
ZipLM: Inference-Aware Structured Pruning of Language Models

Eldar Kurtic 1 Elias Frantar 1 Dan Alistarh 1 2

Abstract

In this paper, we propose a novel structured
compression approach for LLMs, called
ZipLM, which achieves state-of-the-art
accuracy-vs-speedup, while matching a set
of desired target runtime speedups in any given
inference environment. Specifically, given a
model, a dataset, an inference environment, as
well as a set of speedup targets, ZipLM iteratively
identifies and removes components with the worst
loss-runtime trade-off. Unlike prior methods that
specialize in either the post-training/one-shot
or the gradual compression setting, and only
for specific families of models such as BERT
(encoder) or GPT (decoder), ZipLM produces
state-of-the-art compressed models across all
these settings. Furthermore, ZipLM achieves
superior results for a fraction of the computational
cost relative to prior distillation and pruning
techniques, making it a cost-effective approach
for generating an entire family of smaller, faster,
and highly accurate models, guaranteed to meet
the desired inference specifications. In particular,
ZipLM outperforms all prior BERTbase distillation
and pruning techniques, such as CoFi, MiniLM,
and TinyBERT. Of note is that on analyzed
GLUE tasks, ZipLM compresses BERTbase up
to 15x faster model while recovering ≥ 95%
accuracy. The resulting models have encoder size
reduced from 85M to only 3M parameters, and
on average ≤ 10 attention heads compared to 144
heads in the uncompressed model. Moreover,
ZipLM matches the performance of the heavily
optimized MobileBERT model, obtained via
extensive architecture search, by simply pruning
the baseline BERTlarge architecture. When com-
pressing GPT2, ZipLM outperforms DistilGPT2
while being 60% smaller and 30% faster.

1Institute of Science and Technology Austria 2Neural Magic.
Correspondence to: Eldar Kurtic <eldar.kurtic@ist.ac.at>.

Work presented at the ES-FoMo Workshop at ICML 2023.

1. Introduction
In this paper, we focus on structural compression, whose
goal is to reduce model size by removing entire sub-
components, such as rows or columns from the model’s
weight matrices. The key advantage of structured pruning,
relative to unstructured pruning of individual weights, is
that the model can be reshaped to new dimensions, and
the resulting computational savings can be leveraged on
any hardware, without specialized computational support.
At the same time, structured pruning introduces significant
challenges. First, models are usually highly-sensitive to
structured compression, and most methods require grad-
ual compression, including retraining cycles designed to
allow the model to recover accuracy. In addition, structural
compression significantly complicates the use of knowledge
distillation (Hinton et al., 2015), which is usually done via
manual or dynamic layer mapping (Jiao et al., 2020; Xia
et al., 2022). On the practical side, another challenge is that
most existing techniques do not provide runtime speedup
guarantees: the model is pruned to a fixed sparsity or FLOPS
target, and then must be evaluated in the target inference en-
vironment. If the pruned model fails to meet the target spec-
ifications, the whole process must be repeated from scratch.

Overview. In this paper, we resolve these issues and pro-
vide a novel structured pruning approach called ZipLM,
which achieves state-of-the-art performance, both in the
post-training/one-shot setting, where retraining is not desir-
able, as well as in the popular gradual compression setting,
where retraining is possible. We accomplish this via an
inference-aware algorithm, which successfully balances the
loss-runtime trade-off at each pruning step. By taking run-
time into account, we avoid removing components that do
not bring significant speedup gains. Additionally, our algo-
rithm provides speedup guarantees for compressed models,
a highly-desirable property in practical applications.

We summarize our contributions as follows:

• We introduce a novel structured pruning approach, uni-
fying the saliency criteria investigated by prior work–
weight magnitude, activation impact, and removal of
linearly-redundant structures, while considering local
(Section 2.1) and global (Section 2.2) correlations. We
augment for inference-awareness, reaching desired la-
tency or throughput in any given configuration.

ZipLM: Inference-Aware Structured Pruning of Language Models

• We complement the algorithm with a novel layer-wise
token-level distillation, which consistently boosts ac-
curacy on small datasets and does not require manual
layer matching, circumventing a limitation of prior
structured pruning techniques (Appendix C).

• ZipLM is the first structured pruning approach
that achieves state-of-the-art results for both, post-
training/one-shot compression (Appendix D) and grad-
ual pruning (Section 3.1) settings, while being appli-
cable to both, BERT (encoder) and GPT (decoder)
language models, without any modifications.

• ZipLM is practical and efficient. For a set of desired
speedups (e.g. 2x, 5x, 10x) in the target inference envi-
ronment (e.g. batch-size=128, sequence-length=384,
device=V100 GPU), in a single run and under the same
set of hyper-parameters, it produces the entire family of
compressed models, one for each speedup target. Con-
sequently, it leads to state-of-the-art results in GPU-
based inference environments (Section 3.1). More-
over, it is compatible with unstructured pruning and
quantization, leading to state-of-the-art results even for
CPU-based environments (Appendix E).

2. Method
Removing large structures like entire matrix columns or
attention heads from a language model quickly leads to se-
vere accuracy degradation, from which it is often difficult to
recover even with extensive finetuning. This is why current
state-of-the-art approaches like Block Movement Pruning
(Lagunas et al., 2021) or CoFi (Xia et al., 2022) opt for
integrating pruning directly into training (via sampling or
differentiable approximations), rather than performing it in
the standard gradual pruning fashion of discrete steps with
finetuning in between. However, as we will show, by design-
ing a new highly accurate pruning algorithm which is able
to account for both local correlations of structures within
single layers as well as global correlations across layers,
we can actually apply the gradual pruning paradigm, with
all its advantages, to improve significantly over the current
state-of-the-art.

2.1. The ZipLM Structured Pruning Algorithm (Local
Correlations)

Most existing structured pruning criteria (Liu et al., 2021;
Liebenwein et al., 2019) are based on one or two of the
following assumptions about saliency: structures with lower
(average) weight magnitude are easier to prune (He et al.,
2018; Li et al., 2016), structures with small input activations
can be removed at little loss (Liu et al., 2017), and structures
that are close to a linear combination of other structures are
the most redundant (He et al., 2019; Sui et al., 2021). We
will now show how all these aspects can be jointly consid-
ered in a principled manner via our new ZipLM technique.

Problem formulation. Our approach starts from the idea
of applying structured compression layer-wise, in a way that
allows the layer to preserve most of its output characteristics.
This setup is popular in the post-training quantization and
unstructured pruning literature (Nagel et al., 2020; Hubara
et al., 2021; Frantar et al., 2022), and can be implemented
as follows. We are given a small amount of calibration data,
which we run through the network, to obtain “reference” in-
puts and outputs for each layer. Then, for each layer, given
the calibration inputs X and the original layer weights W,
we aim to find compressed weights Ŵ respecting the com-
pression constraint C, which best approximate the original
output, measured via the squared error metric. If we as-
sume that the input and weight matrices have an appropriate
rectangular form, the problem can be formalized as:

argmin
Ŵ

||ŴX−WX||22 subject to Ŵ ∈ C. (1)

This objective can be decomposed across the rows of W,
leading to a set of sparse linear regression problems, one
per row. These row-wise problems are independent, which
forms the basis of related work (Frantar et al., 2022); yet,
since we do structured pruning, they become dependent, as
we would like to prune the same weight indices across all
rows, i.e. prune entire columns. Thus, finding the optimal
weights Ŵ ∈ C is equivalent to finding: 1) the optimal
structure S of the desired shape to be removed, which we
assume to be applied across all rows, with corresponding
pruning mask MS, where pruned indices have value 1 in
the mask, and others are 0; and 2) the corresponding update
δS to all of the remaining weights, optimally compensating
for the error caused by the removal of weights in S.

