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ABSTRACT

We study spectral algorithms in the setting where kernels are learned from data. We
introduce the effective span dimension (ESD), an alignment-sensitive complexity
measure that depends jointly on the signal, spectrum, and noise level 2. The
ESD is well-defined for arbitrary kernels and signals without requiring eigen-decay
conditions or source conditions. We prove that for sequence models whose ESD
is at most K, the minimax excess risk scales as 02K . Furthermore, we analyze
over-parameterized gradient flow and prove that it can reduce the ESD. This finding
establishes a connection between adaptive feature learning and provable improve-
ments in generalization of spectral algorithms. We demonstrate the generality of
the ESD framework by extending it to linear models and RKHS regression, and we
support the theory with numerical experiments. This framework provides a novel
perspective on generalization beyond traditional fixed-kernel theories.

1 INTRODUCTION

Neural networks excel across many applications, yet a complete theoretical understanding of their
efficiency remains an open problem. In the infinite-width limit, the Neural Tangent Kernel (NTK)
theory approximates training dynamics as kernel regression (Jacot et al.| 2018} |Allen-Zhu et al., 2019)),
and it enables the study of generalization by leveraging the classical theory of kernel regression and
Reproducing Kernel Hilbert Spaces (RKHS) (Bauer et al., 2007} Yao et al.; 2007). However, the NTK
theory does not explain why finite-width networks, which adapt their features during training, often
outperform traditional methods (Ghorbani et al., 2020; |Gatmiry et al.| 2021} |[Karp et al., 2021} [Shi
et al.,[2023; [Wenger et al., [2023} [Seleznova & Kutyniok| 2022).

A growing line of work directly studies adaptivity, i.e., learning representations or kernel properties
during training (Ba et al., 2022 Kunin et al., [2024; |Liu et al., 2024} Bordelon et al., 2025 | Xu &
Ziyinl 2025} [Zhang et al., 2024). Simplified models show that learning eigenvalues (with eigen-
functions fixed) can align the kernel with the signal and improve performance (Li & Lin, [2024;
2025). The common thread is signal-kernel alignment: performance improves when the target’s
energy concentrates on leading eigenfunctions (Arora et al.,|2019; [Woodworth et al.| 2020; [Kornblith
et al.} 2019; [Radhakrishnan et al.l|[2024). However, classical RKHS theory relies heavily on fixed
spectral assumptions (e.g., polynomial eigenvalue decay) and specific signal regularity conditions
(e.g., source conditions) (Engl et al.,|1996), which do not apply to learned spectra. To explain the
observed advantages of adaptive kernel methods, we need a refined theoretical framework that goes
beyond fixed-kernel assumptions.

In this paper, we propose the Effective Span Dimension (ESD), which is a population complexity
measure for the analysis of signal-kernel alignment. ESD counts the smallest number of leading
eigenfunctions required so that the remaining signal energy matches the estimation variance. Unlike
classical measures that ignore the signal, ESD depends on the signal, spectrum, and noise level. Our
framework provides new theoretical insights that are absent in classical analyses. In particular, we
achieve the following:

(i) We establish a sharp minimax optimal convergence rate using ESD.

(i1) We explain how gradient-based learning algorithms such as the one in L1 & Lin|(2024) adaptively
achieve superior generalization by reducing the ESD.

(iii) We extend our definitions and theory from sequence models to linear regression and kernel
regression, which demonstrates the broad applicability of our framework.
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Our ESD framework bridges fixed-kernel theory and adaptive learning by quantifying signal-kernel
alignment. We hope it will open avenues for deeper understanding of neural networks and novel
adaptive algorithms.

Notations. Write a < b if there exists a constant C' > 0 such that a < Cb, and write ¢ < bifa < b
and b < a, where the dependence of the constants on other parameters is determined by the context.
Ford € Ny, let [d] = {1,2,...,d}; ford = oo, let [d] = N,. 1.} denotes an indicator function.

2 BACKGROUND ON KERNEL METHODS

We first review kernel regression to provide context. Let (z;,y;)!_; be i.i.d. samples from y =
f*(x)+e, where & ~ 11 on a compact space X, € is an independent noise with E[e] = 0, Var(e) = o2.
For an estimator f of the target function f*, the excess risk is R(f; f*) = Eqp [(f(z) — f*())?].

A symmetric, positive-definite, and continuous kernel k(-,-) : X x X — R induces an RKHS
H C L?(X, u) with inner product (-, -)2;, and norm || - ||3, (Wahba, |1990; Scholkopf & Smola, 2002).
Assuming k is bounded, Mercer’s theorem yields

k(z,2') = Z N () (&), x, o' € X, )]
j=1

where {);};>1 are eigenvalues and {¢;};>1 C H are eigenfunctions forming an orthonormal basis
of LQ(X , 1t). For background, see |Steinwart & Christmann|(2008)); [Steinwart & Scovel| (2012).

Kernel regression estimates f* using f = > ; B;j1; and regularizes via a filter of the kernel spectrum
{)\j}(Rosasco et al., 2005 |Caponnetto & Vito, [2007; Gerfo et al., 2008). If f* satisfies the Holder
source condition . (f*, ¥;)? /X3 < R, for some positive constants s and R, (Engl et al., [1996;
Mathé & Pereverzev, 2003) and the spectrum decays polynomially A\; =< 577, then the minimax
rate is n—57/ (s7+1) (Yao et al.,[2007; |Li et al.,|2024; [Wang et al.,2024). The choice of kernels can
significantly affect the performance (Li & Lin, |2024;|Zhang et al.l 2024), so it is beneficial when the
kernel eigenvalues align well with the expansion of the target function.

Since the kernel is usually chosen without knowing f*, fixed-kernel methods may encounter mis-
alignment. To address this limitation, adaptive methods have recently emerged. For instance, [Li
& Lin| (2025) propose adapting kernel eigenvalues while fixing eigenfunctions. Specifically, they
consider the kernel kq (7,2') = >, aZv;(x); (x') indexed by @ = (aj);, and the candidate
f=2>2,51B5a;9;, where a;’s and 3;’s are learned jointly via gradient flow. Such adaptation often
improves performances, yet classical analyses built on fixed spectral assumptions do not explain these
gains, because (a) adapted eigenvalues typically deviate from standard eigenvalue decay assumptions,
and (b) it is unclear whether the classical source condition holds with respect to the adapted kernel,
and if so, what the value of s is. We therefore seek a refined theoretical framework that explicitly
captures signal-kernel alignment and explain the gains achieved by kernel adaptation.

Bridge to the sequence model. We next connect the RKHS regression with the sequence model to
motivate our analysis in the next section. For any j € N, define

05 = ("), z=n"" Zyiwj(wi)a and & =n"" ZQ%’(%‘)- (2

For large n, we have n= ! 3, o, (2 )x (2;) =~ E[Y; ()Y ()] = 1{;j—y}, which implies that
2~ 0; + fj, and E [f_]] = 0, COV(&j,fk) ~ n_lagl{j:k}, \V/j, ke N+. (3)

This reduction connects RKHS regression to a sequence model where the observations are z; =
07 + &; and the noise terms {¢;} are uncorrelated with variance 0?2 := n~1o?. The error in the
approximation due to finite n will inflate the estimation variance compared to the sequence model.
This approximation error can be controlled if f* is bounded; see Appendix [B]for a rigorous treatment.
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3 EFFECTIVE SPAN DIMENSION AND SPAN PROFILE

To bridge existing theory and adaptive kernel methods as discussed in Section 2] we propose a novel
framework to characterize the alignment between spectrum and signal. To focus on the main idea, we
use the reduction in Equation (3)) and first present our framework using sequence models.

Sequence models. A sequence model assumes observations are sampled as follows:

zj =07 +§&, 1<j<d, “4)
where d € {o0} UN,, 6* = (0;’?)?:1 is a sequence of unknown parameters, &;’s are uncorrelated
random variables with mean zero and variance o2 (the noise level). For an estimator 0= (é\j)?zl, we
consider the loss /3(5; 0*) = 27:1(5] — 6%)? and risk ’R(@7 0*) = E,C(é; 0*). The sequence model
captures core estimation phenomena while permitting explicit analysis (Brown et al.| 2002} Johnstonel
2017). In Appendix [A] we use whitening to deal with correlated noise and analyze fixed-design

linear regression. In Appendix [B] we leverage the approximation in Equation (3)) to analyze RKHS
regression and random-design linear regression.

Spectral estimators. Given eigenvalues A = ()\j)?zl, spectral estimators take the form @\j =

(1 — z/;l,()\j)) zj, where 1, () is a filter such that larger v induces more shrinkage. Some examples
are:

. 1 DY
Ridge (R): 00 = 570 O = 5)
J
Gradient Flow (GF):  9SF(\) = e=/7, asr — (1 - e—W”) 5. (6)
Principal Component (PC): wfc()\) =1lp<)s gfc"" =1{n,50) %j- @)

. . . . 2 .
For spect2ra1 estimators, the risk decomposes into squared bias > (¥ (A;)) 95— and variance } - ; (1-
'l/),/()\j)) o2, where v controls the bias-variance trade-off. Classical analyses often assume 8™ lies in

an ellipsoid ©, = 16 : Y~ a?07 < C 2} and derives convergence rates for sequences with a; < i®

(Johnstone, |2017). Our theoretical framework aims to bypass these assumptions.

3.1 EFFECTIVE SPAN DIMENSION

Our goal is to develop a measure that captures the interplay between signal structure 8%, spectrum A,
and noise variance o2. To start, we examine the Principal Component (PC) estimator analytically. PC
operates by truncating coordinates with small eigenvalues. Its risk is composed of variance from the
retained components and squared bias from those truncated. By trading variance against tail bias, PC
admits the optimal truncation point. This motivates our core definition.

Definition 3.1. Suppose {\;}c(a) are distinct, with 7; indexing the i-th largest so that Ay, > Ar, >

... We define the Effective Span Dimension (ESD) d' of 8* w.r.t. the spectrum X\ and variance o as

d
1 2
T — dT (52 9* — mi - * < g2
d"=d"(0%;0%,A) = min{k € [d] : ki:%H_l (0:)" < o}

Intuitively, the ESD d' is the number of leading coordinates (with leading eigenvalues ;) that are
most critical for estimation at a given noise level o'2. It is the truncation point where the squared tail
bias of the PC estimator first becomes comparable to (or less than) the estimation variance. The next
theorem shows that d' describes the best achievable risk for the PC estimator.

Theorem 3.2 (Optimal PC Estimator Risk). Let 0P be the PC estimator for the sequence model in
Equation . Denote by REC the minimal possible risk over all choices of v. Let dT = d'(c?; 0%, \)
be the ESD of 0* w.r.t. the spectrum \ and the variance o>. It holds that

(df—1)e? < REC < 24t 2.
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The well-tuned PC estimator is known to be minimax rate optimal under classical assumptions in
sequence models that are analogous to the polynomial eigen-decay condition and the source condition
in kernel regression (see Propositions 3.11 and 4.23 of Johnstone| (2017))). In contrast, Theorem@]
suggests that we can instead use O(d'c?) to upper bound the minimax estimation error with no
reliance on particular spectral decay or source conditions. Moreover, the following theorem confirms
that df o2 indeed characterizes the intrinsic difficulty of estimation.

Theorem 3.3. Forany K € [d], spectrum X = {\;} e[}, and variance o, define
Foy = {GERd:dT(oz;B*,/\) gK}. ®)
Suppose the sample Z is drawn from the sequence model in Equation (). We have

inf sup R(,6%) =< Ko,
6 o cry)

where inf is taken over any estimator 0 based on Z.

Theorem considers the minimax risk over F I((n ))\, a class of distributions whose ESDs are at most

K. We interpret K as the quota for ESD: the larger K, the larger ]-'I((n))‘ and thus the higher the

minimax risk. By Theorem it is clear that 2K o is an upper bound on the minimax risk, and we
only need to establish a matched lower bound.

Theorem [3.3] highlights the usefulness of ESD: although we motivate its definition using a specific
estimator, it quantifies the best possible (worst-case) performance of any estimator. Therefore, the
ESD is a fundamental measure for signal-spectrum alignment.

We emphasize that ESD is a population-level complexity measure that depends on the signal and
spectrum. It is not a tuning parameter and does not need to be estimated. Its purpose here is
explanatory and comparative: it yields a sharp lower bound on the minimax risk and lets us quantify
why adaptive learning can outperform fixed-kernel baselines. This mirrors common practice in
statistics: sparsity justifies the Lasso, yet practitioners do not estimate the sparsity level before
running the method. Estimating ESD from data is an interesting separate problem but orthogonal to
our goals in this work.

Comparisons to other alignment measures. Alternative alignment measures exist. The cosine
similarity-based kernel-target alignment yields generalization bounds (Cortes et al., [2012; (Cristianini
et al.,[2001), but these bounds are typically too loose to explain fast rates in adaptive kernel methods.
Recently, [Barzilai & Shamir (2023)) extended benign-overfitting analyses (Bartlett et al., |2020b;
Tsigler & Bartlett, 2023) to kernel ridge regression, which may encounter saturation effects that
prevent optimal rates for overly smooth target functions.

Comparisons to other effective dimensions. There are some well-known measures used in the
classical analysis of spectral methods. We discuss the differences between ESD and these measures.

Zhang|(2005)) introduces the effective dimension to quantify the complexity of any regularized method.

