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ABSTRACT

Spiking neural networks (SNNs) have demonstrated the capability to achieve
comparable performance to deep neural networks (DNNs) in both visual and
linguistic domains while offering the advantages of improved energy efficiency
and adherence to biological plausibility. However, the extension of such single-
modality SNNs into the realm of multimodal scenarios remains an unexplored
territory. Drawing inspiration from the concept of contrastive language-image pre-
training (CLIP), we introduce a novel framework, named SpikeCLIP, to address
the gap between two modalities within the context of spike-based computing
through a two-step recipe involving “Alignment Pre-training + Dual-Loss Fine-
tuning”. Extensive experiments demonstrate that SNNs achieve comparable results
to their DNN counterparts while significantly reducing energy consumption across
a variety of datasets commonly used for multimodal model evaluation. Furthermore,
SpikeCLIP maintains robust performance in image classification tasks that involve
class labels not predefined within specific categories.

1 INTRODUCTION

While modern deep neural networks achieve impressive performance on a variety of image, audio, and
language tasks and sometimes even perform better than humans, their substantial energy requirements
have become a subject of increasing scrutiny. Representative examples like ChatGPT (OpenAI,
2022) and GPT-4 (OpenAI, 2023) have exhibited significant energy consumption, especially when
engaged in complex reasoning tasks. Consequently, the energy-efficient advantage of SNNs is
garnering escalating interest and recognition within the machine-learning community. Emerging as
the third generation of neural networks (Maass, 1997), SNNs have drawn increasing attention due
to their biological plausibility, event-driven nature, rapid inference capabilities, and efficient energy
utilization (Pfeiffer & Pfeil, 2018; Roy et al., 2019). Utilizing SNNs in the development of extensive
computational models offers the potential for significant energy efficiency and subsequent cost
reductions in the implementation of large-scale applications, thereby promoting further advancements
with such a computational paradigm.

Within the realm of computer vision, SNNs have achieved great success in image classification
(Cao et al., 2015; Diehl et al., 2015; Rueckauer et al., 2017; Hu et al., 2018; Yin et al., 2020; Fang
et al., 2021; Zhou et al., 2023a;b). Among them, a series of works by Spikingformer (Zhou et al.,
2023a;b), inspired by the Vision Transformer (ViT) (Dosovitskiy et al., 2010), have proposed effective
SNNs architectures grounded in hardware feasibility. In contrast to their application in computer
vision, the utilization of SNNs in natural language processing remains relatively limited (Rao et al.,
2022; Lv et al., 2022; Zhu et al., 2023b), with only a handful of studies exploring the potential of
SNNs in text processing tasks. For example, Lv et al. (2022) proposed a TextCNN-based SNN to
attempt to complete the task of text classification, despite the large performance difference with the
Transformer-based language model.

Previous works on SNNs largely targeted single-modality input representations using spikes. However,
the exploration of extending SNNs to multimodal contexts remains uncharted territory. To address
this gap, we introduce SpikeCLIP, inspired by the dual-stream CLIP trained via contrastive learning
(Radford et al., 2021). Through SpikeCLIP, we evaluated the feasibility and potential of using the
spike paradigm to handle multimodal tasks.

1



Under review as a conference paper at ICLR 2024

Figure 1: An illustration of a two-step recipe of “Alignment Pre-training + Dual-Loss Fine-tuning”.
During the first step, SpikeCLIP learns to generate high-quality representations of both images
and text; In the second step, the image encoder of SpikeCLIP undergoes further fine-tuning on the
downstream dataset by a joint loss function including the KL loss and the CE loss.

SpikeCLIP is the first multimodal SNN, trained using the method of “Alignment Pre-training +
Dual-Loss Fine-tuning”. Specifically, we initially maximize the cosine similarity between the
output representations of CLIP and SpikeCLIP, both image-side and text-side, utilizing a large
pre-training dataset. This allows SpikeCLIP to generate universal representations of images and
text, a process called “Alignment Pre-training”. Subsequently, to enhance SpikeCLIP’s performance
on targeted downstream datasets, we undertook the “Dual-Loss Fine-tuning” process, emphasizing
the optimization of Kullback-Leibler divergence (KL) loss and Cross-Entropy (CE) loss. The KL
loss is calculated based on the class probability distribution that SpikeCLIP and the task-specific
fine-tuned CLIP yield during the classification, while the CE loss is determined by contrasting the
class probability distribution produced by SpikeCLIP against the actual labels (see Figure 1 for
details). Similar to CLIP, SpikeCLIP possesses zero-shot learning ability (Table 2) and has the
flexibility to circumvent the constraints associated with fixed labels in classification tasks (Table 4).

The contribution of this study can be summarized as follows:

• We have demonstrated for the first time that SNNs can perform feature extraction and align-
ment across multiple modalities through spiking trains. Based on the findings, we propose
a cross-modal SNN, named SpikeCLIP, which performs well in cross-modal alignment
between images and text.

• A training method is also proposed with a novel “Alignment Pre-training + Dual-loss Fine-
tuning” strategy. With pre-trained SpikeCLIP, we make it possible to efficiently fine-tune
SpikeCLIP on subsequent datasets without necessitating initialization from scratch for a
new dataset.

• SpikeCLIP not only exhibits competitive performance when compared to existing single-
modal SNNs but also empowers the spiking computing paradigm to overcome the constraints
of the fixed label quantification intrinsic to image classification.

2 RELATED WORK

Unlike traditional Artificial Neural Networks (ANNs), SNNs employ spikes in a stimulus time
window (time step, denoted T ) for information processing, demonstrating biological plausibility,
event-driven nature, rapid inference capabilities, and efficient energy utilization (Pfeiffer & Pfeil,
2018; Roy et al., 2019). In recent years, there has been substantial attention on SNNs, resulting in
numerous studies dedicated to discovering more efficient architectures and training methods.