Saliency scores and weight update. Let H = XX⊤

be the Hessian matrix for the L2 minimization problem in
Equation 1, which is independent of the weights. Define
Wi,MS

to be the subset of weights under the mask MS in
row i, and by (H−1)MS,MS

the submatrix of the inverse
Hessian corresponding to the entries under the mask MS.
Then, we can obtain the optimal mask and weight update as
follows:

argminS

drow∑
i=0

Wi,MS
·
((

H−1
)
MS,MS

)−1

·W⊤
i,MS

(2)

δS = −W:,MS
·
((

H−1
)
MS,MS

)−1

·
(
H−1

)
MS,:

(3)

We obtain this by extending the Optimal Brain Surgeon
(Hassibi & Stork, 1992; Kurtic et al., 2022) formulas for
solving Equation 1 to cover all drow weight matrix rows
simultaneously. Importantly, the subselection of the inverse
Hessian ((H−1)MS,MS

)−1 is shared between all rows. Fur-
ther, since we generally consider only non-overlapping sets
S of the same size, we pay just O(dcol · |MS|2) total cost for
all extra inversions. Since the number of structures in the

ZipLM: Inference-Aware Structured Pruning of Language Models

mask |MS| is usually small, e.g. attention heads usually con-
sist of 64 columns, the overall cost of these inversions is low.

Simply selecting the structures to prune according to the
criterion in Equation 2 unifies the weight magnitude and
activation influence criteria (via the Hessian), but still ig-
nores any correlations between structures. We address this
by pruning structures one-at-a-time, while always apply-
ing update δS and fully recomputing H−1 relative to the
remaining structures. For example, if there exist two re-
dundant structures S1 and S2, we will first drop S1 and
update S2 to compensate for this removal, at which point
S2 is no longer easy to prune. Without this one-at-a-time re-
moval, both structures would have been incorrectly removed
as they each individually seem easy to prune according to
Equation 2. Executing this strategy naively will require a
full O(d3col) recomputation of the inverse Hessian relative to
the remaining structures at each step, which would be very
slow. However, this can be avoided by removing the rows
and columns corresponding to MS directly in the inverse
with one step of Gaussian elimination (Frantar et al., 2022),
applied block-wise to cover larger structures, as follows:

H−1 −H−1
:,MS

·
((

H−1
)
MS,MS

)−1

·H−1
MS,:

, (4)

which takes only O(|MS| · d2col) time. We provide complete
pseudocode in Algorithm 1.

Algorithm 1 The ZipLM pruning algorithm. Given inverse
Hessian H−1 = (2XX⊤ + λI)−1, we remove exactly k
structures from the corresponding weight matrix W.

R← set of all possible structures
for k times do

S← argminS

∑drow
i=0 Wi,MS · ((H

−1)MS,MS)
−1 ·W⊤

i,MS

δS ← −W:,MS · ((H
−1)MS,MS)

−1 · (H−1)MS,:

W←W + δS
H−1 ← H−1 −H−1

:,MS
· ((H−1)MS,MS)

−1 ·H−1
MS,:

R← R− {S}
end for
W←W ⊙MR

We utilize the fact that the values corresponding to pruned
weights in W and in the inverse Hessian H−1 do not affect
any subsequent calculations and can therefore be ignored
even if they are not exactly zero. However, in the end we
have to prune them explicitly again by multiplying with
the overall mask to ensure that they are exactly zero. In a
practical implementation, ((H−1)MS,MS

)−1 should only
be computed once and reused when computing the corre-
sponding sum across all rows.

Pruned structures. Focusing on Transformers, we con-
sider three types of structural removal: dropping attention
heads, shrinking the expanded intermediate dimension of

the fully-connected network (FC) layers, and removing en-
tire residual parts, i.e. attention or FC-modules. We im-
plement this by dropping dhead consecutive columns in the
out-matrix of the attention block and individual columns in
the second linear layer of the feed-forward network. Once
these column-structures are zeroed out, corresponding rows
in previous layers can be safely removed without any output
change. Crucially, by pruning e.g. columns in the FC2
layer rather than equivalent rows in FC1, we can utilize the
input correlations via Hessian-information using the ZipLM
pruner.

Novelty relative to existing Optimal Brain Surgeon
(OBS) approaches. The original framework (Hassibi &
Stork, 1992), as well as modern efficient versions (Singh &
Alistarh, 2020; Frantar et al., 2021; 2022), have been explic-
itly developed for unstructured pruning, i.e. removing indi-
vidual weights. It is nontrivial to extend them to structured
pruning, as this involves considering additional correlations,
both within as well as across multiple blocks (such blocks
are usually employed for computational tractability). For
example, the state-of-the-art layer-wise approach of (Fran-
tar et al., 2022), performs unstructured pruning by handling
weight matrix rows separately, and then greedily merging
results. In contrast, we perform structured pruning jointly
across multiple rows, which is not only necessary for cor-
rectness but additionally enables us to design an algorithm
with a computational complexity that is lower by a full fac-
tor of the hidden dimension size. Additionally, structured
pruning requires explicitly matching matrix shapes for con-
secutive layers and a dedicated strategy for utilizing weight
updates even when entire blocks/rows are pruned.

2.2. Inference-Aware Structured Pruning (Global
Correlations)

We now describe how to augment the algorithm to be
inference-aware, in the sense that it accepts inference speci-
fications, such as batch-size, sequence-length, and speedup
on the target hardware, as additional inputs to optimize for.

Motivation. The main benefit of inference-aware struc-
tured pruning is the fact that pruning decisions are not
guided purely by saliency scores, but instead by loss-vs-
speedup trade-offs associated with the removal of each com-
ponent in the model. Prior methods, e.g. (Kurtic et al., 2022;
Lagunas et al., 2021; Xia et al., 2022) focus solely on prun-
ing until a specific sparsity threshold is reached, without
taking into account the real-world speedups corresponding
to the compression threshold, which can vary significantly
between settings. For example, a 95% sparse BERT pro-
duced by CoFi (Xia et al., 2022) has 12x speedup on a V100
GPU, but only 5x on an A100 GPU. With existing methods,
if real-world timings fail to meet the inference requirements,
the entire process has to be repeated with different sparsity

ZipLM: Inference-Aware Structured Pruning of Language Models

values until the target speedup is achieved, which is both
time-consuming and error-prone. An additional advantage
of inference-awareness, which we showcase in our GPT
experiments in Section 3, is that it enables optimizing for
different real-world metrics, such as latency or throughput.

Runtime awareness. We integrate runtime constraints via
a latency table (Cai et al., 2019) for our target inference
environment, where we record the time to run an attention
block, including all overheads, with 0, . . . , Nheads − 1 heads
pruned and similarly for the fully-connected block with
the intermediate dimension shrunk by a factor of 0.9i, for
i = 0, . . . , 42; in relative steps of 10% up until ≈ 99%
sparsity, following (Frantar & Alistarh, 2022). This allows
rapid runtime estimation for different per-layer sparsity
configurations.

Finding the optimal sparsity configuration. Ultimately,
our goal is to find a per-layer-sparsity configuration that
satisfies a certain speedup-constraint while maximizing ac-
curacy. A popular paradigm of doing this (He et al., 2018; Li
et al., 2022) is to produce a large number of pruned models
with different sparsity distributions across layers and then
select the one, satisfying a target constraint, with the highest
accuracy. To make this computationally feasible, it is crucial
that pruning is cheap, yet accurate. ZipLM treats each layer
independently, which makes it possible to precompute a
database of several pruned versions with different sparsities
for each layer. The entire database can be produced in a
single run, utilizing the algorithm’s one-at-a-time nature.
While our algorithm is compatible with various search meth-
ods for finding layer-wise profiles (He et al., 2018; Guo
et al., 2020), we adapt the recent SPDY approach (Frantar
& Alistarh, 2022).