For ridge regularization in Equation H the effective dimension is defined as degt (V) = >, 75, )‘J’FV
J
(see Proposition A.1 in[Zhang| (2005)). de () depends only on the spectrum A and the regularization
parameter v, but not on the signal 8* or the noise level 0. Consequently, the effective dimension is
not suitable for measuring signal-spectrum alignment. Furthermore, the effective dimension, as a

function of v, does not directly connect to any minimax risk.

In linear regression, Bartlett et al.| (2020a)) analyze the minimum-norm interpolator via the effective
ok Ars . . . . e

rank r; = Z}\# (using the relationship in Equation ). They define the splitting index
Th41

k* =min{k > 0: o2r, > b} for some constant b and establish risk bounds using o2k*. While k*

may resemble ESD since both depend on X and o2, they differ in two important aspects: (i) k* does

not involve the signal and thus cannot measure signal-spectrum alignment; and (ii) £ is tailored to

the minimum-norm estimator and does not characterize the minimax risk over a class.

Both deg (v) and k* are signal-agnostic: they depend on the spectrum X (and either v or o) only,
and therefore remain invariant under any change in the alignment between the signal and the kernel’s
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eigenfunctions. For instance, if adaptive training improves alignment by reordering the eigenfunctions
to better align with the signal while preserving the set of eigenvalues, then both deg (1) and k* are
unchanged. In contrast, the ESD df (02; 0~ A) is signal-aware, because it is defined by the bias-
variance crossing for the specific 8*. As signal-kernel alignment improves, the ESD decreases.
Consequently, the ESD can mechanistically explain the generalization benefits of adaptive kernel
learning, a phenomenon that signal-agnostic complexity measures like defr () and k* cannot capture.

Examples. For the following canonical settings, the optimal PC risk satisfies

mind 67557, d o2\, WX =i8 T4 A02<R, B,s>0,
RPC = ) min o2 %, do?}, ()0 =i 2 a>1, {\} 1,
min{do?, log(do?/log(do?))}, (3)d < oo, 07 =i~V {\} |,
d min{d=, o2}, @d<oo,0<a<l, 0 =i"2 {\} 1,
)

where {\;} | means \; is decreasing. Details and proofs are deferred to Appendix

In Setting (1), we may take 0> = 02 /n in view of Equation (3)), and then the upper bound becomes

. __sB_ . . ..
03 min (n T8 d/ n), which matches the well-known optimal rate under the source condition and

the polynomial eigen-decay condition in the case when d = co. When d < oo, there is a phase

1
transition around do < nT%7 : if d < dy, the upper bound is do3 /n; if d = do, the upper bound is
the same as if d = oo.

Appendix [C.T]illustrates a sparse signal example where the ESD provides a quantitative comparison
of two different spectra while the existing measures like defr () and k* do not. These examples
suggest that the notion of ESD allows us not only to recover classical results but also to explore new
settings where the classical framework is inapplicable.

3.2 SPAN PROFILE

The definition of ESD explicitly depends on the noise level o2, which distinguishes it from other
complexity measures in the literature. The dependence on o reflects the bias-variance trade-off
nature of ESD: as o2 decreases, more coordinates can be unbiasedly estimated while controlling the
overall variance, thereby more bias is removed. To focus on the alignment between a given signal 6*
and a spectrum A, we examine the ESD by varying the noise level.

Definition 3.4. We define the span profile of 0* w.r.t. the spectrum X as Dg- » : T — di(1; 6%, \).

The span profile Dg-  is a well-defined object that depends only on 8* and the ordering of A, and it
summarizes how o2 affects the ESD. Theorem suggests that for two spectra A() and A?), we
can compare their alignments with the signal by the ratio of 7(7) = Dg. y1)(7)/Dg« a2 (1) for
small 7, because, if this ratio is very small (and in particular if the limit is O for 7 — 0), then a kernel
method using A(Y) can achieve a smaller risk than one that uses A(®). Such comparisons are not as
convenient in classical theory. See Appendix [C]for more illustrations.

A closely related object is the trade-off function of 8* relative to A, which is defined as

d
Hoalh) = 3 3 (02)° = ¢ X @)% held. (10)

i=k+1 i X <Amy

The quantity 0~ 2Hg- (k) equals the bias-variance ratio of the PC estimator using the k leading
coordinates. Properties of span profiles and trade-off functions are summarized as follows.
Proposition 3.5. (1) Both Dg-  : 7 — [d] and Hg- » : [d] — [0, 00) are nonincreasing. (2) For
any T, it holds that Dg- x(7) = min{k € [d] : Hg- (k) < 7}. (3) For two spectra A and A?),
ing*,)\(l) (k) § H9*7)\(2) (k) for allk € [d], then Dg*,)\(l) (T) S D0*7)\(2) (T), V7 > 0.

Property (3) in Proposition[3.5]suggests that the faster Hg- »(-) decreases, the better the spectrum X
aligns with the signal 8*. In the extreme case where the ordering of \; matches the ordering of |67]2,
the decay of Hg- () is the fastest, which leads to the most favorable span profile.



Under review as a conference paper at ICLR 2026

Extensions. To save space, we defer the extensions to linear models and kernel regression to
Appendices [A] and [B] respectively. For the kernel regression model in Equations (I)) and (2), we
define the ESD of f* w.r.t. the kernel k and the effective noise variance o2 := (o + || f*||%,)/n as

d'(0?; f*,k) = min{k € Ny U {00} : Hg- A (k) < 0?}.

4 MINIMAX OPTIMAL CONVERGENCE RATES

When using the span profile to characterize the signal-spectrum alignment, it is of interest to establish
the optimal convergence rates. Since the setting where d = d,, grows along with n has been studied
in Theorem we focus on the case where d = oo and the spectrum A is given with ordering
denoted by {r;} such that A, > A, > .... For the convenience of the asymptotic analysis, we
examine the span profile at 7 = o3 /n, where o is fixed and n enumerates N .

We begin by defining a class of populations whose span profile is bounded by a sequence of quotas
K = {K,}2° ;. This leads to the following class of parameters:

Frx = {0 € R : Dg,)‘(%g) < K,, Vmn>ngforsome no}. (11

For each 0 € Fk », the sequence model in Equation (4) with * = 0 and 0 = ¢} /n will have an
ESD no greater than K,,. For a sample Z (™) from this sequence model and any estimator 6 based on
Z(™)_ we aim to determine the convergence rate of the following minimax risk:

inf sup ’R(é\ﬁ). (12)
0 0cFK

We emphasize that K is a model-class descriptor. It is not a parameter of the distribution, but rather
describes a condition on the distribution. For example, the sparsity assumption in high-dimensional
regression states that ||3]|o < s, so s describes a class of distributions; yet s is not a parameter of
the distribution. Our minimax result requires a regularity condition on the quota sequence K. Let
K :=sup{K,} € NU{oo}. Forany k € [K], let M}, := max{n : K,, = k} (the largest n such
that K,, = k).

Condition 4.1. (1) K,, .1 — K,, < 1 for all n sufficiently large. (2) For all k € [K], it holds that
(k+1)/Mjy1 < k/Mjy.

Condition ensures that i, does not grow faster than n, and the ratio sequence {k/My} is
nonincreasing. Condition[d.1]is easily satisfied by common growth laws.

Example 4.2. (1) Suppose K,, = n® where 0 < a < 1. For any k, we have L;, =< M;, < k'/®. Since
k/ kl/a s decreasing, Conditionholds.

(2) Suppose K,, < (logn)® where b > 0. For any k, we have L, < M}, < e*"". Since k/ekl/b is
decreasing, Condition holds.

The next theorem provides a lower bound on the minimax risk in Equation (12).
Theorem 4.3. Suppose Condition[4.1 holds for a quota sequence K = {K,,}°2 . Let co = 1/4. If
Z™) s drawn from the sequence model with 0* = 6 and o> = o3 /n, it holds that

~ K
inf sup R(0,0) > coop——.
2] OG‘FK,)\ n

Theorem shows that given a quota sequence K, no estimator can, uniformly over the class Fx x,
achieve a faster convergence rate of risk than 02 K,,/n. On the other hand, Theorem (using
0? = o2 /n) provides a matched upper bound on the risk of the optimal PC estimator, which is

202 K, /n. We thus conclude that the minimax optimal rate over Fx » is 02 K, /n.

Since our theory does not invoke any source condition or eigenvalue-decay condition, it goes beyond
the classical analysis in the literature. It suggests that the ESD is an essential quantity, and the span
profile provides a useful characterization of the attainable error rate for spectral methods.

To see why our framework is more general, the next example presents a case where the minimax
convergence rate is slower than the rate in the fixed-dimensional setting while being faster than the
standard rate in classical infinite-dimensional settings.
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Example 4.4. Let b > 1 be a constant and K,, = [(logn)'/*] for n € N,. Suppose 52y s
decreasing and 05 | = \/08 [je=7" — (j + 1)e=UtD"] for j > 1 and 07 = 0. Then, 6* € Fik x

and the optimal rate is o (log n)l/ b n=1. In contrast, the traditional convergence rate based on the
a/(+e) for arbitrary o > 0, which is not sharp.

source condition is 03 n-

5 ADAPTIVE EIGENVALUES VIA OVER-PARAMETERIZED GRADIENT FLOW

This section will investigate the benefits of learning eigenvalues via over-parameterized gradient flow
(OP-GF) in sequence models (Li & Lin| 2024) through the lens of ESDs. Appendix [C.2] outlines
the framework to explain the benefits of adaptive kernels and presents an experiment using a linear
network. Analyzing eigenfunction evolution theoretically is more difficult and is left for future work.

Inspired by the over-parameterized nature of deep neural networks, [Li & Lin|(2024)) parameterized
; = a;b; 1 ---bj pf;, where D stands for the number of layers and (a;, b; ;, 3;) are parameters to
be learned. The gradient flow w.r.t. the empirical loss L = % > j(9j —y;)? is given by

aj=-Vg,L, bj;i=-Vy, L (i€[D]), B;=-VgL, (13)

a;(0) = X%, b;4(0) =bo >0, (i€ [D]), B;(0)=0, jeld],
where )\;’s are the initial eigenvalues and by is the common initialization of all b; ;. At time ¢, the
learned eigenvalues are given by \;(t) = (a;j(t)bj1(t)---b; p(t))? and the OP-GF estimates are
097 (t) = S\j% (t)8,(t) for j € [d). Li & Lin|(2024) consider infinite-dimensional sequence models
with a polynomial decay condition on the 1nifial eigenvalues and establish upper bounds on the risk
of the OP-GF estimator with proper early stopping.
Here we study the dynamics of eigenvalues in OP-GF and how it changes the ESD. At time ¢, the
learned eigenvalues are A(t) := (\;(t));e[a) and the ESD is d' (t) = d'(0%;6*, X(t)). We aim to
show that under some regularity conditions, OP-GF can adjust the ordering of eigenvalues S\(t) to
reduce the ESD d'(¢), which leads to a better signal-spectrum alignment.
We begin with some notations for the sequence model in Equation (). We focus on the large-sample
case where o2 = %{‘; and og = 1 without loss of generality. Denote d= Zle A; (i.e., sum of initial
eigenvalues). Let 7r; ' (i) denote the rank of ;(t) at time .
Assumption 5.1. We assume (1) Each noise &; in Equation @I) is sub-Gaussian with variance proxy
bounded by C’,,mxyc72. (2) Let ¢ = 20,;01)427171/2 VInnd-Inn and & = QC’p_r,,lx/an’l/Q\/m.
Define S := {j € [d] : |07 > }. We have |S| <n. (3)infjeg A; > n™° for some § € (0,1).
Theorem 5.2. Suppose that Assumption[5.1) holds and the initialization in Equation is bg =
CBD%eﬁ. Define to = C - DDtz (6)7%. There exist some constants ¢, C, Cyr, Cpaz, Ch,
¢y CB, and ¢, such that with probability larger than 1 — 4 /n, we have

d(t2) < d'(t1)

forany t1 € [0,t2) if the followings hold:

1. Forany j € S, we have M < |07

, where M = Cse;
2. Forany j € S¢ we have |9j\ < &, where & = ce.
3. Foranyi,j € S, letn; ; := |07| — |07 | At least one of the followings hold: (a) n; ; < 0, (b)

ni; > Cpe and |05 < CraaM, or (c) }ZZI > (1+ %")
J

4. At time t,, define two subsets of S¢: Ay 1= {i € 5S¢ : 7' (i) < d'(t1),\; < c- D%
M%H} and By := {i € $¢: m; ' (i) > d'(t1)}, and define a subset of S: By := {i € S :
7. (i) > di(t1)}. It holds that | B| + min [(|A1| — |Ba|)+, |B1] < |Ba|(Ca /)2

Theorem [5.2] shows that OP-GF reduces the ESD. The conditions ensure that strong signals with
small initial eigenvalues have larger adapted eigenvalues than weak signals.
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6 NUMERICAL EXPERIMENTS

Data Generation. We utilize the misalignment setting in|Li & Lin|(2024) to specify a d-dimensional
sequence model. We fixed the eigen-decay rate v > 0, the signal decay rate p > 0, and the number of
nonzero signals J. Given any misalignment parameter ¢ > 1, we set eigenvalues as \; = j~7, 5 € [d],
and set the true nonzero parameters as 0; ;) = C'- §=55, where ¢ () = [79) and j < J. Here all other
elements of 65 are zero and d > J9 50 ||6*[|o = J. The observations are sampled as y; ~ N (6}, 5°).
This setting provides a flexible way to control the alignment between the signal structure and the
spectrum. When ¢ = 1, the ordering of 6* align perfectly with the ordering of A. As ¢ increases,
more nonzero elements of 8* are located on the tail where the eigenvalues are smaller, and more
large eigenvalues are associated with zero signals, creating a worse signal-spectrum alignment.

