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Abstract—As autonomous robots are increasingly deployed
in open and uncertain settings, there is a growing need for
trustworthy world models that can reliably predict future high-
dimensional observations. The learned latent representations in
world models lack direct mapping to meaningful physical quan-
tities and dynamics, limiting their utility and interpretability in
downstream planning, control, and safety verification. In this
paper, we argue for a fundamental shift from physically informed
to physically interpretable world models — and crystallize four
principles that leverage symbolic knowledge to achieve these
ends: (1) structuring latent spaces according to the physical in-
tent of variables, (2) learning aligned invariant and equivariant
representations of the physical world, (3) adapting training to
the varied granularity of supervision signals, and (4) partition-
ing generative outputs to support scalability and verifiability. We
experimentally demonstrate the value of each principle on two
benchmarks. This paper opens intriguing directions to achieve
and capitalize on full physical interpretability in world models.

Index Terms—world models, representation learning, neuro-
symbolic AI, trustworthy autonomy
Source Repository—https://github.com/trustworthy-engineered-

autonomy-lab/piwm-principles

I. INTRODUCTION

Autonomous robots are increasingly deployed in open and
uncertain environments [1], [2] and use high-dimensional
observations like high-resolution images and LiDAR scans to
perceive these environments. To achieve high performance,
their planning and control are often implemented with deep
learning methods like reinforcement learning (RL) [3], [4].
Since RL training is sample-inefficient, it is impractical to
perform in the real world — leading the controllers to be
trained “in the imagination” of world models [5], [6].

World models learn to approximate the physical world
by predicting future observations based on current obser-
vations and actions. Popular neural world models rely on
compressing high-dimensional observations into the latent
space using an autoencoder. Then these latent values are
propagated forward in time based on learned temporal depen-
dencies [7] and decoded into predicted observations. World
models can be drastically improved by injecting symbolic
physical knowledge into their structure and training process.
For example, the approach by [8] automatically discovers
physically meaningful variables from raw observations for
more stable long-horizon predictions than methods with
standard high-dimensional autoencoders, and [9] identifies

* First co-authors: equal contribution.

the governing equations of nonlinear dynamical systems from
noisy measurements. In another instance, [10] decompose
control into neuro-symbolic predicates powered by vision-
language models and predefined control primitives, thereby
improving generalization.

A major challenge of modern world models is their lack
of physical interpretability: usually the latent state cannot be
easily mapped to physical quantities (e.g., pose or velocity).
This limits their use in classical model-based autonomy and
the design of physically-grounded rewards for RL. We also
cannot obtain physical guarantees from reachability analysis
based on world models [11]. The core reason for this
uninterpretability is that deep learning thrives on distributed
representations, in which each feature is partially encoded
in multiple latent variables [12]. This challenge is further
complicated by partial online observability of the physical
state and the difficulty of precisely labeling the data (e.g.,
indicating which state is riskier in a video).

This paper calls for a paradigm shift from physically
informed world models to physically interpretable ones. The
former use symbolic physical knowledge to make learning
more effective, efficient, and generalizable. The latter creates
neuro-symbolic latent representations with explicit physical
meaning, thus subsuming physically informed approaches.
Physically meaningful representations bring in a plethora
of desirable qualities such as reliability, verifiability, and
debuggability.

By carefully analyzing the existing world model literature,
this paper advances four guiding principles that underlie
physical interpretability of learned world representations.
Specifically, physically interpretable world models should:

• Principle 1: . . . be structured according to the physical
intent of latent variables.

• Principle 2: . . . learn aligned invariant and equivariant
representations of the physical world.

• Principle 3: . . . adapt their training to the varied gran-
ularity of supervision signals.

• Principle 4: . . . partition their generative outputs to
support scalability and verifiability.

Knowledge gap. Based on our literature survey found
in Appendix A, we observe the lack of world model
architectures supporting full physical interpretability (as
illustrated in Figure 3 and Table II in the appendix). Some
existing neuro-symbolic architectures scrape the threshold
of physically interpretable dynamics, yet lack fluid state
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representations. On the other hand, powerful multimodal
transformer-based architectures preserve the physical context
through 3D occupancy, but their prediction mechanisms are
black-box. Bridging this gap is key to transitioning from
merely physically informed world models to fully physically
interpretable ones. Our recent work highlights the need to ad-
dress these open questions [13] and the promise of predictive
world models [14] and their foundation-model variants [15].