Structured SPDY search. The SPDY approach is de-
signed for unstructured pruning and assigns a quadratic
prior to per-layer sensitivity of different sparsity levels. This
is not valid in our structured pruning scenario, since for
instance it would suggest that dropping a full layer is only
slightly more difficult than pruning it to 99% sparsity. Thus,
using standard SPDY would lead the algorithm to explore
a large number of sub-optimal configurations, significantly
wasting computational resources. To alleviate this problem,
for a structured sparsity s, we introduce a better prior ps as
the relative layer-wise squared error incurred by pruning,
defined as ps = ||ŴsX−WX||2/||WX||2, which sim-
ply has a value of 1 for a fully dropped layer. Furthermore,
the original SPDY approach uses shrinking neighborhood
search, which has high variance in both runtime and so-
lution quality for structured compression. Therefore, we
perform a fixed number of 1000 steps, randomly mutating
in expectation 10% of the layer-wise sensitivity coefficients.
Finally, we note that any candidate evaluated by this pro-

cedure actually achieves the target speedup, leading to sig-
nificantly decreased search time. We validate our approach
in Appendix H, where we demonstrate that our speedup
estimations are indeed very accurate in practice. Specifi-
cally, real-world on-device measurements deviate at most
by 5.28% from their expected values.

3. Experiments
Setup. Given a pre-trained model, a dataset, and a set of
desired speedups in a target inference environment, we itera-
tively fine-tune and prune the model in a structured way such
that in the end we obtain a set of accurate compressed mod-
els, one for each speedup target. We consider pruning of the
standard BERTbase and BERTlarge architectures, evaluating
on dev-sets of established benchmarks: SQuADv1.1 (Ra-
jpurkar et al., 2016), and a subset of GLUE (Wang et al.,
2018) tasks: SST-2 (Socher et al., 2013), QNLI (Wang et al.,
2018), MNLI (Williams et al., 2018), and QQP (Shankar,
2017), selected to match publicly-available checkpoints
from prior work. For a precise comparison to prior
work (Xia et al., 2022), our inference environment is a
single NVIDIA V100 16GB GPU, batch size of 128, and se-
quence lengths of 384 and 128 for SQuAD and GLUE tasks,
respectively. In addition to encoder-based BERT models,
we also consider pruning of the decoder-based GPT2 model
on the OpenWebTextCorpus (Gokaslan & Cohen, 2019), for
which we consider two inference environments: pruning
for throughput (batch-size=16, sequence-length=1024), and
pruning for latency (batch-size=1, a set of prompts with
varying lengths). For illustration, our pipeline is depicted in
Figure 4. In Appendix J and K, we report exact values for
all results, as well as hyper-parameters for reproducibility.

Baselines. In the gradual pruning setting, we explore the
performance of ZipLM pruning of BERT- and GPT2-family
models, across a wide range of inference speedup targets,
ranging from 2x to 15x, in unit increments. This allows
us to compare the effectiveness of our approach against a
diverse set of structured pruning and distillation-based tech-
niques, including state-of-the-art CoFi pruning, competitive
Block Movement Pruning, and distillation approaches in-
cluding TinyBERT, DistilBERT, DistilGPT2, MobileBERT,
MiniLM, and DynaBERT. Additionally, we include com-
parisons with other relevant methods. For fairness, we
follow (Xia et al., 2022) and report TinyBERT and Dyn-
aBERT results without data augmentations. In the post-
training/one-shot setting, which does not allow retraining,
we demonstrate that ZipLM outperforms the prior state-
of-the-art approach of (Kwon et al., 2022). We evaluate
inference speedups of all models in the same environment,
unless the models are not publicly available, in which case
we report speedups from their respective papers. We refer to
ZipLM compressed BERT models as ZipBERT, and to Zi-
pLM compressed GPT2 models as ZipGPT2. In Appendix B

ZipLM: Inference-Aware Structured Pruning of Language Models

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Speedup factor

82

84

86

88

F1
 sc

or
e

(%
)

BERTbase

99% BERTbase

SQuADv1.1

ZipBERTbase (ours)
CoFi

Block Movement Pruning
TinyBERT

DistilBERT
FLOP-RoBERTa

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Speedup factor

88

89

90

91

F1
 sc

or
e

(%
)

BERTlarge

99% BERTlarge

SQuADv1.1
ZipBERTlarge (ours) Block Movement Pruning MobileBERT

Figure 1: Structured compression of BERTbase (left) and BERTlarge (right) on the SQuADv1.1 task. Dashed horizontal lines
represent full and 99% accuracy recovery of the uncompressed model.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Speedup factor

86

87

88

89

90

91

92

A
cc

ur
ac

y
(%

)

BERTbase

99% BERTbase

QNLI

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Speedup factor

79
80
81
82
83
84
85

A
cc

ur
ac

y
(%

)

BERTbase

99% BERTbase

MNLI

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Speedup factor

89.5
90.0
90.5
91.0
91.5
92.0
92.5
93.0
93.5

A
cc

ur
ac

y
(%

)

BERTbase

99% BERTbase

SST-2

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Speedup factor

90.0
90.2
90.4
90.6
90.8
91.0
91.2

A
cc

ur
ac

y
(%

) BERTbase

99% BERTbase

QQP

ZipBERTbase (ours)
CoFi

Block Movement Pruning
DynaBERT

DistilBERT
TinyBERT

MiniLM
Low-Rank BERT

LayerDrop
BERT-PKD

Well-Read Students
Poor Man's BERT

BERT-of-Theseus
FLOP-RoBERTa

Figure 2: Structured compression of BERTbase on QNLI, MNLI, SST-2, and QQP tasks. Dashed horizontal lines represent
full and 99% accuracy recovery of the uncompressed model.

we provide a detailed overview of competing methods.

3.1. Gradual Structured Pruning

BERTbase results. In Figure 1 we compare structured
compression methods on the SQuADv1.1 task. ZipLM
outperforms both CoFi and TinyBERT, prior state-of-the-
art techniques, by 3 points in the F1 score at the same
speedup factor, while at the same F1 score it is able to
improve inference speedups by at least 60%. In Figure 2,
we extend this comparison to a subset of GLUE tasks and
provide an exhaustive overview of various structured com-
pression techniques. As can be observed, distillation-based
methods usually provide either one or a few structurally-
compressed models, due to the massive costs associated
with training from scratch for each new model. Relative to
the most competitive approaches, such as TinyBERT, CoFi,
and MiniLM, ZipLM provides consistent improvements in
terms of both, accuracy and speedup, while providing guar-
antees for each compressed model in terms of the expected
speedup in the target inference environment. Interestingly,
on tasks like QQP and SST-2, ZipLM is able to compress
the BERTbase model up to 6x and 10x speedups, respectively,
while maintaining the accuracy of the dense model. In Ap-
pendix G, we provide additional comparisons against CoFi

on test-set results from the official GLUE evaluation server.

BERTlarge results. To verify that our approach does not
pertain only to the BERTbase model, we apply ZipLM struc-
tured pruning to the 3x larger BERTlarge model on the
SQuADv1 task. In this setup, we compare against the only
two approaches that attempted to structurally compress this
larger model, Block Movement Pruning and distillation-
based MobileBERT. As can be seen in Figure 1, ZipLM is
able to compress BERTlarge up to 4x faster inference while
maintaining the F1 score of the uncompressed model. At
the same F1 score as the fastest Block Movement Prun-
ing model (3x), ZipLM doubles the inference speedup (6x).
A result worth emphasizing is that ZipLM is even able to
match the performance of the highly optimized Mobile-
BERT model by simply compressing the baseline BERT
architecture, without the many additional optimizations
and custom components used by MobileBERT. Specifi-
cally, some of the module- and operator-level optimizations
used by MobileBERT include: bottleneck structures and
carefully-balanced self-attention and feed-forward modules,
embedding layer factorization, a bespoke closed-source
teacher model, replacement of LayerNorm layers with
lower-latency NoNorm layers, and replacement of GELU
activation functions with ReLU activations.

ZipLM: Inference-Aware Structured Pruning of Language Models

99% recovery. The MLPerf Benchmark (Mattson et al.,
2020) targets recovery of >99% of the baseline accuracy.
At this industry-defined threshold, ZipLM models set new
state-of-the-art performance across all of the considered
datasets with the following BERTbase inference speedups:
5x on the SQuADv1 task, 6x on QNLI and MNLI, and,
surprisingly, 13x and 15x on SST-2 and QQP, respectively.
When compressing BERTlarge on the SQuADv1 task, ZipLM
produces a 6x faster model at 99% recovery.