ESDat T
5
ESDat T

ESDat T
ESDat T

Figure 1: Evolution of span profiles during the training of an over-parameterized gradient flow. The misalignment
level q varies from 1 to 3. Fixed parameters are n = 10000, 0o = 1, d = 5000, J = 15, p = 2.5, and v = 1.

Evolution of Span Profile The first experiment visualizes the span profile of the signal w.r.t.
the learned spectrum at various stages in the OP-GF process with D = 0. Given a sample, we
approximate the gradient flow in Equation (I3)) by discrete-time gradient descent and obtain the
solution {(a;(t), 5;(t))¢>0 : j € [d]}. The trained eigenvalue sequence A(t) at time ¢ is given by
Aj(t) = a?(t) for j € [d]. Here we focus on time points before the optimal stopping time. Figure
illustrates the evolution of the span profile w.r.t. the learned spectrum for different training times
and various values of q.

When ¢ = 1 (Top-Left panel), the span profiles at different training times ¢ are nearly identical.
This is because the initial spectrum already aligns perfectly with the signal and there is no room for
improvement. For ¢ > 1 (Top-Right, Bottom-Left, Bottom-Right panels), we observe that as the
training time ¢ increases 0 to 80, the span profile shifts downwards. This suggests that the training
process refines the alignment between the spectrum and the signal. In addition, the reduction in the
span profile is more significant for ¢ = 3 compared to ¢ = 1.5, because ¢ = 3 corresponds to a
greater initial misalignment between the signal and the spectrum, rendering the improvement from
OP-GF more substantial.

Evolution of ESD and Estimation Error of PC Estimators We next empirically investigate the
evolution of the ESD d' and the estimation error as well as the impact of layers D. At any time

t, we compute the ESD d (#) based on the learned eigenvalue sequence A(t) A(t) and also the PC
estimate () based on A(t), with number of components determined by d'(¢). Theorems3.2and
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suggest that the PC estimator tuned by the ESD can achieve the minimax risk rate, so we expect o (t)
to perform well.

Squared Error of PC Estimator over Time (Log Scale, Avg of 20 runs) d" over Time Points (Log Scale, Avg of 20 runs)

ol

RN SR - —F D=
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Figure 2: Averaged squared error of the tuned PC estimator and ESD as a function of the training time. Each
average is computed based on 20 replications and each error bar represents a standard deviation.

The empirical evaluation involved 20 Monte Carlo repetitions. Figure [2|displays the averaged d' (¢)

and the averaged estimation error of () in Figure 2|as a function of training time ¢t. We observe
that both the ESD and the squared error of the tune PC estimator exhibit a general decay trend
over training time ¢. Furthermore, for the shallow model with D = 0 (with no b; ; parameters),
the initial decrease in ESD and MSE occurs earlier compared to the deeper models with D = 1 or
D = 3. However, with sufficient training iterations, the deeper models with D = 1 or D = 3 can
achieve lower ESD values than the shallow model with D = 0. These findings suggest that increased
model depth (D > 0) may facilitate a better adaptation of the spectrum, and thus lead to lower
estimation error. This observation offers a perspective on the benefits of depth in spectral learning,
but a comprehensive study for general models is left for future research.

7 DISCUSSION

This paper introduces the effective span dimension (ESD) and span profile to analyze the interplay
between the signal structure and the kernel spectrum. Our framework moves beyond classical static
assumptions relative to a fixed kernel (e.g., source conditions and polynomial eigenvalue decay)
and offers a dynamic, noise-dependent perspective on signal complexity. Unlike traditional source
conditions, the ESD is more flexible and remains applicable when the spectrum itself is learned from
data.

Quantifying adaptivity. Like the sparsity level in high-dimensional statistics, the ESD is a population
quantity for theoretical analyses rather than an input to training. It serves as a quantitative target
for adaptive algorithms on the population level: by comparing the ESD of a particular signal w.r.t.
different kernels, we can determine which kernel permits better generalization for this signal.

Connecting adaptivity and generalization. Our span profile framework clarifies why adaptive
machine learning methods often outperform classical fixed-kernel approaches. In classical methods
with a fixed kernel spectrum X(%), the target signal 8* might exhibit poor alignment, resulting in a
large span profile Dy- 5 . Consequently, the signal resides in a class Fy o) x0) with a large quota
sequence K(°), which implies high minimax risk. By contrast, adaptive methods modify the kernel
during training. Successful adaptation improves the alignment by reducing the span profile Dg- ()
of the same signal w.r.t. the adapted kernel spectrum X(*). This adaptation places the signal in a class
FK(a) A) With a smaller quota sequence K (@ which implies lower minimax risk.

In summary, the ESD framework provides a novel view of generalization that connects classical kernel
methods with modern adaptive learning. We expect to relate this framework to learned representations
in neural networks to explain their superior generalization performance.
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A EXTENSION TO CORRELATED NOISE AND FIXED-DESIGN LINEAR MODEL

This section extends the concepts of ESD and span profile, developed in Section 3] for the sequence
model, to the setting of fixed design linear regression. In addition, we demonstrate how the minimax
optimal prediction risk in this setting can be characterized using the span profile, paralleling the
analysis in Section 4]

A.1 STRATEGY OF REDUCTION

Before introducing the linear model, it is helpful to outline our general transformation strategy in the
context of a sequence model with correlated noise. Suppose d € N and the observations is

Z=0"+¢, GNNd (0,0’225) (14)

where ¢ € R?*4 js known, symmetric, and positive definite. For correlated sequence model, it is
usually of interest to measure the estimation error using the squared Mahalanobis distance defined as

L(6*,6%) = (6" — ") (6" — 6%).

LetL = Egl/ “bea symmetric square root of Egl. Define the whitened observation and transformed
parameters as

Z=LZ, 6"=L6"
It follows that Z = 6* + €, where € = L& ~ N (0,014). Accordingly, any estimator 0 for 6* is
equivalent to the estimator 5 := L@ for 8*, whose squared loss is ||5— 6|2 = (6" — 0*)TE£_1 (6" —
0*) = L(6*,6%).

Therefore, the transformed model is equivalent to the standard sequence model with uncorrelated
noise in Equation (#) and the estimation is equivalent to the estimation therein. Consequently, the
ESD and span profile for the model in Equation (I4)) can be naturally defined using the original
definitions for the transformed model. Specifically, for the correlated-noise model, we define the
ESD w.r.t. 3¢ as

deg (7:0%) :=dI (T;é* = LB*)
Note that for the risk EL(6*, 5*), our minimax risk characterization still applies, i.e., the minimax
risk scales as Ko? across all distributions whose ESD deg (02; 0*) is bounded by K.

The relationship between Euclidean distance and Mahalanobis distance satisfies that
Amin (Be) L(07,0%) < 07 — 07> < Aax (Se) L7, 6),
so the minimax risk in terms of E||@* — 8*||2 can still be characterized sharply when the condition
number of X) is bounded.
This strategy of reducing a complex model to a simple model will be used in our analysis of linear

model and also the RKHS regression in Appendix B}

A.2 LINEAR MODEL

Consider the following fixed design linear regression model:
Y =X3" + ¢, (15)

where Y € R” is the vector of observations, X € R"*P is the fixed design matrix of rank r <
min(n, p), B* € R? is the unknown vector of true coefficients, and € € R™ is the noise vector. We
assume the components of € are uncorrelated with mean zero and variance 0(2). For this model, we

consider the loss (in-sample prediction error) L‘(ﬁ; B*) = %HX (3 - ﬂ*) |? and risk R(a, B*) =

Eﬁ(ﬁ; (3*). For random design linear regression, we treat it as a special case of RKHS regression
and discuss it in Appendix

13
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To connect this model to the sequence model analysis presented earlier, we utilize the Singular Value
Decomposition (SVD) of the design matrix X as follows:

1

—X=UsV' 16
NG ; (16)
where U € R™*"™ and V € RP*? are orthogonal matrices, and S € R™*P is a rectangular diagonal
matrix with non-negative singular values s; > s3 > --- > s, > 0 on its diagonal, and s; = 0 for
j>r.

For any matrix A and subsets R and T', we write A. r for the submatrix formed by the columns of
A with indices in Iz, and write A7 . for the submatrix formed by the rows of A with indices in 7T".

Multiplying the model Equation li by ﬁUT[rJ’ we obtain a r-dimensional transformed model:

Z=0"+¢, (17
where we have defined Z = ﬁUT[T]Y, 0+ = ﬁUT[r}Xﬂ* =S}, V'B*, and & = ﬁUT[T]e.

Since U is orthogonal, the transformed noise vector £ still has uncorrelated components with mean
zero and variance 02 := 03 /n.

The transformed model in Equation is analogous to the sequence model in Equation (@), where

the signal is 8 and the noise variance for each component is o2. The “spectrum” relevant to this

problem is derived from the singular values of X. Specifically, we define the eigenvalues as \; = s?

forj =1,...,r,and \; = 0 for j > r. Let {m}}_, denote the indices corresponding to the
eigenvalues sorted in descending order, Ay, > Ar, > --- > A > 0.

For any estimator 3 for the linear model Equation , define § = S[,,]}.VT 3 We can then write the
prediction risk as n'E[| X8 — X3*||? = E|[USV '3 — USV ' 3*||2 = E||@ — 6*||. Conversely,

given an estimator 6 for the sequence model Equation (17), we can define 3 = VS’ where
ST € RP*" is an diagonal matrix whose diagonal elements are {1/s;};[,J. It is easy to check that

S[T],.VT ,@ = 0. Therefore, we establish an equivalence between the model Equation and the
model Equation (T3).

The usual ridge regression estimator for the linear model Equation (T3)) is given by
B, = (X"X+vI,) ' XTY,

which transforms into
1

T A+ 1

In the above expression, we have used the identity that S[r],»S[T,.]_. = Diag (s%, e sf) and ¢, (+) is

au = S[7‘],~VTBV = (Ir - ¢V(Diag ()‘17 EER) Ar)))zv where d’u()‘)

applied element-wise. If we replace 1, (A) by other functions as discussed in Section (3} we recover
other spectral methods.

A.3 ESD FOR LINEAR MODELS

We can now adapt the definitions from Section [3|to linear models.

Definition A.1 (ESD for Linear Regression). Suppose the SVD of the design matrix X is given in
Equation (16). The Effective Span Dimension (ESD) of 3* with respect to the design X and the per
component variance o /n is defined as

d' = d'(o3 /n; B, X) = min{k € [r] : He- A (k) < 02 /n},
where 0* = S.V[T]VT,B* and \j = s?.
The Principal Component Regression (PCR) estimator for 3* corresponds to the Principal Component
(PC) estimator in the transformed space Equation . Specifically, for any k € [r], define B7¢* =
ﬁVSLUTMY, where S| € RP*" is a diagonal matrix whose diagonal elements are {1, >on 1)

In the Z space, this means
07 =1{s; > sx, 125, jE ). (18)
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Analogous to Theorem [3.2] the minimal prediction risk achievable by PCR over k is characterized by
the ESD.

Proposition A.2 (Optimal PCR Prediction Risk). Let B\P CF be the PCR estimator using the first k
principal components. Let REC be the minimal possible prediction risk over k € [r], i.e., REC =

minge(,] ’R(B\Pc’k; B*). It holds that
(d" — 1)o /n < REC < 2dfol/n,
where d' = d' (03 /n; 3%, X) is the ESD defined in Deﬁnition
Proposition[A.2]directly follows from Theorem [3.2]and its proof is omitted. This result shows that the

optimal prediction risk for PCR is determined by the ESD d, which measures the effective number
of principal components needed to balance the bias-variance trade-off.

We can further extend the minimax analysis from Theorem[3.3] Let K be a quota on ESD. Define a
class of coefficient vectors based on this quota:

BW = {BeR:dl(02/n;8",X) < K}, (19)
This class contains signals whose ESD relative to the design X is controlled by K. We can establish
the minimax optimal rate for prediction over this class.

Theorem A.3 (Minimax Prediction Risk for Linear Regression). Suppose K < r. For the linear

model Equation with noise variance o3, the minimax prediction risk over the class B%L) defined
in Equation satisfies:
. K
inf sup R(B;B*) = oi—.
B presl® n
The proof of Theorem [A.3]is essentially the same as that of Theorem [3.3]and is omitted.

Through this extension, the span profile framework connects the optimal prediction performance
in fixed design linear regression to the alignment between the signal structure (transformed via the
design matrix) and the spectrum derived from the design matrix’s singular values.

A.4 NUMERICAL ILLUSTRATION

This section illustrates the ESD in fixed-design linear models in two examples. Throughout, we fix
the noise variance at 0'(2] = 1, the sample size at n = 300, and the dimension at p = 400.

Experimental set-up The baseline design matrix X is randomly generated with covariance matrix
¥ = Diag{\;}c[p and then held fixed. We consider two cases:

1. Geometric decay spectrum and polynomial decay signal: \; oc 0.95 J and B;=17 —0.2,

2. Logarithmic decay spectrum and signal: \j = 1/log(j + 1) with 37 = 1/log(j + 1).

The response will be generated from Y = Xy3* + € with random noise €.