II. PRINCIPLES OF PHYSICAL INTERPRETABILITY

This section briefly defines each of the four principles.
Additional details on how the existing work supports these
principles can be found in Appendix B.

A. Principle 1: Structuring the Latent Space

We propose to functionally organize a world model with
a modular latent space. Each state in that latent space is a
vector z, which contains n distinct representations of a single
observation dedicated to unique world model functionalities.
Let x represent the world model inputs (e.g., images), and
enci(x) = zi represent the encoder for a particular workflow
branch fi, i = 1..n of the world model, as in Figure 1. Thus,
the structured latent space becomes:

z = [enc1(x) enc2(x) . . . encn(x)]

These functionalities require a human expert to choose
task-relevant conceptual priors, which correspond to the
physical phenomena being captured by each functionality.
For instance, in autonomous driving, the world model’s
latent space might be organized in three branches: (1)
physical dynamics of the vehicle itself and the non-agentic
environment, (2) emergent physical/dynamical reasoning
arising from interactions with other agents, and (3) residual
yet relevant features of the surroundings.

L ∝
∑
i

Li(fi(enci(x)), x)

Principle 1: Physically interpretable world models
should be structured according to the physical

intent of latent variables.

B. Principle 2: Exploiting Invariances and Equivariances

Deep neural networks have achieved impressive perfor-
mance due in part to their ability to learn rich distributed
representations from training data. Rather than simply mem-
orizing examples, these models construct hierarchical feature
embeddings that capture patterns in the data to generalize
to i.i.d. samples [12]. Nevertheless, training a model to
internalize and imagine the world in a human-like man-
ner from scratch is still a nontrivial challenge at best (
[16]). Encoding high-dimensional observations (e.g., images)
through commonplace embedding methods (e.g., through
autoencoders or encoder-only transformers) leaves the latent
representation generally uninterpretable and task-agnostic.
This raises concerns about whether the latent space is dis-
torted by spurious correlations or if it effectively encodes

the details necessary for discriminating between features that
should remain functionally disentangled.

Invariance and equivariance relations are one way to
address uninterpretability in representation learning models.
These terms are often used to classify representations based
on their response to observation space transformations. If
the representation of x shifts in an expected manner due
to a transformation f(x), then the representation model is
said to be equivariant to that transformation. Likewise, if the
representation does not shift under the transformation, then
the model is said to be invariant to the transformation.

We classify representation models along two dimensions:
(1) the nature of their transformation response (invariance
versus equivariance) and (2) their degree of human alignment
(aligned versus misaligned). A representation that is aligned-
invariant remains unchanged when an observation under-
goes a meaning-preserving transformation, while an aligned-
equivariant representation transforms predictably when the
observation’s meaning is altered. In contrast, a representation
is misaligned-invariant if it does not change under meaning-
ful effects made to the observation (suggesting underfitting),
and it is misaligned-equivariant if it changes in response
to an observation transformation that should not affect the
underlying meaning (suggesting a domain shift). Our training
objective is to achieve invariance and equivariance alignment
by ensuring that the post-transformation representations ac-
curately reflect our human interpretation of the change.

Principle 2: Physically interpretable world models
should learn aligned invariant and aligned

equivariant representations of their environment.

Definition II.1 (Equivariant Representation). Let enc : X →
Z be a map from each observation x ∈ X to latent represen-
tation z ∈ Z. Let T = {(f1, g1), (f2, g2), . . . , (fn, gn)} be a
finite set of transformation pairs such that fi : X → X and
gi : Z → Z. We say that z = enc(x) is equivariant to T if
∀(f, g) ∈ T, enc(f(x)) = g(enc(x)). Invariance is a special
case of equivariance where g(z) = z.

Following Definition II.1, a simple loss function promotes
aligned invariance and equivariance:

Lwm(x, y) ∝ λ

N

N∑
(f,g)∈T

∥ enc(f(x))− g(enc(x))∥22

C. Principle 3: Multi-Level Supervision for Representations

World models must bridge the gap between rich obser-
vations and physical meaning. This requires adapting the
training strategy based on the type and quality of avail-
able supervision signals [17], [18]. Instead of treating all
supervision signals in the same way, effective world models
carefully exploit supervision signals — whether they are
precise, coarse, or missing — by selecting the most fitting
training method to align with the underlying physical system.

Multi-level supervision tailors the loss functions and
training process to the granularity of supervision signals.
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Fig. 1. Overview of physically interpretable world models and four principles.

