
In-Context Deep Learning via Transformer Models

Weimin Wu * 1 2 Maojiang Su * 1 2 Jerry Yao-Chieh Hu * 1 2 Zhao Song 3 Han Liu 1 2 4

Abstract
We investigate the transformer’s capability for in-
context learning (ICL) to simulate the training
process of deep models. Our key contribution
is providing a positive example of using a trans-
former to train a deep neural network by gradient
descent in an implicit fashion via ICL. Specif-
ically, we provide an explicit construction of a
(2N + 4)L-layer transformer capable of simulat-
ing L gradient descent steps of an N -layer ReLU
network through ICL. We also give the theoretical
guarantees for the approximation within any given
error and the convergence of the ICL gradient de-
scent. Additionally, we extend our analysis to the
more practical setting using Softmax-based trans-
formers. We validate our findings on synthetic
datasets for 3-layer, 4-layer, and 6-layer neural
networks. The results show that ICL performance
matches that of direct training.

1 Introduction
We study transformers’ ability to simulate the training pro-
cess of deep models. This analysis is not only practical but
also timely. On one hand, transformers and deep models
(Brown et al., 2020; Radford et al., 2019) are so powerful,
popular and form a new machine learning paradigm — foun-
dation models. These large-scale machine learning models,
trained on vast data, provide a general-purpose foundation
for various tasks with minimal supervision (Team et al.,
2023; Touvron et al., 2023; Zhang et al., 2022). On the

*Equal contribution 1Center for Foundation Models and
Generative AI, Northwestern University, USA 2Department of
Computer Science, Northwestern University, USA 3University
of California Berkeley, USA 4Department of Statistics and
Data Science, Northwestern University, USA. Correspondence
to: Weimin Wu <wwm@u.northwestern.edu>, Mao-
jiang Su <maojiangsu2030@u.northwestern.edu>,
Jerry Yao-Cheih Hu <jhu@u.northwestern.edu>,
Zhao Song <magic.linuxkde@gmail.com>, Han Liu
<hanliu@northwestern.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Full version and future updates are on arXiv.

other hand, the high cost of pretraining these models often
makes them prohibitive outside certain industrial labs (Jiang
et al., 2024; Bi et al., 2024; Achiam et al., 2023). In this
work, we aim to advance the “one-for-many” modeling phi-
losophy of foundation model paradigm (Bommasani et al.,
2021) by considering the following research problem:

Question 1. Is it possible to train one deep model with
the ICL of another foundation model?

The implication of Question 1 is profound: if true, one
foundation model could lead to many others without per-
taining. In this work, we provide an affirmative example for
Question 1. Specifically, we show that transformers are ca-
pable of simulating the training of a deep ReLU-based feed-
forward neural network with provable guarantees through
ICL. Our analysis assumes that we have well-pretrained
the transformer using the data generated by the deep net-
work. We require the deep network to maintain consistent
hyperparameters (e.g., model width and depth) during the
pretraining and testing. However, during the testing, we
vary the parameter distribution and input data distribution
of the deep network to generate data for the transformer.

In ICL, the models learn to solve new tasks during inference
by using task-specific examples provided as part of the input
prompt, rather than through parameter updates (Shi et al.,
2023b; Bubeck et al., 2023; Achiam et al., 2023; Bai et al.,
2023; Min et al., 2022; Garg et al., 2022). Unlike standard
supervised learning, ICL enables models to adapt to new
tasks during inference using only the provided examples.
In this work, the new task of our interest is algorithmic
approximation via ICL (Bai et al., 2023; Zhang et al., 2024;
Wang et al., 2024). Specifically, we aim to use transformer’s
ICL capability to replace/simulate the standard supervised
training algorithms for N -layer networks. To be concrete,
we formalize the learning problem of how transformers learn
(i) a given function and (ii) a machine learning algorithm
(e.g., gradient descent) via ICL, following (Bai et al., 2023).

(i) ICL for Function f . Let f : Rd → R be the func-
tion of our interest. Suppose we have a dataset Dn :=
{(xi, yi)}i∈[n], where {xi}i∈[n] ⊆ Rd and {yi}i∈[n] ⊆ R
are the input and output of f , respectively. Let xn+1 be the
test input. The goal of ICL is to use a transformer, denoted
by T , to predict yn+1 based on the test input and the in-
context dataset autoregresively: ŷn+1 ∼ T (Dn, xn+1). The

1

wwm@u.northwestern.edu
maojiangsu2030@u.northwestern.edu
mailto:jhu@u.northwestern.edu
magic.linuxkde@gmail.com
mailto:hanliu@northwestern.edu
https://arxiv.org/abs/2411.16549

In-Context Deep Learning via Transformer Models

goal is for the prediction ŷn+1 to be close to yn+1 = f(x).

(ii) ICL for Gradient Descent of a Parametrized Model
f(w, ·). Bai et al. (2023) generalize (i) to include algo-
rithmic approximations of Gradient Descent (GD) training
algorithms and explore how transformers simulate gradi-
ent descent during inference without parameter updates.
They term the simulated GD algorithm “In-Context Gra-
dient Descent (ICGD).” In essence, ICGD enables trans-
formers to approximate gradient descent on a loss function
Ln(w) for a parameterized model f(w, ·) based on a dataset
Dn. Traditional gradient descent updates w iteratively as
wt+1 = wt − η∇Ln(wt). In contrast, ICGD uses a trans-
former T to simulate these updates within a forward pass.
Given example data Dn and test input xn+1, the transformer
performs gradient steps in an implicit fashion by inferring
parameter updates through its internal representations, using
input context without explicit weight changes. Please see
Section 2 for explicit formulation.

In this work, we investigate the case where f(w, ·) is a deep
feed-forward neural network. We defer the detailed problem
setting to Section 2. In comparison to standard ICGD (Bai
et al., 2023), ICGD for deep feed-forward networks is not
trivial. This is due to two technical challenges:

(C1) Analytical feasibility of gradient computation for
these thick networks.

(C2) Explicit construction capable of approximating ICGD
for such layers and their gradients.

To this end, we present the first explicit expression for
gradient computation of N -layer feed-forward network
(Lemma 1). Importantly, its term-by-term tractability pro-
vides key insights for the detailed construction of a specific
transformer to train this network via ICGD (Theorem 1).

Contributions. Our contributions are threefold:

• Approximation by ReLU-Transformer. For simplic-
ity, we begin with the ReLU-based transformer. For a
broad class of smooth empirical risks, we construct a
(2N + 4)L-layer transformer to approximate L steps of
in-context gradient descent on the N -layer feed-forward
networks with the same input and output dimensions (The-
orem 1). We then extend this to accommodate varying
dimensions (Theorem 4). We also provide the theoretical
guarantees for the approximation within any given error
(Corollary 1.1) and the convergence of the ICL gradient
descent (Lemma 14).

• Approximation by Softmax-Transformer. We extend
our analysis to the Softmax-transformer to better reflect
realistic applications. The key technique is to ensure a
qualified approximation error at each point to achieve uni-
versal approximation capabilities of the Softmax-based
Transformer (Lemma 16). We give a construction of a

4L-layer Softmax transformer to approximate L steps of
gradient descent, and guarantee the approximation and
the convergence (Theorem 2).

• Experimental Validation. We validate our theory with
ReLU- and Softmax-transformers, specifically, ICGD
for the N -layer networks (Theorem 1, Theorem 2, and
Theorem 4). We assess the ICL capabilities of transform-
ers by training 3-, 4-, and 6-layer networks in Section 5.
The numerical results show that the performance of ICL
matches that of training N -layer networks. However, a
minor limitation is that the trained transformers do not
always achieve the theoretical construction.

Organization. We present our main results in Theo-
rem 1. Section 2 covers the preliminaries. Section 3
presents the problem setup and the ICL approximation of
GD steps for an N -layer feed-forward network with both
ReLU-Transformer and Softmax-Transformer. Section 5
presents the experimental results, with additional details
in Appendix F. The appendix includes related work (Ap-
pendix A.1), detailed proofs for Section 3 (Appendix C),
and an application to train diffusion models via ICL (Ap-
pendix G).

Notations. We use lower case letters to denote vectors
and upper case letters to denote matrices. The index set
{1, ..., I} is denoted by [I], where I ∈ N+. For any matrices
A ∈ Rn×n, let ℓp norm of A be induced by vector ℓp-norm,
defined as ∥A∥p := sup{∥Ax∥p : x ∈ Rn with ∥x∥p = 1}.
We use A[i, j] to denote the element in i-th row and j-th
column of matrix A. For any matrices A ∈ Rm×n and
B ∈ Rm×n, let ⊙ denotes the Hadamard product: (A ⊙
B)[i, j] := A[i, j] · B[i, j]. For any matrices A ∈ Rm×n

and B ∈ Rp×q , let ⊗ denote the Kronecker product:

A⊗B :=

 A[1, 1]B · · · A[1, n]B
...

. . .
...

A[m, 1]B · · · A[m,n]B

 .

2 Preliminaries: ICL and ICGD
We present the ideas we built upon: In-Context Gradient
Descent (ICGD).

(i) ICL for Function f . Let f : Rd → R be the func-
tion of our interest. Suppose we have a dataset Dn :=
{(xi, yi)}i∈[n], where {xi}i∈[n] ⊆ Rd and {yi}i∈[n] ⊆ R
are the input and output of f , respectively. Let xn+1 be the
test input. The goal of ICL is to use a transformer, denoted
by T , to predict yn+1 based on the test input and the in-
context dataset autoregresively: ŷn+1 ∼ T (Dn, xn+1). For
convenience in our analysis, we adopt the ICL notation from
(Bai et al., 2023). Specifically, we shorthand (Dn, xn+1)
into an input sequence (i.e., prompt) of length n + 1 and
represent it as a compact matrix H ∈ RD×(n+1) :=

2

In-Context Deep Learning via Transformer Models

[h1, . . . , hn+1] in the form:

H :=

x1 x2 · · · xn xn+1

y1 y2 · · · yn 0
q1 q2 · · · qn qn+1

 ∈ RD×(n+1),

qi :=

0D−(d+3)

1
ti

 ∈ RD−(d+1). (2.1)

We use qi to fill in the remain D−(d+1) entries in addition
to xi ∈ Rd and yi ∈ R. The last entry ti := 1(i < n + 1)
of qi is the position indicator to distinguish the n in-context
examples and the test data. The problem of “ICL for f” is
to show the existence of a transformer T that, when given
H , outputs T (H) ∈ RD×(n+1) of the same shape, and
the “(d+ 1, n+ 1) entry of T (H)” provides the prediction
ŷn+1. The goal is for the prediction ŷn+1 to be close to
yn+1 = f(x) measured by some proper loss.