GPT2 results. To validate that our approach does not
only apply to encoder-based models, we apply ZipLM struc-
tured pruning to the decoder-based GPT2 model. In addi-
tion to this, to further demonstrate the inference-awareness
property of our approach and its importance for real-world
applications, we consider two different regimes: pruning
for throughput and pruning for latency. An example appli-
cation for the former regime is a server-side deployment
where the model processes many queries at the same time,
while an application for the latter regime is a text-generation
scenario where the model is used in an online fashion to
auto-complete the user’s text.

For a fair comparison, we follow the DistilGPT2 setup (Sanh
et al., 2019) and prune the 124M parameters GPT2 variant
on the OpenWebTextCorpus dataset, followed by zero-shot
evaluations, without any fine-tuning, on the test-split of the
WikiText (Merity et al., 2016) dataset. Because of the enor-
mous vocabulary size, the maximum achievable speedup in
the throughput regime for this model is roughly 3.5x. Thus,
we run ZipLM pruning to 1.5x, 2x, 2.5x, and 3x speedup
targets. For the latency regime, we report the median time
to process sequences of various lengths when generating
text with Top-K sampling (Fan et al., 2018). In Table 1, we
present zero-shot evaluations of the uncompressed GPT2
model which serves as a baseline relative to the compet-
ing DistilGPT2 approach, and four variants of our ZipLM
pruned GPT2. In the pruning for throughput scenario, at
similar speedup and decoder size (1.6x-vs-1.5x and 42.5M-
vs-47.3M), ZipGPT2 achieves significantly lower perplexi-
ties relative to DistilGPT2. Further, at slightly better (lower)
perplexities, ZipGPT2 reduces the decoder size from 42.5M
to only 26.5M parameters (60% reduction) and improves
speedup from 1.6x to 2.1x (30% faster). In the pruning
for latency scenario, at a similar speedup of 1.9x-vs-2.0x,
ZipGPT2 reduces the decoder size by 3M params while
providing almost 2 points improvement in the zero-shot
perplexity.

Inference Awareness. A particularly interesting illustra-
tion of the importance of inference-awareness in the pruning
algorithm is given by our GPT2 models running directly
in the PyTorch-HuggingFace framework, which can be
used in two different modes: batch-prediction (throughput-

Table 1: Zero-Shot perplexity (PPL) evaluations of com-
pressed GPT2 models on the WikiText dataset in two differ-
ent regimes: pruning for throughput and pruning for latency.

Model

Pruning for throughput Pruning for latency

Speedup Decoder
size

Wiki
Text-103

PPL ↓
Speedup Decoder

size

Wiki
Text-103

PPL ↓
GPT2 1.0x 85.0M 28.5 1.0x 85.0M 28.5

DistilGPT2 1.6x 42.5M 43.0 1.9x 42.5M 43.0

ZipGPT2
(ours)

1.5x 47.3M 35.4 1.6x 48.7M 37.8
2.1x 26.5M 41.5 2.0x 39.2M 41.2
2.7x 14.0M 50.4 2.2x 26.6M 49.0
3.3x 5.7M 72.1 2.5x 20.7M 55.0

constrained) and text-generation (latency-constrained). For
the former, inputs are typically large, and shrinking weight
matrices is an effective way to achieve speedups. However,
for the latter, the inputs are much smaller, and the size of
weight matrices is no longer the primary bottleneck. In this
scenario, the only way to achieve substantial speedups is to
completely drop some modules, which prior methods cannot
account for as they solely optimize for overall model spar-
sity. However, with ZipLM, runtime measurements from
the target inference environment guide pruning decisions,
allowing it to learn the best way to compress the model for
an optimal speedup-accuracy trade-off. Our GPT2 compres-
sion results clearly illustrate and support these statements.
Even though pruned for the same speedup target, the final
architectures of ZipGPT2 models are drastically different.
For the throughput-constrained scenario, the model’s depth
was preserved but the matrix dimensions were significantly
reduced (roughly by a factor of 10) making the correspond-
ing multiplications with large input tensors much faster. In
contrast, for the latency-constrained scenario, the model’s
width (shapes of weight matrices) was mostly preserved
but the depth was shrunk almost by a factor of 4, making
the forward pass with small inputs faster by reducing the
effective number of modules.

4. Discussion and Extensions
CPU as an LLM-inference environment. In Section 3
we have focused on various GPU-based inference environ-
ments as it enabled us to conduct fair comparisons against
prior structural compression techniques. However, CPUs
present another compelling inference environment focused
on edge deployment of LLMs. Therefore, we target the re-
cently proposed compound compression pipeline of (Kurtic
et al., 2022), which involves three steps: structured pruning,
unstructured pruning, and quantization. We replace their
structured pruning approach based on layer dropping with
ZipLM. As a result, at full accuracy recovery, we are able
to improve speedup from 3x to 13x, and at the largest com-

ZipLM: Inference-Aware Structured Pruning of Language Models

1 10 20 30 40 50 60 70 80
Speedup factor relative to BERTlarge

75

80

85

90

F1
 sc

or
e

(%
)

mini

small

medium

base

large

SQuADv1.1

BERT distillation
ZipBERTbase (ours)
ZipBERTlarge (ours)

Figure 3: Scaling laws of structured pruning vs. distillation
on the standard BERT architecture and the SQuADv1.1 task.

pression ratio from 30x to 50x. Due to space constraints,
we provide full results in Appendix E.

Computational efficiency. Relative to distillation-based
methods, structured pruning via CoFi and ZipLM is an
order of magnitude more efficient in terms of GPU hours
due to the massive costs associated with pretraining from
scratch for each compressed model (Xia et al., 2022; Sun
et al., 2020; Jiao et al., 2020). For efficiency comparisons
to CoFi, we consider the task of producing a full family of
compressed BERTbase models with speedup targets ranging
from 2x to 15x. In this setup, ZipLM requires only 115
epochs in total, whereas CoFi would require 560 epochs.
Therefore, ZipLM is 4.87 times more efficient than CoFi.
In terms of end-to-end runtime, ZipLM produces the entire
family of compressed BERTbase models on a single RTX
A6000 GPU in ∼35 hours on larger datasets (e.g. MNLI)
and only ∼10 hours on smaller ones (e.g. SST2). Finally, it
is worth emphasizing that we have not taken into account the
cost of hyper-parameter tuning in the above comparisons,
but that this is very favorable to ZipLM: ZipLM uses a single
set of hyper-parameters to produce a full range of models,
while CoFi requires hyper-parameter tuning for each model
independently, and proposes searching over a grid of 27
different hyper-parameter configurations for best results.

Scaling laws for structured pruning. To further under-
stand the accuracy-speedup trade-offs, we run ZipLM on
larger speedup ratios, up to 55x for BERTlarge and 75x for
BERTbase . To the best of our knowledge, this is the first
result in literature demonstrating that such extreme com-
pression ratios are achievable with structured pruning with-
out model collapse. In Figure 3, we compare these results
against distillation-based downscaling of the BERT archi-
tecture (Turc et al., 2019). The results clearly demonstrate
that each of the pruned models, based either on BERTlarge or
BERTbase , significantly outperforms comparable pre-trained
variants. An emergent behavior that can be observed is

that structurally pruned models tend to follow a linear
scaling law, meaning that the accuracy decreases linearly
with the increase of the speedup ratio, at a slope given by
the original model. Fitting linearly via least squares pro-
duces the following expressions for the accuracy-speedup re-
lationship: F1large ≈ 92.1− 0.3× speeduplarge, and
F1base ≈ 90.3− 0.6× speedupbase. Thus, the rate of
decrease in accuracy for the BERTbase model is twice as
large as that of the BERTlarge model. This difference can
be attributed to the presence of more redundant language
representations in the larger model, making it more resilient
to pruning. In Appendix I we provide additional analysis of
the structure of pruned models.

References
Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. Once-

for-all: Train one network and specialize it for efficient
deployment. arXiv preprint arXiv:1908.09791, 2019.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pp. 4171–
4186, Minneapolis, Minnesota, June 2019. Association
for Computational Linguistics.