For instance, physical state labels allow for the direct
alignment of latent representations with real-world quantities
using supervised loss. When such labels are unavailable,
temporal consistency and smoothness of trajectories can
serve as implicit regularization techniques to constrain
learned representations. Finally, self-supervision can
leverage data-driven structures to discover meaningful latent
representations in entirely unsupervised settings.

Principle 3: Physically interpretable world models
should adapt their training to the granularity of

supervision signals.

Combining Supervision Levels: For a given dataset D with
multiple supervision signals, the training objective must flex-
ibly incorporate relevant terms to ensure that the latent space
aligns with the physical world across diverse scenarios. We
advocate for using every available supervision opportunity.
Given explicit state labels, use direct supervision. When
only partial information is available, use weakly supervised
constraints to refine the representations. In addition, use self-
supervision to extract the sequential physical patterns of
observations. Since all these signals come from the physical
world, we expect their multi-level integration to improve
physical interpretability.

D. Principle 4: Output Space Partitioning for Verifiability

We propose to partition the generated image into
physically meaningful parts to enable the safety verification
of vision-based controllers. Specifically, a world model
will contain multiple generators of output signals — each
dedicated to its own image region. Each generator would be
separately verifiable, and the results would be combined to
provide world model-wide guarantees. This principle reduces
each generator’s size, making the analysis and execution of

world models more parallelizable and scalable. Moreover,
when applied to physically interpretable latent states, this
principle enables the transfer of verification guarantees to the
physical world: the generators will represent the relationship
between images and physical states, not uninterpretable
latent ones.

Principle 4: Interpretable world models should
partition generated observations into segments from

multiple simpler generators, enabling scalable
verification.

Definition II.2 (Partitioned World Model Generation). A
world model decoder dec translates a latent state z into
a generated high-dimensional observation x̂, expressed as
dec(z) = x̂, by minimizing the reconstruction error between
the original and reconstructed observations. Each image
segment is produced by a separate decoder: dec1(z) =
x̂1,dec2(z) = x̂2, ...,decn(z) = x̂n. The combined gen-
erated image is represented as x̂ =

⊕n
i=1 x̂i, where

⊕
is a signal composition operation (e.g., overlaying image
segments). The corresponding loss function Lgen is:

Lgen = ||x− x̂||2 + λ

N∑
i=1

||xi − x̂i||2 (1)

The question of automatic partitioning of world model
outputs can be answered by zero-shot approaches like the
Segment Anything Model (SAM) [19]. Recently, SAM was
used to segment images to improve image and safety pre-
diction [15]. A similar partitioning was used in the action
space to scale up the verification of vision-based controllers
via multiple low-dimensional approximations [20]. Principle
4 propagates the physical meaning from different parts of
the world model (established in Principle 1) to its generative



Fig. 2. MSE of physical state prediction across different prediction horizons for Principles 1–3.

outputs, effectively linking the high-dimensional observation
space with a lower-dimensional state representation.

III. EXPERIMENTAL VALIDATION

Our experiments evaluate the impact of the four proposed
principles on the interpretability of world model represen-
tations. We expect each principle to improve the prediction
of future physical states compared to a baseline interpretable
world model. The success measure is the mean squared error
(MSE) of state predictions over many prediction horizons.

Two case studies are used for validation: the Lunar Lander
and Cart Pole environments from OpenAI’s Gym [21]. We
utilize classical models, namely a Variational Autoencoder
(VAE) for encoding observations and a Long Short-Term
Memory (LSTM) network for temporal prediction. The
latent dimensions number is 64 in all experiments. The
baseline interpretable world model employs additional linear
layers to transform otherwise unininterpretable latents into
state values. The experimental details can be found in
Appendix C and the online repository.
Principle 1: Here we split the encoder into the image part
for extracting visual features and the state part that produces
physical variables. The latent vector size is the same for the
baseline and the modified models. Figures 2A and 2C show
that Principle 1 significantly reduces the MSE for longer
horizons, highlighting the stability due to physical grounding.
Principle 2: For the lunar lander, we add a translation to
both the observation and position, ensuring the equivariance
to translation. For the cart pole, a translation is applied to the
cart and a rotation to the pole, with corresponding changes
to the latent state. Figures 2A and 2C show that Principle 2
reduces prediction error across all prediction horizons.
Principle 3: Here we have semi- and weakly-supervised
settings: (1) only static information (position, angle)
is supervised, while dynamic (velocity) is unknown;
(2) velocity is estimated from positions/angles, adding
supervision through physical knowledge. Figures 2B and 2D
show that weak physical supervision improves prediction at
all prediction horizons.
Principle 4: We partition the original cartpole and lunar
lander images into three parts with SAM. Then three smaller
decoders are trained to generate each image part, which
are combined in the end (as illustrated in Figure 4 in the
appendix). The baseline decoder has one linear layer, two
convolutional layers, and a 4-dimensional encoded feature
map. Our partitioned decoder only contains one linear layer

