k + 1)e−(k+1)b > 0. The sum∑∞
k=1((k+2)sγ−(k+1)sγ)f(k+1) converges because f(k+1) decays faster than any polynomial

grows. Specifically, (k + 2)sγ − (k + 1)sγ ≈ sγksγ−1, and the sum
∑
ksγ−1(k + 1)e−(k+1)b

converges. Therefore, S converges for any s > 0 and any γ > 0.
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The classical theory predicts a rate of n−
sγ

sγ+1 . Since the source condition holds for arbitrarily
large s, the classical rate can be made arbitrarily close to n−1. However, this n−1 rate ignores the
logarithmic factor (log n)1/b present in the true optimal rate Θ(σ2

0(log n)
1/b/n). Thus, the traditional

convergence analysis based on the source condition is not sharp for this signal.

E PROOFS FOR RESULTS IN APPENDIX B

Proof of Proposition B.3. Upper bound: Take k = d†, and we have B(k) = kHf∗,λ(k) ≤ kσ2.
The variance V (k) =

∑k
j=1(σ

2
0 + τ2j )/n ≤ k(σ2

0 + σ2
f,4)/n = kσ2. Thus RPC

∗ ≤ Rk = B(k) +

V (k) ≤ 2kσ2 = 2d†σ2.

Lower bound: Let k∗ be the optimal tuning parameter. If k∗ ≥ d†, then R∗ ≥ d†σ2
0/n. If

k∗ ≤ d†−1, by definition of ESD, we have R∗ ≥ B(k∗) ≥ B(d†−1) ≥ (d†−1)σ2 ≥ (d†−1)σ2
0/n.

Proof of Theorem B.5. Upper bound: The upper bound follows the proof of the upper bound in
Proposition B.3. To see this, we note that since f∗ ∈ FK,λ,n, we have ∥f∥2∞ ≤ σ2

0C
2
0 . Therefore,

σ2 ≤ σ̄2/n. We can then apply the argument in Proposition B.3 with σ2 replaced by σ̄2/n.

Lower bound: We establish the lower bound using Assouad’s method.

Let m = ⌊c1K⌋. Consider the first m eigenfunctions {ψπj
}j≤m corresponding to the largest

eigenvalues {λπj
}j≤m. Define the collection of hypercubes vertices V = {−1, 1}m. For every vertex

v ∈ V , define a function

f (v)(x) = γ

m∑
j=1

vjψπj
(x), (35)

where the amplitude γ is to be chosen. Since k is (K,n)-regular, we have

f (v)(x)2 ≤ γ2
∑
j≤m

λ−1
πj

∑
j≤m

λjψ
2
πj
(x) ≤ γ2C1nκ

2, (36)

where κ2 = supx k(x, x) <∞ by assumption.

We choose

γ2 = n−1 min

(
σ̄2

4(1 + C2
0 )
,
σ2
0C

2
0

C1κ2

)
.

It then follows that ∥f (v)∥2∞ ≤ σ2
0C

2
0 .

For each v ∈ V , let Pv be the sampling distribution of {zi = (xi, yi)}i≤n from the regression model
Equation (20) with f∗ = f (v). Let ρ be the Hamming distance on V . If v and w ∈ V differ in exactly
one coordinate (i.e., ρ(v, w) = 1), then

• ∥f (v) − f (w)∥2L2(µ) ≥ (2γ)2, and

• the Kullback-Leibler divergence between Pv and Pw satisfies KL
(
Pv ∥Pw

)
= n

2σ2
0
(2γ)2 ≤

1
2 , where the last equation is due to the definition of the constant c. By the Pinsker’s

inequality, ∥Pv ∧ Pw∥ = 1− TV(Pv, Pw) ≥ 1−
√
KL
(
Pv ∥Pw

)
/2 = 1/2.

By Assouad’s Lemma (Lemma 2 in Yu (1997)), for any estimator f̂ based on a sample {zi =
(xi, yi)}i≤n drawn from Pv , we have

sup
v∈V

Ev

∥∥θ̂ − θ(v)
∥∥2 ≥ m

(2γ)2

4
= c

σ2
0K

n
,

where c is a constant that depends on C0, κ, c1, C1.
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Proof of Theorem B.6. Since
FK,k =

⋂
n≥n0

F (n)
Kn,k

,

the upper bound σ̄2Kn/n is immediately implied by Theorem B.5.

The lower bound follows the same argument as in the proof of Theorem 4.3, but replace the con-
struction of parameter vectors in Equation (32) by the construction of functions in Equation (35).
Following the proof for Theorem 4.3, we use Condition 4.1 to ensure the constructed functions
all belong to FK,k. Then the lower bound is given using Assouad’s Lemma as in the proof of
Theorem B.5. Below, we provide the details for completeness.

Mercer’s theorem yields

k (x,x′) =

∞∑
j=1

λjψj(x)ψj (x
′) , x,x′ ∈ X , (37)

where {ψj}j≥1 is a L2(X , µ)-orthonormal eigenbasis. Without loss of generality, assume λj is sorted
decreasingly.

Fix n and set m := ⌊c1Kn⌋ where c1 comes from Assumption B.4.

For a sign vector v = (vj)j≤m ∈ {−1,+1}m, define the sequence of coefficients as

θ
(v)
j :=

{
γ vj , j ≤ m,

0, j > m,
fv(x) :=

∑
j≥1

θ
(v)
j ψj(x) = γ

∑
j≤m

vj ψj(x).

Since k is (Kn, n)-regular, Equation (36) holds and reads as

f (v)(x)2 ≤ γ2C1nκ
2.

If γ2C1nκ
2 ≤ σ2

0C
2
0 , then ∥f (v)∥2∞ ≤ σ2

0C
2
0 . Furthermore, if mγ2 ≤ (2n)−1σ2

0Kn, we can the
same argument in Lemma D.2 (in particular, using Condition 4.1 to dervie Equation (33)) to show
that f (v) ∈ FK,k.