In computer vision (CV), a lot of progress has been made in SNNs. Cao et al. (2015) demonstrated
the feasibility of applying the weights of Convolutional Neural Networks (CNNs) to SNNs, which
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have similar architectures as the original CNNs. This approach exemplifies the transformation
of ANNs into SNNs using weight conversion. Similarly, Wang et al. (2022) devised strategies
incorporating signed neurons and memory functionalities to counteract the performance decline
observed during the ANN-to-SNN conversion. Furthermore, Bu et al. (2023) implemented a quantized
clip background shift activation function in initial ANNs, surpassing traditional ReLU functions
and mitigating performance degradation in the ANN-to-SNN transition. In contrast to the method
of constructing SNNs from ANNs, some studies employ surrogate gradients to directly train SNNs
during backpropagation. For instance, Wu et al. (2018) proposed a Spatio-Temporal Backpropagation
(STBP) training framework, introducing an approximate derivative to address the non-differentiable
issue related to spiking activities. Expanding on STBP, Zheng et al. (2021) proposed a Threshold
Correlated Batch Normalization (tdBN) method, enabling the creation of deeper layers within SNNs
by utilizing emerging spatiotemporal backpropagation techniques. Additionally, the innovative
approach by Zhou et al. (2022) introduced Transformer-based architectures to SNNs, marking
significant advancements in image classification performance. Subsequent enhancements to this
groundbreaking model are documented in Zhou et al. (2023a;b), contributing to the continuous
refinement and improvement of performance in this field.

In Natural Language Processing (NLP), the exploration of SNNs is relatively nascent. A few seminal
works have marked progress in this domain. For instance, Lv et al. (2022) pioneered text classification
by transmuting word embeddings into spike trains. Additionally, Bal & Sengupta (2023) innovated
an SNN architecture analogous to BERT through knowledge distillation, as elucidated by Hinton
et al. (2015). Moreover, Zhu et al. (2023b) delved into the SNNs for text generation, utilizing an
architecture analogous to Recurrent Neural Networks (RNNs). In multimodal processing, a myriad of
prominent multimodal models grounded in ANNs have been developed, with examples like OSCAR
(Li et al., 2020) and SimVLM (Wang et al., 2021) representing single-stream architectures, and
CLIP (Radford et al., 2021) and WenLan (Huo et al., 2021) exemplifying dual-stream architectures.
However, multimodal SNNs remain largely unexplored due to their challenging training and generally
inferior performance compared to ANN counterparts. Nevertheless, drawing inspiration from the
pioneering efforts documented in Zhou et al. (2022; 2023a;b), there emerges a promising avenue for
the conception of multimodal models rooted in SNNs, taking cues from CLIP (Radford et al., 2021).
CLIP utilizes a combined image and text encoder, trained through contrastive learning from extensive
image-text pairs. Inspired by CLIP, our SpikeCLIP demonstrates for the first time that SNNs also
perform well in feature alignment between images and text.

3 METHOD

Inspired by CLIP (Radford et al., 2021), we perform image classification by evaluating the semantic
similarity between visual and textual representations. This methodology incorporates semantically
supervised information through the alignment of image and text modalities, thereby obviating the need
for explicit classification within the model. Given the strong image representation ability of SNNs
(Zhou et al., 2023a;b) and the demonstrated success of spiking representations for text embeddings (Lv
et al., 2022), we posit that text information encoded in spiking signals can synergistically complement
spiking image representations to accomplish multimodal tasks. In the SpikeCLIP architecture, the
image encoder is based on Spikingformer (Zhou et al., 2023b), while the text encoder is a Spiking
Multi-Layer Perceptron (S-MLP).

During the pre-training, our primary focus is to optimize the cosine similarity between the output
representations produced by both the image and text encoder of CLIP and SpikeCLIP, as described
in Equation 3. This process facilitates the alignment of general representations between SpikeCLIP
and CLIP. Before fine-tuning SpikeCLIP, a CLIP is fine-tuned on a specific dataset. The fine-tuned
CLIP serves to guide the modification of SpikeCLIP’s probability distribution before classification, as
articulated by the loss function specified in Equation 4. Additionally, SpikeCLIP receives supervision
from ground-truth labels, as captured in the loss function presented in Equation 5. During inference,
SpikeCLIP is fed an image and several candidate text labels associated with it. After calculating the
cosine similarity between the image representation and various text representations, the text label
with the highest cosine similarity is selected as the best output. The overall architecture of SpikeCLIP
is illustrated in Figure 2. In the following, we start with an overview of spiking neurons, then explore
the architecture of SpikeCLIP, and finally discuss the training methodology used.
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Figure 2: The architecture of SpikeCLIP. The image processing component comprises a Spiking
Patch Splitting (SPS) layer, multiple Spike Blocks, and a projection layer. Within each Spike Block,
there is a Spiking Multi-Head Attention (S-MHA) module as well as a Spiking Multi-Layer Perceptron
(S-MLP) module. SpikeCLIP’s text processing component integrates a Word Embedding layer along
with an MLP-based module. Communication between these individual modules is facilitated through
binary code, leading to lower energy consumption.

3.1 INTEGRATE-AND-FIRE NEURON

Leaky Integrate-and-Fire (LIF) neurons are extensively utilized within SNNs to construct the Spiking
Neuron Layer (shown in Figure 2), and serve a role analogous to activation units in ANNs. Different
from the activation units in ANNs, LIF neurons function akin to a Heaviside step function as
the networks propagate forward, wherein all floating-point numbers within the data stream are
transformed into binary integers, either 0 or 1. LIF neurons operate on the weighted sum of inputs.
The membrane potential of the neuron Ut is affected by these inputs at a given time step t. The
neuron will produce a spike St, once its membrane potential exceeds the threshold Uthr, as follows:

St =

{
1, if Ut ≥ Uthr;

0, if Ut < Uthr.
(1)

The dynamic equation governing the membrane potential of LIF neurons is presented as follows:
Ut = It + βUt−1 − St−1Uthr, It = WXt (2)

where Ut and Ut−1 are the membrane potentials at the time of t and t− 1 respectively. It signifies
the weighted sum of inputs at time t, while β represents the rate of membrane potential decay. W
comprises a set of learnable weights. Furthermore, the expression St−1Uthr encapsulates the logic
governing the reset of the membrane potential.