and one smaller convolutional layer. For both, the latent
space has 4 dimensions for the cartpole and 8 for the lunar
lander. The partitioned generator inputs are the exact physical
states, while the baseline gets uninterpretable latents. Our
partitioning reduces 200,259 parameters in the baseline to
only 144,665 parameters. Despite that, the reconstruction
quality remains comparable (see Table I in the appendix)

IV. FUTURE RESEARCH DIRECTIONS

A. Extracting Physical Knowledge from Foundation Mod-
els. Having absorbed humanity-scale data patterns, large lan-
guage models are promising sources of implicit and plausible
physical knowledge. We will extract candidate dynamics tem-
plates, invariances, and equivariances. An important step is
validating the candidate information (e.g., via open datasets)
before incorporating it into the world model training.
B. Physically Aligned Multimodality. Reliable multimodal
world models are urgently needed in many autonomous sys-
tems [22], [23]. However, the consistency of predicted modal-
ities has been a challenge for learned representations [13].
We suggest the use of physically meaningful representations
in making image and LiDAR predictions consistent on real-
world datasets such as nuPlan [24] and Waymo Open [25].
C. Interpretable Uncertainty in World Models. Common-
place uncertainty quantification techniques for deep learning
models struggle to express the uncertainty in the terms
relevant to the application domain [26], [27]. In contrast,
uncertainty estimation within physically meaningful latent
representations allows for more interpretable and action-
able uncertainties. We suggest developing an uncertainty
quantification method based on distributions over physically
meaningful latent states and partitioned outputs, which can
facilitate robust decision-making and improve reliability in
downstream tasks [28].
D. Unified Training Pipeline. When using combinations of
supervisory signals, the convergence and stability of training
remain elusive [29]. We recommend designing an automated
training pipeline that will combine and tune different losses
to ensure reliable training [30].
E. Integrating World Models into Classical Autonomy.
Physically meaningful states enable high-performance com-
ponents of world models to serve as state estimators, tra-
jectory predictors, and models for verification [31]. We
intend to enhance classic autonomy tasks with world-model
components to improve their performance while preserving
their verifiability.
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APPENDIX

A. State of the Art in World Models

Foundations of world models. Modern world models have
led to state-of-the-art performance in autonomous planning
and control while addressing the data-efficiency concerns
of standard RL [7], [32], [33]. Modern deep-world models
were first proposed by [16]: a variational autoencoder (VAE)
generated image representations and a recurrent neural net-
work made latent-space predictions. Later work refined both
the encoder-decoder architecture and the surrogate dynamics:
PlaNet introduced a recurrent state-space model (RSSM) for
prediction [34]; Dreamer propagated gradients back through
the imagined trajectories to refine latent prediction [35];
and DreamerV2 extended the RSSM to categorical latent
variables [36]. More recent research integrates autoregressive
transformers with self-attention layers to capture detailed
temporal dependencies [33], or diffusion models to mitigate
compounding errors [37]. World models have also found
success in optimizing planning algorithms for autonomous
vehicles in realistic environments: DriveDreamer [38] lever-
ages multi-modal inputs to generate realistic video trajecto-
ries for policy optimization; DriveWorld [39], OccWorld [40],
UniWorld [41], and RenderWorld [42] forecast detailed 3D
occupancy to inform motion planning and control.
Towards interpretable world models. Despite the strong
performance of world models, their interpretability remains
a major challenge in most frameworks. Early efforts toward
disentangling latent variables (i.e., reducing their mutual