We choose

γ2 = n−1 min

(
σ2
0 ,

σ̄2

4(1 + C2
0 )
,
σ2
0C

2
0

C1κ2

)
,

which implies f (v) ∈ FK,k.

We then follows the same argument in the proof of lower bound in Theorem B.5 to obtain

sup
v∈V

Ev

∥∥θ̂ − θ(v)
∥∥2 ≥ m

(2γ)2

4
= c

σ2
0K

n
,

where c is a constant that depends on C0, κ, c1, C1.

F PROOFS FOR RESULT ON OVERPARAMETERIZED GRADIENT FLOW

In this section, we prove Theorem 5.2. The high-level idea is as follows: To show the ESD decreases,
it is enough to show that the squared signal tail sorted by the learned eigenvalues at the new time
is smaller than that at the old time. The key idea is to study how the gradient flow changes the
eigenvalues depending on the signal’s strength. Our analysis reveals that eigenvalues associated
with the strong signal coordinates will often grow much faster than those associated with weak ones.
Consequently, more of the largest learned eigenvalues correspond to the strong signals. This implies
that the signal energy is concentrated in the top principal components of the learned kernel, which
reduces the signal tail and thus reduces the ESD.

We first remark that for any j ∈ [d], due to the same initialization bj,k = b0 for all k, one can
prove that throughout the time bj,k (for all k) have the same value bj . Therefore, we can rewrite the
over-parameterization as θj = ajb

D
j βj , and consider the following gradient flow
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ȧj = −∇aj
Lj = bDj βj(zj − θj),

ḃj = −∇bjLj = Dajb
D−1
j βj(zj − θj),

β̇j = −∇βjLj = ajb
D
j (zj − θj),

aj(0) = λ
1
2
j > 0, b(0) = b0 > 0, β(0) = 0,

(38)

where Lj =
1
2 (zj − θj)

2.

F.1 PROOF OF THEOREM 5.2

Recall that we define these sets as follows:

A1 : = {i : π−1
t1 (i) < d†(t1), λi < c ·D− D

D+2 ·M
2

D+2 , |θ∗i | < σ̃};
A2 : = {i : π−1

t1 (i) < d†(t1), |θ∗i | > M};
A3 : = {i : π−1

t1 (i) < d†(t1), |θ∗i | < σ̃} \A1.

and

B1 := {i : π−1
t1 (i) > d†(t1), |θ∗i | < σ̃}; B2 := {i : π−1

t1 (i) > d†(t1), |θ∗i | > M}.

where σ̃2 ≤ min{ |B1|
CB1

ε2, c′ε2}, CB1
= min{1∨ (|A1| − |B1|), |B2|} and c′ is a constant ≤ 1. Also

recall from the assumption of Theorem 5.2 that suppose |θ∗i | > |θ∗j | > M , then if CmaxM > |θ∗i |,
ηi,j = |θ∗i | − |θ∗j | > Cηε

′; otherwise, |θ∗
i |

|θ∗
j |
> (1 +

cη
D ).

Eigenvalue index
λd†

A1 A2A3 B2B1

Eigenvalue index
λd†

B2A2 A3 A1 B1

Throughout the proof, we assume all the events {Ek} in Lemma F.9 hold. We divide the proof into
several parts.

Part 1: Very small eigenvalues can be ignored. From Assumption 5.1, we have infj∈S λj > n−δ ,
where δ is a constant. For i ∈ R, if λi < n−(2.1δ∨5), Proposition F.2 implies that at t2, we have

λ̃i(t2) < n1.1 · λ0.99i < n−δ.

If B2 is empty, then all the signals in R is 0 by the definition of σ̃. Otherwise, for λ̃i < n−δ, and
λπt1 (d

†(t1)) > n−δ. According to the monotonicity of eigenvalues in Lemma F.4, any the index i
such that λi < n−(2.1δ∨5) can not rank among the first d†(t1) at time t2, i.e., it makes no difference
to the variation of d† from t1 to t2.

Part 2: Analysis for B2

If j ∈ B2, by Proposition F.1, we have
∣∣θj(t2)− θ∗j

∣∣ < ε′ ≤ 1
CM

M . We apply Equation (50) to get
β2 = a2 − λ < a2 and β2 = D−1(b2 − b20) < D−1b2, and thus

|θj(t)| = aj(t)b
D
j (t)|βj(t)| ≤ aj(t)b

D
j (t)·a

1
D+1

j (t)·D− D
2(D+1) b

D
D+1

j (t) = D− D
2(D+1)

[
aj(t)b

D
j (t)

]D+2
D+1 .
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Therefore, at time t = t2, we have for some constants c and C that

D− D
2(D+1)

[
aj(t)b

D
j (t)

]D+2
D+1 ≥ |θj(t)| ≥ (1− c)M, =⇒ aj(t)b

D
j (t) ≥ C ·D

D
2(D+2)M

D+1
D+2 .

It follows that λ̃j(t2) ≥ cD
D

(D+2)M
2(D+1)
D+2 . Moreover, for λj and D−1b20 that are much smaller than

c ·D− D
D+2 ·M

2
D+2 , we use Equation (50) to obtain

β2
j ≍ a2j ≍ D−1b2j ≍ D− D

D+2M
2

D+2 . (39)

Part 3: A1 and B2 will exchange

In the following, suppose i ∈ A1 and j ∈ B2. We will prove λ̃i(t2) < λ̃j(t2) by contradiction.

If λ̃i(t2) ≥ λ̃j(t2) , then by Proposition F.1, we have

|θj(t2)− θ∗j | < 2ε′.

By Lemma F.4, we have
|θi(t2)| < |θ∗i |+ κi.