Fan, A., Lewis, M., and Dauphin, Y. Hierarchical neural
story generation. arXiv preprint arXiv:1805.04833, 2018.

Fan, A., Grave, E., and Joulin, A. Reducing transformer
depth on demand with structured dropout. In Interna-
tional Conference on Learning Representations, 2019.

Frantar, E. and Alistarh, D. SPDY: Accurate pruning with
speedup guarantees. arXiv preprint arXiv:2201.13096,
2022.

Frantar, E., Kurtic, E., and Alistarh, D. M-fac: Efficient
matrix-free approximations of second-order information.
Advances in Neural Information Processing Systems, 34,
2021.

Frantar, E., Singh, S. P., and Alistarh, D. Optimal
Brain Compression: A framework for accurate post-
training quantization and pruning. arXiv preprint
arXiv:2208.11580, 2022. Accepted to NeurIPS 2022,
to appear.

Gokaslan, A. and Cohen, V. Openwebtext corpus, 2019.

Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., and
Sun, J. Single path one-shot neural architecture search
with uniform sampling. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28,

ZipLM: Inference-Aware Structured Pruning of Language Models

2020, Proceedings, Part XVI 16, pp. 544–560. Springer,
2020.

Hassibi, B. and Stork, D. Second order derivatives for
network pruning: Optimal brain surgeon. Advances in
neural information processing systems, 5, 1992.

He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., and Han, S. Amc:
Automl for model compression and acceleration on mo-
bile devices. In Proceedings of the European conference
on computer vision (ECCV), pp. 784–800, 2018.

He, Y., Liu, P., Wang, Z., Hu, Z., and Yang, Y. Filter prun-
ing via geometric median for deep convolutional neural
networks acceleration. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 4340–4349, 2019.

Hinton, G., Vinyals, O., Dean, J., et al. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015.

Hou, L., Huang, Z., Shang, L., Jiang, X., Chen, X., and
Liu, Q. Dynabert: Dynamic bert with adaptive width
and depth. Advances in Neural Information Processing
Systems, 33:9782–9793, 2020.

Hubara, I., Chmiel, B., Island, M., Banner, R., Naor, J., and
Soudry, D. Accelerated sparse neural training: A provable
and efficient method to find n: m transposable masks.
Advances in Neural Information Processing Systems, 34:
21099–21111, 2021.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. Quantization
and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 2704–2713, 2018.

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L.,
Wang, F., and Liu, Q. Tinybert: Distilling bert for natural
language understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pp. 4163–
4174, 2020.

Komatsuzaki, A. One epoch is all you need. arXiv preprint
arXiv:1906.06669, 2019.

Kurtic, E. and Alistarh, D. Gmp*: Well-tuned global magni-
tude pruning can outperform most bert-pruning methods.
arXiv preprint arXiv:2210.06384, 2022.

Kurtic, E., Campos, D., Nguyen, T., Frantar, E., Kurtz, M.,
Fineran, B., Goin, M., and Alistarh, D. The optimal
bert surgeon: Scalable and accurate second-order pruning
for large language models. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 4163––4181, 2022.

Kurtz, M., Kopinsky, J., Gelashvili, R., Matveev, A., Carr,
J., Goin, M., Leiserson, W., Moore, S., Nell, B., Shavit,
N., and Alistarh, D. Inducing and exploiting activation
sparsity for fast inference on deep neural networks. In
III, H. D. and Singh, A. (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp.
5533–5543, Virtual, 13–18 Jul 2020. PMLR.

Kwon, W., Kim, S., Mahoney, M. W., Hassoun, J., Keutzer,
K., and Gholami, A. A fast post-training pruning frame-
work for transformers. arXiv preprint arXiv:2204.09656,
2022.

Lagunas, F., Charlaix, E., Sanh, V., and Rush, A. Block
pruning for faster transformers. In Proceedings of the
2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 10619–10629, Online and Punta
Cana, Dominican Republic, November 2021. Association
for Computational Linguistics.

Lhoest, Q., Villanova del Moral, A., Jernite, Y., Thakur, A.,
von Platen, P., Patil, S., Chaumond, J., Drame, M., Plu, J.,
Tunstall, L., Davison, J., Šaško, M., Chhablani, G., Malik,
B., Brandeis, S., Le Scao, T., Sanh, V., Xu, C., Patry, N.,
McMillan-Major, A., Schmid, P., Gugger, S., Delangue,
C., Matussière, T., Debut, L., Bekman, S., Cistac, P.,
Goehringer, T., Mustar, V., Lagunas, F., Rush, A., and
Wolf, T. Datasets: A community library for natural lan-
guage processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing:
System Demonstrations, pp. 175–184. Association for
Computational Linguistics, November 2021.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf,
H. P. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016.

Li, Y., Adamczewski, K., Li, W., Gu, S., Timofte, R.,
and Van Gool, L. Revisiting random channel pruning
for neural network compression. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 191–201, 2022.

Liebenwein, L., Baykal, C., Lang, H., Feldman, D., and Rus,
D. Provable filter pruning for efficient neural networks.
arXiv preprint arXiv:1911.07412, 2019.

Liu, L., Zhang, S., Kuang, Z., Zhou, A., Xue, J.-H., Wang,
X., Chen, Y., Yang, W., Liao, Q., and Zhang, W. Group
fisher pruning for practical network compression. In
International Conference on Machine Learning, pp. 7021–
7032. PMLR, 2021.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C.
Learning efficient convolutional networks through net-
work slimming. In Proceedings of the IEEE international
conference on computer vision, pp. 2736–2744, 2017.

ZipLM: Inference-Aware Structured Pruning of Language Models

Mattson, P., Reddi, V. J., Cheng, C., Coleman, C., Di-
amos, G., Kanter, D., Micikevicius, P., Patterson, D.,
Schmuelling, G., Tang, H., et al. Mlperf: An industry
standard benchmark suite for machine learning perfor-
mance. IEEE Micro, 40(2):8–16, 2020.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models, 2016.

Nagel, M., Amjad, R. A., Van Baalen, M., Louizos, C.,
and Blankevoort, T. Up or down? adaptive rounding for
post-training quantization. In International Conference
on Machine Learning, pp. 7197–7206. PMLR, 2020.

NeuralMagic. Deep sparse: A fast cpu inference engine,
2021.

Noach, M. B. and Goldberg, Y. Compressing pre-trained
language models by matrix decomposition. In Proceed-
ings of the 1st Conference of the Asia-Pacific Chapter of
the Association for Computational Linguistics and the
10th International Joint Conference on Natural Language
Processing, pp. 884–889, 2020.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad:
100,000+ questions for machine comprehension of text.
In EMNLP, 2016.

Sajjad, H., Dalvi, F., Durrani, N., and Nakov, P. Poor
man’s bert: Smaller and faster transformer models. arXiv
preprint arXiv:2004.03844, 2020.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. arXiv preprint arXiv:1910.01108, 2019.

Sanh, V., Wolf, T., and Rush, A. Movement pruning: Adap-
tive sparsity by fine-tuning. Advances in Neural Informa-
tion Processing Systems, 33:20378–20389, 2020.

Shankar, S. Identifying quora question pairs having the
same intent. 2017.

Singh, S. P. and Alistarh, D. Woodfisher: Efficient second-
order approximation for neural network compression. Ad-
vances in Neural Information Processing Systems, 33,
2020.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A. Y., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods
in natural language processing, pp. 1631–1642, 2013.

Sui, Y., Yin, M., Xie, Y., Phan, H., Aliari Zonouz, S., and
Yuan, B. Chip: Channel independence-based pruning for
compact neural networks. Advances in Neural Informa-
tion Processing Systems, 34:24604–24616, 2021.

Sun, S., Cheng, Y., Gan, Z., and Liu, J. Patient knowledge
distillation for bert model compression. In Proceedings
of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 4323–4332, 2019.