(ii) ICL for Gradient Descent of a Parametrized Model
f(w, ·). We aim to use ICL to simulate the standard super-
vised training procedure for N -layer neural networks. To
achieve this, we introduce the concept of In-Context Gradi-
ent Descent (ICGD) for a parameterized model. Consider
a machine learning model f(w, ·) : RDw × Rd → Rd,
parametrized by w ∈ RDw . Given a dataset Dn :=

{(xi, yi)}i∈[n]
iid∼ P, a typical learning task is to find pa-

rameters w⋆ such that f(w⋆, ·) becomes closest to the true
data distribution P. Then, for any test input xn+1, we pre-
dict: ŷn+1 = f(w⋆, xn+1). To find w⋆, Bai et al. (2023)
configure a transformer to implement gradient descent on
f(w, ·) through ICL, simulating optimization algorithms
during inference without explicit parameter updates. We
formalize this In-Context Gradient Descent (ICGD) prob-
lem: using a pretrained model to simulate gradient descent
on f(w, ·) w.r.t. the provided context (Dn, xn+1).

Problem 1 (In-Context Gradient Descent (ICGD) on Model
f(w, ·) (Bai et al., 2023)). Let ϵ > 0 and L ≥ 1. Consider
a machine learning model f(w, x) : RDw × Rd → Rd

parameterized by w ∈ RDw . Given a dataset Dn :=

{(xi, yi)}i∈[n]
iid∼ P with (xi, yi) ∈ Rd × Rd, define the

empirical risk function:

Ln(w) :=
1

2n

n∑
i=1

ℓ(f(w, xi), yi), (2.2)

where ℓ : Rd × Rd → R is a loss function. Let W ⊆ RDw

be a closed domain, and ProjW denote the projection onto
W . The problem of “ICGD on model f(w, ·)” is to find a
transformer T with L blocks, each approximating one step
of gradient descent using T layers. For any input H(0) ∈
RD×(n+1) in the form of (2.1), the transformer T (H(0))
approximates L steps of gradient descent. Specifically, for
l ∈ [L] and i ∈ [n + 1], the output at layer T l is: h(Tl)

i =

[xi; yi;w
(l);0; 1; ti], where, with w(0) = 0,

w(l) = ProjW

(
w(l−1) − η

(
∇Ln(w

(l−1)) + ϵ(l−1)
))

,

(2.3)

is updated recursively, and ∥ϵ(l−1)∥2 ≤ ϵ represents the
approximation error at step l − 1.

Problem 1 aims to find a transformers T to perform L steps
gradient descent on loss Ln(w) in an implicit fashion (i.e.,
no explicit parameter update). More precisely, Bai et al.
(2023) configure T with L identical blocks, each approx-
imating one gradient descent step using T layers. In this
work, we investigate the case where f(w, ·) is an “N -layer
neural network.”

Transformer. We defer the standard definition of trans-
former to Appendix B.1.

3 In-Context Gradient Descent on N -Layer
Neural Networks

We now show that transformers is capable of implement-
ing gradient descent on N -layer neural networks through
ICL. In Section 3.1, we define the N -layer ReLU neural
network and state its ICGD problem. In Section 3.2, we
derive explicit gradient descent expression for N -layer NN.
In Section 3.3, we construct ReLU-Transformer executing
gradient descent on N -layer NN via ICL. In Section 4, we
show the existence of Softmax-Transformer capable of per-
forming in-context gradient descent on N -layer NN.

3.1 Problem Setup: ICGD for N -Layer Neural
Networks

To begin, we introduce the construction of our N -Layer
Neural Network which we aims to implement gradient de-
scent on its empirical loss function.

Definition 1 (N -Layer Neural Network). An N -Layer Neu-
ral Network comprises N − 1 hidden layers and 1 out-
put layer, all constructed similarly. Let r : R → R be
the activation function. For the hidden layers: for any
i ∈ [n + 1], j ∈ [N − 1], and k ∈ [K], the output
for the first j layers w.r.t. input xi ∈ Rd, denoted by
predh(xi; j) ∈ RK , is defined as recursive form:

predh(xi; 1)[k] := r(v⊤1kxi),

predh(xi; j)[k] := r(v⊤jkpredh(xi; j − 1)),

where v1k ∈ Rd and vjk ∈ RK for j ∈ {2, . . . , N − 1}
are the k-th parameter vectors in the first layer and the j-th
layer, respectively. For the output layer (N -th layer), the
output for the first N layers (i.e the entire neural network)
w.r.t. input xi ∈ Rd, denoted by predo(xi;w,N) ∈ Rd, is
defined for any k ∈ [d] as follows:
predo(xi;w,N)[k] := r(v⊤Nk

predh(xi;N − 1)), (3.1)
where vNk

∈ RK are the k-th parameter vectors in the

3

In-Context Deep Learning via Transformer Models

N -th layer and w ∈ R2dK+(N−2)K2

denotes the vector
containing all parameters in the neural network,

w :=
[
v⊤11 , . . . , v

⊤
1K , . . . , v⊤jk , . . . , v

⊤
N1

, . . . , v⊤Nd

]⊤
. (3.2)

Remark 1 (Prediction Function for j-th layer on i-th Data:
pi(j)). For simplicity, we abbreviate the output from the
first j-th layer of the N -layer neural networks NN with input
xi as pi(j),

pi(j) :=


xi ∈ Rd, for j = 0

predh(xi; j) ∈ RK , for j ∈ [N − 1]

predo(xi;w,N) ∈ Rd, for j = N.

(3.3)
Additionally, we define

pi := [pi(1); . . . ; pi(N)] ∈ R(N−1)K+d.

We formalize the problem of using a transformer to simulate
gradient descent algorithms for training the N -layer NN de-
fined in Definition 1, by optimizing loss (2.2). Specifically,
we consider the ICGD (Problem 1) with the parameterized
model f(w, ·) := predo(·;w,N).

Problem 2 (ICGD on N -Layer Neural Networks). Let the
N -layer neural networks, activation function r, and predic-
tion function pi(j) for all layers follow Definition 1 and Re-
mark 1. Assume we under the identical setting as Problem 1,
considering model f(w, ·) := predo(·;w,N) and specify-
ing W is a closed domain such that for any j ∈ [N − 1] and
k ∈ [K],

W ⊂
{
w = [vjk] ∈ RDN : ∥vjk∥2 ≤ Bv

}
. (3.4)

The problem of “ICGD on N -layer neural networks” is to
find a TL layers transformer T , capable of implementing L
steps gradient descent as in Problem 1.

Remark 2 (Why Bounded Domain W?). For using a sum of
ReLU to approximate functions like r, which is illustrated in
the consequent section, we need to avoid gradient exploding.
Therefore, we require W to be a bounded domain, and
utilize ProjW to project w into bounded domain W .

3.2 Explicit Gradient Descent of N -Layer Neural
Networks

Intuitively, Problem 2 asks whether there exists a trans-
former capable of simulating the gradient descent algorithm
on the loss function of an N -layer neural network. We
answer Problem 2 by providing an explicit construction
for such a transformer T in Theorem 1. To facilitate our
proof, we first introduce the necessary notations for explicit
expression of the gradient ∇wLn(w).

Definition 2 (Abbreviations). Fix i ∈ [n+ 1], and consider
an N -layer neural network with activation function r and
prediction function pi(j) as defined in Definition 1.

• Let Dj ∈ R denote the total number of parameters in the

first j layers. By (3.2), we have:

Dj =


0, j = 0

dK, j = 1

(j − 1)K2 + dK, 2 ≤ j ≤ N − 1

(N − 2)K2 + 2dK, j = N.

• The parameter vector w :=[
v⊤11 , . . . , v

⊤
1K , . . . , v⊤N−11

, . . . , v⊤N−1K
, v⊤N1

, . . . , v⊤Nd

]⊤
follows (3.2). Define ϕi :=

(
∂ℓ(pi(N),yi)

∂pi(N) · ∂pi(N)
∂w

)⊤
∈

RDN . For any j ∈ [N], let Ai(j) denote the derivative
of ℓ(pi(N), yi) with respect to the parameters in the j-th
layer: Ai(j) = ϕi[Dj−1 : Dj], where ϕi[a : b] selects
elements from the a-th to b-th position in ϕi.

• For activation function r(t), let r′(t) be its derivative. De-
fine r′i(j) ∈ RK as:

r′i(j)[k] := r′(v⊤j+1k
pi(j)).

• Define r′i := [r′i(0); . . . ; r
′
i(N − 1)] and Ri(j) as:

Ri(j) :={
diag{r′(v⊤j+11

pi(j)), . . . , r
′(v⊤j+1K

pi(j))}, j ≤ N − 2

diag{r′(v⊤j+11
pi(j)), . . . , r

′(v⊤j+1d
pi(j))}, j = N − 1.

where Ri(j) ∈ RK×K for j ∈ {0, . . . , N − 2} and
Ri(j) ∈ Rd×d for j = N − 1.

• For any j ∈ [N], let Vj denote the parameters in the j-th
layer as:

Vj :=



[
v11 , . . . , v1K

]⊤
∈ RK×d, j = 1[

vj1 , . . . , vjK

]⊤
∈ RK×K , j ∈ 2, . . . , N − 1[

vN1 , . . . , vNd

]⊤
∈ Rd×K , j = N.