We have |θj | > CD|θi| where CD > 1 + c
D for M = CMε > CM |κi|. At t2, the following holds:

|βj(t2)| > CD|βi(t2)|.

It follows that a2i (t2)b
2D
i (t2) > a2j (t2)b

2D
j (t2). Combined with Equation (50), we have

β2
i (t2) + λi
β2
j (t2) + λj

>

(
Dβ2

j (t2) + b20
Dβ2

i (t2) + b20

)D

>

(
CD

1 + δ

)D

= (1 + c(CD − 1))D. (40)

Recall that |βi(t2)| < 1
CD

|βj(t2)| and β2
j (t2) > CD− 2

D+2M
2

D+2 . If we choose the constant CD

such that (1 + c(CD − 1))D is large enough, the inequality Equation (40) will implies λi larger than
its upper bound in the definition of set A1. (We can let CD = 1 + c · 1

D .)

The contraction shows that λ̃i(t2) < λ̃j(t2) for any i ∈ A1, j ∈ B2. If the sets A1 and B2 are not
empty when t = t1, then from t1 to t2, the elements of set B2 will be arranged before those of set A1

according to the eigenvalue index. We only need λi < c ·D− D
D+2M

2
D+2 .

For the same reason, the elements of set A2 will be arranged before those of set A1 at t2.

Part 4: A2 and B2 will be monotonously nonincreasing

In the following, W.L.O.G we assume θ∗, θ∗ > 0. We prove that given i ∈ A2, j ∈ B2, if θ∗i > θ∗j ,
we have λ̃i(t2) > λ̃j(t2).

If θ∗i − θ∗j > Cηε, we have zi > zj . Then by Proposition F.1, we have at t2

|θi(t2)− θ∗i | < 2ε′, |θj(t2)− θ∗j | < 2ε′.

If λi ≥ λj , by Equation (38) and monotonicity, we always have λ̃i(t) > λ̃j(t).

Now, consider the case where λi < λj . By the definition of A1 and B2, we have λj < c ·D− D
D+2 ·

M
2

D+2 . Next, we use proof by contradiction. Note that

θi(t2)

θj(t2)
=
λ̃

1
2
i (t2)βi(t2)

λ̃
1
2
j (t2)βj(t2)

≥ CD.

If λ̃i(t) ≤ λ̃j(t), then βi(t2) > CDβj(t2). By Equation (39), both βi(t2) and βj(t2) are much larger
then D− 1

2 b0. It then follows that (
Dβ2

i (t2) + b20
Dβ2

j (t2) + b20

)D

> C∗
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where C∗ is a constant that can be made large enough by choosing CD. Therefore, using the same
reason as in Equation (40), we can get

β2
i (t2) + λi
β2
j (t2) + λj

<
1

C∗ ,

which is impossible because βi(t2) > CDβj(t2) and β2
i (t2) > Cλj .

Part 5: B1 will stay behind A2, A3 and B2

In the following, let j ∈ B1. By y = θ∗+ ξ, we have |zj | < σ̃+ ε′. By Equation (53) and |θj | < |zj |,
we have

|βj(t2)| ≤
(
D−D/2|zj |

)1/(D+2)

.

Then by λ̃j(t2) = (β2
j (t2) + λj)(Dβ

2
j (t2) + b20)

D < (1 + 1
c·D )Db2D0 (β2

j (t2) + λj). Then if
λj < c ·D−D/(D+2)ε2/(D+2), given any i ∈ A3 ∪A2 ∪B2, λ̃i(t2) > λ̃j(t2). Otherwise, we have
λj > C ·D−D/(D+2)ε2/(D+2), then we have λ̃j(t2) < (1 + δ)λ̃j(t1), then by the definition of d†,
at least d† eigenvalues will larger than λ̃j(t2).

Part 6: A3 will be ahead of A1

by the same reason betweenB1 andA1, for given j ∈ A3, λ̃j(t2) = (β2
j (t2)+λj)(Dβ

2
j (t2)+b

2
0)

D <

(1 + 1
c·D )Db2D0 (β2

j (t2) + λj), and i ∈ A1, λi < c ·D−D/(D+2)ε2/(D+2), combined with

|βi(t2)| ≤
(
D−D/2|zi|

)1/(D+2)

.

then we have λ̃j(t2) > λ̃i(t2) for c is small and C is large enough.

Part 7: Ordering of the spectrum at t2 and d†(t1) ≥ d†(t2)

To show d†(t2) ≤ d†(t1), it suffices to show Hθ∗,λ̃(t2)
(d†(t1)) < Hθ∗,λ̃(t2)

(d†(t1)), which is
equivalent to prove the following difference∑

i:π−1
t1

(i)>d†(t1)

|θ∗i |2 −
∑

i:π−1
t2

(i)>d†(t1)

|θ∗i |2 (41)

is nonnegative.

We will make use of |A1|+ |A2|+ |A3| = d†(t1) and consider two possible cases.

• Case 1: |B2| ≤ |A1|. Since B2 ∪A2 is ahead of A1 ∪B1, we can see that the eigenvalue of
the last element of B2 ∪A2 is among the top d† ones. Because A3 is ahead of A1 ∪B1, so
only some of A1 is swapped to the later part. Also some of B1 may arise ahead some of A1

. Therefore, to analyze the ordering of eigenvalues λ̃(t2), we define

B11 = {i ∈ B1 : π−1
t2 (i) ≤ d†(t1)}.

A11 = {i ∈ A1 : π−1
t2 (i) > d†(t1)}.