Sun, Z., Yu, H., Song, X., Liu, R., Yang, Y., and Zhou, D.
Mobilebert: a compact task-agnostic bert for resource-
limited devices. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics, pp.
2158–2170, 2020.

Turc, I., Chang, M.-W., Lee, K., and Toutanova, K. Well-
read students learn better: The impact of student initial-
ization on knowledge distillation. ArXiv, abs/1908.08962,
2019.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and analy-
sis platform for natural language understanding. ArXiv,
abs/1804.07461, 2018.

Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., and
Zhou, M. Minilm: Deep self-attention distillation for
task-agnostic compression of pre-trained transformers.
Advances in Neural Information Processing Systems, 33:
5776–5788, 2020a.

Wang, Z., Wohlwend, J., and Lei, T. Structured pruning
of large language models. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 6151–6162, 2020b.

Williams, A., Nangia, N., and Bowman, S. A broad-
coverage challenge corpus for sentence understanding
through inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pp. 1112–1122. Asso-
ciation for Computational Linguistics, 2018.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. M. Transformers: State-of-
the-art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–
45, Online, October 2020. Association for Computational
Linguistics.

Xia, M., Zhong, Z., and Chen, D. Structured pruning learns
compact and accurate models. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1513–1528,
2022.

ZipLM: Inference-Aware Structured Pruning of Language Models

Xu, C., Zhou, W., Ge, T., Wei, F., and Zhou, M. Bert-of-
theseus: Compressing bert by progressive module replac-
ing. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp.
7859–7869, 2020.

ZipLM: Inference-Aware Structured Pruning of Language Models

A. Visual illustration of the ZipLM pipeline

#heads

Concat

Linear

Scaled Dot-Product Attention

Linear Linear Linear

QKV

Concat

Linear

Scaled Dot-Product Attention

Linear Linear Linear

QKV

#heads - N

Scaled Dot-Product Attention

Linear Linear Linear

1

Concat

Linear

QKV

On-Device Multi-Head Attention timing

h

hinter

x

hinter - N
1

x x

On-Device Feed-Forward Network timing

model: BERT-large
task: SQuADv1.1
batch-size: 128
seq-length: 384
device: NVIDIA V100 16GB GPU
speedups: {2x, 3x, ..., 49x, 50x}

Fine-tune
BERT-large

ZipLM prune
to 2x speedup

Steps

Le
ar

ni
ng

 r
at

e

ZipLM prune
to 3x speedup

ZipLM prune
to 50x speedup

Fine-tune
BERT-large2x

Fine-tune
BERT-large3x

Fine-tune
BERT-large50x

ZipLM pruning and fine-tuning

Inference environment specifications

Figure 4: Illustration of the ZipLM pipeline: 1) inference specifications, 2) runtime benchmarking of candidates for pruning,
3) gradual structured pruning until all speedup targets are met.

B. Related Work
Distillation-based compression methods focus on training a smaller student model to mimic the representations of
a larger teacher model. The “distance” between the representations of student and teacher is often architecture-specific.
MiniLM (Wang et al., 2020a) uses a deep self-attention mechanism to replicate the attention mechanism of the teacher,
and TinyBERT (Jiao et al., 2020) employs a bespoke distillation mechanism, for a manually-picked subset of layers. Both
methods offer a very strong baseline, generally outperforming other approaches, except for MobileBERT. MobileBERT (Sun
et al., 2020) involves first training a custom large BERT teacher model from scratch, and then deviates from the standard
architecture (Devlin et al., 2019) by introducing heavily-optimized components with reduced latency, whose combinations
are decided in neural architecture search (NAS)-like fashion. It achieves strong results in terms of accuracy-per-parameter,
at the cost of significant computational costs in the search process. DistilBERT and DistilGPT2 (Sanh et al., 2019) involve
training a fixed student obtained by removing every other layer from the teacher, while BERT-PKD (Sun et al., 2019) employs
incremental knowledge extraction through the distillation of intermediate layers. Well-Read-Students (Turc et al., 2019)
reduces the size of the standard BERT architecture through principled downscaling of internal dimensions. DynaBERT (Hou
et al., 2020), on the other hand, distills knowledge to a student model that is both depth- and width-adaptive.

Structural pruning methods usually start from a large pre-trained model, and iteratively reduce the dimensions of
weight matrices. Block Movement Pruning (Lagunas et al., 2021) identifies and removes redundant rectangular blocks
of weights while following the movement pruning intuition (Sanh et al., 2020) that weights moving towards zero during
fine-tuning should be removed. FLOP (Wang et al., 2020b) and Low-Rank (Noach & Goldberg, 2020) use matrix
decomposition techniques to progressively remove rank-1 components from factorized weight matrices during training.
BERT-of-Theseus (Xu et al., 2020) employs a similar approach, but replaces entire submodules with smaller counterparts.
Methods like LayerDrop (Fan et al., 2019) and Poor Man’s BERT (Sajjad et al., 2020) address structured compression
through various layer-dropping techniques. LayerDrop uses structured layer-dropout regularization to train a model resilient
to sub-network selection during inference, while Poor Man’s BERT explores a wide range of layer-dropping strategies. The
recent CoFi method (Xia et al., 2022) employs masks of different granularities to jointly prune coarse and fine-grained
submodules during fine-tuning, combined with an optional customized distillation technique. CoFi is the state-of-the-art
structural pruning method; relative to distillation methods, CoFi outperforms MiniLM and TinyBERT, but not MobileBERT,
in terms of accuracy-vs-speedup.

ZipLM: Inference-Aware Structured Pruning of Language Models

C. Layer-wise Token Distillation
For structured pruning, it is common to apply layer-wise distillation objectives to transfer intermediate representations.
However, structured pruning creates compatibility issues relative to the fixed teacher architecture, leading most methods to
develop customized distillation strategies. A popular approach, introduced in (Jiao et al., 2020) and improved by (Xia et al.,
2022), solves the problem via static (Jiao et al., 2020) or dynamic (Xia et al., 2022) mapping of a subset of teacher layers
to a subset of student layers. Their main limitation is manual layer selection, where making the “optimal” choice would
require evaluating all possible combinations, which can be very expensive. Another limitation is shape-matching between
intermediate layers, which is solved by introducing a learnable linear transformation matrix attached to student outputs.

Our approach. We address these challenges differently, by leveraging the fact that ZipLM preserves the hidden dimension
size, and propose to use distillation of intermediate token representations across the entire model. The resulting minimization
objective consists of three components:

L(θs, θt|x) = λ1Ltask(θ
s|x) + λ2Llogit(θ

s, θt|x) + λ3Ltoken(θ
s, θt|x), (5)

where θs and θt represent student and teacher models respectively, x are the inputs, Ltask is the loss associated with the task
(e.g. cross-entropy for text-classification), Llogit is the KL-divergence between output logits as described in (Hinton et al.,
2015), and Ltoken is our token-level distillation loss. Hidden tensors passed between consecutive transformer layers are of
constant shape H ∈ RB×seq×H , where B stands for the batch-size, seq for the sequence length, and H for the hidden size
defined by the model architecture. This tensor can be interpreted as a collection of B × seq vectors h ∈ RH , each carrying
intermediate model representations of input tokens x. We define the loss Ltoken as an Euclidean distance ∆ between vectors
h corresponding to each non-padded token in the input sequence, averaged over all unpruned layers. Formally, for a layer k,
it is defined as

Lk
token =

1∑B×seq
j=1 1[j /∈ P]

B×seq∑
j=1

1[j /∈ P] ·∆(hθs ,hθt), (6)

where P stands for the set of padding tokens. This formulation imposes a strong regularization on large deviations from the
original values, encouraging the student model to generate vector representations for each token that are similar to those
produced by the teacher model. In Appendix F, we present ablation studies and comparisons for ZipLM and CoFi, with and
without their respective distillation objectives.