Definition 2 splits the gradient of Ln(w) into N parts. This
makes ∇wLn(w) more interpretable and tractable, since all
parts follows a recursion formula according to chain rule.
With above notations, we calculate the gradient descent step
(2.3) of N -layer neural network as follows:

Lemma 1 (Decomposition of One Gradient Descent Step).
Fix any Bv, η > 0. Suppose loss function Ln(w) on n data
points {(xi, yi)}i∈[n] follows (2.2). Suppose closed domain
W and projection function ProjW(w) follows (3.4). Let
Ai(j), r

′
i(j), Ri(j), Vj be as defined in Definition 2. Then

the explicit form of gradient ∇Ln(w) becomes

∇Ln(w) =
1

2n

n∑
i=1

Ai(1)
...

Ai(N)

 , (3.5)

where Ai(j) denote the derivative of ℓ(pi(N), yi) with re-
spect to the parameters in the j-th layer,
Ai(j) =

4

In-Context Deep Learning via Transformer Models



(Ri(N − 1)VN . . . Ri(j − 1)
[
IK×K ⊗ pi(j − 1)⊤

]
)⊤

·(∂ℓ(pi(N),yi)
∂pi(N))⊤, j ̸= N

(Ri(N − 1) ·
[
Id×d ⊗ pi(N − 1)⊤

]
)⊤

·(∂ℓ(pi(N),yi)
∂pi(N))⊤, j = N.

Proof Sketch. Using the chain rule and product rule,
we decompose the gradient as follows: ∇wLn(w) =
1
2n

∑N
i=1[

∂pi(N)
∂w]⊤ · [∂ℓ(pi(N),yi)

∂pi(N)]⊤. Thus, we only need

to compute ∂pi(N)
∂w . By Definition 1 and the chain rule, we

prove that ∂pi(N)
∂w satisfies the recursive formulation (C.4).

Combining these, we derive the explicit form of gradient
∇wLn(w), and the gradient step follows directly. Please
see Appendix C.1 for a detailed proof.

It is hard to calculate the elements in Ai(j) in a straightfor-
ward mannar, we calculate each parts of it successively. We
define the intermediate terms si(j) and u as follows

Definition 3 (Definition of intermediate terms). Let
Ai(j), r

′
i(j), Ri(j), Vj be as defined in Definition 2. For any

t, y ∈ Rd, we define vector function u(t, y) := (∂ℓ(t,y)∂t)⊤ :
Rd × Rd → Rd. Moreover, for any j ∈ [N], i ∈ [n + 1],
we define si(j) as

si(j) :=


Ri(j − 1)V ⊤

j+1 . . . Ri(N − 2)V ⊤
N ·Ri(N − 1)

·u(pi(N), yi) ∈ RK , j ̸= N

Ri(N − 1) · u(pi(N), yi) ∈ Rd, j = N.

Let ⊙ denotes Hadamard product. For any j ∈ [N − 1], i ∈
[N + 1], Definition 3 leads to

si(j) = r′i(j − 1)⊙ (V ⊤
j+1 · si(j + 1)), (3.6)

Moreover, by Definition 3, it holds

Ai(j) =


[
IK×K ⊗ pi(j − 1)

]
· si(j), j ̸= N,[

Id×d ⊗ pi(N − 1)
]
· si(N), j = N.

(3.7)

3.3 Transformers Approximate Gradient Descent of
N -Layer Neural Networks In-Context

For using neural networks to approximate (2.2), which con-
tains smooth functions changeable, we need to approximate
these smooth functions by simple combination of activa-
tion functions. Our key approximation theory is the sum of
ReLUs for any smooth function (Bai et al., 2023).

Definition 4 (Approximability by Sum of ReLUs, Definition
12 of (Bai et al., 2023)). Let z ∈ Rk. We say a function
g : Rk → R is (ϵapprox, R,H,C)-approximable by sum of
ReLUs if there exist a “(H,C)-sum of ReLUs” function
fH,C(z) defined as

fH,C(z) =

H∑
h=1

chσ(a
⊤
h [z; 1]),

with
∑H

h=1 |ch| ≤ C, maxh∈[H] ∥ah∥1 ≤ 1, ah ∈ Rk+1,
and ch ∈ R, such that

sup
z∈[−R,R]k

|g(z)− fH,C(z)| ≤ ϵapprox.

Overview of Our Proof Strategy. Lemma 1 and Defini-
tion 4 motivate the following strategy: term-by-term ap-
proximation for our gradient descent step (3.5). Please see
Figure 1 for a high-level visualization.

• Step 1. Given (xi, w), we use N attention layers to
approximate the output of the first j layers with input xi,
pi(j) := predh(xi; j) ∈ Rk (Definition 1) for any j ∈
[N]. Then we use 1 attention layer to approximate chain-
rule intermediate terms r′i(j − 1)[k] := r′(v⊤jkpi(j − 1))
(Definition 2) for any i ∈ [n], j ∈ [N] and k ∈ [K]:
Lemma 2 and Lemma 3.

• Step 2. Given (r′i, pi, w), we use an MLP layer to ap-
proximate u(pi(N), yi) (Definition 3), for i ∈ [n], and
use N element-wise multiplication layers to approximate
si(j) (Definition 3), for any j ∈ [N]: Lemma 4 and
Lemma 5. Moreover, Lemma 6 shows the closeness re-
sult for approximating si(j), which leads to the final error
accumulation in Theorem 1.

• Step 3. Given (pi, r
′
i, gisi(j), w), we use an attention

layer to approximate w − η∇Ln(w). Then we use an
MLP layer to approximate ProjW(w). And implement-
ing L steps gradient descent by a (2N +4)L-layer neural
network NNθ constructed based on Step 1 and 2. Fi-
nally, we arrive our main result: Theorem 1. Furthermore,
Lemma 14 shows closeness results to the true gradient
descent path.

Step 1. We start with approximation for pi(j).

Lemma 2 (Approximate pi(j)). Let upper bounds
Bv, Bx > 0 such that for any k ∈ [K], j ∈ [N] and i ∈ [n],
∥vjk∥2 ≤ Bv, and ∥xi∥2 ≤ Bx. For any j ∈ [N], i ∈ [n],
define
Bj

r := max
|t|≤BvB

j−1
r

|r(t)|, B0
r := Bx, andBr := max

j
Bj

r .

Let function r(t) be (ϵr, R1,M1, C1)-approximable for
R1 = max{BvBr, 1}, M1 ≤ Õ(C2

1ϵ
−2
r), where C1 de-

pends only on R1 and the C2-smoothness of r. Then, for any
ϵr > 0, there exist N attention layers Attnθ1 , . . . ,AttnθN
such that for any input hi ∈ RD takes from (2.1), they map

hi = [xi; yi;w; pi(1); . . . ; pi(j − 1);0; 1; ti]

Attnθj−−−−→ h̃i = [xi; yi;w; pi(1); . . . ; pi(j);0; 1; ti],

where pi(j) is approximation for pi(j) (Definition 1). In
the expressions of hi and h̃i, the dimension of 0 differs.
Specifically, the 0 in hi is larger than in h̃i. The dimensional
difference between these 0 vectors equals the dimension of
pi(j). Suppose function r is Lr-smooth in bounded domain

5

In-Context Deep Learning via Transformer Models

Inputs TFN
θ TF1

θ TF1
θ EWMLN

θ TF2
θ

{(xi, yi)}i∈[n], w pi(j) r′i(j) u(pi(N), yi) si(j) ProjW(w − η∇Ln(w))

Lemma 2 Lemma 3 Lemma 4 Lemma 5 Theorem 1

Figure 1: One Step In-Context Gradient Descent (ICGD) with (2N + 4)-layer Transformer. This illustration presents
the backpropagation process within an ICGD in a transformer model with 2N + 4 layers. It simulates a single gradient
descent step for an N -layer neural network, trained with loss Ln and datasets {(xi, yi)}i∈[n]. The term pi(j) denotes the
output after the j-th layer for input xi. The terms r′i(j), u(pi(N), yi), and si(j) are intermediate gradient terms of gradient
∇Ln(w) from the chain rule. The expression ProjW(w − η∇Ln(w)) shows one gradient descent step. Here, η is the
learning rate, and W denotes the bounded domain for the N -layer NN parameters w.

W , then for any i ∈ [n+ 1], j ∈ [N], pi(j) such that
pi(j) = pi(j) + ϵ(i, j), (3.8)

∥ϵ(i, j)∥2 ≤

{
(
∑j−1

l=0 Kl/2Ll
rB

l
v)
√
Kϵr , 1 ≤ j ≤ N − 1

(
∑N−1

l=0 Kl/2Ll
rB

l
v)
√
dϵr , j = N.

(3.9)
Additionally, for any j ∈ [N], the norm of parameters Bθj

defined as (B.1) such that Bθj ≤ 1 +KC1.

Proof. Please see Appendix C.2 for a detailed proof.

Notice that the form of error accumulation in Lemma 2 is
complicated. For the ease of later presentations, we define
the upper bound of coefficient in (3.8) as

Er := max
j∈[N]

∥ϵ(i, j)∥2
ϵr

(3.10)

= max
j∈[N]

{(
j−1∑
l=0

Kl/2Ll
rB

l
v)
√
K, (

N−1∑
l=0

Kl/2Ll
rB

l
v)
√
d},

(3.11)
such that (3.8) becomes

pi(j) = pi(j) + ϵ(i, j), ∥ϵ(i, j)∥2 ≤ Erϵr. (3.12)
Moreover, we abbreviate pi := [pi(1); . . . ; pi(N)] ∈
R(N−1)K+d, such that the output of Attnθ1 ◦ · · · ◦AttnθN
is

hi = [xi; yi;w; pi;0; 1; ti]. (3.13)
Then, the next lemma approximates r′i(j) base on pi(j)
obtained in Lemma 2.

Lemma 3 (Approximate r′i(j)). Let upper bounds
Bv, Bx > 0 such that for any k ∈ [K], j ∈ [N] and i ∈ [n],
∥vjk∥2 ≤ Bv, and ∥xi∥2 ≤ Bx. For any j ∈ [N], i ∈ [n],
define
B′j

r := max
|t|≤BvB

j−1

r′

|r′(t)|, B0
r′ := Bx, andBr′ := max

j
Bj

r′ .