(42)

Here A11 contains all the elements that move from the top d†(t1) part to the later part,
while B2 and B11 are the elements that move from the later part to the top d†(t1) part.
Therefore, we have |A11| = |B2| + |B11|. Let CB1

:= min{(|A1| − |B2|)+, |B1|}. We
have |B11| ≤ CB1

.
W.L.O.G., we can write divide A11 into two subsets such that |A111| = |B2| and |A112| =
|B11|. We can then write Equation (41) as

∥θ∗B2
∥22 + ∥θ∗B11∥

2
2 − ∥θ∗A111

∥22 − ∥θ∗A112
∥22. (43)

The exchange between A1 and B2 yields

∥θ∗B2
∥22 − ∥θ∗A111

∥22 ≥ |B2|(M2 − σ̃2), (44)

and
∥θ∗B11

∥22 − ∥θ∗A112
∥22 ≥ −|B11|σ̃2 ≥ −CB1

σ̃2.
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Note the assumption of Theorem 5.2 that (|B2|+ CB1
)σ̃2 ≤ |B2|M2. We add the last two

inequalities Equation (43) and appendix F.1 together to get∑
i:πt1

(i)>d†(t1)

|θ∗i |2 −
∑

i:πt2
(i)>d†(t1)

|θ∗i |2 ≥ 0,

where ≥ becomes > if B2 ̸= ∅. By the definition of d†, d†(t2) ≤ d†(t1).
• Case 2: |B2| > |A1|. If the eigenvalue of the last element of B2 ∪A2 is among the top d†,

we follow the exact same proof in Case 1.
Now suppose that the eigenvalue of the last element of B2 ∪A2 is in the later part. In this
case, all elements B1 and A1 are in the later part. We first identify all the elements that fall
in the later part at time t2: in addition to all elements of B1, the following

B21 := {i ∈ B2 : π−1
t2 (i) > d†},

A11 := {i ∈ A1 : π−1
t2 (i) > d†},

A21 := {i ∈ A2 : π−1
t2 (i) > d†},

A31 := {i ∈ A3 : π−1
t2 (i) > d†}.

Note that at time t1, the elements in the later part are in B1, B21, and B22 := B2 \ B21.
Therefore, Equation (41) can be written as

∥θB22
∥2 − ∥θA11

∥2 − ∥θA21
∥2 − ∥θA31

∥2. (45)

By definition of B2, A1, and A3, each squared element in B2 is larger than that of both A1

and A3. In addition, since A2 and B2 will be monotonously nonincreasing, for any element
in B22, its squared signal will be no less than that of any element in θA21

. Therefore, we
conclude that Equation (45) is nonnegative and will be positive if B22 is not empty.

F.2 GENERALIZED SIGNAL RESULTS BY DYNAMIC EQUATION ANALYSIS

Proposition F.1 (Shrinkage monotonicity and shrinkage time). Suppose all the events {Ek} in

Lemma F.9 hold. Let ε = 2(Cproxy)
−1/2

√
lnnd̃
n · lnn, ε′ = 2(Cproxy)

−1/2
√

lnn
n .

For any j ∈ S (as defined in Assumption 5.1), we have

|θ∗j − θj(t)| < 2ε′. ∀t ≥ t(ε) (46)

where t(ε) = C b−D
0 ε−1 lnn for some absolute constant C.

Proof. When all the events Ek in Lemma F.9 hold, we have

∥ξS∥∞ ≤ ε′. (47)

Consider j ∈ S. We have θ∗j ≥ 8ε′(We let CM ≥ 8). By taking δ = ε′ and also κ = ε′ in Lemma
F.7, we have

|θ∗j − θj(t)| ≤ 2ε′, ∀t ≥ T̄ app(δ),

with

T̄ app(δ) ≤ T sig + C2D
D

D+2 (θ∗j )
− 2D+2

D+2 ln+
2θ∗j
δ
, (48)

and

T sig ≤


C1(θ

∗
j )

−1b−D
0 ln

(
eb0

a0j

√
D

)
a0j < b0/

√
D;

C1(θ
∗
j )

−1a−1
0j ln

(
ea0j

√
D

b0

)
a0j > b0/

√
D, and D = 1;

C1(θ
∗
j )

−1D− 1
2 a−1

0j b
−D+1
0 a0j > b0/

√
D, and D > 1,

(49)

where both C1 and C2 are absolute constants.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

For the choice b0 = cD
D+1
D+2 ε

1
D+2 , the second term on the right-hand side of Equation (48) is

dominated by the right-hand side of Equation (49), and we can choose c small enough so that the
summation of the two terms is bounded by b−D

0 ε−1 lnn. This justifies our choice of t(ε).

Proposition F.2. We consider the set R. We let j ∈ R, and suppose all the events {Ek} in Lemma
F.9 hold. Given b0 and t(ε) defined in Proposition F.1. For any positive constant δ′, if the eigenvalue
λj < n−5, and n is large enough, then we have

λ̃j(t) < 2λ1−2δ′

j bD0 · n1+δ′ .

Proof. Since the events in Lemma F.9 hold, we have |ξj | ≤ 2(Cproxy)
−1/2

√
ln j̃+lnn

n , where j̃ = d̃
λj

.

Since j ∈ R, we have |θ∗j | ≤ σ̃ ≤
√
c′ε. Since bD0 t(ε) = ε−1 lnn, we can check that t is no more

than the hitting time T2 defined by Equation (67) in Lemma F.8 as follows.

Note that

ε−1 lnn(|θ∗j |+ |ξj |) ≤
√
c′ lnn+

√
lnn

√
n

lnnd̃
·

√
lnnd̃+ ln 1

λj

n

< lnn+

√
lnn+ ln

1

λj
.

Since b0 = c ·D
D+1
D+2 ε

1
D+2 , for n large enough, we have λj < n−5 <

b20
D2 and also

ln
b0/D

λ
1
2
j

= ln c+
1

2(D + 2)
(lnn+ ln lnnd̃)− 1

D + 2
lnD +

1

2
ln

1

λj
> lnn+

√
lnn+ ln

1

λj
.