D. Post-training/One-shot Structured Pruning
We now study the performance of ZipLM when applied purely in one-shot, without any retraining. In this setting, we compare
against the state-of-the-art method of Kwon et al. (Kwon et al., 2022) which combines several heuristics: Fisher-based mask
search, mask rearrangement, and mask tuning. Instead of heuristics, our pruning framework utilizes direct end-to-end loss
information to find the optimal sparsity configuration. During the warm-start phase, (Kwon et al., 2022) utilizes a diagonal
Fisher matrix to estimate the significance of heads and filters, which discards correlations caused by off-diagonal elements.
Although the approach attempts to address this limitation by approximating correlations within a single layer, it will not
capture global dependencies. Furthermore, the weights are adapted for layer-wise reconstruction at the very end of the
compression step, whereas our method does it continuously during the pruning (please see Section 3 for the significance of
doing this). For a fair comparison, we apply the authors’ own implementation in latency-constrained mode on the exact
same model weights. Table 2 presents results on several datasets and speedups, showing that ZipLM is even more accurate
than the approach designed and optimized specifically for the post-training/one-shot pruning.

E. Compound Compression for Edge Deployment
Deploying large language models in edge environments requires running inference on low-power devices such as CPUs.
Therefore, we follow the compound compression approach from (Kurtic et al., 2022) which bundles together structured,
unstructured pruning, and quantization for efficient inference on CPUs. We start with ZipLM structurally pruned models,
and apply on top the state-of-the-art oBERT unstructured pruning method (Kurtic et al., 2022) to 80% sparsity. After
structured and unstructured pruning, we apply quantization-aware-training (QAT) (Jacob et al., 2018) to quantize FP32
weights into INT8 representations. We benchmark these compound compressed models by running inference in the

ZipLM: Inference-Aware Structured Pruning of Language Models

Table 2: One-shot structured pruning of BERTbase .

Speedup Kwon et al.
(Kwon et al., 2022)

ZipBERT
base

SQuAD, F1
1.5x
2.0x

86.2
76.5

87.1
84.1

QQP, acc.
1.5x
2.0x

89.5
83.9

89.7
84.8

MNLI, acc.
1.5x
2.0x

82.8
78.1

83.0
78.2

DeepSparse (NeuralMagic, 2021) engine, on a single-core of Intel Cascade Lake CPU. In this setting, we compare our results
against the compound compression pipeline of (Kurtic et al., 2022) which applies layer dropping as a form of structured
pruning. As can be seen from Figure 5, when we substitute layer dropping with a principled structured pruning via ZipLM,
the resulting compound compressed models achieve very competitive latency-vs-accuracy performance in the edge-inference
regime. At full accuracy recovery, ZipLM improves the speedup from 3x to 13x, while at the largest compression ratio
ZipLM improves the speedup from 30x to 50x.

9293949596979899100
F1 recall (%)

1

10

20

30

40

50

C
PU

 in
fe

re
nc

e
sp

ee
du

p

310 ms

60 ms

30 ms

20 ms

15 ms
batch-size=1, seq-len=384, #cores=1

LayerDrop+oBERT+QAT
ZipLM+oBERT+QAT

Figure 5: Improvements in CPU-inference speedups for compound compressed BERTbase models on the SQuADv1.1 task
when ZipLM is used for structured pruning. End-to-end latency indicated by the dashed line.

F. Ablation Studies
In Table 3, we present ablation results for ZipLM and CoFi, with and without their respective layer-wise distillation
techniques. ZipLM outperforms CoFi in all tasks when both methods use distillation, and in three out of four when
distillation is not used. For example, ZipLM outperforms CoFi with a significant 3 point increase in F1 score on the SQuAD
task in both setups. Furthermore, when comparing ZipLM results with and without layer-wise distillation, it can be observed

ZipLM: Inference-Aware Structured Pruning of Language Models

that benefits are pronounced for low data tasks, where accuracy improvements reach up to 2 points.

Table 3: Comparison of ZipLM and CoFi dev-set results, with and without layer-wise distillation.

SST-2
acc.

QNLI
acc.

MNLI
m-acc.

SQuAD
F1

CoFi 90.4 86.1 80.6 82.6
ZipBERTbase 91.7 88.6 81.7 85.7

CoFi w/o Llayer 91.1 85.1 79.7 82.5
ZipBERTbase w/o Ltoken 89.2 86.5 81.2 85.7

G. Additional Validation
Evaluating and comparing compressed models on the development set (dev-set) is standard practice, as it enables comparisons
with off-the-shelf results from the literature. However, an implicit assumption behind such comparisons is that all methods
tune their hyper-parameters only on a subset of the dev-set before evaluating and reporting results on all samples, which
is not always the case. Moreover, specifically-tuned hyper-parameters can lead to large performance differences, especially
when compressing LLMs (Kurtic & Alistarh, 2022). To ensure that there is no such “overfitting” on the dev-set, in Table 4
we compare ZipLM against the prior state-of-the-art CoFi approach on unseen test-set, obtained by submitting predictions
to the official GLUE evaluation server. The results show consistent improvements over CoFi, on both dev- and test-sets.

H. Speedup Evaluations
As shown in Figure 4, ZipLM is based on measuring runtimes of higher-level modules, such as attention heads and fully
connected matrices, rather than low-level operators. This makes our approach independent of underlying optimizations
in different inference engines and frameworks, which usually perform further optimizations such as operator-fusion. Our
runtime lookup table contains information about the runtime of a Transformer layer with different numbers of attention
heads, and various dimensions of the fully connected matrices. This implies that we measure runtimes of a layer with 12
heads, 11 heads, 10 heads, and so on, as well as the runtimes of fully connected matrices with hidden sizes ranging from
3072 to 0. We utilize this information to guide pruning decisions.

To fully validate the ability of ZipLM to compress the model while satisfying desired speedup constraints via the described
approach, we provide the timing results in Table 5, comparing the desired (target) speedup and the achieved (measured)
speedup for different models.

As can be seen from the Table 5, the deviation between the desired (target) and the achieved (measured) speedup is at most
5.28%. This confirms that our approach indeed provides reliable runtime information to guide the pruning decisions.

I. Structure of Pruned Models
Through a comprehensive examination of ZipLM pruned BERT models across all datasets considered in Section 3, we aim
to identify trends in the pruning of key components of the Transformer layer, namely attention heads and intermediate size,
needed to achieve a specific speedup target. As illustrated in Figure 6, we observe that the intermediate size is pruned at a
higher rate relative to attention heads, which aligns with the fact that the intermediate size dictates the dimensions of the two

Table 4: Dev- and test-set comparison of ZipBERTbase and CoFi models with comparable speedups.

dev-set test-set
CoFi ZipBERTbase CoFi ZipBERTbase

QNLI, acc. 86.1 88.6 85.8 88.4
SST-2, acc. 90.4 91.7 88.2 91.8
MNLI, m-acc. 80.6 81.7 80.7 81.9
MNLI, mm-acc. 80.7 82.0 79.9 80.6
SQuAD, F1 82.6 85.7 N/A N/A

ZipLM: Inference-Aware Structured Pruning of Language Models

Table 5: Comparison of target (desired) inference speedups with achieved (on-device measured) speedups obtained with our
ZipLM pruning approach.

BERTbase on SQuADv1.1 BERTlarge on SQuADv1.1
Target speedup Achieved speedup Deviation Target speedup Achieved speedup Deviation

2 1.98 -1.00% 2 2.01 +0.50%
4 4.05 +1.25% 4 4.05 +1.25%
6 6.16 +2.67% 6 6.09 +1.50%
8 8.25 +3.12% 8 8.27 +3.37%

10 10.36 +3.60% 10 10.33 +3.30%
12 12.31 +2.58% 12 12.46 +3.83%
14 14.33 +2.35% 14 14.74 +5.28%

large linear layers in the feed-forward part of the Transformer block. For instance, to attain a 2x speedup, roughly 60% of
the intermediate size and 40% of the attention heads need to be removed. Additionally, in Figure 7, we visualize the entire
encoder size needed to reach a specific speedup target. Interestingly, we find that 15x faster models retain on average only
2% of intermediate size and 6% of attention heads which amounts to only 2.9M parameters overall, while at the same time
recovering more than 95% of the uncompressed model’s accuracy (see Figure 2).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Speedup factor

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f p
ru

ne
d

(%
)

BERTbase Attention heads
BERTlarge Attention heads

BERTbase Intermediate size
BERTlarge Intermediate size

Figure 6: Percentage of pruned attention heads and intermediate size to reach a specific speedup target with ZipLM.