We are interested in the ESD and the minimum risk for different transformation of the design matrix.
For this purpose, we introduce a class of non-orthogonal column transformations indexed by o > 0
as follows:

A(a) = diag(exp{at;}), ;=0 —-1)/(p—1)—-1/2, jelp]

The transformed design X(«) = XA («) and the correspondingly transformed coefficient vector
is B(a) = A(a)~t@*. This family of transformation will change the order of spectrum, from
well-aligned to misaligned. We are interested in the following at each a:

* Effective Span Dimension: d' () = d' (0 /n; B(), X(a));
* Minimal PCR risk: R, () = ming E[n~'|X()Bx — X(a)B(a)|]?], where By, is the

k-component principal-component estimator based on (Y, X(«)).

15



Under review as a conference paper at ICLR 2026

3004 3001 e S s S S S
/’I/
¥’
250 2501
) %
~ 2001 =200
f= =
~ ~
w ]
£ 150 = 1504
T e
c =
© ©
a Ja)
@ 1001 @ 100
50 4 50 -
—— ESD —— ESD
--f-- Rescaled Risk --I-- Rescaled Risk
0+ T T T T T T 0-— T T T T T
0 5 10 15 20 25 30 0 2 4 6 8 10
a a

Figure 3: Oracle PCR risk versus Effective Span Dimension for (a) geometric eigen-decay and (b) logarithmic
eigen-decay. The dashed line plots Risk x n/0¢; the solid line is d' (). The risk is computed based on 20
replications and the error bar represents the standard deviation.

Figureplots d' () (solid) and the rescaled oracle risk defined as nR.(«)/o? (dashed) against a.

The two curves coincide over the entire path, which empirically verifies the bound in Proposition [A.2]
2

that R, (o) =< Z2df(a). As o grows, the diagonal stretch A () shifts signal energy towards

directions that carry smaller singular values. This raises d' as well as the achievable risk increases.

This experiment illustrate that ESD, rather than the raw spectrum decay, is the pivotal measure that
fully governs learnability.

B EXTENSION TO RKHS REGRESSION

This section extends the concepts of Effective Span Dimension (ESD) and span profile, developed
in Section 3] to the setting of RKHS regression. Here we will focus on the simple case where the
eigenfunctions of the kernel are fully known and computable and leave a thorough analysis in future
studies.

B.1 RKHS REGRESSION

We recall the standard random-design kernel regression model from Section [2}

yZ:f*(irz)"_eh €; 1'1\51 (070(2))7 izla"wn? (20)
where z; ~ pii.d., and f* € L?(X, ) is the target function. We use a kernel k(-, -) with Mercer
decomposition k(z,2’) = Zj’;l Ajj(); ('), where {¢;}32, form an orthonormal basis for
L*(X,p) and X = {\;};>1 is the sequence of eigenvalues not necessarily sorted. For simplicity,
we assume there is no ties among the eigenvalues and let 7 be the permutation sorting eigenvalues

A; in descending order so that Ay, > Ar, > --- > A;, > .... The coefficients of f* in this
basis are 07 = (f*,9;)2(,)- An estimator f has risk R(f; f*) = E[|f — f*H%Q(M). If we define

0; = (f, ;) 12(,)» We can also write the risk as

. . > 2 G . 2
RUf5 1) =EIf = FBagy =B (8- 0;) 1 =Y E(6;-6;) . @)
j=1 j=1

The expression in Equation suggests that we can equivalently estimate each 67 separately using
the transformed observation z; = n~' ", y;1;(x;) for any j > 1 as introduced in Equation .
Here we kindly remind the reader that in RKHS, we use to the subscript ¢ to index samples while

using j to index eigen-coordinates. The subscript j aligns with the use of notation in the sequence
model, where we use indices j to denote coordinates.
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Inflated variance in Equation (3). Before we introduce the definition of ESD, we demonstrate
that the approximation in Equation (3)) can be made exact by increasing the variance to encompass
the approximation error.

For each j > 1, we can write the transformed observation as

n

1
5= D yiti(as)
=1

n

%Z l'z + € %(%)
i=1

%Z > Opn(:) | (i) + %ZQ%(%)
=1

k>1 i=1
1 n 1 n
SIIED MR RES o
k>1 i=1 i=1
=G
=> Gty + &,
k>1
where G := £ 3" 4y (;);(z;) are entries of the empirical Gram matrix. For &;, we have

E(& | {zitiem) = 0and E(&;&x | {zi}icrn) =1~ 03 Gk

Since z; “¢ p and {1);} is orthonormal in L*(X, i), then E[G;] = 1(—;1. Hence E[z;] = 6.

We may further decompose z; as follows

—0;=(G =10+ | D Gubi | +& =2+,
E>1 k]

where we have defined A; = (Gj; — 1)07 + (Zk>1 kzj Gril ) This term does not appear in the

sequence model, and its randomness purely comes from random covariate z;’s. as n — oo, this
term vanishes because G;; = n~' 3, ¢, (;)> = 1and Gy = n~ ' 320, oy (25) e (1) — O.
Furthermore, since E(§; | {7;}ic[n)) = 0, we have

E(A;E&5) = E(AGEE | {i}icm)) =0

The presence of A; effectively inflates the variance in z; to o3 /n + Var(A;). One can show that
Var(A;) = Var(f*(x)y;(x)), which is bounded by || f||% . This is how we will control the impact
of A; in the following development.

B.2 ESD rFOR RKHS REGRESSION

We start with analyzing the counterpart of the PC estimator, the Kernel Principal Component
Projection Estimator (KPCPE), defined as

frO* @y = ) i), (22)
j:>\j Zkﬂ'k
where k is the number of leading eigenfunctions to be included.

The risk Ry, := EHf}fPCPE — f* H%Z(u) decomposes into squared bias B(k) and variance V' (k). Since
E[thjr (z:);(xi)] = 1{j=;r}, we have E[z;] = 0. Therefore, the bias is due to truncation as

oo

B(k)= > (7). (23)

j=k+1
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The integrated variance is V (k) = > FRVESY Var(z;). Using the law of total variance, we have
NG Z AT

Var(z;) = %Var(yiwj(xi)) = %(0(2) + Tj2), where 7]2 = Var(f*(z)¢;(x)). (24)

The term 7']2 arises from the randomness of the design . To ensure V (k) grows at the rate of k/n,
we need to uniformly bound the design-induced variance sz. To illustrate the idea, we assume f* is

bounded in the sense that |f*(X)| < || f*||o» #-almost surely. Here, || f*||s denotes the essential
supremum of | f*| w.r.t. the measure y.

Assumption B.1 (Bounded target). f* € L (X, u) and || f*||cc = esssup|f*|.

Assumption[B.1]is very mild: for compact X', if f is continuous, then f is bounded.

Under Assumption 77 < E[f*(x)*;(x)?] < || f*]|%. Subsequently, the variance is bounded by
V (k) < E(oZ +|/f*]|%,). This motivates use to define the effective noise variance per component as

- n

o TN
n

(25)

The effective noise variance o2 includes the term || f*||2, /n, which inflates the noise compared to an
idealized sequence model.

We can now adapt the definitions from Section using the effective noise variance o2,

Definition B.2 (ESD for RKHS Regression). The Effective Span Dimension (ESD) of f* with respect
to the kernel k and the effective noise variance o = (02 + || f*||2,)/n is defined as

d" = d(0?; f*,k) = min{k € N; U{oo} : Hg- x(k) < 0%}, (26)
where " = {05} ;>1 and He- (k) is defined as in Equation .

The risk of the KPCPE estimator can be bounded using this ESD.

Proposition B.3 (Optimal KPCPE Risk Bound). Let f,f C be the KPCPE estimator defined in
Equation . Let RYC = ming>1 R(fEC; f*). Under Assumption it holds that:
g + I1F*1%

2
(d—1)70 < RPC < 2dfg? = 9qt 20T 1 oo, 27)
n n

where d' = df(o%; f*,k) is the ESD from Deﬁnition In particular, if | f*||%, < o8, we can
conclude that REC < dfa2 /n.

We comment that Zhang et al.|(2023)) have established the minimax optimality of the well-tuned
PC estimator. Propositionsuggests that the risk of the well-tuned PC estimator scales as d' /n.
Therefore, we essentially express the minimax rate therein using the ESD without reliance on the
classical eigen-decay conditions or source conditions.

We can also extend the minimax framework in Section ] to RKHS regression. Let K be a quota on
the ESD, and let Cj be a constant. Define the class based on the span profile as follows:
Fir =" € P ) N L¥(X ) : | ]loo < 00Co,  d'(@°/nif* k) < K}, (28)

where 62 = 03 (1 + C?). We further impose the following assumption on the spectrum.

Assumption B.4. The kernel k is said to be (K, n)-regular if there are some constants ¢y < 1 and
Cy such that Zi<c1K )\;il < (Cin.

Theorem B.5 (Minimax Risk over Span Profile Classes). Ifk is (K, n)-regular, then the minimax
risk over F I(? %( satisfies:

2
3
=

inf sup R(f;f*)x

) ; (29)
P e

where the infimum is over all estimators f.
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Combining Theorem [B.5]and Proposition[B.3] the optimally tuned KPCPE estimator is minimax rate
optimal over ]:gfi(, with rate G2 K /n.

The KPCPE serves as a simple benchmark for spectral methods. This analysis, via the ESD,
characterizes the performance of the optimally tuned KPCPE based directly on the properties of
the specific signal f* (via 6*) and kernel spectrum A, without requiring standard assumptions like
source conditions or polynomial eigenvalue decay. Therefore, we consider the ESD evaluated at the
design-adjusted noise level o2 as a key measure of statistical complexity in RKHS regression. In
summary, the span profile framework provides a unified perspective on generalization performance
of spectral methods on a variety of models.

Minimax convergence rates. Following the framework in Section[d}, we can quantify a class of
populations using a quota sequence K = {K,,}52 ;. For some ng € N, define

Frk = {f e LQ(XaM) NL=(X, 1) |[f oo < 00C0, dT(52/n§f*vk) < K, Yn > no},
(30)
where 52 = 03(1 + C3). For a sample {(;,y;)}"_; drawn from the model in Equation and any
estimator f, we aim to determine the optimal convergence rate of the following minimax risk:

inf sup R(f, f*). (31)
f ofreFfkx

We have the following result.

Theorem B.6. Suppose Condition holds for a quota sequence K = {K,,}°° ;. Furthermore, sup-
pose K is (K,,,n)-regular for all n > ng. If {(z;,y;)}7—, is drawn from the model in Equation (20),
it holds that

~ K,
inf sup R(f,f*)=<a*—=.
f freFkx n

Assumption [B.4]is a mild condition. The following is an example where we use Theorem [B.6|to
recover the minimax convergence rate derived under the classical polynomial eigen-decay conditions
and source conditions.

Example B.7. Suppose k admits spectrum such that \,, < i~" with 8 > 0. Let K,, = Lnlﬁiﬂj for
any s > 1. It is easy to see that

B+1
-1 1 Bt
E AL < (1K) = et <,
i<e K,

K, _ 2

Therefore, the minimax optimal rate for the class Fx x is == < ogn_ T+8, which is the same as
the optimal rate given by the source condition with smoothness parameter s.

Remark B.8. In Section[2] we simplify our discussion by assuming that k is positive definite. In
practice, positive semi-definite (PSD) kernels may also be used. In the case where k has rank d < oo,
spectral algorithms inevitably induce a systematic (squared) bias

Apene = 111220 — Z (9;)27
JEld]

regardless the regularization parameter. In that case, we may modify the definition of ESD by adding
the systematic bias into the summation to the sum of squared tails.

Specifically, for a PSD kernel k of rank d < oo, we modify the definition of ESD in Definition[B.2]as

d

B B 1

d' =d'(0% f*,k) =min{ j € [d] : j A+ Z (9;1-)2 < o
i=j+1

Again, od" characterizes the risk of the well-tuned PC estimator as in Proposition
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B.3 CONNECTION TO RANDOM DESIGN LINEAR REGRESSION

The treatment of analysis developed in this section covers an important model, the random-design
linear regression in contrast to the fixed-design linear regression. This is because linear regression
can be viewed as a RKHS regression w.r.t. any positive definite linear kernels k(x,2’) = x T Kz’ for
z,r’ € RP, where K € RP*? is positive definite.

Let the support X' be a compact subset of RP. Suppose ¥, = EzN”(xa:T) is positive definite and L
is a symmetric square root of 3. Let the eigen-decomposition of LKL be

p
LKL =) " \jvv| = VAVT,

j=1

where V is the matrix with columns formed by v; and A = Diag(... A;...).

Define ¥ = L~!V. Then ¥ "X, ¥ = V'V = I,,. Furthermore, we have
K=L"'VAV'L™! = WAT T,

Suppose the columns of W are ;. We can then write

IEfJUNIl [<¢J7$><w%$>] = (‘IITEZE‘I’)jk = 1{j:k}7 Vj,k‘ € [p]7

so {1;} is an orthonormal system in L?(X’, 11). Furthermore, the kernel can be expressed as

P
k(z,2') =2 Kz’ = Z)‘j<¢jax><¢jax/>~

j=1
Hence, ({\;}, {¢;}) is the eigen-pair for k.

For linear regression where y = f*(x) + e and f*(z) = (8*,z). Define §* = ¥~13* = V'Lj*.
We can write

fra) = (8% 2) = (1B, W a) =) 05 (v, 2).
j=1

It is also clear that || f*||oc < sup,cx (8%, ) < ||5*||2Cx < oo, where Clx is finite and depends on
X. We can define the effective noise level 02 = n=1(a3 + || f*]|%,)-

Therefore, with respect to the kernel k and the basis {wj }, we define the ESD exactly as in Defini-
tion[B.2]using the coefficients {6} } and eigenvalues {\;}.