It then follows that

βj(t) < λ
1
2
j exp

(
bD0 t(|θ∗j |+ |ξj |)

)
≤ λ

1
2
j exp

√
lnn

√
n

lnnd̃
·

√
lnnd̃+ ln 1

λj

n

 · n

< λ
1
2
j exp

(√
ln

1

λj

)
· exp

(√
lnn

)
· n

< λ
1
2−δ′

j n1+δ′ .

Using λ̃j(t) = (β2
j (t)+λj)(b

2
0+Dβ

2
j (t))

D, we obtain the desired result for sufficiently large n.

Remark F.3. The above proposition provides a very weak upper bound on λ̃, but it is sufficient to
show that any eigenvalue λj , such that if given any constant C, λj < n−C , then λ̃j(t) is also less
than any polynomial of n−1. Therefore, when considering the eigenvalue ordering problem, such
signals can be ignored.

F.3 CONSERVATION QUANTITY

We omit the subscript j in the following two sections F.3 and F.4 because all the proofs are similar
for j = 1, 2, · · · , d. By Equation (38), it is easy to see that

d

dt
a2 =

1

D

d

dt
b2 =

d

dt
β2 = 2abDβ(θ∗ − θ + ξ).

Consequently, we have
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a2(t)− β2(t) ≡ a20, b2(t)−Dβ2(t) ≡ b20. (50)

Using this, we see that

a(t) =
(
β2(t) + a20

)1/2
, b(t) =

(
Dβ2(t) + b20

)1/2
> 0.

Using these conservation quantities, we can prove the following estimations in terms of β:

max (a0, |β|) ≤ a ≤
√
2max (a0, |β|)

max
(
b0,

√
D|β|

)
≤ b ≤

√
2max

(
b0,

√
D|β|

) (51)

which also implies that |θ| =
∣∣abDβ∣∣ ≥ DD/2|β|D+2. The evolution of θ. It is direct to compute that

θ̇ = ȧbDβ + aDbD−1ḃβ + abDβ̇

=
[(
bDβ

)2
+
(
DabD−1β

)2
+
(
abD

)2]
(θ∗ − θ + ξ)

= θ2
(
a−2 +D2b−2 + β−2

)
(θ∗ − θ + ξ).

(52)

And we also have

|θ| =
∣∣abDβ∣∣ ≥ DD/2|β|D+2 =⇒ |β| ≤

(
D−D/2|θ|

)1/(D+2)

. (53)

Therefore,

θ2
(
a−2 +D2b−2 + β−2

)
≥ θ2β−2 ≥ D− D

D+2 |θ|
2D+2
D+2 . (54)

F.4 MULTI-LAYER DYNAMIC

We study the dynamic of the ODE for any given j. Before the analysis, we streamline some notations.

Assume for some κj > 0, it holds that |ξj | ≤ κj . (Note that this κj can be the high probability
upper bound derived using Lemma F.9.) Since j is given, we drop the the subscript j to simplify
the exposition throughout this subsection; for example, we write λ for λj and θ∗ for θ∗j . We write
ln+(x) = max(1, ln(x)) for any x > 0.

Lemma F.4 (Monotonicity from equation). Consider the equation Equation (38). Suppose y > 0.

1. a(t), β(t), and θ(t) are all non-negative and increasing.

2. We have
y ≥ θ(t) ≥ 0 ∀t ≥ 0.

3. Since y = θ∗ + ξ and |ξ| ≤ κ, we have

|θ∗ − θ(t)| ≤ |θ∗|+ κ, ∀t ≥ 0.

4. |θ∗ − θ(t)| is decreasing provided that |θ∗ − θ(t)| > κ.

5. If |θ∗ − θ (t1)| ≤ κ for some t1, we have

|θ∗ − θ(t)| ≤ κ for all t ≥ t1.

If y < 0, Items 3, 4, and 5 still hold, while Items 1 and 2 can be modified by symmetry.
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Proof. Items 1 and 2 are directly implied from Equation (38). Item 3 is implied by Item 2.

To prove Item 4, consider Equation (52), from which we have

θ̇ = θ2
(
a−2 +D2b−2 + β−2

)
(y − θ),

which implies θ̇ ≥ 0.

Since |θ∗ − θ(t)| > κ, we have either θ(t) > θ∗ + κ or θ(t) < θ∗ − κ.

The first case is not possible; otherwise, we have 0 < y = ξ + θ∗ ≤ κ + θ∗ < θ ≤ y, which is a
contradiction. In the second case, we have |θ∗ − θ(t)| = θ∗ − θ(t), which is decreasing because
θ̇ ≥ 0.

Item 5 is implied by Item 4.

Lemma F.5 (Approaching from below). Consider the equation Equation (38). Suppose θ∗ ≥ 8κ
(similar results hold for θ∗ ≤ −8κ by symmetry). Suppose t0 ≥ 0 such that 0 ≤ θ (t0) <

1
4θ

∗. Define

T sig = inf {s ≥ 0 : θ (t0 + s) ≥ θ∗/4} .

This is the extra time needed from t0 for θ to reach θ∗/4. We have

T sig ≤


4(θ∗)−1b−D

0 ln
(

b0
a0

√
D

)
a0 < b0/

√
D;

4(θ∗)−1a−1
0 ln

(
a0

√
D

b0

)
a0 > b0/

√
D, and D = 1;

4(θ∗)−1D− 1
2 a−1

0 b−D+1
0 a0 > b0/

√
D, and D > 1.

(55)

Proof. Since |y − θ∗| = |ξ| ≤ κ and θ∗ ≥ 8κ, we have y ≥ 7κ > 0. Therefore, θ(t) ∈ [0, y]. For
any t ≤ t0 + T sig , we use θ∗ ≥ 8κ to show that

y − θ(t) = θ∗ − θ(t) + ξ ≥ 3

4
θ∗ − κ ≥ 1

2
θ∗.