Suppose function r′(t) is (ϵr′ , R2,M2, C2)-approximable
for R2 = max{BvBr′ , 1}, M2 ≤ Õ(C2

2ϵ
′−2
r), where C2

depends only on R2 and the C2-smoothness of r′. Then,

for any ϵr > 0, there exist an attention layer AttnθN+1
such

that for any input hi ∈ RD takes from (3.13), it maps
hi = [xi; yi;w; pi;0; 1; ti]

AttnθN+1−−−−−−→ h̃i = [xi; yi;w; pi; r
′
i;0; 1; ti],

where r′i(j) is approximation for r′i(j) (Definition 2) and
r′i := [r′i(0); . . . ; r

′
i(N − 1)] ∈ R(N−2)K+d. Similar to

Lemma 2, in the expressions of hi and h̃i, the dimension of
0 differs. In addition, let Er be defined in (3.12), for any
i ∈ [n+ 1], j ∈ [N], k ∈ [K], r′i(j) such that

r′i(j − 1)[k] =r′i(j − 1)[k] + ϵ(i, j, k),

|ϵ(i, j, k)| ≤ϵr′ + Lr′BvErϵr, (3.14)
where ϵr denotes the error generated in approximating r
by sum of ReLUs r follows (C.5). Additionally, the norm
of parameters BθN+1

defined as (B.1) such that BθN+1
≤

1 +K(N − 1)C2.

Proof Sketch. By Lemma 2, we obtain pi(j), the approx-
imation for pi(j) (3.3). Using pi(j), we construct an At-
tention layer to approximate r′i(j). We then establish up-
per bounds for the errors |r′i(j)[k]− r′i(j)[k]| by applying
Cauchy-Schwarz inequality and Lemma 2. Finally we
present the norms (B.1) of the Transformers constructed.
Please see Appendix C.3 for a detailed proof.

Let Attnθj (j ∈ [N]) be as defined in Lemma 2, then
Lemma 3 implies that for the input takes from Problem 2,
the output of Attnθ1 ◦ · · · ◦AttnθN+1

is
hi = [xi; yi;w; pi; r

′
i;0; 1; ti]. (3.15)

Step 2. Now, we construct an approximation for
u(pi(N), yi) = (∂ℓ(pi(N),yi)

∂pi(N))⊤.

Lemma 4 (Approximate u(pi(N), yi)). Let upper bounds
Bv, Bx, > 0 such that for any k ∈ [K], j ∈ [N] and i ∈ [n],
∥vjk∥2 ≤ Bv, and ∥xi∥2 ≤ Bx. For any k ∈ [d], sup-
pose function u(t, y)[k] be (ϵl, R3,M

k
3 , C

k
3)-approximable

for R3 = max{BvBr, By, 1}, M3 ≤ Õ((Ck
3)

2ϵ−2
l),

where Ck
3 depends only on Rk

3 and the C3-smoothness of

6

In-Context Deep Learning via Transformer Models

u(t, y)[k]. Then, there exists an MLP layer MLPθN+2
such

that for any input sequences hi ∈ RD takes from (3.15), it
maps

hi = [xi; yi;w; pi; r
′
i;0; 1; ti]

MLPθN+2−−−−−−→ h̃i = [xi; yi;w; pi; r
′
i; gi;0; 1; ti],

where gi ∈ Rd is an approximation for u(pi(N), yi). For
any k ∈ [d], assume u(pi(N), yi) is Ll- Lipschitz continu-
ous. Then the approximation gi such that,

gi[k] = u(pi(N), yi)[k] + ϵ(i, k), (3.16)
with |ϵ(i, k)| ≤ ϵl + LlErϵr. Additionally, the parameters
θN+2 such that

BθN+2
≤ max{R3 + 1, C3}.

Proof Sketch. By Definition 1, we provide term-by-term
approximations for pi(j) as forward propagation. Specifi-
cally, we construct Attention layers to implement forward
propagation algorithm. Then we establish upper bounds for
the errors ∥pi(j)− pi(j)∥2 inductively. Finally, we present
the norms (B.1) of the Transformers constructed. Please see
Appendix C.4 for a detailed proof.

Let Attnθj (j ∈ [N + 1]) be as defined in Lemma 2 and
Lemma 3, then for any input sequences hi ∈ RD takes from
(2.1), the output of Attnθ1 ◦ · · · ◦AttnθN+1

◦MLPθN+2
is

hi = [xi; yi;w; pi; r
′
i; gi;0; 1; ti]. (3.17)

Before introducing our next approximation lemma, we
define an element-wise multiplication layer, since atten-
tion mechanisms and MLPs are unable to compute self-
products (e.g., output xy from input [x; y]). To enable self-
multiplication, we introduce a function γ. This function, for
any square matrix, preserves the diagonal elements and sets
all others to zero.

Definition 5 (Operator Function γ). For any square matrix
A ∈ Rn×n, define

γ(A) := diag(A[1, 1], . . . A[n, n]) ∈ Rn×n.

By Definition 5, we introduce the following element-
wise multiplication layer, capable of performing self-
multiplication operations such as the Hadamard product.

Definition 6 (Element-wise Multiplication Layer). Let γ
be defined as Definition 5. An element-wise multiplication
layer with m heads is denoted as Attnθ(·) with parameters
θ = {Qm,Km, Vm}m∈[M]. On any input sequence H ∈
RD×n,

EWMLθ(H) = H +

m∑
i=1

(VmH) · γ((QmH)⊤(KmH)).

(3.18)
where Qm,Km, Vm ∈ RD×D and γ(·) is operator func-
tion follows Definition 5. In vector form, for for each
token hi ∈ RD in H , it outputs [EWMLθ(H)]i = hi +∑M

m=1 γ(⟨Qmhi,Kmhi⟩) · Vmhi. In addition, we define

L-layer neural networks
EWMLL

θ := EWMLθ1 ◦ · · · ◦ EWMLθL .

Remark 3 (Necessary for Element-Wise Multiplication
Layer). As we shall show in subsequent sections, ELML is
capable of implementing multiplication in hi. Specifically,
it allows us to multiply some elements in hi in Lemma 5.
By Definition 7, it is impossible for transformer layers to
achieve our goal without any other assumptions.

Similar to (B.1), we define the norm for L-layer transformer
EWMLL

θ as:
Bθ := max

m∈[M],l∈[L]
{∥Ql

m∥1, ∥Kl
m∥1, ∥V l

m∥1}. (3.19)

Then, given the approximations for pi(j) and r′i(j), we
use N element-wise multiplication layer (Definition 6) to
approximate si(j), the chain-rule intermediate terms defined
as Definition 3.

Lemma 5 (Approximate si(j)). Recall that si(j) = r′i(j −
1)⊙ (V ⊤

j+1 · si(j + 1)) follows Definition 3. Let the initial
input take from (3.17). Then, there exist N element-wise
multiplication layers: EWMLθN+3

, . . . ,EWMLθ2N+2
such

that for input sequences, j ∈ [N],
hi = [xi; yi;w; pi; r

′
i; gi; si(N); . . . ; si(j + 1);0; 1; ti],

they map EWMLθ2N+3−j
(hi) =

[xi; yi;w; pi; r
′
i; gi; si(N); . . . ; si(j);0; 1; ti], where

the approximation si(j) is defined as recursive form: for
any i ∈ [n+ 1], j ∈ [N],

si(j) :=

{
r′i(j − 1)⊙ (V ⊤

j+1 · si(j + 1)), j ∈ [N − 1]

r′i(N − 1)⊙ gi, j = N.

(3.20)
Additionally, for any j ∈ [N], BθN+2+j

defined in (B.1)
satisfies BθN+2+j

≤ 1.

Proof. Please see Appendix C.5 for a detailed proof.

Let Attnθj (j ∈ [N + 1]),MLPθN+2
be as defined in

Lemma 2, Lemma 3 and Lemma 4 respectively. Define
si := [si(N); . . . ; si(1)] ∈ R(N−1)K+d, then for any input
sequences hi ∈ RD takes from Problem 2, the output of
neural network

Attnθ1 ◦ · · · ◦AttnθN+1
◦MLPθN+2

◦ EWMLθN+3

◦ · · · ◦EWMLθ2N+2
, (3.21)

is
hi = [xi; yi;w; pi; r

′
i; si;0; 1; ti]. (3.22)

For the sake of simplicity, we consider ReLU Attention
layer and MLP layer are both a special kind of transformer.
In this way, by Definition 9, (3.21) becomes

TFN+2
θ ◦ EWMLN

θ .

Next we calculate the error accumulation
|si(j)[k]− si(j)[k]| based on Lemma 3 and Lemma 4.

7

In-Context Deep Learning via Transformer Models

Lemma 6 (Error for si(j)). Suppose the upper bounds
Bv, Bx > 0 such that for any k ∈ [K], j ∈ [N] and i ∈ [n],
∥vjk∥2 ≤ Bv, and ∥xi∥2 ≤ Bx. Let r′i(j) ∈ RK such
that r′i(j)[k] := r′(v⊤j+1k

pi(j)) follows Definition 2. Let
si(j) = Ri(j−1)V ⊤

j+1 . . . Ri(N −2)V ⊤
N ·Ri(N −1)u fol-

lows Definition 3. Let r′i(j), gi, si(j) be the approximations
for r′i(j), u(pi(N), yi), si(j) follows Lemma 3, Lemma 4
and Lemma 5 respectively. Let Br′ be the upper bound of
r′i(j)[k] and r′i(j)[k] as defined in Lemma 3. Let Bl be the
upper bound of gi and u(pi(N), yi) as defined in Lemma 4.
Then for any i ∈ [n+ 1], j ∈ [N], k ∈ [K],

si(j)[k] ≤ Bs,

|si(j)[k]− si(j)[k]| ≤ Er
s ϵr + Er′

s ϵr′ + El
sϵl,

where Bs is the upper bound of si(j)[k] and Er
s , E

r′

s , El
s

are the coefficients of ϵr, ϵ
′
r, ϵl in the upper bounds of

|si(j)[k]− si(j)[k]|, respectively.

Proof. Please see Appendix C.6 for a detailed proof.

Lemma 6 offers the explicit form of the error
|si(j)[k]− si(j)[k]|, which is crucial for calculating the
error ∥∇wLn(w)−∇wLn(w)∥2 in Theorem 1.