3.2 ARCHITECTURE

The architecture of SpikeCLIP is shown in Figure 2. The model is composed of two primary
components: an image encoder and a text encoder. Because Spikingformer (Zhou et al., 2023a) is
not only based on a Transformer architecture (like CLIP) but also achieves optimal performance in
image classification tasks, we chose to use it as the base model for the image encoder of SpikeCLIP.
In addition, the image encoder combines outputs across multiple time steps through the use of
Time-Steps Weight, which is an algorithm design that takes into account the interaction of spike
signals with different time steps.(see Appendix A.1 for the rationale behind this design choice).
As for the text encoder of SpikeCLIP, after evaluating the performance of Transformer-based and
Multi-Layer Perceptron (MLP)-based architectures, we chose a simpler MLP-based architecture as
the text encoder for SpikeCLIP (a comparative analysis can be found in Appendix A.3).

3.3 PRE-TRAINING AND FINE-TUNING

We introduce a two-step training method of “Alignment Pre-training + Dual-Loss Fine-tuning” to align
the semantic spaces of image and text modalities. For convenience, we will refer to a conventional
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CLIP as C. First, we use C to help align the output representations of the image and text sides of
SpikeCLIP in general. This step enables SpikeCLIP to generate high-quality representations for
images and text, as well as possess some zero-shot learning ability. Then, we fine-tune C on a
downstream dataset. We represent the image encoder of the fine-tuned C as Cfv, and Cfv is used
as a teacher model when fine-tuning the SpikeCLIP image encoder. In “Dual-Loss Fine-tuning”,
SpikeCLIP receives supervision from the teacher model and the ground-truth labels through KL Loss
and CE Loss, respectively.

3.3.1 LANGUAGE-IMAGE PRETRAINING

In the following, the image encoder and text encoder of C will be referred to as Cl and Cv . We will
also designate the image and text encoder of SpikeCLIP as SCv and SCl. The datasets used for
pre-training SpikeCLIP image and text encoders are denoted as Dimg and Dtxt.

Diverging from the direct application of contrastive training, which may result in gradient vanishing
or exploding, we adopt the idea of KD to align the image encoder of SpikeCLIP using spike signals
with the image representation generated by the CLIP image encoder. The same alignment approach is
applied to the text encoder. This design tackles the challenge of directly aligning two types of pulse
signals by introducing the floating-point representations generated by CLIP as a “bridge.”

The specific operations are as follows: during the pre-training of SCv (or SCl), for any given image
(or text) xi in a dataset Dimg (or Dtxt) of size N , two latent space vectors vi and v̂i are generated
after the image passes Cv and SCv (or the text passes Cl and SCl), respectively. The objective of the
pre-training is to maximize the cosine similarity between vi and v̂i. The loss function is formulated
as follows, where N is the number of training instances:

L =
1

N

N∑
i=1

(1− vi · v̂i
∥vi∥ · ∥v̂i∥

) (3)

3.3.2 FINE-TUNING GUIDED BY DUAL LOSS

We perform fine-tuning by optimizing both the KL Loss and the CE Loss on a downstream dataset
(denoted Ddown). As in the work by Kingma & Welling (2013) and Zhu et al. (2023a), we use the
two losses to construct a joint loss, which enables SpikeCLIP to automatically consider both the KL
loss function and the CE loss function when optimizing the joint loss function. Among them, the CE
loss guarantees the consistency of SpikeCLIP with the real labels. On this basis, because of the loss
caused by the inherent spike signals of SpikeCLIP, we ensure the consistency of SpikeCLIP with the
task-specific fine-tuned CLIP by applying the KL loss as a penalty.

The model will try to find a balance and ultimately minimize the sum of these two loss functions. We
describe the fine-tuning process in detail below.

Before fine-tuning SpikeCLIP, we need a conventional CLIP fine-tuned on the dataset Ddown, and
its image encoder is Cfv, which is used as a teacher model. Additionally, since the architecture of
SpikeCLIP’s text encoder (SCl) is relatively simpler than that of the image encoder (SCv), and the
dataset (Dtxt) used to train the text encoder is sufficient, the text encoder has been trained enough.
Therefore, we freeze the parameters of the text encoder during fine-tuning to prevent its parameters
from being updated (refer to Appendix A.3 for details). Then, we construct a label text set (denoted
Candidate labels in Figure 2) containing M × k text instances by combining the M labels and
the corresponding k templates from dataset Ddown. After feeding Candidate labels to SCl, we
obtain M text representations with dimension d for classification, called Candidates, similar to the
“potential text pairings” in CLIP (Radford et al., 2021).

During the fine-tuning, any image xi from Ddown is fed separately into SCv and Cfv , outputting two
distinct latent vi and v̂i of dimension d respectively. Subsequently, matrix multiplication is performed
with vi and v̂i respectively against Candidates, obtaining two class probability distributions prei
and ˆprei. We guide prei with ˆprei through minimizing the KL Loss, ensuring that the classification
probability distribution of SpikeCLIP does not deviate too much from its corresponding CLIP during
the fine-tuning. This constraint is based on knowledge distillation (Hinton et al., 2015), with CLIP as
a teacher, guiding SCv to update parameters in a more stable direction. The CE Loss is derived from
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prei and ground-truth label yi. In conjunction with KL Loss, CE Loss enhances the efficiency of
SpikeCLIP’s fine-tuning on the downstream dataset (refer to Table 3 for details).