dependency) include β-VAEs [43] and causal VAEs [44].
This disentanglement strategy is also employed in driving
prediction frameworks like GNeVA [45] and ISAP [46].
Under the umbrella of world models, G-SWM [47] in-
vestigated a principled modeling framework that inherits
interpretable object and context latent separation from various
spatial attention approaches [48]–[51]. Interpretability can
also manifest in the world model’s forward dynamics: [52]
propose embedding known dynamics into neural pipelines,
while more recent work imposes further physical constraints
on system identification [53], motion prediction [54], and or-
dinary differential equations with learnable parameters [55]–
[57]. Incorporating partial knowledge of physics with weak
supervision has recently improved both the state and dy-
namics interpretability [31]. A recent Nature article lever-
aged the biological alignment of latent representations to
predict microbiome community interactions and antibiotic
resistance [58]. Neuro-symbolic world models have also
begun to emerge: VisualPredicator [10] learns a set of abstract
states and high-level actions for strong out-of-distribution
generalization, whereas WorldCloner [59] learns symbolic
rules to adapt the dynamics to open world novelty.Additional
neuro-symbolic work that inspires physically-aligned world
models is PhysORD [60] which embeds physical laws into
neural models, improving long-horizon motion prediction and
interpretability.

Benefits of Physical Interpretability. Aligning world mod-
els with fundamental physical principles (e.g., kinematics and
conservation laws) has been shown to improve their out-of-
distribution generalization and robustness [10], [31], [47],
[59], [61]. These principles prevent latching onto spurious
correlations in training and constrain the models to traverse a
physically meaningful manifold when extrapolating observa-
tions. Going further, physically interpretable representations
would lead us to a qualitatively new level of safety and
trustworthiness. It would make world models more transpar-
ent and debuggable by cross-checking them with real-world
physics. It would also make generative components suitable
for closed-loop verification of physical properties. Finally,
physical representation would drastically improve RL sample
efficiency by shrinking the search space to physically feasible
solutions.

B. Existing Work Supporting the Principles

Principle 1. Although many facets of human cognition
remain a mystery, extensive research indicates that distinct
regions of the brain are dedicated to unique functions [62].
For example, early studies of patients with brain injuries re-
vealed the existence of functional systems partially dedicated
to meaningful tasks such as spatial awareness, voluntary
movement, and sensory processing [62]. While modeling the
minutia of human cognition is beyond the scope of this
principle, this idea of functional organization inspires how
world model architectures are increasingly structured.

Recent work in the context of Branch 1 (physical variables)
showed that latent representations in world models can be
effectively aligned with physical properties [31]. Although
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Fig. 3. State-of-the-art world models by the interpretability of their state and dynamics.

modeling agent interactions is a well-explored topic, early
work by [63] revealed how physical interactions between
agents can be learned through graph neural networks (GNN)
in an unsupervised manner. Later advances in learning phys-
ical interactions within the context of world models by [47]
proposed a method that constructs a separate latent represen-
tation using a GNN to capture agent occlusion and interaction
relationships. Physics informed neural networks [64], [65]
can also improve the physical interpretability of the world
model’s forward dynamics. For instance, Hamiltonian neural
networks [61] learn and adhere to physical conservation
laws, leading to impressive generalization. Finally, Branch 3
follows the typical strategy for creating uninterpretable world
models and is considered a useful layer to the structured
latent space [47].

Latent space structuring has become increasingly prevalent
in improving the performance of planning and control. To
this end, [45] developed a goal-based neural variational
agent (GNeVA) that uses separate polyline embeddings for
the agent and the map to achieve interpretable generative
motion prediction. Similarly, [46] designed an interpretable
car trajectory prediction that integrates three distinct work-
flow branches: agent states, high-definition maps, and social
context.

Principle 2. [66] utilize bisimulation metrics to learn latent
representations of roadway obstacles that are invariant to
obstacle type, size, and brightness. The dual of avoiding
explicitly irrelevant details is explicitly learning relevant
details. [67] introduce contrastive loss to enforce action-
equivariance on learned representations. However, we still
lack ways to effectively incorporate these expert concep-
tual priors into world models. [68] innovate a symmetric
embedding network for world models that learns simple

latent space transformations from complex observation space
transformations.

In practice, deciding which features the representation
should be invariant or equivariant to solely depends on the
task at hand and the discretion of the expert engineer. In
autonomous driving, consider a recovery component that
overrides the default controller during inclement weather.
This component’s representations of real-time images might
change when the sky is cloudy. On the other hand, the world
model of the default controller might be invariant to the
features of the sky.