Step 3. Combining the above, we prove the existence of a
neural network, that implements L in-context GD steps on
our N -layer neural network. And finally we arrive our main
result: a neural network T for Problem 2.

Theorem 1 (In-Context Gradient Descent on N -layer NNs).
Fix any Bv, η, ϵ > 0, L ≥ 1. For any input sequences takes
from (2.1), their exist upper bounds Bx, By such that for any
i ∈ [n], ∥yi∥2 ≤ By, ∥xi∥2 ≤ Bx. Assume functions r(t),
r′(t) and u(t, y)[k] are Lr, Lr′ , Ll-Lipschitz continuous.
Suppose W is a closed domain such that for any j ∈ [N−1]
and k ∈ [K],

W ⊂
{
w = [vjk] ∈ RDN : ∥vjk∥2 ≤ Bv

}
,

and ProjW project w into bounded domain W . Assume
ProjW = MLPθ for some MLP layer with hidden dimen-
sion Dw parameters ∥θ∥ ≤ Cw. If functions r(t), r′(t) and
u(t, y)[k] are C4-smoothness, then for any ϵ > 0, there ex-
ists a transformer model NNθ with (2N+4)L hidden layers
consists of L neural network blocks TFN+2

θ ◦ EWMLN
θ ◦

TF2
θ,

NNθ := TFN+2
θ ◦ EWMLN

θ ◦ TF2
θ,

such that the heads number M l, parameter dimensions Dl,
and the parameter norms Bθl suffice

max
l∈[(2N+4)L]

M l ≤ Õ(ϵ−2),

max
l∈[(2N+4)L]

Dl ≤ O(NK2) +Dw,

max
l∈[(2N+4)L]

Bθl ≤ O(η) + Cw + 1,

where Õ(·) hides the constants that depend on d,K,N ,
the radius parameters Bx, By, Bv and the smoothness of

r and ℓ. And this neural network such that for any input
sequences H(0), take from (2.1), NNθ(H

(0)) implements
L steps in-context gradient descent on risk Eqn (2.2): For
every l ∈ [L], the (2N + 4)l-th layer outputs h((2N+4)l)

i =
[xi; yi;w

(l);0; 1; ti] for every i ∈ [n + 1], and approxima-
tion gradients w(l) such that

w(l) = ProjW(w(l−1) − η∇Ln(w
(l−1)) + ϵ(l−1)),

where w(0) = 0, and ∥ϵ(l−1)∥2 ≤ ηϵ is an error term.

Proof Sketch. Let the first 2N +2 layers of NNθ are Trans-
formers and EWMLs constructed in Lemma 2, Lemma 3,
Lemma 4, and Lemma 5. Explicitly, we design the
last two layers to implement the gradient descent step
(Lemma 1). We then establish the upper bounds for er-
ror ∥∇wLn(w)−∇wLn(w)∥2, where ∇wLn(w), derived
from the outputs of NNθ, approximates ∇wLn(w). Next,
for any ϵ > 0, we select appropriate parameters ϵl, ϵr and
ϵr′ to ensure that ∥∇wLn(w

(l−1))−∇wLn(w
(l−1))∥2 ≤ ϵ

holds for any l ∈ [L].

Please see Appendix C.7 for a detailed proof.

We summarize and visualize the backpropagation process
within an ICGD in a transformer model with 2N + 4 layers
in Figure 1. As a direct result, the neural networks NNθ

constructed earlier is able to approximate the true gradient
descent trajectory {wl

GD}l≥0, defined by w0
GD = 0 and

wl+1
GD = wl

GD−η∇wLn(w
l
GD) for any l ≥ 0. Consequently,

Theorem 1 motivates us to investigate the error accumulation
under setting

w(l) = ProjW(w(l−1) − η∇Ln(w
(l−1)) + ϵ(l−1)),

where w(0) = 0, and ∥ϵ(l−1)∥2 ≤ ηϵ represents error terms.
Moreover, Corollary 1.1 shows NNθ constructed in The-
orem 1 implements L steps ICGD with exponential error
accumulation to the true GD paths.

Corollary 1.1 (Error for implementing ICGD on N -layer
neural network). Fix L ≥ 1, under the same setting as Theo-
rem 1, (2N+4)L-layer neural networks NNθ approximates
the true gradient descent trajectory {wl

GD}l≥0 ∈ RDN with
the error accumulation ∥wl − wl

GD∥2 ≤ L−1
f (1 + nLf)

lϵ,
where Lf denotes the Lipschitz constant of Ln(w) within
W .

Proof. Please see Appendix C.8 for a detailed proof.

4 In-Context Deep Learning with Softmax
Transformers

In this section, we extend our analysis from ReLU-
transformers to more practical Softmax-transformers for
ICGD of N -layer neural network (Appendix E). Specifi-
cally, we establish the existence of Softmax-transformers
capable of performing ICGD for N -layer neural networks
in Theorem 2 and give more details in Appendix E.

8

In-Context Deep Learning via Transformer Models

0 25 50 75
In-context Examples

0.2
0.0
0.2
0.4
0.6
0.8
1.0

R-
Sq

ua
re

d

N(2, I)
0.9N(2, I) + 0.1N(2, I)
0.7N(2, I) + 0.3N(2, I)
0.5N(2, I) + 0.5N(2, I)
6-Layer NN

(a) ReLU-Transformer

0 25 50 75
In-context Examples

0.0
0.2
0.4
0.6
0.8
1.0

R-
Sq

ua
re

d

N(2, I)
0.9N(2, I) + 0.1N(2, I)
0.7N(2, I) + 0.3N(2, I)
0.5N(2, I) + 0.5N(2, I)
6-Layer NN

(b) Softmax-Transformer
Figure 2: Performance of ICL in ReLU-Transformer and Softmax-Transformer: ICL learns 6-layer NN and achieves
R-squared values comparable to those from training with prompt samples.

Theorem 2 (In-Context Gradient Descent of
Softmax-Transformer). Fix any Bw, η, ϵ > 0, L ≥ 1. For
any input sequences takes from (2.1), their exist upper
bounds Bx, By such that for any i ∈ [n], ∥yi∥max ≤ By,
∥xi∥max ≤ Bx. Suppose W is a closed domain such that
∥w∥max ≤ Bw and ProjW project w into bounded domain
W . Assume ProjW = MLPθ for some MLP layer. Define
l(w, xi, yi) as a loss function with L-Lipschitz gradient.
Let Ln(w) = 1

n

∑n
i=1 ℓ(w, xi, yi) denote the empirical

loss function, then there exists a Softmax-transformer
NNθ, such that for any input sequences H(0), take from
(2.1), NNθ(H

(0)) implements L steps in-context gradient
descent on Ln(w): For every l ∈ [L], the 4l-th layer outputs
h
(4l)
i = [xi; yi;w

(l);0; 1; ti] for every i ∈ [n + 1], and
approximation gradients w(l) with w(0) = 0 such that

w(l) = ProjW(w(l−1) − η∇Ln(w
(l−1)) + ϵ(l−1)),

where ∥ϵ(l−1)∥2 ≤ ηϵ is an error term.

Proof Sketch. By our assumption ProjW = MLPθ, we
only need to find a transformer to implement gradient de-
scent w+ := w−η∇Ln(w). For any input takes form (E.2),
let function f := RD×n → RD×n maps w to w−η∇Ln(w)
and preserve other elements. By Lemma 7, there exists a
transformer block fSoftmax capable of approximating f with
any desired small error. Therefore, fSoftmax ◦MLP suffices
our requirements. Please see Appendix E.2 for a proof.

Remark 4 (Note on the Use of the Universal Approxima-
tion Lemma 16). We assume the transformer parameters are
independent of inputs when invoking the universal approxi-
mation lemma (Lemma 16). This is because the lemma guar-
antees the existence of a transformer that can approximate
any L-Lipschitz permutation equivariant function over a
bounded input domain. Although we can invoke the lemma
to show that a transformer can represent global minimizers
of the target N -layer neural network, such an approach only
proves existence without providing an explicit construction.
Our goal is to show how the transformer performs gradient
descent step by step as explicitly as possible.

5 Numerical Studies
In this section, we conduct experiments to verify the capabil-
ity of ICL to learn feed-forward neural networks, and give
details in Appendix F. We conduct the experiments based
on 3-, 4- and 6-layer NN using both ReLU- and Softmax-
Transformer. The main objective is to validate the perfor-
mance of ICL matches that of training N -layer networks,
i.e., the results in Theorem 1, Theorem 2, and Theorem 4.
However, a minor limitation is that the trained transformers
do not always achieve the theoretical construction.

Specifically, we sample the input of feed-forward net-
work x ∈ Rd from the Gaussian mixture distribution:
w1N(−2, Id) +w2N(2, Id), where w1, w2 ∈ R, and d=20.
We consider the network f : Rd → R as a 3-, 4-, or 6-layer
NN. We generate the true output by y = f(x). For the
pertaining data, we use 50 in-context examples, and sam-
ple them from N(−2, Id). For the testing data, we use 75
in-context examples, and sample them from four distribu-
tions: (i) ω1 = 1, ω2 = 0, (ii) ω1 = 0.9, ω2 = 0.1, (iii)
ω1 = 0.7, ω2 = 0.3, (iv) ω1 = 0.5, ω2 = 0.5. We show the
results of 6-layer NN in Figure 2.

6 Conclusion
We provide an explicit characterization of the ICL capabili-
ties of both ReLU- and Softmax-transformer in approximat-
ing the gradient descent training process of a N -layer feed-
forward neural network. Our results include approximation
(Theorem 1 and Theorem 2) and convergence (Corollary 1.1)
guarantees. We also provide experimental validation.

Extensions. We further extend our analysis from N -layer
networks with the same input and output dimensions to
scenarios with arbitrary dimensions (Appendix D).

Applications. We apply our results to learn the score func-
tion of the diffusion model through ICL in Appendix G.

Related Work and Limitations. Please see the related
works, a detailed comparison with (Wang et al., 2024),
broader impact, and limitations in Appendix A.