B.4 NUMERICAL ILLUSTRATION

This section provides numerical validation of the relationship between the ESD and the optimally
tuned KPCPE risk, mirroring the setup for linear models in Appendix We use the cosine basis

eigenfunctions 1/; () = v/2 cos(27jx) on the domain [0, 1] with inputs sampled as ; ey Unif]0, 1].
The sample size is fixed at n = 400, and for numerical purpose, we consider the first J = 800
eigenfunctions. The noise variance is set as o2 = 1.

Experimental Setup: We set the baseline kernel eigenvalue spectrum as \; o = 511 and the fixed
signal coefficients as 07 = 5%, To study the impact of misalignment between the kernel spectrum
and the signal, we introduce a severity parameter o > 0 and define the modified eigenvalue spectrum
as
j—1
Aj(a) = Ajoexp(at;), t;= l]) 1 for j < D, and t; = 0 otherwise,

with D = 80. As « increases, the leading D eigenvalues become progressively magnified, with the
largest index having the most significant increase. Consequently, the modified kernel will emphasize
more on directions that received less energy of the signal and the optimal KPCPE should require
selecting more principal components.

As the severity parameter av grows, only the first D eigenvalues are changed while the rest of the
spectrum is untouched. Among the changed ones, the leading eigenvalues are magnified by a smaller

20



Under review as a conference paper at ICLR 2026

constant, so that the resulting kernel has its leading subspaces being on the directions in which the
signal has less of its energy and thus increases the misalignment.

For each « in a specified grid, we compute two quantities:

* The Effective Span Dimension

' 08 + o?
dlip(0) = d1 (o2 £, M@)o = 218

where the design-induced variance U% 4 = max;<y Var{f*(X)¢;(X)} is computed nu-
merically based on the fixed sample of x; and the true f*.

* The optimally tuned KPCPE risk

R.(@) = min )| fF(0) = 3,

where the estimator f,f) C(a) is computed using the spectrum () and the expectation is
estimated by averaging prediction error over B = 10 Monte Carlo replications.

L7571 - (ESD-1) - oo?/n e

......... ESD . o_effZ/n
1.501 —}— optimal risk

1.25 1

1.00

0.75

0.50 1

Risk & ESD-based bounds

0.25

0.00

Figure 4: Effective Span Dimension and Optimal KPCPE risk. The dashed line plots Risk xn,/oZ; the solid line
is d'(c). The risk is computed based on 20 replications and the error bar represents the standard deviation.

Figure [ plots the empirically computed optimal KPCPE risk (orange solid line) alongside the
theoretical lower bound (dJr — 1)03 /m (blue dashed line) and upper bound 2aﬁa§ff (green dotted line).
The empirical risk consistently lies between the two theoretical curves, confirming the validity of the
bounds derived in Proposition [B.3]

As the severity parameter « increases, the resulting spectral perturbation shifts energy into higher-
index eigenfunctions. This inflates the ESD and consequently the minimal achievable risk.

Overall, this experiment demonstrates that our span profile framework provides an accurate and
robust characterization of generalization performance in RKHS regression, consistent with earlier
observations made for the sequence and linear regression models.
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C MEASURING ALIGNMENT VIA ESD

We illustrate how the notion of ESD can be used to measure the alignment between the signal and the
kernel (spectrum).

C.1 AN EXAMPLE OF COMPARING SIGNAL-SPECTRUM ALIGNMENTS

The following is a simple example to illustrate the idea of comparing the signal-spectrum alignments
for different spectra discussed in Section 3.2}

Suppose 0* is s-sparse with support S C [d] and s = |S| < d. Consider the following two spectra
with the same set of eigenvalues but different allocations:

(1) The first k largest eigenvalues of A(!) are located on S;
(2) The first k largest eigenvalues of A(?) are located on S¢ = [d] \ S.

Intuitively, A(!) aligns better with 8* than A(2). However, a quantitative analysis is not obvious
without using the notion of ESD.

Firstly, we note that the effective dimensions (Zhang, 2005) for these two spectra are the same
because the sets of eigenvalues are the same. Similarly, the covariance splitting indices k* (Bartlett
et al.,[2020a)) are the same for the two spectra. We confirm that signal-agnostic complexity measures
do not distinguish the signal-spectrum alignments for these two spectra.

Next, we consider the ESD and span profile. Rigorously, we can show for any T,
Dgx,A(l)(T) <s, and Dg. y2) (1) > min (d — s, H0*||2/T) .
Hence, for sufficiently small 7, their ratio

7”(7') = De*,Au)(T)/DG*,)\(z)(T) < S/(d*S) <1

In view of Theorem [3.3| this suggests that the minimax estimation using A(!) is substantially than
using A(®) when the noise level is small. Therefore, spectral estimators using A(!) is preferred.

C.2 PATHWISE ESD FOR LEARNED KERNELS

Section [5] analyzes eigenvalue learning because OP-GF admits tractable dynamics under a fixed
eigenbasis. This is a limitation of that specific analysis, not of the ESD concept. In fact, ESD
applies to general representation learning. We illustrate how decreases in ESD explain minimax risk
reduction for learned kernels, whether adaptation acts through eigenvalues, eigenfunctions, or both.

Let k; be the kernel learned at training time ¢, with eigenvalues {\;(¢)} (sorted decreasing) and

L?(X, p1)-orthonormal eigenfunctions {wét) }. To understand how the signal-kernel alignment evolves,
we define the pathwise ESD as

di(t) :==d' (6% f*, k), t >0,
where we have followed Deﬁnitionto define d'(02; f*, k;) as the ESD of f* w.r.t. the kernel k;
using 0" = (£, ") and 02 = 0~ (oF + || £*[|%)-
2
Let Hy(k) := % D ik [9; ’(t)} . If training aligns the leading eigenfunctions w](-t) better with f*,

then {9;’(75)} concentrate more on leading indices, and thus H; (k) decreases for all k, which implies
the decrease in d'(t).

Experiment on Deep Linear Networks. To demonstrate this pathwise perspective, we simulate a
random-design linear regression.

Each covariate coordinate is drawn independently from {+1}, so ¥, = E(XX ") = I, and
| X]lo = 1. We set p = 900, and the true parameters are set as follows: 5* follows a power-law
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decay with 85 = j~ ! for 1 < j < 200 and 87 = 0 for j > 200. The response is Y = (5*, X) + ¢
with e ~ N(0,02) and og = 0.1.

We draw n = 1000 samples and train a deep linear network with D = 4 hidden affine maps without
bias using full-batch Adam with learning rate 10~%. The hidden weight matrices of the network are
W, (t) € RP*P for { = 1,..., D (using a near-identity initialization) and the weight of a final linear
layer is w(t) € RP.

The estimated function at time ¢ is given by f;(z) = w(t) " A(t)x, where A(t) := Wp(t)--- W ().
We form the learned kernel k;(x, ') = (A(t)x, A(t)z') = © T Gz’ where Gy := A(t) T A(t). We
then follow the derivation in Appendixand define the ESD df (¢) of f* w.r.t. the kernel k;. Since
| X|loo = 1 p-a.s., we have || f]|2, = 8]l = ||8]|3; this is used in computing the effective noise

level.

Pathwise RKHS-ESD with True Risk

—e— ESD 0.9
—#— True Risk

62

60

58

56

ESD
o
n

Risk

54 1

52

50 0.2

484 > 58— —8—8——8 0.1

Epoch

Figure 5: Pathwise ESD and risk under a learned kernel using a 4-layer linear network.

Figure shows that adaptive representation learning progressively reduces the ESD df(¢) in ¢ along
with the true risk. This confirms that ESD captures the evolving alignment between signal and kernel.

D PROOF

D.1 PROOFS OF RESULTS ON ESD OF SEQUENCE MODELS

Proof of Theorem[3.2] For any v > 0, define
ka(v) = #{Jj: A =z v},

which counts how many eigenvalues exceed the threshold v. The KPCR estimator sets
0 = 10a,50) 2, 0 € [d].

Its squared bias and variance are given by

BYCw) = > (07, V) = ) 0% = ka(v) o

i\ <v PN >v

For any threshold v, we can reparameterize the bias and variance using k = kx (v) as

d
B*(k) = Y (6)7, and VPO(k) = ko k=0,1,...,d.
i=k+1
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The function BYC(k) decreases in k, while VFC(k) increases in k. The risk function is given by
RFC(k) = BYC(k) + VPC(k).

For any integer k£ > 1, we have

Upper bound  For k = df, we have = 37, _,  (07)® < 2. By definition of the optimal risk, we
i <Ay

have
RPC < RPCY) < 24T o2

Therefore, the upper bound is proved.

Lower bound Without loss of generality, assume d > 2. For any k < d' — 1, we have

d d
RPC(k) > BPC(k) = Y (62)" > D (82)" > (d —1)o?,
i=k+1 i=dt

where the last inequality comes from the definition of df. For any k € [d', d], we have
RPC(k) > ko? > dio?.

Therefore, the lower bound is proved. O

D.2 PROOF ON MINIMAX RESULTS

Proof of Theorem Throughout the proof, the quota sequence is fixed. Recall the definition of
M, in Condition Define ¢ (k) = o%MLk for any k € K. Also define Sg (k) = kHg x (k).

We can express Fx x as follows.

Lemma D.1. Under Condition[d.1] we have
Frx = {9 € R : Sgx(k) < v(k) forall k € [K’]}.

Proof of Lemma|D.1} Observe the relation that

K,
0cFrr Dg)‘(—”g) < Ko, Vn>1 <= Sex(Kn) <o2-2, Yn> 1.
n

By (1) of Condition[4.1 we have
K, _
S‘g’)\(Kn) < O'ng, Vn>1 <— Sg7>\(k) < (k) for all k € [K].
Therefore, we can rewrite

Froa = {0 € R : Sgx(k) < v(k) forall k [f(]}.

O
Fix any n. Define § = \/cag /m with the constant ¢ = i A 7, where 7 comes from Condition
Consider assigning nonzero signals on the block B,, = {m,...,7k, } to construct a subset o
populations.

Specifically, we define the collection of hypercubes vertices V = {—1, 1}%~. For every vertex v € V,

define a parameter vector (*) = (03(-”))?:1 as follows:
00 =6y, fori =1,..., Ky, and ") = 0 for j ¢ B, (32)

There are 2%~ such vectors {0(”) }, and they satisfy the following property.
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Lemma D.2. For any v € V, the parameter vector 8") constructed in Equation 1i lies in Fi .

Proof of Lemma[D.2] For any k € [K],if k > K, then Sy 5 (k) is 0.

If1 <k < K,—1,then Sy 5(k) < K, 6% = co2K,/n. Denote kg = K,, — 1 and L = 1 + Mj,.
By definition of M}, we have n > L. Since k < kg, we have L > 1 + M},. We have
K, K,
NI
n — L
ko +1

1+ M
o (33)

where the second last inequality is because (14 ko) /(1+m) < 2ko/m < m+ kom < 2ko + 2kgm
and the last inequality is due to (2) of Condition Since 2¢ < 1, we see that o2cK,, /n < (k) for
all £ < K,,.

In either case, we have Sg.) 5 (k) < (k) for all k € [K], and thus (") € F x. O

For each v € V, let P, be the sampling distribution of the sequence model in Equation with
6* = 0", 62 = 03 /n, and {;} ;¢ |4 being i.i.d. from N(0,0?). Let p be Hamming distance on V.
If v and w € V differ in exactly one coordinate (i.e., p(v, w) = 1), then

. |6 — 0|2 > (25)2, and

* the Kullback-Leibler divergence between P, and P, satisfies KL(PU I Pu,) = ﬁ(?é)Q =
2¢c < %, and by the Pinsker’s inequality, |P, A Pyl = 1 — TV(P,,P,) > 1 —

KI(P, || Py)/2 > 1/2.

By Assouad’s Lemma (Lemma 2 in |Yu|(1997)), for any estimator 6 based on a sample Y (") drawn
from P,, we have

2 (25)2 K,

supE, Hé\ —6W
%
O

Proof of Theorem[3.3] The upper bound is given by Theorem[3.2] so we only need to prove the lower
bound. The main idea is the same as the proof for Theorem }.3|

Let § = /co2/n with the constant ¢ = 1. Let B, = {m,..., 7k, }. We define the collection
of hypercubes vertices V = {—1,1}X. For every vertex v € V, define a parameter vector 0 =
(9§v))?:1 as in Equation . There are 2% such vectors {(*)}. For each v € V), let P, be the
sampling distribution of the sequence model in Equation with 8* = ), ¢ = 62 /n, and
{&;}je[q being i.i.d. normal. Let p be Hamming distance on V. The rest of the proof is identical to
that of Theorem [4.3]and is omitted. O

D.3 DETAILS OF EXAMPLES IN EQUATION (©)

We provide the details of Equation (9) for illustration of the concepts of ESD and span profile through
several examples.
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Example D.3 (Polynomial spectrum with source condition). Assume \; = i~? for some > 0 and
the source condition Z?:l AP 0F 2 < R with s > 0. The trade-off function satisfies

— 1 *2 )‘Z —s %2 —(1+sB)

Hooa(k) = 32 072 < 553070 < Rk ,
i>k i>k

which follows that Do~ x(0?) 3 [‘72}_ﬁ~ Since Dg- A(c%) < d, the optimal risk of PC

estimator satisfies

. _sB
REC < mln([02}1+sﬁ,da2).