The KL loss, CE loss, and Joint loss are defined below:

KLDivLoss =
1

N

N∑
i=1

M∑
j=1

ˆpreij log

(
ˆpreij + ϵ

preij + ϵ

)
(4)

CELoss = − 1

N

N∑
i=1

M∑
j=1

yij log(preij) (5)

JointLoss = KLDivLoss + α · CELoss (6)

where N is the number of training instances for the downstream dataset, ϵ is a small constant, such as
ϵ = 1× 10−10, set for numerical stability and to avoid division by zero, and α is a hyperparameter
and defaults to 1.

4 EXPERIMENTS

We conducted four experiments to thoroughly evaluate SpikeCLIP. Section 4.2 presents its CIFAR
dataset performance and zero-shot learning ability. In Section 4.3, we extensively studied pre-
training’s importance, the impact of pre-training data, and the influence of loss functions during
fine-tuning. Section 4.4 evaluates SpikeCLIP’s modality alignment, while Section 4.5 analyzes its
energy efficiency. Dataset details are in Section 4.1, and experimental settings are in Appendices A.2
and A.3.

4.1 DATASET

We used the ImageNet-1k dataset (Russakovsky et al., 2015) for pre-training and the following six
datasets as downstream datasets: CIFAR10 (Krizhevsky, 2009), CIFAR100 (Krizhevsky, 2009),
Flowers102 (Nilsback & Zisserman, 2008), OxfordIIITPet (Parkhi et al., 2012), Caltech101 (Fei-Fei
et al., 2004), and STL10 (Coates et al., 2011). These datasets are well-known and have varying
numbers of labels for image classification tasks. Additionally, we constructed a new dataset (Dtxt),
from labels and templates of all datasets used to assess CLIP, containing 115,708 text entries. The
dataset, used for pre-training SpikeCLIP’s text encoder, encapsulates a wide array of standard text
labels pertinent to image classification tasks (See Appendix A.4 for details).

4.2 IMAGE CLASSIFICATION

In this section, we conduct two experiments: First, we compare the performance difference between
SpikeCLIP and the previous models trained on either single-modal or multi-modal data. Secondly,
since we are unable to access the complete dataset used to pre-train CLIP as it is not publicly available,
we utilize an ANN counterpart to SpikeCLIP, named ScratchCLIP, for comparative experiments with
SpikeCLIP. To ensure fairness, ScratchCLIP’s image encoder adopts the Transformer architecture,
and its text encoder uses the MLP architecture. While its parameters are similar to SpikeCLIP’s,
it lacks spiking neurons and processes data in floating-point form. Moreover, both models were
pre-trained and fine-tuned under the same conditions.

4.2.1 RESULTS ON CIFAR

The accuracy on CIFAR achieved by SpikeCLIP is reported in Table 4.2.1, compared to baseline
models. In Table 4.2.1, Hybrid training (Rathi et al., 2020), Diet-SNN (Rathi & Roy, 2020), STBP
(Wu et al., 2018), STBP NeuNorm (Wu et al., 2019), TSSL-BP (Zhang & Li, 2020), STBP-tdBN
(Zheng et al., 2021), TET (Deng et al., 2022), TEBN (Duan et al., 2022) and Spikingformer (Zhou
et al., 2023b) are single-modality SNNs. For ANNs, ViT (ViT-B/16 1) (Dosovitskiy et al., 2010)
is one of the top-performing single-modality ANNs, while CLIP (Dosovitskiy et al., 2010) is one

1
https://github.com/google-research/vision_transformer
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Table 1: Accuracy results on CIFAR datasets. SpikeCLIP achieves accuracy of 94.48% and 77.69%
on CIFAR10 and CIFAAR100 respectively, surpassing all single-modality SNNs except Spiking-
former (with a small performance drop of 1.47% and 2.68%). The best and second-best results
of SNNs and ANNs are highlighted with bold fonts, as well as their performance gaps indicated
by “Gap (Accuary)”. Note that the performance gap between SpikeCLIP and its single-modality
state-of-the-art model (i.e., Spikingfomer) is much less than that between the conventional CLIP and
ViT (SOAT traditional ANN on CIFAR datasets).

Method Param (M) Time Step CIFAR 10 CIFAR 100 Gap (Accuracy)

SNNs

Hybrid training 9.27 125 92.22 67.87

−−

Diet-SNN 0.27 10/5 92.54 64.07
STBP 17.54 12 89.83 −−
STBP NeuNorm 17.54 12 90.53 −−
TSSL-BP 17.54 5 91.41 −−
STBP-tdBN 12.63 4 92.92 70.86
TET 12.63 4 94.44 74.47
TEBN − 4 95.58 78.71
Spikingformer 9.32 4 95.95 80.37

1.47/2.68SpikeCLIP (ours) 56.87 4 94.48 77.69

ANNs ViT 86.39 1 99.13 94.20
0.68/4.50CLIP 149.6 1 98.45 89.70

of the best-performing multimodal ANNs. According to the data in Table 4.2.1, it is evident that
SpikeCLIP has a higher classification accuracy (94.48%/77.69%) than any other single-modality
SNN on the CIFAR dataset, except for Spikingformer, which currently holds the top spot. However,
it is worth noting that single-modality models tend to perform better than multi-modality ones, even
in ANNs. As shown in the table, ViT, a single-modality model, outperforms CLIP on CIFAR10/100
by 0.68%/4.5%. Therefore, it is reasonable to expect a performance gap (1.47%/2.68%) between
SpikeCLIP and Spikingformer on CIFAR10/100 for SNNs.

Overall, the comparison between the two gaps described above illustrates the degree of performance
of SpikeCLIP, which sets the benchmark for future multimodal SNNs on the same dataset.

4.2.2 ZERO-SHOT RESULTS

CLIP is trained using a large dataset composed of numerous image-text pairs, but this dataset is not
open source and we cannot train SpikeCLIP with it. For evaluating the zero-shot learning ability of
SpikeCLIP and its ANN counterpart, ScratchCLIP, we resort to using ImageNet-1k as the pre-training
dataset for both, as ImageNet-1k is one of the largest image-text classification datasets available to us.
To compare their zero-shot learning ability, SpikeCLIP and ScratchCLIP are evaluated on downstream
datasets for accuracy after being trained for the same number of epochs on the ImageNet-1k dataset.