9

In-Context Deep Learning via Transformer Models

Acknowledgments
The authors would like to thank Zhijia Li, Mimi Gallagher,
Sara Sanchez, Dino Feng and Andrew Chen for helpful
discussions; Hude Liu, Hong-Yu Chen, Jennifer Zhang, and
Teng-Yun Hsiao for collaborations on related topics; and
Jiayi Wang for facilitating experimental deployments. JH
also thanks the Red Maple Family for their support. The
authors also thank the anonymous reviewers and program
chairs for their constructive comments.

JH is partially supported by the Walter P. Murphy Fellow-
ship. HL is partially supported by NIH R01LM1372201
AbbVie and Dolby. This research was supported in part
through the computational resources and staff contributions
provided for the Quest high performance computing facility
at Northwestern University which is jointly supported by
the Office of the Provost, the Office for Research, and North-
western University Information Technology. The content is
solely the responsibility of the authors and does not neces-
sarily represent the official views of the funding agencies.

Impact Statement
By the theoretical nature of this paper, we do not expect
immediate negative social impact.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Anil, C., Wu, Y., Andreassen, A., Lewkowycz, A., Misra,
V., Ramasesh, V., Slone, A., Gur-Ari, G., Dyer, E., and
Neyshabur, B. Exploring length generalization in large
language models. Advances in Neural Information Pro-
cessing Systems, 35:38546–38556, 2022.

Bai, Y., Chen, F., Wang, H., Xiong, C., and Mei, S. Trans-
formers as statisticians: Provable in-context learning with
in-context algorithm selection. Advances in neural infor-
mation processing systems, 36:57125–57211, 2023.

Bi, X., Chen, D., Chen, G., Chen, S., Dai, D., Deng, C.,
Ding, H., Dong, K., Du, Q., Fu, Z., et al. Deepseek llm:
Scaling open-source language models with longtermism.
CoRR, 2024.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., et al. On the opportunities and risks
of foundation models. arXiv preprint arXiv:2108.07258,
2021.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.

Advances in neural information processing systems, 33:
1877–1901, 2020.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y.,
Lundberg, S., et al. Sparks of artificial general intel-
ligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712, 2023.

Chan, S. et al. Tutorial on diffusion models for imaging and
vision. Foundations and Trends® in Computer Graphics
and Vision, 16(4):322–471, 2024.

Chen, M., Du, J., Pasunuru, R., Mihaylov, T., Iyer, S., Stoy-
anov, V., and Kozareva, Z. Improving in-context few-shot
learning via self-supervised training. In Proceedings of
the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, pp. 3558–3573, 2022.

Chen, M., Huang, K., Zhao, T., and Wang, M. Score approx-
imation, estimation and distribution recovery of diffusion
models on low-dimensional data. In International Con-
ference on Machine Learning, pp. 4672–4712. PMLR,
2023.

Chen, M., Mei, S., Fan, J., and Wang, M. An overview
of diffusion models: Applications, guided genera-
tion, statistical rates and optimization. arXiv preprint
arXiv:2404.07771, 2024.

Dai, D., Sun, Y., Dong, L., Hao, Y., Ma, S., Sui, Z., and
Wei, F. Why can gpt learn in-context? language models
implicitly perform gradient descent as meta-optimizers.
In ICLR 2023 Workshop on Mathematical and Empirical
Understanding of Foundation Models, 2022.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J. G., Le, Q., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context. In Proceedings of
the 57th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 2978–2988, 2019.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What
can transformers learn in-context? a case study of sim-
ple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022.

Gu, Y., Dong, L., Wei, F., and Huang, M. Pre-training
to learn in context. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 4849–4870, 2023.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., et al. Training compute-
optimal large language models. In Proceedings of the
36th International Conference on Neural Information
Processing Systems, pp. 30016–30030, 2022.

10

In-Context Deep Learning via Transformer Models

Hu, J. Y.-C., Wang, W.-P., Gilani, A., Li, C., Song, Z.,
and Liu, H. Fundamental limits of prompt tuning trans-
formers: Universality, capacity and efficiency. In The
Thirteenth International Conference on Learning Repre-
sentations, 2025a.

Hu, J. Y.-C., Wu, W., Lee, Y.-C., Huang, Y.-C., Chen, M.,
and Liu, H. On statistical rates of conditional diffusion
transformers: Approximation, estimation and minimax
optimality. In The Thirteenth International Conference
on Learning Representations, 2025b.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., Casas, D. d. l., Hanna,
E. B., Bressand, F., et al. Mixtral of experts. arXiv
preprint arXiv:2401.04088, 2024.

Kajitsuka, T. and Sato, I. Are transformers with one layer
self-attention using low-rank weight matrices universal
approximators? In The Twelfth International Conference
on Learning Representations (ICLR), 2024.

Li, S., Song, Z., Xia, Y., Yu, T., and Zhou, T. The closeness
of in-context learning and weight shifting for softmax
regression. Advances in Neural Information Processing
Systems, 37:62584–62616, 2024.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M.,
Hajishirzi, H., and Zettlemoyer, L. Rethinking the role of
demonstrations: What makes in-context learning work?
In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 11048–
11064, 2022.

Panigrahi, A., Malladi, S., Xia, M., and Arora, S. Trainable
transformer in transformer. In International Conference
on Machine Learning, pp. 39448–39492. PMLR, 2024.

Panwar, M., Ahuja, K., and Goyal, N. In-context learning
through the bayesian prism. In The Twelfth International
Conference on Learning Representations, 2023.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Safran, I. and Shamir, O. Depth-width tradeoffs in approxi-
mating natural functions with neural networks. In Inter-
national conference on machine learning, pp. 2979–2987.
PMLR, 2017.

Shi, W., Min, S., Lomeli, M., Zhou, C., Li, M., Lin, X. V.,
Smith, N. A., Zettlemoyer, L., Yih, W.-t., and Lewis,
M. In-context pretraining: Language modeling beyond
document boundaries. In The Twelfth International Con-
ference on Learning Representations, 2023a.

Shi, Z., Wei, J., Xu, Z., and Liang, Y. Why larger language
models do in-context learning differently? In Forty-first
International Conference on Machine Learning, 2023b.

Shin, S., Lee, S. W., Ahn, H., Kim, S., Kim, H. S., Kim,
B., Cho, K., Lee, G., Park, W., Ha, J. W., et al. On the
effect of pretraining corpora on in-context learning by
a large-scale language model. In 2022 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
NAACL 2022, pp. 5168–5186, 2022.

Song, Y., Garg, S., Shi, J., and Ermon, S. Sliced score
matching: A scalable approach to density and score es-
timation. In Uncertainty in Artificial Intelligence, pp.
574–584. PMLR, 2020a.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. In International
Conference on Learning Representations, 2020b.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Vincent, P. A connection between score matching and de-
noising autoencoders. Neural computation, 23(7):1661–
1674, 2011.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent.
In International Conference on Machine Learning, pp.
35151–35174. PMLR, 2023.

Wang, Z., Jiang, B., and Li, S. In-context learning on
function classes unveiled for transformers. In Forty-first
International Conference on Machine Learning, 2024.

Wies, N., Levine, Y., and Shashua, A. The learnability
of in-context learning. Advances in Neural Information
Processing Systems, 36, 2024.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. arXiv preprint arXiv:2111.02080, 2021.

Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y.,
Zhang, W., Cui, B., and Yang, M.-H. Diffusion models:
A comprehensive survey of methods and applications.
ACM Computing Surveys, 56(4):1–39, 2023.

11

In-Context Deep Learning via Transformer Models

Yoo, K. M., Kim, J., Kim, H. J., Cho, H., Jo, H., Lee, S.-
W., Lee, S.-G., and Kim, T. Ground-truth labels matter:
A deeper look into input-label demonstrations. In 2022
Conference on Empirical Methods in Natural Language
Processing, EMNLP 2022, pp. 2422–2437, 2022.

Zhang, R., Frei, S., and Bartlett, P. L. Trained transform-
ers learn linear models in-context. Journal of Machine
Learning Research, 25(49):1–55, 2024.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

12

In-Context Deep Learning via Transformer Models

Supplementary Material

A Related Work, Broader Impact, Further Discussion and Limitations 14
A.1 Related Work . 14
A.2 Further Discussion . 15
A.3 Limitations . 15

B Supplementary Theoretical Backgrounds 17
B.1 Transformers . 17
B.2 ReLU Provably Approximates Smooth k-Variable Functions . 17

C Proofs of Main Text 18
C.1 Proof of Lemma 1 . 18
C.2 Proof of Lemma 2 . 19
C.3 Proof of Lemma 3 . 22
C.4 Proof of Lemma 4 . 23
C.5 Proof of Lemma 5 . 25
C.6 Proof of Lemma 6 . 26
C.7 Proof of Theorem 1 . 28
C.8 Proof of Corollary 1.1 . 31

D Extension: Different Input and Output Dimensions 33

E Extension: Softmax Transformer 35
E.1 Axillary Lemma: Universal Approximation of Softmax Transformer . 35
E.2 In-Context Gradient Descent with Softmax Transformer . 35
E.3 Proof of Theorem 2 . 36
E.4 Proof of Lemma 16 . 36

F Experimental Details 44
F.1 Experiments for Objectives 1 and 2 . 44

F.1.1 Performance of ReLU Transformer. 45
F.1.2 Performance of Softmax Transformer. 45

F.2 Experiments for Objective 3 . 45
F.3 Experiments for Objective 4 . 46

G Application: ICL for Diffusion Score Approximation 48
G.1 Score Matching Generative Diffusion Models . 48
G.2 ICL for Score Approximation . 48

13

In-Context Deep Learning via Transformer Models

A Related Work, Broader Impact, Further Discussion and Limitations
In this section, we show the related works, broader impact and limitations.