In Example we note that for 02 = o2 /n, the upper bound becomes o2 min (n_% ,d/ n)
When d = oo, this upper bound matches the well-known optimal rate under the source condition and

the polynomial eigen-decay condition. When d < oo, there is a phase transition around dy < n e
if d < dy, the upper bound is do3 /n; if d = do, the upper bound is the same as if d = co. Using the
span profile, we can extend classical results to finite-dimensional models and reveal new phenomena.

Example D.4 (Polynomial signals (a > 1)). Suppose 0 = i~/2 for some constant o > 1, and
{\i}{ are decreasing. By an integral approximation, we can get Hg- x(k) < ﬁ k~%. Therefore,

we have Dg- x(02) < [0~ %. The optimal risk of PC estimator satisfies
REC < 20°Dp- a(0?) < min ( [0?] 1_é7da2) .

Example D.5 (Polynomial signals (o = 1)). Suppose d < oo, 0 = i~/2, and {\;}¢ are decreasing.
We show in the supplementary material that for some constant C, if do? < e, then REC < Cdo?,
and if do® > e, then REC < C'log (dag/ log (d0'2)).

Example D.6 (Polynomial signals (a < 1)). Suppose d < oo, 05 =i~'/2, and {)\;} is decreasing.
We show in the supplementary material that RE¢ < dmin (d‘”‘, 02).

These examples suggest that using our framework of span profile, we are able not only to recover
classical results but also to extend it to various settings where the classical framework is inapplicable.

Details of Example[D.3] We have Hg- »(k) < k™! : Ldz = k=1 (logd — logk).

By dropping the term log k in the numerator, it is easy to see that a sufficient condition for Hg« x (k) <
o? is given by k > 0~2log(d). Therefore, we have Do+ »(c?) < [0 %log(d)].
The upper bound can be improved. Suppose A > 1 satisfies do? < Alog A. If k > 0~ 2log A, then
2

ﬁ>logA>da /A:l7

d = do? T do? A
which follows that Hg~ » (k) < k~!log A < %, Therefore,

Do- (0?) < min (d, [0~ log A]).

By elementary calculus, if y > e, the solution to zlogx = y satisfies that z € (e,y), and
thus logz € (1,log(y)), which implies z > y/log(y) and thus z < y/log(y/log(y)) =
y/ (logy —loglogy) < 2y/log(y).

If do? < e, we can take A = e and conclude
REC < 20°Dg- A(0?) < do®.
If do? > e, then log (d0'2) > 1 and we can take A = 2do?/ log (dJQ), which implies that
RYC < 202Dg- A(0?) < log (do?) — log (log (do?)) .

Detail of Example[D.6] By an integral approximation, we see that
He*7>\(k) = k‘il(dlia - k’lia).
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Case 1: 02d“ < 2. We have the default bound Dg- (0?) < d.
Case 2: 02d™ > 2. If k > d'=%/o?, then Hg- (k) < 0. Therefore, we have Dg- »(0?) <
[d'=%/c?], which is not larger than [d/2].

Combining both cases, we have Dg- »(0?) < dmin(1/(d%0?),1). Multiplying by 202 on both
sides, we have
RPC < 20°Dyg- A(0%) < dmin (d™*,07) .

D.4 DETAIL OF EXAMPLE[4.4]

Let f(z) = o2ze~ . Then (05,.1)% = f(j) = f(§ + 1) for j > 1. Since 6] = 0, for any k > 1, the
tail sum is

ST @2 =>"(F0) — fG+1) = f(k) = o2ke ™
Jj=k+1 j=k

since f(IN) — 0. As {);} is assumed to be decreasing, the trade-off function is Hg~ (k) =
0o % _ kb
%Zj:kJrl(ej) = ‘706 .

For any n > 3, let k = K,,. By definition of the ceiling function, k¥ > (log n)l/”, which implies
kb > logn, and thus ek’ > n. Then, Hg- A (k) = oge’kb < 02 /n. By Proposition , we have
Dg- a(03/n) < k= K,,.

Since this holds for all sufficiently large n, we conclude that 8* € Fi . Theorem guarantee the
optimal convergence rate is O(02 K, /n) = O(c(logn)'/®/n).

Lastly, we consider the standard source condition that for some s > 0, there is some constant R
such that

DoN(0)” < Re. (34)
Jj=1

Let’s assume a polynomial eigenvalue decay A; =< j~7 for some v > 0. Let S be the left hand side
of Equation (34). Since 67 = 0, we have

§=> G
j=2

M

7¥(05)?

.
I|
V)

M

(k+1)7(0541)*.

x>
Il
_

Using (07, ,)% = f(k) — f(k+ 1) with f(z) = o2ze™"":
S=> (k+1)"7(f(k) — f(k+1)).
k=1
Using summation by part, we have

§=(1+1)7f(1) ~ lim (N+1)7f(N+1 )+ (ke +2)" = (k+ 1)) f(k +1).
k=1

Since limpy_,00 (N + l)S"YNe*Nb = 0 for b > 1, the limit term vanishes. f(l) = oge~!. The

difference term (k + 2)*Y — (k + 1) > 0. f(k+1) = 02(k 4+ 1)e**D" > 0. The sum
e ((B+2)%Y — (k41)*7) f(k+1) converges because f(k+ 1) decays faster than any polynomial

grows. Specifically, (k + 2)*7 — (k + 1)*Y ~ syk*7~1, and the sum 3" k*7~1(k + 1)e~(++1)’
converges. Therefore, S converges for any s > 0 and any ~ > 0.
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The classical theory predicts a rate of n~ 1. Since the source condition holds for arbitrarily
large s, the classical rate can be made arbitrarily close to n~!. However, this n~! rate ignores the
logarithmic factor (log n)'/® present in the true optimal rate © (o3 (log n)'/? /n). Thus, the traditional
convergence analysis based on the source condition is not sharp for this signal.

E PROOFS FOR RESULTS IN APPENDIX [BI

Proof of Proposition[B.3} Upper bound: Take k = d', and we have B(k) = kH;- \(k) < ko?.
The variance V' (k) = Zle(ag +77)/n < k(0§ + 0% ,4)/n = ko?. Thus RPC < Ry = B(k) +

V (k) < 2ko? = 2dio?.

Lower bound: Let k* be the optimal tuning parameter. If k* > df, then R, > dfo2/n. If
k* < df —1, by definition of ESD, we have R, > B(k*) > B(d'—1) > (d' —1)a? > (d' —1)a2/n.

O

Proof of Theorem|[B.3] Upper bound: The upper bound follows the proof of the upper bound in
Proposition To see this, we note that since f* € Fx x ., we have || f||%, < 02CZ. Therefore,
02 < 5% /n. We can then apply the argument in Proposition@witb o2 replaced by 7% /n.

Lower bound: We establish the lower bound using Assouad’s method.

Let m = |c1K]. Consider the first m eigenfunctions {%x; }j<, corresponding to the largest
eigenvalues { Ay, } j<,,,. Define the collection of hypercubes vertices V = {—1,1}". For every vertex
v € V), define a function

FO @) =7 vjn, (), (35)
j=1
where the amplitude + is to be chosen. Since k is (K, n)-regular, we have
FO@)? <A DAY R (2) <4°Cink?, (36)
j<m j<m

where x? = sup, k(x, z) < co by assumption.

‘We choose

=2 2012

2 _ -1 - g 75C%
oo (4(1 2y Cm2) '
It then follows that || f(*)||2, < 02CZ.

For each v € V, let P, be the sampling distribution of {z; = (x;, y;) }i<, from the regression model

Equation with f* = f(*). Let p be the Hamming distance on V. If v and w € V differ in exactly
one coordinate (i.e., p(v, w) = 1), then

° ”f(v) - f(w)Hsz(#) > (2’}’)2, and

+ the Kullback-Leibler divergence between P, and P, satisfies KL (P, || P,y) = 52 (27)? <
0

1

2>

inequality, || P, A Py|| =1—TV(P,,P,) > 1 — /KL(P, || P,)/2=1/2.

where the last equation is due to the definition of the constant c. By the Pinsker’s

By Assouad’s Lemma (Lemma 2 in |Yu| (1997)), for any estimator fbased on a sample {z; =
(x4, Yi) }i<n drawn from P,, we have

R 2 2
supEUHB - O(U)HQ > m@ = CM,
veV 4 n

where c is a constant that depends on Cy, &, ¢1, C1.
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Proof of Theorem|[B.6] Since
Fic= [ Fiil

n>no
the upper bound 52 K, /n is immediately implied by Theorem [B.5

The lower bound follows the same argument as in the proof of Theorem but replace the con-
struction of parameter vectors in Equation (32) by the construction of functions in Equation (35).
Following the proof for Theorem 4.3] we use Condition 1] to ensure the constructed functions
all belong to Fk k. Then the lower bound is given using Assouad’s Lemma as in the proof of
Theorem [B.5] Below, we provide the details for completeness.

Mercer’s theorem yields

k(z,x') = Z N () (&), x, o' € X, 37)
j=1

where {t;},>1 is a L?(X, p)-orthonormal eigenbasis. Without loss of generality, assume )\ is sorted
decreasingly.

Fix n and set m := | ¢; K, | where ¢; comes from Assumption
For a sign vector v = (v;)j<m € {—1,+1}™, define the sequence of coefficients as
o)) = {g% AN IO SO RSP IEAUIO!
' ’ i1 j<m
Since k is (K, n)-regular, Equation holds and reads as
F(x)? < 42Cink.

If v2C1nk? < 02CZ, then ||f)||2. < 62C2. Furthermore, if my? < (2n) 102K, we can the
same argument in Lemma|[D.2] (in particular, using Condition[4.T]to dervie Equation (33)) to show
that f(*) € Fi k.

‘We choose

=2 2,12
2 _ o —1 - 2 g 75C%
Y ="n min (00’4(1+C§)701f$2),
which implies f(*) € Fk .
We then follows the same argument in the proof of lower bound in Theorem [B.5|to obtain

N 2 2
sup Eng _ 0(”)”2 > m@ = CM,
veV 4 n

where c is a constant that depends on CY, &, ¢y, C.

F PROOFS FOR RESULT ON OVERPARAMETERIZED GRADIENT FLOW

In this section, we prove Theorem[5.2} The high-level idea is as follows: To show the ESD decreases,
it is enough to show that the squared signal tail sorted by the learned eigenvalues at the new time
is smaller than that at the old time. The key idea is to study how the gradient flow changes the
eigenvalues depending on the signal’s strength. Our analysis reveals that eigenvalues associated
with the strong signal coordinates will often grow much faster than those associated with weak ones.
Consequently, more of the largest learned eigenvalues correspond to the strong signals. This implies
that the signal energy is concentrated in the top principal components of the learned kernel, which
reduces the signal tail and thus reduces the ESD.

We first remark that for any j € [d], due to the same initialization bj.i = bg for all k, one can
prove that throughout the time b; j, (for all k) have the same value b;. Therefore, we can rewrite the

over-parameterization as 6; = a; bf B;, and consider the following gradient flow
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aj = —Va,Lj = b7 (2 — 0;),

bj = =V, L;j = Da;b? ™" B;(z; — 6;),

. . (38)
Bj ==V, Lj = a;b5 (z; — 0;),

a;(0) = A2 >0, b(0)=by>0, B(0)=0,

where L; = 1(z; — 6;)>.
F.1 PROOF OF THEOREM[3.2]
Recall that we define these sets as follows:

Avi= i) <di(0), A < e- D M 167 < o)
Ay ={i: Wal(i) <d'(t), 107 > M};

and

By = {i:m, (i) >d' (t1),]0]| <&}; Bo:={i:m, (i) >d (tr),]0]| > M}.

where 52 < min{ch—;‘&:Q, de?}, Cp, = min{1V (|A1| — |B1|),|Ba2|} and ¢’ is a constant < 1. Also
1
recall from the assumption of Theoremthat suppose |0 | > [07] > M, then if Cppo M > [0],

167 ]

nij = 07| — 107 > Cye’; otherwise, Uil (1+ ).

Agt . ,
= Eigenvalue index

Ag Al A2 Bl BQ

Agt , ,
= Eigenvalue index

Az By Az Ay By

Throughout the proof, we assume all the events { Ey } in Lemma hold. We divide the proof into
several parts.

Part 1: Very small eigenvalues can be ignored. From Assumption|5.1} we have infjcgs A; > n =9,
where § is a constant. For i € R, if \; < n~(219V5) Proposition [F.2|implies that at ¢, we have

S\Z(tg) < nl'l . )\?'99 < nié.

If B; is empty, then all the signals in R is 0 by the definition of &. Otherwise, for 5\1 < n 9% and
Ary, (dF (t1)) > n~9. According to the monotonicity of eigenvalues in Lemma any the index ¢

such that \; < n~(219V5) can not rank among the first d'(¢;) at time t,, i.e., it makes no difference
to the variation of df from ¢; to t.

Part 2: Analysis for B>

If j € By, by Proposition we have [0;(t2) — 05| < &’ < 7M. We apply Equation (50) to get
B%=a*— )\ <a®and 8% = D71(b? — b2) < D~1b?, and thus

D42

10,8)] = a3 (6P (1)|8;(8)] < aj (6P (£)-aPF (£)-D™ TBFOBPH (1) = D™ [ (1) ()] 7 .
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Therefore, at time ¢ = t5, we have for some constants ¢ and C' that
D D+2 D D41
D2+ [aj(t)bJD(t)] PH>0;t)) > (1—-c)M, = aj(t)b;?(t) > (C - D@+ V[ D+2,
~ D 2(D+1)
It follows that \;(t2) > ¢D™+2 M ~b+2 . Moreover, for A; and D153 that are much smaller than
c- D_DLH - M 1%27 we use Equation lb to obtain

%= a? = D12 = D" PR M, (39)

Part 3: A; and B> will exchange
In the following, suppose i € A; and j € By. We will prove \;(t2) < 5\j<t2) by contradiction.
If Ai(ta) > Xj(t2) , then by Proposition we have
|0j(t2) — 0;| < 2.
By Lemma|[F4] we have
10i(t2)| < 167] + K-
We have |0;| > Cp|0;| where Cp > 1+ § for M = Cre > Cir|ri|. At ty, the following holds:
|B;(t2)| > CplBi(t2)].