Table 2: Zero-shot classification results. CLIP is a pre-trained model (openai/clip-vit-base-patch16).
ScratchCLIP is an ANN with a transformer on the image side and an MLP on the text side.

Model CIFAR 10 CIFAR 100 Flowers 102 Caltech 101 OxfordIIITPet STL 10 Avg
ScratchCLIP 59.70 27.94 8.33 48.72 48.60 75.69 44.83
SpikeCLIP 58.03 26.66 9.02 48.28 44.89 77.79 44.11

Note: For comparison with SpikeCLIP: (a) ScratchCLIP’s image encoder has four layers like
SpikeCLIP; (b) In the image encoder of ScratchCLIP, a patch splitting layer with the same parameters
as the SPS layer in SpikeCLIP is used to maintain the same parameter level as SpikeCLIP; (c)
ScratchCLIP undergoes the same rounds of pre-training as SpikeCLIP on ImageNet-1k, followed by
zero-shot classification on the downstream dataset.

According to the data presented in Table 4.2.2, SpikeCLIP has an average accuracy of 44.11% on
downstream datasets. This is slightly lower than its ANN counterpart, ScratchCLIP, which has
an average accuracy of 44.83%. However, the difference between the two is only 0.72%, which
is negligible. Despite the fact that SpikeCLIP uses integer operations to conserve energy, which
distinguishes it from ScratchCLIP, it still performs competitively under equivalent pre-training

7



Under review as a conference paper at ICLR 2024

conditions. Therefore, we can reasonably assume that SpikeCLIP’s performance could be further
improved with additional training data.

4.3 ABLATION EXPERIMENTS

We conducted some ablation experiments to investigate the impact of SpikeCLIP performance by the
following three factors:

• Pre-training with large-scale dataset.
• The size of and the data distribution of datasets used for pre-training.
• Dual loss applied in fine-tuning stage.

Table 3: Ablation study. The top-performing results in each column are highlighted. E1 reveals
that pre-training with LSD significantly improves the model’s classification performance on down-
stream datasets; E2 affirms that optimizing both losses during fine-tuning yields the most significant
performance boost.

Setting CIFAR 10 CIFAR 100 Flowers 102 Caltech 101 OxfordIIITPet STL 10 Avg

E1 w/o LSD 93.23 74.59 66.98 23.67 34.94 69.25 60.44
w/ LSD 94.48 77.69 86.07 82.31 67.18 89.48 82.89

E2
CE 94.22 77.52 82.86 66.01 88.92 65.29 78.69
KL 94.20 77.42 81.76 65.95 89.58 62.72 78.61
CE + KL 94.33 77.68 82.97 66.34 89.59 86.47 82.90

Pre-training with large scale dataset. Previous single-modality SNNs could only be trained from
scratch on new datasets when performing image classification tasks. This meant that for each specific
downstream dataset, a different model needed to be trained, which was highly inefficient. However,
our SpikeCLIP can effectively achieve zero-shot classification results on various downstream datasets
through “Alignment Pre-training” and only requires fine-tuning on the downstream dataset to signif-
icantly improve classification performance. This is the first pre-training and fine-tuning paradigm
based on the SNNs framework. To compare with the pre-training setup using a large-scale dataset
(LSD), we completed the “Alignment Pre-training + Dual-Loss Fine-tuning” steps on all downstream
datasets separately. As shown in E1 of Table 3, when pre-training is performed using LSD, the
increase in accuracy ranged from 1.25% to 58.64%, with an average improvement of 22.45%.

Dataset Size and data distribution during pre-training. Our SpikeCLIP has demonstrated
impressive results on downstream datasets despite being pre-trained only on a limited dataset of
ImageNet-1k. However, we believe that expanding the pre-training dataset could further enhance its
performance. In pursuit of this hypothesis, we present the following discussions and experimental
designs:

Generally, a model’s performance improves with the amount of data it is trained on, and this can
be measured by the size of the data volume and the similarity between the training and evaluation
datasets. Larger amounts of data and more similar distributions between the two datasets typically
lead to better evaluation results. Taking these factors into consideration, we establish gradients of data
size and form three different data distribution groups for each size: Slightly-similar, Intermediate,
and Dissimilar. Please refer to Appendix A.6 for more details. Figure 4.3 illustrates that SpikeCLIP
follows these conclusions, which leads us to believe that training SpikeCLIP on larger and more
varied datasets could result in even better performance.

Dual-loss for fine-tuning. During the fine-tuning stage, we utilize joint loss to update the parameters
of SCv, which includes two losses: the KL loss and the CE loss. The CE loss relies on the model’s
ground-truth labels to guide training, while the KL loss ensures that the model captures the ranking
information of classification probabilities generated by Cfv . This dual-loss approach helps maintain
weight stability during gradient updates, as demonstrated in E2 of table 3. Our hypothesis is confirmed
as SpikeCLIP performance improves when both CE and KL loss functions are applied.

4.4 CROSS-MODAL IMAGE CLASSIFICATION

In this section, we demonstrate the effect of SpikeCLIP in aligning modality information between
images and text into the same semantic space using two methods — Expanded Label Set (ELS) and
Unseen Label Set (ULS). The implementation details of the two methods are detailed in Appendix
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(a) Evaluating on CIFAR 10 (b) Evaluating on ImageNet-1k

Figure 3: The impact of dataset size and data distribution. The training data is sampled from various
datasets, leading to differences in similarity between the training dataset and the evaluation dataset. (a)
Slightly-similar: ImageNet-1k + CIFAR100 + CIFAR10; Intermediate: ImageNet-1k + CIFAR100;
Dissimilar: ImageNet-1k. (b) Slightly-similar: CIFAR10 + CIFAR100 + ImageNet-1k; Intermediate:
CIFAR10 + CIFAR100; Dissimilar: CIFAR10.