A.1 Related Work

In-Context Learning. Large language models (LLMs) demonstrate the in-context learning (ICL) ability (Brown et al.,
2020), an ability to flexibly adjust their prediction based on additional data given in context. In recent years, a number of
studies investigate enhancing ICL capabilities (Chen et al., 2022; Gu et al., 2023; Shi et al., 2023a), exploring influencing
factors (Shin et al., 2022; Yoo et al., 2022), and interpreting ICL theoretically (Xie et al., 2021; Wies et al., 2024; Panwar
et al., 2023; Li et al., 2024; Bai et al., 2023; Dai et al., 2022). The works most relevant to ours are as follows. Von Oswald
et al. (2023) show that linear attention-only Transformers with manually set parameters closely resemble models trained
via gradient descent. Bai et al. (2023) provide a more efficient construction for in-context gradient descent and establish
quantitative error bounds for simulating multi-step gradient descent. However, these results focus on simple ICL algorithms
or specific tasks like least squares, ridge regression, and gradient descent on two-layer neural networks. These algorithms are
inadequate for practical applications. For example: (i) Approximating the diffusion score function requires neural networks
with multiple layers (Chen et al., 2023). (ii) Approximating the indicator function requires at least 3-layer networks (Safran
& Shamir, 2017). Therefore, the explicit construction of transformers to implement in-context gradient descent (ICGD) on
deep models is necessary to better align with real-world in-context settings. Our work achieves this by analyzing the gradient
descent on N -layer neural networks through the use of ICL. We provide a more efficient construction for in-context gradient
descent. Furthermore, we extend our analysis to Softmax-transformer in Appendix E to better align with real-world uses.

In-Context Gradient Descent on Deep Models (Wang et al., 2024; Panigrahi et al., 2024). A work similar to ours is
(Wang et al., 2024). It constructs a family of transformers with flexible activation functions to implement multiple steps of
ICGD on deep neural networks. This work emphasizes the generality of activation functions and demonstrates the theoretical
feasibility of such constructions. Our work adopts a different approach by enhancing the efficiency of transformers and
better aligning with practical applications. Here we highlight key differences:

• More Structured and Efficient Transformer Architecture. While Wang et al. (2024) use a O(N2L)-layer transformer
to approximate L gradient descent steps on N -layer neural networks, our approach achieves more efficient simulation
for ICGD. We approximate specific terms in the gradient expression to reduce computational costs, requiring only a
(2N + 4)L-layer transformer for L gradient descent steps. Our method focuses on selecting and approximating the most
impactful intermediate terms in the explicit gradient descent expression (Lemmas 3 to 5), optimizing layer complexity to
O(NL).

• Less Restrictive Input and Output Dimensions for N -layer Neural Networks. Wang et al. (2024) simplify the output
of N -layer networks to a scalar. Our work expands this by considering cases where output dimensions exceed one, as
detailed in Appendix D. This includes scenarios where input and output dimensions differ.

• More Practical Transformer Model. Wang et al. (2024) discuss activation functions in the attention layer that meet a
general decay condition (Wang et al., 2024, Definition 2.3) without considering the Softmax activation function. We
extend our analysis to include Softmax-transformers. Our analysis reflects more realistic applications, as detailed in
Appendix E.

• More Advanced and Complicated Applications. Wang et al. (2024) discuss the applications to functions, including
indicators, linear, and smooth functions. We explore more advanced and complicated scenarios, i.e., the score function in
diffusion models discussed in Appendix G. The score function (Chen et al., 2023) falls outside the smooth function class.
This enhancement broadens the applicability of our results.

Another work similar to ours is (Panigrahi et al., 2024). It proposes a new efficient construction, Transformer in Transformer
(TINT), to allow a transformer to simulate and finetune more complex models (e.g., one transformer). The main distinction
between ours and (Panigrahi et al., 2024) lies in the different aims: Our approach focuses on using a standard transformer
for the simulator (with a minor modification: the “element-wise multiplication layer”), and we provide a theoretical
understanding of how a standard transformer can learn the ICGD of an N -layer network using ICL. In contrast, the work
(Panigrahi et al., 2024) aims to build even stronger transformers by introducing several structural modifications that enable
running gradient descent on auxiliary transformers. While it demonstrates in-context gradient descent for a more advanced
model, i.e., one transformer, our work offers the following potential advantages:

14

In-Context Deep Learning via Transformer Models

• Explicit Transformer Construction. We provide an explicit construction of the transformer, whereas the work (Panigrahi
et al., 2024) does not detail the explicit construction of model parameters within their transformer.

• Exact Gradient Descent. We compute the exact and explicit gradient descent for an N -layer network (Lemma 1).
Building on this, we employ the transformer’s ICL to perform gradient descent on all parameters. However, the work
(Panigrahi et al., 2024) stops the gradient computation through attention scores in the self-attention layer and only updates
the value parameter in the self-attention module. Additionally, it uses Taylor expansion to approximate the gradient.

• Rigorous Error and Convergence Guarantees. We provide rigorous gradient descent approximation errors (for multiple
steps) and convergence guarantees for the ICGD on an N -layer network (Corollary 1.1 and Lemma 14). However, the
work (Panigrahi et al., 2024) only presents the gradient approximation error for each specific part of the parameters in a
single step.

• Attention Layer Better Aligned with Practice. Our analysis is based on ReLU-attention (Theorem 1) or Softmax-
attention (Theorem 5), whereas the work (Panigrahi et al., 2024) utilizes linear attention. Our choice of attention layer
better aligns with practical applications.

A.2 Further Discussion

We provide an interpretation and example of how to explicitly instantiate the constants for ReLU approximations in
Lemmas 2 to 4. The key reason is that the function approximated by the sum of ReLUs is simple in our context, such as the
Sigmoid activation function. For such simple functions, it is straightforward to derive an explicit construction.

Here, we take the Sigmoid activation function as an example and propose one explicit construction method. Let r(z) denote
the Sigmoid function.

• Segment the Input Domain. For example, divide the domain [−10, 10] smaller intervals such as [−10,−9], [−9,−8],
. . . , [9, 10].

• Approximate Each Segment Locally Using a Linear Function via Linear Interpolation. For instance, in the
domain [9, 10], approximate r(z) using a linear function a1z + c1, where a1 and c1 are calculated as follows: a1 =
(r(10)− r(9))/(10− 9), and c1 = r(9)− a1 ∗ 9.

• Approximate Linear Function a1z + c1(z ∈ [9, 10]) Using a Sum of ReLU Terms. This step involves two substeps,
which are straightforward to implement: (i) Approximate the indicator function for z ∈ [9, 10] using a sum of ReLU
terms. (ii) Approximate the constant c1 using the sum of ReLU. This is because bias terms are not included in the sum of
ReLU terms in Definition 4. The bias term c1 must be approximated using an additional sum of ReLU terms.

• Combine All the Sum of ReLU Approximators Across All Segments. Finally, integrate the approximations for all
segments to construct the complete approximation.

• Estimation of the Parameters in Definition 4. ϵapprox = 0.625, R = 10, H = 80, and C = 25.

Furthermore, to achieve higher precision in the approximation, it is sufficient to use finer segmentations.

A.3 Limitations

Our work has the following six limitations:

• Although we provide a theoretical guarantee for the ICL of the Softmax-Transformer to approximate gradient descent
in N -layer NN, characterizing the weight matrices construction in Softmax-Transformer remains challenging. This
motivates us to rethink transformer universality and explore more accurate proof techniques for ICL in Softmax-
Transformer, which we leave for future work.

• The hidden dimension and MLP dimension of the transformer in Theorem 1 are both Õ(NK2)+Dw, which is very large.
The reason for the large dimensions is that if we use ICL to perform ICGD on the N -layer network, we need to allow the
transformer to realize the N -layer network parameters. This means that it is reasonable for the input dimension to be so
large. However, it is possible to reduce the hidden dimension and MLP dimension of the transformer through smarter
construction. We leave this for future work.

• The generalization capabilities are limited compared with traditional transformers. In our setting, the pretraining task
refers to using in-context examples generated by an N -layer network for a given N . Specifically, during pretraining, the
distribution of the N -layer network parameters is predetermined (e.g., N(0, I)). The input data distribution of N -layer

15

In-Context Deep Learning via Transformer Models

network for generating the in-context examples is also predetermined (e.g., N(−2, I)). The generalization capabilities
include the following two aspects: (i) Varying the input data distribution for the N -layer network to generate the in-context
examples. For example, we change the input data distribution from N(−2, I) to 0.9N(−2, I) + 0.1N(2, I) during the
testing in Appendix F.1. (ii) Varying the distribution of the N -layer network parameters. For example, we change the
distribution from N(0, I) to N(0.5, I) in Appendix F.2. The above points lead to differences between the distributions of
in-context examples during pretraining and testing. However, we must generate the in-context examples by the N -layer
network with the same hyperparameters, including the network width and depth. We leave the theoretical analysis of
broader generalization capabilities for future work.

• In theory, the FLOPs (Hoffmann et al., 2022) required to perform one forward pass of the transformer are greater than
those required for the direct training of an N -layer network. (i) For the forward pass of the transformer, the FLOPs for
in-context learning (ICL) are O(nLN3K5/ϵ2), where ϵ is the approximation error in the sum of ReLU. (ii) For direct
training of the N -layer network, the FLOPs without ICL are O(nLNK2). Therefore, the FLOPs required for ICL exceed
those needed for direct training of the N -layer network. However, experimental results in Appendix F demonstrate that
the transformer with ICL can achieve the performance of a trained 6-layer network using fewer FLOPs in practice (3.3
billion vs. 7.6 billion FLOPs). This finding encourages further exploration of more efficient architectures. We also leave
this topic for future research.

• The empirically trained transformer differs from the transformer constructed in our theoretical analysis. Our experiments
confirm the existence of a transformer capable of simulating gradient descent (GD) steps for N -layer neural networks
through in-context learning (ICL). Despite this discrepancy, the limitation does not affect the primary contribution:
establishing the theoretical existence of this transformer by explicit construction.

• There are two minor differences between the transformer used in the theoretical analysis and a standard transformer:
(i) The transformer used in the theoretical analysis incorporates an element-wise multiplication layer, a specialized
variant of self-attention that retains only the diagonal score and allows efficient implementation. (ii) It does not alternate
self-attention and MLP layers. We emphasize that this also qualifies as a standard transformer because we view either an
attention or an MLP layer as equivalent to an attention plus MLP layer due to the residual connections.