It follows that a (t5)b7” (t2) > a3 (t2)b3" (t,). Combined with Equation , we have

D
@2(152) + A Dp%(t2) + b3 Cp D B .
B3 (ta) + A ” <D,Bj2(t2) + 02 > <1+5) =(1+¢e(Cp—-1))". (40)

2 2

Recall that |8;(t2)] < é\ﬂj (tz)| and 53 (to) > CD~D¥2 M D+2. If we choose the constant O

such that (1 + ¢(Cp — 1))P is large enough, the inequality Equation (40) will implies A; larger than
its upper bound in the definition of set A;. (WecanletCp =1+ c- o)

The contraction shows that S\i(tg) < S\j(tQ) forany i € Ay, j € Bs. If the sets A; and By are not
empty when ¢ = ¢, then from ¢; to t5, the elements of set By will be arranged before those of set A;

according to the eigenvalue index. We only need \; < ¢ - D~ D2 MDF,
For the same reason, the elements of set A, will be arranged before those of set A; at to.
Part 4: A, and B, will be monotonously nonincreasing
In the following, W.L.O.G we assume 6, 6" > 0. We prove that given i € Ao, j € Bs,if 07 > 07,
we have \;(t2) > A;(t2).
Ifo; — 9;‘ > Cye, we have z; > z;. Then by Proposition@ we have at ¢
|0;(t2) — 67| <2, 10;(t2) — 03] < 2¢’.
If A; > A;, by Equation and monotonicity, we always have \;(t) > A ().

Now, consider the case where A; < A;. By the definition of A; and By, we have \; < c- DiDLH .

2 . .
M P+2, Next, we use proof by contradiction. Note that

Oilta) _ A7 (t2)Bi(ta)

0;(t2) A2 (t2)B;(t2)

[N

> Cp.

W= [

If X;(t) < \j(t), then B;(t2) > CpB;(ta). By Equation , both j;(t2) and 3;(¢2) are much larger

then D_%bo. It then follows that
D
e >C
Dﬁj (t2) + bg
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where C* is a constant that can be made large enough by choosing C'p. Therefore, using the same
reason as in Equation (#0), we can get

Bi(t2) + i < X

Bi(t2) + X5 — C*
which is impossible because 3;(t2) > CpB;(t2) and 5% (t2) > CA;.
Part 5: B; will stay behind A,, A3 and B,

In the following, let j € By. By y = 0* + ¢, we have |2;| < & +¢’. By Equation and |0;] < |z,
we have L(D42)
Bi(t2) < (D7P215])

Then by A;(t2) = (B3(t2) + A;)(DB3(t2) + )P < (1 + %)DbgD(ﬁf(h) + A;). Then if
\j < ¢ D™D/DFD2/(DF2) given any i € A3 U Ag U Ba, \i(t2) > A;(t2). Otherwise, we have
\j > C - D=P/(D+2)22/(D+2) then we have \;(t2) < (1 + §)\;(t1), then by the definition of d,

at least d' eigenvalues will larger than \; (2).
Part 6: A5 will be ahead of 4,
by the same reason between By and Ay, for given j € Az, \j(ts) = (B2 (t2)+;)(DB3 (t2)+b5) " <
(1+ Z5)P0P (B2(t2) + Aj). and i € Ay, A < ¢- D=P/(PF2)£2/(D+2) combined with
1/(D+2)

B:(t2)] < (D272
then we have \;(t2) > X;(t2) for ¢ is small and C is large enough.
Part 7: Ordering of the spectrum at ¢, and d (¢,) > d'(t,)

To show df(t2) < di(t1), it suffices to show Hy. 5,,(d"(t1)) < Hy. 5
equivalent to prove the following difference

R (2 S N Al (41)

i () >dT (4) it (1) >dT (4)

(df(t1)), which is

tg)

is nonnegative.

We will make use of |A;| + |Az2| + |As| = d'(¢1) and consider two possible cases.

* Case 1: |Bs| < |A1]|. Since By U Aj is ahead of A; U By, we can see that the eigenvalue of
the last element of By U A is among the top d' ones. Because Aj is ahead of A; U By, so
only some of A is swapped to the later part. Also some of B; may arise ahead some of A

. Therefore, to analyze the ordering of eigenvalues S\(tg), we define
B = {’L € By Wtzl(i) < dT(tl)}.

(42)
A= {Z €A 71't_21(2) > dT(tl)}
Here A;; contains all the elements that move from the top df(¢;) part to the later part,
while By and B are the elements that move from the later part to the top df(¢;) part.
Therefore, we have |A11| = |Ba| + |B11|- Let Cp, := min{(|A1| — |Bz|)+,|B1|}. We
have |B11| < Cp,.
W.L.O.G., we can write divide A;; into two subsets such that |A;11| = |Bz| and |A112| =
| B11]. We can then write Equation as

165,115 + 105,103 = 104,,, 113 — 164, ,,115- (43)
The exchange between A; and B; yields
165,113 = 116%,,, 13 > | B2|(M? = 52), (44)

and
2 2 ) -2
105,112 — 104, ,,15 = —[Bi1|6” > —Cp,&°.
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Note the assumption of Theorem 5.2that (| Ba| + Cg, )52 < |Bs|M2. We add the last two
inequalities Equation (43) and appendix [FI] together to get

) U2 S e ey
iy, (4)>d(t1) iy, (4)>d (t1)

where > becomes > if By # (). By the definition of d', d (to) < df(t).

s Case 2: |By| > |A4|. If the eigenvalue of the last element of By U Ay is among the top d',
we follow the exact same proof in Case 1.

Now suppose that the eigenvalue of the last element of By U Aj is in the later part. In this
case, all elements By and A; are in the later part. We first identify all the elements that fall
in the later part at time ¢5: in addition to all elements of B, the following

Boy = {i € By : ;' (i) > d'},
A ={i€ Ay i m ' (i) > d'},
Aoy i ={i € Ay: Wtzl(i) > dT},
Az = {i € Ay )M (i) > d}.

Note that at time ¢;, the elements in the later part are in By, Ba;, and Bag := By \ Ba.
Therefore, Equation (41)) can be written as

||9322||2 - ||0A11 H2 - ||01421H2 - “01431”2' (45)

By definition of Bs, Ay, and Aj, each squared element in Bs is larger than that of both A4
and As. In addition, since A and Bs will be monotonously nonincreasing, for any element
in Bag, its squared signal will be no less than that of any element in 6 4,,. Therefore, we
conclude that Equation (@3]) is nonnegative and will be positive if B is not empty.

F.2 GENERALIZED SIGNAL RESULTS BY DYNAMIC EQUATION ANALYSIS

Proposition F.1 (Shrinkage monotonicity and shrinkage time). Suppose all the events {E}} in

Lemmahold. Lete = Q(Cproxy)71/2 \/%, g = Q(Cproxy)il/z \/@

For any j € S (as defined in Assumption[5.1), we have
05 —0;(t)] < 2. Vt>t(e) (46)
where t(¢) = C by P e~' Inn for some absolute constant C.

Proof. When all the events Ej, in Lemma[F9|hold, we have
I€slo < €” (47)

Consider j € S. We have 03‘ > 8¢'(We let Cpy > 8). By taking § = &’ and also x = &’ in Lemma
we have

07— 0;(1)] < 2¢', vt > TPP(5),

with .
Tm(5) < T + CyD T (07) Bt L (@8)
and
C1(07) "0 " 111(,1;%) aoj < bo/V/'D;
TS Qa6 ag) n(“4) - a; > bo/VD, and D=1 “9)

C1(0%)"'D 2ag, by Pt ag; > bo/VD, and D > 1,

J
where both C'; and (5 are absolute constants.
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For the choice by = cD%eﬁ, the second term on the right-hand side of Equation is
dominated by the right-hand side of Equation (#9), and we can choose ¢ small enough so that the
summation of the two terms is bounded by b, Pe=1Inn. This justifies our choice of t(e).

O

Proposition F.2. We consider the set R. We let j € R, and suppose all the events { E} } in Lemma
@hold szen by and t(g) defined in Proposition . F.1| For any positive constant &', if the eigenvalue
Aj<n” 5, and n is large enough, then we have

Aj(t) < 2A 2R

Proof. Since the events in Lemmahold we have |¢;| < 2(Cprony) ™2/ m , where j = i.
J

Since j € R, we have |0%| < & < V/ce. Since th( ) = e !lnn, we can check that ¢ is no more
than the hitting time 7% defined by Equation (67) in Lemma [F.8]as follows.

Innd + In 2

e (5] + 161) < Ve nn+Vinn [ A
<Inn+ lnnJrln—
\/ Aj

. D+1 _1 _ b2
Since by = ¢ - DP+2eD+2, for n large enough, we have \; < n 5 < o and also

bo/ 1 - 1 1, 1 / 1
In =Inc+ ———(1 Inlnnd) — InD+ -In— >1 1 In —.
)\2 c+2<D+2)(nn+ nlnnd) D+2n +2n)\j>nn+ nn+ n/\j

It then follows that

Note that

Bi(t) < AQ exp (b5 t(10} | + 1¢1))

lnndJrln
<)\zexp Vinn A/
Innd
1 [ 1
< )\j; exp ( In )\]> - exp (vlnn) -n

1_5 1 ’
2 +0
< /\j n .

Using \;(t) = (82(t) + A;) (b3 + DB2(t))P, we obtain the desired result for sufficiently large . [

Remark F.3. The above proposition provides a very weak upper bound on A but it is sufficient to
show that any eigenvalue \;, such that if given any constant C, \j < n~C, then Aj(t) is also less

than any polynomial of n='. Therefore, when considering the eigenvalue ordering problem, such
signals can be ignored.

F.3 CONSERVATION QUANTITY

We omit the subscript j in the following two sections [F.3]and [F.4] because all the proofs are similar
forj =1,2,---,d. By Equation (38), it is easy to see that

d o 1dyo do Do
s _Ddtb _dtﬂ =2ab”B(0" — 0+ ¢).

Consequently, we have
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a’(t) — B2(t) = a2, b (t) — DB*(t) = b2. (50)

Using this, we see that

0= (PO - 0= (070 ) >0

Using these conservation quantities, we can prove the following estimations in terms of 3:

max (ag, |]) < a < V2max (ao, |3])

max (bo,\/ﬁwo < b < V2max (bo,\/ﬁ\ﬂ) Gb

which also implies that |0| = |ab” 8| > DP/2|3|P+2. The evolution of 6. It is direct to compute that

6 = ab® B + aDbP b8 + ab® B
= [(t78)" + (DabP~1B)" + (abP)’] (6" = 0 +¢) (52)
=0>(a?+ D2+ 472) (0" —0+&).

And we also have

)1/(D+2) (53)

0] = |abD/3’ > DP/2g|P+2 — |8 < (DiD/2|9|
Therefore,
02 (™2 + D2 + §72) 2 272 = D || B (54)

F.4 MULTI-LAYER DYNAMIC

We study the dynamic of the ODE for any given j. Before the analysis, we streamline some notations.

Assume for some £; > 0, it holds that |{;| < x;. (Note that this x; can be the high probability
upper bound derived using Lemma[F.9]) Since j is given, we drop the the subscript j to simplify
the exposition throughout this subsection; for example, we write A for A; and 6* for 67. We write

In*(x) = max(1,1n(z)) for any > 0.
Lemma F.4 (Monotonicity from equation). Consider the equation Equation (38). Suppose y > 0.

1. a(t), B(t), and O(t) are all non-negative and increasing.

2. We have
y>0(t)>0 Vt>0.

w

. Since y = 0* + € and |€| < K, we have
0" —6(t)] <10*|+ K, VE=>0.

4. 10* — 0(t)] is decreasing provided that |0* — 0(t)| > k.

|9

L If10* — 0 (t1)| < K for some t1, we have

|0" —0(t)| < K forallt > t;.

If y <0, Items 3, 4, and 5 still hold, while Items I and 2 can be modified by symmetry.
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Proof. Items 1 and 2 are directly implied from Equation (38). Item 3 is implied by Item 2.
To prove Item 4, consider Equation (52)), from which we have

0=0*(a>+ D 2+572) (y—90),
which implies 0>0.
Since |0* — 0(t)| > &, we have either 8(¢) > 0* + k or 6(t) < 0* — k.

The first case is not possible; otherwise, we have 0 < y = £ + 0* < k + 6" < 8 < y, which is a
contradiction. In the second case, we have |0* — 0(t)| = 0* — 6(t), which is decreasing because
0> 0.

Item 5 is implied by Item 4.
O

Lemma FE.5 (Approaching from below). Consider the equation Equation (38). Suppose 0* > 8k
(similar results hold for 0* < —8k by symmetry). Suppose to > 0 such that 0 < 0 (tg) < i@*. Define

TSigzinf{SZO:e(to+5)29*/4}'

This is the extra time needed from tg for 0 to reach 0* /4. We have

4(9*)—1[)5D 1n(a0%> ag < bo/\/ﬁ;
5% < 4(9*)71%—1111(%) ay > bo/\/ﬁ, and D = 1; (55)
4(9*)_1D_%aalbaD+l ag > bo/\/ﬁ, and D > 1.