Let r = min
(
a0, b0/D

1
2

)
and R = max

(
a0, b0/D

1
2

)
. Define the following time point if it exists:

T pos,1 = inf {s ≥ 0 : β (t0 + s) ≥ r} ; T pos,2 = inf {s ≥ 0 : β (t0 + s) ≥ R}

T sig = inf

{
s ≥ 0 : |θ∗ − θ (t0 + s)| ≤ 3

4
θ∗
}
.

We will first bound both T pos,1 and T pos,2.

From Equation (38), we have

β̇(t) = a(t)bD(t)[θ∗ + ξ − θ(t)] ≥ 1

4
θ∗a(t)bD(t), for t ≤ t0 + T sig. (56)

Stage 1: 0 ≤ s ≤ T pos,1. Note that
√
2a0 > a(t) > a0, and e·bD0 > b(t)D = (Dβ(t)2+b20)

D
2 > bD0 .

We have
β̇ (t0 + s) ≥ 1

4
θ∗a0b

D
0 ≥ 1

4
θ∗a0b

D
0 ,

which suggests β increases at least linearly. Therefore, we have

T pos,1 ≤ 8r
(
θ∗a0b

D
0

)−1
. (57)

Stage 2: T pos,1 ≤ s ≤ T pos,2. Consider two cases.

Case 1: If a0 < b0/
√
D, r = a0 and R = b0/

√
D. Note a ≥ β in Equation (51). We use

Equation (56) to get
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β̇ (t0 + s) ≥ 1

4
θ∗bD0 |β (t0 + s)| ,

By Grönwall’s inequality, we have

T pos,2 − T pos,1 ≤ 4
(
θ∗bD0

)−1
ln

b0

a0
√
D
. (58)

Case 2: If a0 > b0/
√
D, R = a0 and r = b0/

√
D. We use b ≥

√
Dβ in Equation (51) together with

a > a0, b >
√
D|β| and Equation (56) to get that

β̇ (t0 + s) ≥ 1

4
θ∗a0D

D
2 |β (t0 + s)|D .

By comparison theorem, we have

T pos,2 − T pos,1 ≤

 4 (θ∗a0)
−1

ln a0

√
D

b0
, if D = 1;

4
(
(D − 1)θ∗a0D

D/2
)−1

[(
b0/

√
D
)−(D−1)

− a
−(D−1)
0

]
, if D ≥ 2.

(59)

Stage 3: If T sig ≤ T pos,2, then we can use the for T sig in Stage 2 as a bound for T sig. Now,
we consider the case T pos,2 < T sig. We combine Equation (51) with a > |β|, b >

√
D|β|, and

Equation (56) to get

β̇
(
t0 + T pos,2 + s

)
≥ 1

4
θ∗DD/2|β

(
T pos,2 + s

)
|D+1, for s ∈

[
0, T sig − T pos,2] .

Beside, we have β
(
t0 + T pos,2

)
= R > 0. By Lemma F.10, we have

T sig − T pos,2 ≤ 4D−D+2
2 (θ∗)−1R−D. (60)

We now bound T sig using the summation of Equation (57), Equation (60), and Equation (58) if
a0 < b0/

√
D, or the summation of Equation (57), Equation (60), and Equation (59) if a0 > b0/

√
D.

If a0 < b0/
√
D, we can bound the right hand sides of Equation (57) and Equation (60) by

8(θ∗)−1b−D
0 and 4(θ∗)−1b−D

0 respectively.

If a0 > b0/
√
D, we can bound the right hand sides of Equation (57) and Equation (60) by

8(θ∗)−1D− 1
2 a−1

0 b−D+1
0 and 4(θ∗)−1D− 1

2 a−1
0 b−D+1

0 respectively. Furthermore, if D > 1, we
can bound Equation (59) by 4(θ∗)−1(D − 1)−1D− 1

2 a−1
0 b−D+1

0 .

This leads to

T sig ≤


4(θ∗)−1b−D

0

(
3 + ln

(
b0

a0

√
D

))
a0 < b0/

√
D;

4(θ∗)−1a−1
0

(
3 + ln

(
a0

√
D

b0

))
a0 > b0/

√
D, and D = 1;

16(θ∗)−1D− 1
2 a−1

0 b−D+1
0 a0 > b0/

√
D, and D > 1.

(61)

Lemma F.6 (Approximation time near θ∗). Consider the equation Equation (38) with θ∗ ≥ 0 ( a
similar result holds for θ∗ ≤ 0 ). Suppose θ∗ > 8κ. Suppose for some t0 ≥ 0 such that

1

4
θ∗ ≤ θ (t0) ≤ θ∗ − κ.

Then, for any δ > 0, we have

|θ∗ − θ(t)| ≤ κ+ δ, ∀t ≥ t0 + 4
2D+2
D+2 D

D
D+2 (θ∗)−

2D+2
D+2 ln+

|θ∗ − θ (t0)| − κ

δ
.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Proof. Given any δ > 0, if θ(t0) ≥ θ∗ − κ − δ, we have |θ∗ − θ(t)| ≤ κ + δ for all t ≥ t0 by
Lemma F.4 (Item 4) and the desired result is proved.

Next, suppose θ(t0) < θ∗ − κ− δ. Define

T app = inf {s ≥ 0 : |θ∗ − θ (t0 + s)| ≤ κ+ δ} .

By Lemma F.4 (Item 4) again, it suffices to provide an upper bound on T app .

For all t ≥ t0, we have 1
4θ

∗ ≤ θ(t) by Lemma F.4 (Item 1). Consequently, Equation (54) implies that

θ2
(
a−2 +D2b−2 + β−2

)
≥ D− D

D+2 |θ|
2D+2
D+2 ≥ 4−

2D+2
D+2 D− D

D+2 (θ∗)
2D+2
D+2 := c0.