A.5. Compared to the baseline, both transformation methods have a low performance penalty. It’s
worth noting that this is the first time SNNs have achieved modal alignment in classification tasks
without the constraint of fixed labels.

Table 4: Cross-modal image classification. In ELS, the dataset’s label set is expanded to N times
the original, where N ∈ {2, 5, 8}. In ULS, unseen label words are used to replace the label set of
the downstream dataset, according to a replacement ratio α, where α ∈ {20%, 40%, 80%, 100%}.
Experimental results from both ELS and ULS strategies demonstrate that SpikeCLIP excels in
achieving accurate image-text alignment and exhibits robustness in image classification tasks.

Dataset Baseline ELS ULS (Acc/Std)
×2 ×5 ×8 20% 40% 80% 100%

CIFAR 10 94.33 94.33 94.33 94.32 94.33(0.028) 94.32(0.033) 94.22(0.017) 94.18
STL 10 89.59 89.59 89.59 89.45 89.45(0.008) 89.20(0.127) 87.42(0.504) 87.64

4.5 ENERGY CONSUMPTION

We report in Table 5 the average firing rate of spiking neurons (Firing Rate), energy consumption
(Energy), and energy reduction (Energy Reduction) rate of SpikeCLIP compared to ScratchCLIP
on downstream datasets. The calculation methods are shown in Appendix A.7.

Table 5: Energy consumption. SpikeCLIP reduces energy consumption by 77.06% to 78.66%
compared to its ANN counterpart.

Dataset CIFAR 10 CIFAR 100 Flowers 102 Caltech 101 OxfordIIIPet STL 10
Firing Rate(%) 27.26 28.98 29.30 27.97 27.93 27.56
Energy(mJ) 3.17 3.37 3.41 3.25 3.25 3.21
Energy Reduction 78.66% ↓ 77.31% ↓ 77.06% ↓ 78.10% ↓ 78.13% ↓ 78.42% ↓

5 CONCLUSION

This study has illustrated the capacity of Spiking Neural Networks (SNNs) to effectively capture
multi-modal features and perform multi-modal classifications with remarkable proficiency, contingent
upon the alignment of features from distinct modalities. We introduced SpikeCLIP, a novel multi-
modal SNN architecture, underpinned by the innovative training approach termed “Alignment
Pre-training + Dual-Loss Fine-tuning”. SpikeCLIP exhibits impressive classification capabilities
and also demonstrates promise under the setting of zero-shot learning. By successfully bridging the
gap in the application of SNNs within multi-modal scenarios, this research serves as a fundamental
stepping stone, laying the groundwork for prospective investigations in this field.
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REPRODUCIBILITY STATEMENT

The datasets used in the above experiments are all open source. In order to replicate the experiments
in the section 4.2, 4.3, and 4.4, we have provided all the code and running scripts in the supplementary
materials. We have also provided a README script that guides how to run the code. In addition, the
project will be published on Github to provide experimental support.
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A APPENDIX

A.1 THE ADDITION OF LEARNABLE TIME-STEPS WEIGHT(TSW) PARAMETERS

In previous SNNs, tensor values were averaged across different time steps (T ) before being classified.
However, this approach assigns the same weight to each step (1/T ), ignoring any interdependence
between them, for example, if the previous time step has already produced a spike, it may be more
difficult for the current time step to produce a new spike again, so the signal from the new spike
generated by the current time step may be stronger. This idea is not considered in cases where
different time steps are given the same weight, which can lead to reduced performance.

To address this, our approach employs learnable parameters to replace the fixed averaging weights.
We incorporated this modification into the Spikingformer (Zhou et al., 2023a;b). For benchmarking
purposes, we also examined two sets of fixed parameters: one based on arithmetic differences (AD)
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and another based on arithmetic ratios (AR). Experimental outcomes corroborate the efficacy of our
proposed Time-Steps Weight (TSW) mechanism (As shown in Table 6).

Table 6: Effect of TSW on model performance. The best results on each dataset have been highlighted
in bold font.

Acc Baseline AD AR TSW
CIFAR 10 95.93 96.00 96.03 96.07

CIFAR 100 79.64 79.67 79.67 79.70

A.2 IMPLEMENTATION DETAILS OF THE MAIN EXPERIMENT

We used the openai/clip-vit-base-patch16 2 from Huggingface as the pre-trained CLIP model, which
has a dimension of 512. We used a Spikingformer-4-384((Zhou et al., 2023b)) with 4 layers and
a dimension of 384 as the base model for comparison. The image-side component architecture of
SpikeCLIP is built upon a spikingformer-4-384 base and incorporates a time-step weight (TSW)
layer followed by a dimensionality-mapping layer, aligning the output to a 512-dimensional space
compatible with pre-trained CLIP models.

In order to compare with SpikeCLIP, we constructed an ANN counterpart of SpikeCLIP, ScratchCLIP.
ScratchCLIP’s image encoder is a 4-layer Transformer architecture, and it uses a patch splitting layer
with the same number of parameters as SpikeCLIP (the patch splitting layer of conventional CLIP
has only one convolution layer with fewer parameters), and ScratchCLIP’s text encoder uses an MLP
architecture, as well as a word embedding layer of conventional CLIP. Like SpikeCLIP, ScratchCLIP’s
dimension is 384 dimensions and maps images or text to 512-dimensional representations at the
output layer.

For SpikeCLIP, we set the threshold of the common spiking neuron Uthr to 1.0, and the threshold
of the spiking self-attention block neuron to 0.25. In addition, we set the decay rate β = 0.9, the
scaling factor τ as 0.125, and the time step T of the peak input of all datasets to 4. In image-side
pre-training, we set input dimensions to 224x224 to parallel the pre-trained CLIP model for both
CLIP and SpikeCLIP evaluations. To optimize SpikeCLIP’s training speed, images were resized to
32x32 using bilinear interpolation. For text-side pre-training, a fixed text length of 20 was employed.
We completed the experiment on two devices, each equipped with 4 NVIDIA GeForce RTX 3090
GPUs.