Additionally, in Figures 8, 9, 10, 11 we visualize the number of remaining heads and intermediate size across all Transformer
layers and various speedup targets on a subset of GLUE datasets.

J. Experiments - Additional Results
In Table 6 we report accuracy and model size of ZipLM pruned models visualized in Section 3, in Figures 1 and 2.

K. Hyper-parameters for Reproducibility
To facilitate reproducibility, we conduct experiments in the open-source Transformers library (Wolf et al., 2020), and use
publicly available datasets (Lhoest et al., 2021). We plan to open-source our entire framework which supports one-shot and
gradual structured pruning via SparseML (Kurtz et al., 2020), making it very easy to experiment with other models and
datasets. In addition to our code, we plan to open-source all of our compressed models via the popular HuggingFace Hub.
In Table 7 we report hyper-parameters used to produce our ZipLM pruned models in Section 3. Because of the excessive

ZipLM: Inference-Aware Structured Pruning of Language Models

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Speedup factor

0

20

40

60

80

En
co

de
r-s

iz
e

(M
)

85.1

38.1

23.7
17.0 13.1 10.3 8.5 7.2 6.1 5.2 4.5 4.0 3.5 3.2 2.9

Figure 7: Encoder size vs. speedup factor of ZipLM pruned BERTbase models, averaged over all considered datasets in
Section 3.

0 1 2 3 4 5 6 7 8 9 10 11
Transformer layer index

0

2

4

6

8

10

#h
ea

ds

3x 6x 9x 12x 15x

0 1 2 3 4 5 6 7 8 9 10 11
Transformer layer index

0

200

400

600

800

In
te

rm
ed

ia
te

 si
ze

3x 6x 9x 12x 15x

Figure 8: Remaining number of attention heads and intermediate size across all layers of the ZipLM compressed
BERTbase model at various speedups and MNLI dataset.

0 1 2 3 4 5 6 7 8 9 10 11
Transformer layer index

0

2

4

6

8

10

12

#h
ea

ds

3x 6x 9x 12x 15x

0 1 2 3 4 5 6 7 8 9 10 11
Transformer layer index

0

200

400

600

800

In
te

rm
ed

ia
te

 si
ze

3x 6x 9x 12x 15x

Figure 9: Remaining number of attention heads and intermediate size across all layers of the ZipLM compressed
BERTbase model at various speedups and QNLI dataset.

memory overhead, we don’t make use of any kind of knowledge distillation when pruning the GPT2 model. Following
insights from DistilGTP2, we hypothesize that this can further improve our results. We follow (Komatsuzaki, 2019) and
disable dropout regularization while pre-training ZipGPT2 models at OpenWebTextCorpus dataset.

ZipLM: Inference-Aware Structured Pruning of Language Models

Table 6: Accuracy and model size for ZipLM pruned models in Section 3.

BERTbase BERTlarge

QNLI MNLI SST2 QQP SQuADv1 SQuADv1

Speedup Acc. Encoder
size (M) Acc. Encoder

size (M) Acc. Encoder
size (M) Acc. Encoder

size (M) F1 Encoder
size (M) F1 Encoder

size (M)

2x 91.4 38.0 84.8 38.5 93.4 38.7 91.3 37.8 89.1 37.3 91.6 141.1
3x 91.1 23.8 84.8 23.5 93.4 24.1 91.3 23.8 88.6 23.4 91.4 88.3
4x 90.9 16.9 84.0 17.1 93.0 17.2 91.3 16.8 88.0 16.8 91.1 63.1
5x 90.8 12.5 84.0 13.5 93.0 13.5 91.1 13.0 87.5 13.0 90.8 48.5
6x 90.4 9.5 83.5 10.5 93.0 11.0 91.1 10.2 86.7 10.4 90.2 39.1
7x 89.8 8.0 83.2 8.8 93.0 9.0 90.9 8.1 86.1 8.7 89.9 32.7
8x 89.2 6.4 83.1 7.5 93.0 7.6 90.9 6.8 85.7 7.5 89.7 27.5
9x 89.1 5.7 82.8 6.3 93.0 6.7 90.8 5.8 85.3 6.2 89.3 23.8

10x 88.6 4.9 82.7 5.4 93.0 5.7 90.8 4.9 84.2 5.3 89.1 20.9
11x 88.6 4.0 82.5 4.7 92.7 4.9 90.7 4.3 83.8 4.7 88.8 18.4
12x 87.8 3.6 81.7 4.1 91.7 4.2 90.6 4.1 83.2 4.0 88.4 16.4
13x 87.6 3.2 81.3 3.5 91.7 3.8 90.6 3.7 82.5 3.4 87.9 14.9
14x 87.4 2.8 81.2 3.3 91.7 3.6 90.3 3.3 81.7 3.2 87.7 13.7
15x 87.2 2.6 80.8 2.9 90.7 3.2 90.3 2.9 81.4 2.9 87.6 12.5

Table 7: Hyper-parameters used for gradual ZipLM runs in Section 3.

BERTbase BERTlarge GPT2

batch-size 16 SQuADv1
32 GLUE 128

max-seq-length 384 SQuADv1
128 GLUE 1024

finetune before pruning 3 epochs 50k steps

finetune in-between pruning steps 8 epochs 10 epochs 2 epochs

LR schedule in-between pruning steps linear decay linear decay

initial LR 8e-5 5e-5 1e-3

#calibration samples 2048 512

speedup-targets {2, 3, 4, 5, ..., 15}x {1.5, 2, 2.5, 3}x
knowledge distillation λ1 0 1.0

knowledge distillation λ2
1.0 SQuADv1

0.5 GLUE 0

knowledge distillation λ3
0.0 SQuADv1

0.5 GLUE 0

weight-decay 0.03 0.05 0

ZipLM: Inference-Aware Structured Pruning of Language Models

0 1 2 3 4 5 6 7 8 9 10 11
Transformer layer index

0

2

4

6

8

10

12

#h
ea

ds

3x 6x 9x 12x 15x

0 1 2 3 4 5 6 7 8 9 10 11
Transformer layer index

0

250

500

750

1000

1250

1500

In
te

rm
ed

ia
te

 si
ze

3x 6x 9x 12x 15x

Figure 10: Remaining number of attention heads and intermediate size across all layers of the ZipLM compressed
BERTbase model at various speedups and QQP dataset.

0 1 2 3 4 5 6 7 8 9 10 11
Transformer layer index

0

2

4

6

8

10

12

#h
ea

ds

3x 6x 9x 12x 15x

0 1 2 3 4 5 6 7 8 9 10 11
Transformer layer index

0

250

500

750

1000

1250

1500

In
te

rm
ed

ia
te

 si
ze

3x 6x 9x 12x 15x

Figure 11: Remaining number of attention heads and intermediate size across all layers of the ZipLM compressed
BERTbase model at various speedups and SST-2 dataset.

L. Broader Impact and Limitations
Our results contribute to the line of work on efficient language models. Thus, it should help reduce the energy and monetary
cost of inference over such models, and allow them to be used without access to powerful hardware. While this is a mainly
positive outcome, it also reduces the cost of employing these models for detrimental purposes, such as spam generation.
Thus, this significant cost reduction for inference should also be seen as further motivation for methods to ensure safe usage
of these models, such as watermarking or alignment.

As any academic study, our work is not without its limitations. All of our benchmarks are focused on English-language
datasets and therefore our results do not provide insights into compression effects for low-data languages. Unfortunately,
this limitation is inherent to all of the existing works on compression due to the lack of standardized benchmarks. Given that
our structured pruning approach relies on a small sample of calibration data to perform pruning decisions, we hypothesize
that our approach should be able to provide satisfying results in the low-data setup as well. At the moment we do not have
data to support these claims, but we see it as an opportunity for future work.