Furthermore, by Equation (52), we have

θ̇ = θ2
(
a−2 +D2b−2 + β−2

)
(θ∗ − θ + ξ) ≥ c0(θ

∗ − κ− θ).

Let x(s) := θ∗ − κ− θ(t0 + s) with x(0) = θ∗ − κ− θ(t0). Note that T app is the hitting time of
x(s) to δ. Applying Lemma F.11 to x(s), we have

T app ≤ c−1
0 ln

|θ∗ − θ (t0)| − κ

δ
.

Lemma F.7. Consider the equation Equation (38) with θ∗ ≥ 0 (a similar result holds for θ∗ ≤ 0 ).

Suppose θ∗ ≥ 8κ. For two absolute constants C1, C2, we have

|θ∗ − θ(t)| ≤ κ+ δ, ∀t ≥ T̄ app(δ),

where

T̄ app(δ) := T̄ sig + C2D
D

D+2 (θ∗)−
2D+2
D+2 ln+

θ∗

δ
, (62)

and

T̄ sig :=


C1(θ

∗)−1b−D
0 ln

(
b0

a0

√
D

)
a0 < b0/

√
D;

C1(θ
∗)−1a−1

0 ln
(

a0

√
D

b0

)
a0 > b0/

√
D, and D = 1;

C1(θ
∗)−1D− 1

2 a−1
0 b−D+1

0 a0 > b0/
√
D, and D > 1.

(63)

Proof. We will repeatedly apply the monotonicity of Lemma F.4.

Recall T sig defined in Lemma F.5 with t0 = 0 and let t1 be the upper bound on T sig we found therein.
Then θ(t1) ≥ θ∗

4 .

We then apply Lemma F.6 with t0 = t1, and conclude that |θ∗ − θ(t)| ≤ κ+ δ for all t ≥ t1 + t2,
where t2 = 4

2D+2
D+2 D

D
D+2 (θ∗)−

2D+2
D+2 ln+ |θ∗−θ(t1)|−κ

δ . Note that |θ∗ − θ (t1)|−κ ≤ θ∗. We complete

the proof by defining T̄ sig = t1 and T̄ app(δ) = t1 + 4
2D+2
D+2 D

D
D+2 (θ∗)−

2D+2
D+2 ln+ θ∗

δ .

Lemma F.8. Consider the equation Equation (38). Denote r′ = min{a0, b0/D}, R′ =
max{a0, b0/D}. W.L.O.G., We assume that θ∗ ≥ 0. Define T1 = inf{t : |β(t)| > r′}, and
T2 = inf{t : |β(t)| > R′}. If D ≥ 1, and t satisfies the following:

√
2ea0b

D
0

∫ t

0

(|θ∗|+ |ξ|)ds ≤ min (a0, b0/D) ,

then we have
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|θ(t)| ≤ 2e · a20b2D0
∫ t

0

(|θ∗|+ |ξ|)ds. (64)

Moreover, if a0 ≤ b0/D and 0 ≤ t ≤ T2 − T1 satisfies the following:
√
2ebD0

∫ t

0

(|θ∗|+ |ξ|)ds ≤ ln
b0/D

a0
,

then we have

|β(t)| ≤ a0 exp

(
bD0

∫ t

0

(|θ∗|+ |ξ|)ds
)
;

|θ(t)| ≤
√
2ea20b

D
0 exp

(
2
√
ebD0

∫ t

0

(|θ∗|+ |ξ|)ds
)
.

Proof. From Equation (38), we have

|β(t)| ≤
∫ t

0

a(s)bD(s)(|θ∗|+ |ξ|)ds.

Consider t ≤ T1. We use Equation (51) to get a(t) ≤
√
2a0 and by Equation (50), b2(t)−Dβ2(t) ≡

b20. Consequently, we have b2(t) ≤ (1 + 1
D )b20, and thus

|β(t)| ≤
√
2ea0b

D
0

∫ t

0

(|θ∗|+ |ξ|)dt, (65)

which implies Equation (64) by using the fact that |θ| = |abDβ|. Furthermore, Equation (65) implies
that

T1 ≥ inf

{
t ≥ 0 :

√
2ea0b

D
0

∫ t

0

(|θ∗|+ |ξ|)ds ≥ r′
}
.

Then when t > T1, in the following, suppose a0 ≤ b0/D. We have r′ = a0 and R′ = b0/D.

Consider t ∈ (T1, T2). We have a(t) ≤
√
2|β(t)| and b(t)2 ≤ (1 + 1

D )b20. Consequently, Equa-
tion (38) implies that

|β(t)| ≤ a0 +
√
2ebD0

∫ t

T1

|β(s)|(|θ∗|+ |ξ|)ds, (66)

for any t ∈ (T1, T2). By Grönwall inequality, we have

|β (t)| ≤ a0 exp

(√
2ebD0

∫ t

T1

(|θ∗|+ |ξ|)ds
)
, t ∈ (T1, T2).

By definition of T2, we have

T2 ≥ inf

{
t ≥ T1 :

√
2ebD0

∫ t

T1

(|θ∗|+ |ξ|)ds = ln
b0/D

a0

}
. (67)

The bound for θ(t) now follows from using the bounds a(t) ≤
√
2|β|, b2(t) ≤ (1 + 1

D )b20 to get

|θ (t)| =
∣∣abDβ∣∣ ≤ √

2ebD0 |β|2 ≤
√
2ea20b

D
0 exp

(
2
√
ebD0

∫ t

T1

(|θ∗|+ |ξ|)ds
)
,∀t ∈ (T1, T2).
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F.5 AUXILIARY LEMMA

The following lemma provides a choice of κj ≥ |ξj | with high probability.

Lemma F.9. Recall S defined by Assumption 5.1 and let C = 2(Cproxy)
−1/2. For k ∈ S, we

introduce the events {Ek} as follows:

Ek := {|ξk| ≤ Cn−1/2
√
lnn}. (68)

For k ∈ SC , we introduce the events {Ek} as follows:

Ek :=

{
|ξk| ≤ Cn−1/2

√
ln
(
nk̃
)}

. (69)

where k̃ =
∑

j λj/λk.