During the pre-training of the SpikeCLIP image encoder, we set the batch size to 196, α to 1, and the
learning rate to 5e-3 which remained unchanged after the cosine decay to 5e-4 within 50 epochs. In
the pre-training of the SpikeCLIP text encoder, we set the batch size to 1024 and trained 400 epochs.
In the fine-tuning, the batch size was 196 and the learning rate was 5e-4 which remained unchanged.

A.3 ANALYSIS OF THE TEXT ENCODER ARCHITECTURE OF SPIKECLIP

To draw a comparison with the Contrastive Language-Image Pretraining (CLIP) model, we initially
employed a Transformer-based architecture for the text encoder, which is analogous to the architecture
used for the image encoder. This was trained on our newly constructed dataset Dtxt. However,
we observed that this Transformer-based text encoder struggled with effective loss minimization
during training and also demonstrated poor accuracy when integrated with the image encoder. An
improvement was noted upon switching to a Multilayer Perceptron (MLP)-based architecture for
the text encoder. Our findings suggest that within the framework of “Alignment Pre-training +
Dual-Loss Fine-tuning”, the text encoder is prone to overfitting when trained on newly constructed
datasets, particularly if the architecture is overly complex. Although the text encoder based on
MLP architecture is simple in architecture, it is sufficient for the training task applied in our work.
Comprehensive experimental results are presented in Table 7 and Figure 4.

In the text encoder architecture, we follow the work of Bal & Sengupta (2023) and use the Lay-
erNorm layer as one of the components of text information processing, on the one hand, because
the LayerNorm layer is indeed indispensable in text data processing, on the other hand, from the

2
https://huggingface.co/openai/clip-vit-base-patch16
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perspective of hardware design, the design of the chip should be based on the design of relevant
algorithms. As the wide application of the BatchNorm layer in SNN architecture is inseparable from
the algorithm research of SNN in the field of image processing.

Table 7: Classification results of the text encoders of both architectures on downstream datasets
(along with the image encoder of conventional CLIP).

Architecture CIFAR 10 CIFAR 100 Caltech 101 Flowers 102 OxfordIIITPet STL 10 Avg
Transformer-based 86.37 48.03 75.78 27.09 33.93 94.76 60.99
MLP-based 90.63 64.69 79.88 62.86 81.79 97.58 79.57
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Figure 4: The change of loss value during the training of two text-side architectures.

A.4 DATASET

The datasets employed across the aforementioned experiments are delineated below:

• ImageNet-1k: The ImageNet-1k serves as a foundational benchmark in computer vision
research, comprising approximately 1.2 million high-resolution color images across 1,000
distinct categories. The dataset is commonly partitioned into training, validation, and testing
subsets to enable rigorous evaluation of machine learning models. Due to its scale and
diversity, ImageNet-1k has become instrumental in the development and assessment of
state-of-the-art algorithms. In addition, this dataset is one of the largest image classification
datasets available(Russakovsky et al., 2015).

• CIFAR10: The CIFAR10 serves as a well-established benchmark within the domains of
machine learning and computer vision. Comprising 60,000 color images with a resolution
of 32x32 pixels, the dataset is organized into 10 unique classes. With each class containing
6,000 images, the dataset ensures a balanced class distribution. Conventionally, CIFAR10 is
partitioned into 50,000 images for training and 10,000 images for testing, thereby providing
a consistent framework for evaluating the performance of classification models(Krizhevsky,
2009).

• CIFAR100: An extension of the CIFAR10 dataset, CIFAR100 is also a prominent bench-
mark in the fields of machine learning and computer vision. While maintaining the same
overall count of 60,000 color images at a 32x32 pixel resolution, CIFAR100 expands the
class diversity to 100 distinct categories, each represented by 600 images. For evaluative
purposes, the dataset is typically segmented into 50,000 training images and 10,000 testing
images. This augmented class variety enhances CIFAR100’s utility for conducting more
nuanced assessments of classification models(Krizhevsky, 2009).
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• Flower102: The Flower102 dataset is a notable asset within the computer vision land-
scape, explicitly designed to cater to fine-grained image recognition endeavors. The dataset
comprises a diverse set of images, capturing 102 different floral species. Each category is
scrupulously curated to maintain a balanced representation, thereby enabling more sophis-
ticated model evaluations. Due to its focus on capturing subtle variances between closely
aligned classes, the Flower102 dataset plays a pivotal role in both refining and benchmarking
specialized image classification algorithms(Nilsback & Zisserman, 2008).

• Caltech101: As an esteemed benchmark in computer vision research, the Caltech101 dataset
encompasses an assemblage of approximately 9,000 color images, categorized into 101
distinct object classes. These classes span a diverse array of subjects, including animals,
vehicles, and inanimate objects, with a fluctuating number of images allocated to each
category. Widely employed for a variety of computational tasks, such as object recognition
and classification, Caltech101 offers a multifaceted visual dataset for the rigorous evaluation
of machine learning model performance(Fei-Fei et al., 2004).

• OxfordIIIPet: The OxfordIIIPet dataset holds a significant position in the realm of computer
vision, particularly in the context of fine-grained classification assignments. The dataset
comprises visual representations of 37 distinct breeds of cats and dogs, furnishing a nuanced
foundation for algorithms engineered to discern subtle visual cues. Each breed category is
populated with a balanced assortment of images, thereby facilitating the compilation of rep-
resentative training and testing subsets. Owing to its targeted emphasis on the classification
of pet breeds, the OxfordIIIPet dataset proves invaluable for fine-tuning models aimed at
specialized image recognition tasks(Parkhi et al., 2012).

• STL10: The STL10 dataset is characterized by its collection of color images with a 96x96
pixel resolution, and it includes 10 unique categories that parallel those found in the CIFAR10
dataset. It is organized into distinct segments: a labeled set that consists of 5,000 images, an
unlabeled set with 100,000 images, and an 8,000-image test set reserved for evaluation. This
configuration provides a versatile framework for both supervised and unsupervised learning
approaches, making it a useful resource for a diverse array of machine-learning applications.