Principle 3. Here we discuss the supervision signal types for
the latent states and their impact on physical interpretability.
Supervised Learning: Direct supervision connects latent val-
ues with physical states. In many cases, supervision sig-
nals are introduced directly into the embeddings to cap-
ture key features from labeled data [69]. For example, in
low-dimensional systems with position and velosity states
s = [p, v], additional latent dimensions (zextra ∼ N (0, 1))
can improve reconstruction quality and stability [70]–[72].
Semi-Supervised Learning: When the labels are only avail-
able for some data, semi-supervised techniques can refine
representations. Pseudo-labeling (e.g., Mean Teacher [73]
and FixMatch [74]) utilizes both labeled and unlabeled data
to iteratively improve the latent space. In Motion2Vec [75],
a small amount of labeled data is first used to initialize the
embedding space; subsequently, RNNs predict pseudo-labels
for unlabeled data, allowing the model to iteratively refine
both the embedding and segmentation components.
Weak Supervision: Noisy or coarse labels, such as position
constraints (p ∈ [a, b]), can be utilized via the trajectory
smoothness loss: Lsmooth =

∑
t ∥pt − 2pt+1 + pt+2∥2.

Temporal models like Kalman filters [76] stabilize noisy



trajectories in tasks such as autonomous driving. Interval
signals as weak supervision can be directly incorporated into
the loss function [31] or combined with contrastive learning
to reinforce constraints [77].
Self-Supervised Learning: In the absence of labels, con-
trastive learning [18] aligns latent representations with task-
specific similarity metrics (e.g., Euclidean distance or struc-
tural similarity). Contrastive world models [78] explicitly
employ representation learning losses to map similar states
closer in the latent space. Plan2Explore [79] generates self-
supervised uncertainty-driven objectives to guide the repre-
sentations.

Principle 4. Ensuring the safety of vision-based autonomy
is a critical and open challenge [20], [80]. The verification
of such systems remains difficult due to high-dimensional
image inputs: traditional techniques struggle to handle this
complexity, making it essential to develop new principles
for pre-deployment safety guarantees [81], [82]. A recent
approach employs a generative image model to map the
physical state to the observed image, in turn fed into a
state estimator or controller [11], [83]. Unfortunately, due
to uninterpretable latent states, such “verification modulo
generative models” does not provide guarantees regarding
the physical world. Furthermore, it does not scale to large
image sizes.

C. Experimental Details

The state dimensions for the Lunar Lander and Cart
Pole are 8 and 4, respectively, reflecting different lev-
els of complexity in achieving interpretability. All experi-
ments were conducted on an NVIDIA GeForce RTX 3090
GPU. The source code can be found at https://github.com/
trustworthy-engineered-autonomy-lab/piwm-principles.

Principles 1–3. Our world model employs a VAE for en-
coding/decoding high-dimensional image observations and an
LSTM time-series predictor for modeling state transitions in
the latent space. The encoder consists of three convolutional
layers with increasing feature maps (16, 32, 64) and ReLU
activations, downsampling the input image through strided
convolutions. The latent representation is parameterized by
two fully connected layers (µ and log σ2), each mapping the
encoded feature vector to a latent space of 64 dimensions.
The decoder reconstructs the input image using a fully
connected layer followed by three transposed convolutional
layers, producing a three-channel output with a sigmoid
activation. The VAE is trained using the Adam optimizer
with an initial learning rate of 0.001, incorporating learning
rate decay to stabilize convergence.

The input to the LSTM consists of 64-dimensional latent
representations extracted by the VAE. The network comprises
two LSTM layers with a hidden size of 64, followed by a
fully connected output layer mapping to a 64-dimensional
output representing the predicted latent state at the next
time step. The LSTM predictor is trained using the Adam
optimizer with an initial learning rate of 0.001 and also
incorporates learning rate decay. The objective is to minimize

the MSE between predicted and true latent representations
over time.
Principle 4. The architecture details can be found in Sec-
tion III. Our decoder network maps low-dimensional phys-
ical state representations to high-dimensional images using
a series of transposed convolutional layers. Using a fully
connected layer, the decoder first maps the input state (four-
dimensional vector in cartpole; eight-dimensional vector in
lunar lander) to a high-dimensional feature space. This pro-
duces an intermediate representation of size 3×16×24×24.
The image output is further refined through independent
transposed convolutional layers, each producing a separate
image (three independent layers for each segment image for
cartpole and lunar lander). The model is trained using the
Adam optimizer with an initial learning rate of 0.001. Train-
ing is conducted with mini-batches of size 64, incorporating
validation loss tracking to ensure generalization. The loss
function is a λ-weighted combination of the reconstruction
MSE of the overall reconstructed image and each segmented
part. For the partitioned loss function in Equation 1, the
choice of λ plays a crucial role in image generation behavior:

• If λ is too small (< 0.1), the model fails to separate the
three parts, blending “shadows” of the original image
into the outputs.