Then, with probability at least 1− 4
n , all events Ek, k ∈ [d] hold simultaneously.

Proof. By Assumption 5.1, the noise ξk is sub-Gaussian with variance proxy Cproxy/n. Therefore,
P (|ξk| ≥ s) ≤ 2 exp

(
−(2Cproxy)

−1ns2
)
.

If k ∈ S, we have

P

{
|ξk| ≥ 2C−1/2

proxy

√
lnn

n

}
≤ 2 exp (−2(lnn)) .

By the union bound, we have

P {∩k∈SEk} ≥ 1−
∑
k∈S

P

{
|ξk| ≥ 2C−1/2

proxy

√
lnn

n

}
≥ 1− |S|2 exp (−2(lnn))

≥ 1− 2

n
,

(70)

where the last inequality is because |S|2 exp (−2(lnn)) ≤ 2n−1.

If k ∈ SC , we have

P

|ξk| ≥ 2(Cproxy)
−1/2

√
lnnk̃

n

 ≤ 2 exp

(
−(lnn+ ln

∑
j λj

λk
)

)
≤ 2

n
· λk∑

j λj
, (71)

where we recall that k̃ =
∑

j λj

λk
.

By the union bound, we have

P {∩k∈SCEk} ≥ 1−
∑
k∈SC

P

|ξk| ≥ 2(Cproxy)
−1/2

√
lnnk̃

n


≥ 1−

∑
k∈SC

2

n
· λk∑

j λj

≥ 1− 2

n
.

(72)

We combined the Equation (70) and Equation (72), and we derive the results.

The following two lemmas provide convenient upper bounds on hitting times of ODE solutions.
Lemma F.10. Let k > 0 and p > 1.
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• Consider the ODE

ẋ ≥ kxp, x(0) = x0 > 0

Then we have

x(t) ≥
(
x
−(p−1)
0 − (p− 1)kt

)− 1
p−1

and thus for any M ≥ 0,

inf{t ≥ 0 : x(t) ≥M} ≤
[
(p− 1)kxp−1

0

]−1

. (73)

• Consider the ODE

ẋ ≤ −kxp, x(0) = x0 > 0.

Then we have

x(t) ≤
(
x
−(p−1)
0 + (p− 1)kt

)− 1
p−1

,

and thus for any M > 0,

inf{t ≥ 0 : x(t) ≤M} ≤
[
(p− 1)kMp−1

]−1
. (74)

Lemma F.11. Let k > 0 and x0 > 0.

1. If

ẋ(t) ≥ k x(t), x(0) = x0,

then for all t ≥ 0, it holds that

x(t) ≥ x0 e
kt,

and for every M ≥ x0, we have

inf{t ≥ 0 : x(t) ≥M} ≤ 1

k
log
(M
x0

)
.

2. If

ẋ(t) ≤ −k x(t), x(0) = x0,

then for all t ≥ 0, it holds that

x(t) ≤ x0 e
−kt,

and for every 0 < M ≤ x0, we have

inf{t ≥ 0 : x(t) ≤M} ≤ 1

k
log
(x0
M

)
.
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G RELATED WORKS ON PRINCIPAL COMPONENT REGRESSION

As discussed in Section 3.1, the PC estimator serves as a motivating example for the concepts of ESD
and span profile due to its clear illustration of bias-variance trade-offs. However, the ESD and span
profile are designed to characterize the intrinsic difficulty of generalization arising from signal-kernel
alignment, and their definition do not rely on the PC estimator. Nonetheless, the analysis of PC
estimators, particularly in high-dimensional linear regression, been an active area of recent research.
Below, we briefly summarize some relevant contributions to provide context.

G.1 PROPORTIONAL ASYMPTOTIC LIMITS

Several studies analyze Principal Component Regression (PCR) in the proportional asymptotic setting
where the dimension p and sample size n grow with p/n→ γ. In this regime, Xu & Hsu (2019)
studied the limiting risk of PCR with Gaussian designs with diagonal covariance. They assume
polynomially decaying eigenvalues or convergent empirical spectra and an isotropic prior and reveal
a “double-descent” risk curve. In a related vein, Wu & Xu (2020) extend the analysis to general
covariance Σx and an anisotropic prior satisfying Eβ∗β⊤∗ = Σβ . They also derive an exact risk
expression and demonstrate how “misalignment” between Σx and Σβ affects risk; here “alignment”
refers to concordance between the orderings of their eigenvalues. Both studies assume knowledge
of the eigenvectors of the population covariance matrix Σx to construct the oracle PCR. Gedon
et al. (2024) analyze the limiting risk of PCR under a latent factor model and explore the effect of
distribution shift. Green & Romanov (2024) derive the exact limits of estimation risk, in-sample
prediction risk, and out-of-sample prediction risk of PCR under the assumption that both the empirical
distribution of the spectrum and the distribution of mass of the true signal over the eigenspace of Σx

converges weakly.

G.2 NON-ASYMPTOTIC ANALYSIS

Complementary research develops non-asymptotic guarantees. Agarwal et al. (2019) derive finite-
sample upper bounds on prediction error using ∥β∗∥21 and the rank of design matrix under latent factor
models and explore the robustness of PCR to noise and missing values in the observed covariates.
Bing et al. (2021) consider PCR with adaptively selected number of components under latent factor
models and provide alternative finite-sample risk bounds using ∥β∗∥22. Huang et al. (2022) derived
non-asymptotic risk bounds for PCR in more general settings by analyzing the alignment between
population and empirical principal components. Hucker & Wahl (2023) derive non-asymptotic error
bounds for PCR in kernel regression.
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