• D-text:
For the purpose of training the text encoder, we curated a dataset comprising 115,708 textual
entries derived from the labels of 27 datasets used in CLIP’s zero-shot evaluation, along
with their respective templates.
To elucidate, let’s consider the CIFAR10 dataset as an example: with its 10 labels and 18
associated templates, it contributes to the formation of D-text by generating 180 distinct text
segments3.
Here are a few of the templates of CIFAR10:

– A blurry photo of a {}.
– A black and white photo of a {}.
– A high-contrast photo of a {}.
– A photo of a big {}.

A.5 CROSS-MODAL IMAGE CLASSIFICATION

To assess the modal alignment capabilities of SpikeCLIP, we designed two distinct experimental
paradigms aimed at evaluating its classification ability. The first approach involved Unseen Label
Set. Using the CIFAR10 dataset as a representative example, for each label within CIFAR10, we
replaced it with the closest analogous label from the CIFAR100 and ImageNet-1k datasets. The
selection process was facilitated through a specific prompt, termed Prompt1, with the assistance of
ChatGPT (OpenAI, 2022). Additionally, we conducted four sub-experiments involving random label
replacement at different scales: specifically 20%, 40%, 80% and 100%. For the initial three scenarios,
predefined random seeds were used, and each was executed in triplicate to record both the mean and
variance of the results.

The second experimental paradigm focused on Expanded Label Set. Once again employing the
CIFAR10 dataset, we used a separate prompt, Prompt2, to engage ChatGPT in the selection of
N × 10 labels that were most dissimilar to the original 10 labels of CIFAR10. This effectively

3
https://github.com/openai/CLIP
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expanded the label set by a factor of (N + 1). Subsequently, classification accuracy was evaluated
under these modified conditions.

• Prompt1: The following is the label list L1 for dataset DS1. Please select the label that is
closest to label x: L1.

• Prompt2: The following are the label lists for dataset DS0, L0, and dataset DS2, L2. Please
select N labels from L1 that are the least similar to the labels in L0: L0, L2.

In the above Prompts, DS0 ∈ {CIFAR10, STL10}, DS1 ∈ {CIFAR100, ImageNet-1k}, and DS2 ∈
{CIFAR100}.

A.6 THE IMPACT OF DATASET SIZE AND DATA DISTRIBUTION

Owing to limitations in acquiring a large dataset of image-text pairs, our SpikeCLIP model was
unable to undergo the same pre-training regimen as the original CLIP model. Nonetheless, we posit
that with access to adequate training data, SpikeCLIP’s performance can be enhanced. To substantiate
this hypothesis, we designed a specific experimental setup.

We use two metrics to quantify the amount of training data: data volume and data distribution. The
term data volume refers to the total number of samples utilized during training, while data distribution
denotes the level of similarity between the training and evaluation data. Our experiments employ
two evaluation datasets: CIFAR10 and ImageNet-1k. For instance, when conducting evaluations on
CIFAR10, we set six different levels of training data volume, ranging from 0k to 100k. Regarding
data distribution, we establish three different dataset mixing schemes with varying levels of similarity
to CIFAR10, detailed as follows, where the size of the data volume is denoted as N :

• For evaluations on CIFAR10:
– Slightly-similar: 1

3N CIFAR10 + 1
3N CIFAR100 + 1

3N ImageNet-1k;
– Intermediate: 1

2N CIFAR100 + 1
2N ImageNet-1k;

– Dissimilar: Only ImageNet-1k.
• For evaluations on ImageNet-1k:

– Slightly-similar: 1
3N ImageNet-1k + 1

3N CIFAR100 + 1
3N CIFAR10;

– Intermediate: 1
2N CIFAR100 + 1

2N CIFAR10;
– Dissimilar: Only CIFAR10.

A.7 ENERGY CONSUMPTION

According to Yao et al. (2022), for SNNs, the theoretical energy consumption of layer l can be
calculated as:

Energy(l) = EAC × SOPs(l) (7)

where SOPs is the number of spike-based accumulate (AC) operations. For classical ANNs, the
theoretical energy consumption required by the layer b can be estimated by:

Energy(b) = EMAC × FLOPs(b) (8)

where FLOPs is the floating point operations of b, which is the number of multiply-and-accumulate
(MAC) operations. We assume that the MAC and AC operations are implemented on the 45nm
hardware (Horowitz, 2014), where EMAC = 4.6pJ and EAC = 0.9pJ (1J = 103 mJ = 1012 PJ).
The number of synaptic operations at the layer l of an SNN is estimated as:

SOPs(l) = T × γ × FLOPs(l) (9)

where T is the number of time steps required in the simulation, γ is the firing rate of the input spike
train of the layer l.
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Therefore, we estimate the theoretical energy consumption of SpikeCLIP as follows:

ESpikeCLIP =EAC ×

(
M∑

m=1

SOPm
SNN FC +

N∑
n=1

SOPn
SNN Conv

)
(10)

where SNN FC, and SNN Conv are the fully connected linear layer and convolutional layer with
neurons in SpikeCLIP, respectively. As shown in formula 10, the SOPs of m SNN Fully Connected
Layer (FC), n SNN Convolutional layers are added together and multiplied by EAC .

We refer to Horowitz (2014), assuming that MAC and AC operations are implemented on 45nm
hardware (the calculation of power consumption in this hardware only involves MAC and AC
operations) since SpikeCLIP and ScratchCLIP have the same architecture except for pulsar neurons,
We can calculate the energy consumption reduction (ECR) by formulas 7, 8, 9 and 10 as the following
expression formula:

ECR = 1− EAC × T × γ̄

EMAC
(11)

where EMAC = 4.6pJ , EAC = 0.9pJ , γ̄ represents the average neuron firing rate of the whole
SpikeCLIP.
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