Proof. Since |y — 0*| = || < k and 0* > 8k, we have y > 7k > 0. Therefore, 6(t) € [0,y]. For
any t < to + T8, we use 8" > 8k to show that

1
y—9(t)z€*—0(t)+£2%0*—/1259*.

Let r = min (ao, bO/D%) and R = max (ao, bO/D%). Define the following time point if it exists:

TP =inf {s > 0: B (to +s) >7r}; TP? =inf{s>0:3(ty +s) > R}
Tsigzinf{s>0: 6% — 0 (tg + s)| < 39*}.

We will first bound both 771 and T7°-2,
From Equation (38), we have

Blt) = a(®BP(O[0" + € — 0(1)] > i@*a(t)bD(t), for < to 4+ T, (56)

Stage 1: 0 < s < 7?1, Note that v/2ag > a(t) > ag, and e-bY > b(t)P = (DB(t)2+b2) 2z > bP.
We have

1 1
ﬁ (tO + 8) Z Ze*aobOD Z Ze*aobOD,
which suggests [ increases at least linearly. Therefore, we have
TP < 8 (0%aghd) (57)

Stage 2: TP°%! < s < TP°2 Consider two cases.

Case 1: If ag < by/VD, r = ag and R = by//D. Note a > 3 in Equation lb We use
Equation (56) to get
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1
B(to +S) > Ze*b‘? |ﬂ (to -I-S)‘,

By Gronwall’s inequality, we have

bo
ao\/ﬁ.

Case 2: If ag > bo/\/ﬁ, R=agandr = bo/\/ﬁ. We use b > \/Eﬁ in Equation together with
a > ap, b > v/D|j3| and Equation to get that

TPOS,2 _ TPOS,I S 4 (0*bOD)_1 In (58)

1 D
B(to+5) = 70°agD? |8 (to + 5)|"

By comparison theorem, we have

4(9*a0)_1ln %, if D=1;
4((D —1)0*ayDP/2) " [(bo/\@)

Tpos,2 _ Tpos,l < —(D-1)

ag(D‘”] , if D>2.
(59)
Stage 3: If 752 < T2 then we can use the for 7% in Stage 2 as a bound for 7%%¢. Now,

we consider the case TP*?2 < TS We combine Equation l) with a > [5], b > \/5| 5|, and
Equation (36) to get
B (to + T2 +s) > ia*DD/% (TP2 + ) [P, for s e [0,T% —TP?].
Beside, we have 3 (to + TPOS’Q) =R > 0. By Lemma we have
TS 7?2 < 4p~73 (9%)'RD. (60)

We now bound 7 using the summation of Equation , Equation , and Equation if
ap < bo/ VD, or the summation of Equation , Equation , and Equation || if ag > by/ VD.

If a9 < by/v/D, we can bound the right hand sides of Equation and Equation by
8(0*) by © and 4(6*) by © respectively.

If ag > bo/ VD, we can bound the right hand sides of Equation and Equation by
8(6*) 1D 2ag by P*! and 4(0*) 1D~ zay by PT! respectively. Furthermore, if D > 1, we
can bound Equation by 4(0*)"1(D — 1)~ 1D~ 2aj by P+,

This leads to
*\—171—D bo .
4(6%)"1b; (3+1n(a0@)) ao < bo/VD;
T < 4(0%) lag?t 3+1n(%)) ao > bo/vD, and D = 1; (61)

16(0*) " 'D~2ay by P! ap > bo/V/D, and D > 1.

O

Lemma F.6 (Approximation time near 0*). Consider the equation Equation (38) with 0* > 0 ( a
similar result holds for 0* < 0 ). Suppose 6* > 8k. Suppose for some to > 0 such that

1
107 <0(t0) <0 k.

Then, for any § > 0, we have

0 —0(t)] < k+6, Vt>to+4D5F DD () D7 Int 16" =6 (to)l = = 9?0” —F
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Proof. Given any 6 > 0, if §(t9) > 0* — k — J, we have |0* — 0(t)| < x + 0 for all t > t; by
Lemma [F4] (Item 4) and the desired result is proved.

Next, suppose 0(tg) < 0* — k — §. Define
T =inf{s>0:|0"—0(to+ )| < k+}.
By Lemma [F4] (Item 4) again, it suffices to provide an upper bound on 7P .

For all t > ty, we have i@* < 6(¢t) by Lemma(Item 1). Consequently, Equation implies that

2D+2 2D+2 D 2D+2

62 (a7 + D?~2 4 §72) > D™D |g| Dz >4 Dz DD (0%) D = o).

Furthermore, by Equation (52), we have
0=0%(a2+D* 2+ B72) (0" —0+&) >co(0" —r—0).

Let z(s) := 6" — k — 0(to + s) with £(0) = 6* — k — 6(to). Note that T*P? is the hitting time of
x(s) to 0. Applying Lemma to z(s), we have

0" — 6 (to)| —

T%P < ¢y 'In 5

O

Lemma F.7. Consider the equation Equation with 0* > 0 (a similar result holds for 6* <0 ).

Suppose 0* > 8k. For two absolute constants C1, Cs, we have

0 — 0(t)| < K +6, Vt>Tw(6),

where
TPP(§) := T + CQDDLH(@*)_%D;r22 In* %7 (62)
and
C1(67) b5 P () ag < bo/V/D;
T8 := q Cy(6%)~Lag* 1n(—“°b0D) ag > bo/VD, and D =1; ©3)

C1(0") "D 2a5 oy P ag > bo/V/D, and D > 1.

Proof. We will repeatedly apply the monotonicity of Lemma [F.4]

Recall 7% defined in Lemmawith to = 0 and let ¢, be the upper bound on T%¢ we found therein.
Then 6(t,) > .

We then apply Lemma [F.6| with ¢y = ¢1, and conclude that |6* — 6(¢)| < k + 6 for all ¢ > t1 + to,
2D+2 2D+2 *
where tp = 4 %2 DDL-%—?(G*)_ 533 InT %. Note that |6* — 0 (t1)] —x < 6*. We complete
the proof by defining 7%¢ = t; and T%P(5) = t, + 4 D3 DD¥2 (§*) %7 InT .
O

Lemma F.8. Consider the equation Equation (38). Denote ' = min{ag,by/D}, R =
max{ag,by/D}. W.L.O.G., We assume that 0* > 0. Define Ty = inf{t : |B(t)] > 7'}, and
Ty =inf{t : |5(t)| > R'}. If D > 1, and t satisfies the following:

t
Vaeagh? / (16| + [€D)ds < min (ag, bo/D) .
0

then we have
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t
o(6)) < 2 363> [ (17| + e (64)
0
Moreover, if ag < bg/D and 0 < t < Ty — T} satisfies the following:

Vaeb? / (07| + el < 22,

then we have

18()] < ag exp (bé’ / (10| + s|>ds) :
0001 < Veaipf exp (2 [ 07|+ 1)as).

Proof. From Equation (38)), we have

16@) S/O a(s)b” (s)(10"] + [€])ds

Consider ¢ < T}. We use Equation (51) to get a( ) < v/2a0 and by Equation (50), b*(t) — DS>(t) =
b3. Consequently, we have b%(¢) < (1 + +)b3, and thus

18(t)] < V2eaohh / (1671 + 1€])dt, (65)
0

which implies Equation by using the fact that |#| = |ab” 3|. Furthermore, Equation implies
that

t
T; > inf {t >0: \/%aobOD/ (10*] + 1&])ds > r’} .
0

Then when ¢ > T7, in the following, suppose ag < by/D. We have ' = ag and R’ = by/D.

Consider t € (T,T3). We have a(t) < v2|B(t)| and b(t)* < (1 + &)b2. Consequently, Equa-
tion (38) implies that

t
1B()] < ao + V2ebP /T 1B(s)I(167] + [€Dds, (66)

for any ¢t € (11, T5). By Gronwall inequality, we have

18(8)] < apexp (x@bg IRGE |e|>ds) L te (LD,

By definition of 75, we have

t
T, > inf{t > T \/%bOD/ (16%| + |€])ds = bO/D} (67)

Ty

The bound for 6(t) now follows from using the bounds a(t) < v/2|3|,b%(t) < (1 + +)b2 to get

t
()| = |ab”B| < V2ebf|B> < V2eadby exp <2\fbD/ (16%] + |§|)ds) Nt e (Th, T).
Ty
O
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F.5 AUXILIARY LEMMA

The following lemma provides a choice of x; > |¢;| with high probability.

Lemma F.9. Recall S defined by Assumption and let C = 2(C,,mxy)*1/ 2 Fork € S, we
introduce the events { Ei} as follows:

By, = {|&] < OnY*VInn}. (68)
For k € S, we introduce the events { E}} as follows:
E), = {gk < Cn~V? m(n/%)} . (69)

where k = PIFRTRYS

Then, with probability at least 1 — %, all events Ey,, k € [d] hold simultaneously.

Proof. By Assumption the noise &, is sub-Gaussian with variance proxy Cjroxy /7. Therefore,
P (€] > s) < 2exp(—(2Cproxy) ~'ns?).

If k € S, we have
Inn

P {fk > QCI;(}X/},Q n} < 2exp(—2(lnn)).
By the union bound, we have

B Inn
P{ kesEr} > 1— ];gP {|§k| > 2Ch0l n}
€

> 1 |S|2exp (~2(Inn)) (70)
2
Z 1- )
n
where the last inequality is because |S|2exp (—2(Inn)) < 2n~1.
If k € S¢, we have
B In nk PY 2 A\
P ¢ |&k] > 2(Chroxy) 1/2 — < 2exp (—(lnn—i—ln /<k)> < o Z]‘ v (71
where we recall that & = Z/-\]:\j .
By the union bound, we have
~1/2, | 1In nk
P{NpescEr} 21— Z P q & = 2(Cpr0><y) n
kesc
2 A
>1- Z 4 k)\ (72)
rese ! 25
>1-2,
n
We combined the Equation and Equation (72)), and we derive the results.
O

The following two lemmas provide convenient upper bounds on hitting times of ODE solutions.
Lemma F.10. Let k > Q0 and p > 1.
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e Consider the ODE

Then we have

and thus for any M > 0,

—1
inf{t > 0:z(t) > M} < [(p - 1)@3‘1 . (73)
e Consider the ODE
& < —kaP?, x(0) =x¢ > 0.
Then we have

1

1

() < (2 + - 1kt) T,

and thus for any M > 0,

inf{t > 0:a(t) < M} < [(p— DEMPY] 7" (74)
Lemma F.11. Let k > 0 and x¢ > 0.

1 If

and for every M > xo, we have

1 M
i >0: > < - — .
inf{t >0: z2(t) > M} < : log(x())

2. If

and for every 0 < M < zg, we have

) 1 T
>0: < < - — ).
imf{t > 0: 2(t) < M} < klog(M>
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G RELATED WORKS ON PRINCIPAL COMPONENT REGRESSION

As discussed in Section the PC estimator serves as a motivating example for the concepts of ESD
and span profile due to its clear illustration of bias-variance trade-offs. However, the ESD and span
profile are designed to characterize the intrinsic difficulty of generalization arising from signal-kernel
alignment, and their definition do not rely on the PC estimator. Nonetheless, the analysis of PC
estimators, particularly in high-dimensional linear regression, been an active area of recent research.
Below, we briefly summarize some relevant contributions to provide context.

G.1 PROPORTIONAL ASYMPTOTIC LIMITS

Several studies analyze Principal Component Regression (PCR) in the proportional asymptotic setting
where the dimension p and sample size n grow with p/n — ~. In this regime, | Xu & Hsu| (2019)
studied the limiting risk of PCR with Gaussian designs with diagonal covariance. They assume
polynomially decaying eigenvalues or convergent empirical spectra and an isotropic prior and reveal
a “double-descent” risk curve. In a related vein, [Wu & Xu| (2020) extend the analysis to general
covariance ¥, and an anisotropic prior satisfying E3,3, = X3. They also derive an exact risk
expression and demonstrate how “misalignment” between X, and X g affects risk; here “alignment”
refers to concordance between the orderings of their eigenvalues. Both studies assume knowledge
of the eigenvectors of the population covariance matrix ¥, to construct the oracle PCR. |Gedon
et al.| (2024) analyze the limiting risk of PCR under a latent factor model and explore the effect of
distribution shift. Green & Romanov| (2024) derive the exact limits of estimation risk, in-sample
prediction risk, and out-of-sample prediction risk of PCR under the assumption that both the empirical
distribution of the spectrum and the distribution of mass of the true signal over the eigenspace of 3,
converges weakly.

G.2 NON-ASYMPTOTIC ANALYSIS

Complementary research develops non-asymptotic guarantees. |Agarwal et al.|(2019) derive finite-
sample upper bounds on prediction error using ||3*||7 and the rank of design matrix under latent factor
models and explore the robustness of PCR to noise and missing values in the observed covariates.
Bing et al.| (2021) consider PCR with adaptively selected number of components under latent factor
models and provide alternative finite-sample risk bounds using ||3*||3. |[Huang et al.[(2022) derived
non-asymptotic risk bounds for PCR in more general settings by analyzing the alignment between
population and empirical principal components. [Hucker & Wahl| (2023) derive non-asymptotic error
bounds for PCR in kernel regression.
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