• If λ is too big (> 0.5), the three parts are completely
disconnected, leading to inferior reconstruction quality.

Through hyperparameter tuning, we found that setting λ =
0.2 provides an optimal balance between the quality of the
separation and the reconstruction in both case studies.

D. Additional Illustrations

• Table I shows the comparison between a unified and
partitioned generator.

• Figure 4 shows example observations and their parti-
tioned reconstructions for Principle 4.

• Figure 5 shows the imperfect part-wise reconstruction
for inadequate values of λ.

• Table II lists the literature on world models and indi-
cates the extent of state/dynamics interpretability and
adherence to the proposed principles.

https://github.com/trustworthy-engineered-autonomy-lab/piwm-principles
https://github.com/trustworthy-engineered-autonomy-lab/piwm-principles


World model Environment Average MSE Average SSIM Model Size
Baseline (monolithic) Cart Pole 0.02856 0.997122 200,259
Partitioned 3-way Cart Pole 0.05176 0.995614 144,665
Baseline (monolithic) Lunar Lander 0.18801 0.8686 360,773
Partitioned 3-way Lunar Lander 0.306 0.6289 78,101

TABLE I
MODEL SIZE AND RECONSTRUCTION PERFORMANCE FOR VALIDATING PRINCIPLE 4 WITH λ = 0.2.

Fig. 4. Observations and three reconstructed parts (Principle 4) for the cartpole and lunar lander with λ = 0.2.

Fig. 5. Imperfect reconstruction for the cart pole: the upper row corresponds to λ = 0.01, while the bottom row corresponds to λ = 0.9.



Short Name Reference Principle 1 Principle 2 Principle 3 Principle 4 State interp. Dyn. interp.

WM [5]
PlaNet [84] Weak Weak
Dreamer [85] Weak Weak
G-SWM [47] Strong Weak Weak Moderate Weak
AWM [86] Weak Weak Weak
Plan2Explore [79] Weak Weak Weak
Pathdreamer [87] Weak Weak Strong Weak
DreamerV2 [36] Weak Weak Weak
NSV [8] Strong Strong
DayDreamer [6] Weak Weak
DreamingV2 [88] Weak Weak Weak
SEN [68] Strong Moderate
STEDI [89] Strong Moderate Strong
DriveDreamer [38] Weak Strong Weak
GAIA-1 [90] Strong Moderate
IFactor [91] Moderate Moderate
IRIS [92] Weak Weak
MTS3 [93] Weak Weak Weak Weak
Denoised MDP [94] Moderate Moderate
WM2WM [95] Strong Moderate
MWM [96] Weak Weak
OccWorld [40] Strong Strong Strong
RAP [97] Moderate
S4WM [7] Moderate
SWIM [98] Moderate Moderate Moderate
TWM [33] Weak Weak
UniWorld [41] Strong Strong Strong
WorldCloner [59] Strong Moderate Strong
THICK [99] Weak Weak Weak
AVID [100] Strong Moderate
CMIL [101] Strong Weak
DreamerV3 [102] Weak Weak Weak Weak
DriveWorld [39] Strong Moderate Weak
DWM [37]
GaussianWorld [103] Moderate Strong Strong Moderate
Genie [104] Moderate Moderate
HarmonyWM [105] Weak Weak
OccWM [106] Moderate Strong Strong Weak
CovWM [107] Weak Weak Weak Weak
NWM [108]
OccLLaMA [109] Strong Strong
PIWM [31] Strong Strong Moderate Strong
R-AIF [110] Weak Weak Weak
RenderWorld [42] Strong Strong Strong
Think2Drive [111] Weak Weak
TransDreamer [112] Weak Weak Weak
VisualPredicator [10] Strong Strong Moderate
WorldGPT [113] Moderate Moderate Moderate Moderate
Our future vision Strong Strong Strong Strong Strong Strong

TABLE II
REVIEW OF NOTABLE AND STATE-OF-THE-ART WORLD MODEL ARCHITECTURES FOR ADHERENCE TO THE FOUR PRINCIPLES AND THEIR

DYNAMICAL/STATE INTERPRETABILITY.
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