16

In-Context Deep Learning via Transformer Models

B Supplementary Theoretical Backgrounds
Here we present some ideas we built on.

B.1 Transformers

Lastly, we introduce key components for constructing a transformer for ICGD: ReLU-Attention, MLP, and element-wise
multiplication layers. We begin with the ReLU-Attention layer.

Definition 7 (ReLU-Attention Layer). For any input sequence H ∈ RD×n, an M -head ReLU-attention layer with
parameters θ = {Qm,Km, Vm}m∈[M] outputs

Attnθ(H) := H +
1

n

M∑
m=1

(VmH) · σ((QmH)⊤(KmH)),

where Qm,Km, Vm ∈ RD×D and σ(·) is element-wise ReLU activation function. In vector form, for each token hi ∈ RD

in H , it outputs [Attnθ(H)]i = hi +
1
n

∑M
m=1

∑n
s=1 σ(⟨Qmhi,Kmhs⟩) · Vmhs.

Notably, Definition 7 uses normalized ReLU activation σ/n, instead of the standard Softmax. We adopt this for technical
convenience following (Bai et al., 2023). Next we define the MLP layer.

Definition 8 (MLP Layer). For any input sequence H ∈ RD×n, an d′-hidden dimensions MLP layer with parameters
θ = (W1,W2) outputs MLPθ(H) := H +W2σ(W1H), where W1 ∈ Rd′×D, W2 ∈ RD×d′

and σ(·) : R → R is element-
wise ReLU activation function. In vector form, for each token hi ∈ RD in H , it outputs MLPθ(H)i := hi +W2σ(W1hi).

Then, we consider a transformer architecture with L ≥ 1 transformer layers, each consisting of a self-attention layer
followed by an MLP layer.

Definition 9 (Transformer). For any input sequence H ∈ RD×n, an L-layer transformer with parameters θ = {θAttn, θMLP}
outputs

TFL
θ (H) := MLP

θ
(L)
mlp

◦Attn
θ
(L)
attn

. . .MLP
θ
(1)
mlp

◦Attn
θ
(1)
attn

(H),

where θ = {θAttn, θMLP} consists of Attention layers θAttn = {(Ql
m,Kl

m, V l
m)}l∈[L],m∈[M l] and MLP layers θMLP =

{(W l
1,W

l
2)}l∈[L]. Above, for any l ∈ [L],m ∈ [M l], Ql

m,Kl
m, V l

m ∈ RD×D and (W l
1,W

l
2) ∈ Rd′×D × RD×d′

In this
section, we consider ReLU Attention layer and MLP layer are both a special kind of 1-layer transformer, which is for
technical convenience.

For later proof use, we define the norm for L-layer transformer TFθ as:

Bθ := max
l∈[L]

{
max
m∈[M]

{
∥Ql

m∥1, ∥Kl
m∥1

}
+

m∑
i=1

∥V l
m∥1 + ∥W1∥1 + ∥W2∥1

}
. (B.1)

The choice of operation norm and max/sum operation is for convenience in later proof only, as our result depends only on
Bθ.

B.2 ReLU Provably Approximates Smooth k-Variable Functions

Following lemma expresses that the smoothness enables the approximability of sum of ReLU.

Lemma 7 (Approximating Smooth k-Variable Functions, modified from Proposition A.1 of (Bai et al., 2023)). For any
ϵ, Cl > 0, R ≥ 1. If function g : Rk → R such that for s := ⌈(k − 1)/2⌉+ 1, g is a Cs function on Bk

∞(R), and for all
i ∈ {0, 1, . . . , s},

sup
z∈Bk

∞(R)

∥∇ig(z)∥∞ ≤ Li, max
0≤i≤s

LiR
i ≤ Cl,

then function g is (ϵ, R,H,C)-approximable by sum of ReLUs (Definition 4) with H ≤ C(k)C2
l log(1 + Cl/ϵ)/ϵ

2 and
C ≤ C(k)Cl where C(k) is a constant that depends only on k.

17

In-Context Deep Learning via Transformer Models

C Proofs of Main Text

C.1 Proof of Lemma 1

Lemma 8 (Lemma 1 Restated: Decomposition of One Gradient Descent Step). Fix any Bv, η > 0. Suppose loss function
Ln(w) on n data points {(xi, yi)}i∈[n] follows (2.2). Suppose closed domain W and projection function ProjW(w) follows
(3.4). Let Ai(j), r

′
i(j), Ri(j), Vj be as defined in Definition 2. Then the explicit form of gradient ∇Ln(w) becomes

∇Ln(w) =
1

2n

n∑
i=1

Ai(1)
...

Ai(N)

 ,

where Ai(j) denote the derivative of ℓ(pi(N), yi) with respect to the parameters in the j-th layer,

Ai(j) =

(Ri(N − 1) · VN · . . . ·Ri(j − 1) ·
[
IK×K ⊗ pi(j − 1)⊤

]
)⊤ · (∂ℓ(pi(N),yi)

∂pi(N))⊤, j ̸= N

(Ri(N − 1) ·
[
Id×d ⊗ pi(N − 1)⊤

]
)⊤ · (∂ℓ(pi(N),yi)

∂pi(N))⊤, j = N.

Proof of Lemma 1. We start with calculating ∇wLn(w). By chain rule and (2.2),

∇wLn(w)︸ ︷︷ ︸
RDN×1

=
1

2n

n∑
i=1

[
∂

∂w
pi(N)]⊤︸ ︷︷ ︸

RDN×d

· [∂

∂pi(N)
ℓ(pi(N), yi)]

⊤︸ ︷︷ ︸
Rd×1

(
By (2.2) and chain rule

)

Thus we only need to calculate ∂
∂wpi(N). For a vector x and a function r : R → R, we use r(x) to denote the vector that

i-th coordinate is r(xi). Let Ri(j), Vj follows Definition 2, then it holds

∂pi(N)

∂w︸ ︷︷ ︸
Rd×DN

=
∂r(

Rd×K︷︸︸︷
VN ·

RK︷ ︸︸ ︷
pi(N − 2))

∂w︸ ︷︷ ︸
Rd×DN

(
By Definition 1

)

=
∂r(VN · pi(N − 1))

∂VN · pi(N − 1)︸ ︷︷ ︸
Rd×d

· ∂VN · pi(N − 1)

∂w︸ ︷︷ ︸
Rd×DN

(
By chain rule

)

= diag{r′(v⊤N1
pi(N − 1)), . . . , r′(v⊤NK

pi(N − 1))} · ∂VN · pi(N − 1)

∂w

(
By Definition 2

)
= Ri(N − 1) · ∂VN · pi(N − 1)

∂w
. (C.1)

Notice that for any k ∈ [d], vNk
is a part of w, thus

∂vNk

∂w
= [

DN−1+(k−1)K︷︸︸︷
0

K︷︸︸︷
I

DN−DN−1−kK︷︸︸︷
0] ∈ Rd×DN . (C.2)

Therefore, letting ⊗ denotes Kronecker product, it holds

∂VN · pi(N − 1)

∂w

=


v⊤N1

· ∂pi(N−1)
∂w + pi(N − 1)⊤ · ∂vN1

∂w
...

v⊤Nd
· .∂pi(N−1)

∂w + pi(N − 1)⊤ · ∂vNd

∂w

 (
By chain rule and product rule

)

18

In-Context Deep Learning via Transformer Models

= VN · ∂pi(N − 1)

∂w
+
[
0DN−1

; IK×K ⊗ pi(N − 1)⊤
]
, (C.3)

where the last step follows from the definition of VN (i.e., Definition 2) and (C.2).

Substituting (C.3) into (C.1), we obtain

∂pi(N)

∂w
= Ri(N − 1) · (VN · ∂pi(N − 1)

∂w
+
[
0DN−1

; Id×d ⊗ pi(N − 1)⊤
]
).

Similarly, for any j ∈ [N], we prove

∂pi(j)

∂w
= Ri(j − 1) · (Vj ·

∂pi(j − 1)

∂w
+
[
0Dj−1

; IK×K ⊗ pi(j − 1)⊤; 0DN−Dj

]
). (C.4)

By the recursion formula (C.4), for any j ∈ [N − 1], we calculate Ai(j) as follows,

Ai(j) =

((
∂ℓ(pi(N), yi)

∂pi(N)
· ∂pi(N)

∂w

)⊤
)
[Dj−1 : Dj]

(
By Definition 2

)
= (

∂pi(N)

∂w
)⊤ · (∂ℓ(pi(N), yi)

∂pi(N)
)⊤[Dj−1 : Dj]

(
By transpose property

)
= (

∂pi(N)

∂w
)⊤[∗, Dj−1 : Dj] · (

∂ℓ(pi(N), yi)

∂pi(N)
)⊤

= (Ri(N − 1) · VN · . . . ·Ri(j − 1) ·
[
IK×K ⊗ pi(j − 1)⊤

]
)⊤ · (∂ℓ(pi(N), yi)

∂pi(N)
)⊤,

(
By (C.4)

)
where M [∗, a : b] denotes a sub-matrix of M , which includes all the columns but only the rows from the a-th row to the b-th
row of A. Similarly, for j = N , it holds

Ai(N) = (Ri(N − 1) ·
[
Id×d ⊗ pi(N − 1)⊤

]
)⊤ · (∂ℓ(pi(N), yi)

∂pi(N)
)⊤.

Thus we completes the proof.

C.2 Proof of Lemma 2

Lemma 9 (Lemma 2 Restated: Approximate pi(j)). Let upper bounds Bv, Bx > 0 such that for any k ∈ [K], j ∈
[N] and i ∈ [n], ∥vjk∥2 ≤ Bv , and ∥xi∥2 ≤ Bx. For any j ∈ [N], i ∈ [n], define

Bj
r := max

|t|≤BvB
j−1
r

|r(t)|, B0
r := Bx, and Br := max

j
Bj

r .

Let function r(t) be (ϵr, R1,M1, C1)-approximable for R1 = max{BvBr, 1}, M1 ≤ Õ(C2
1ϵ

−2
r), where C1 depends only

on R1 and the C2-smoothness of r. Then, for any ϵr > 0, there exist N attention layers Attnθ1 , . . . ,AttnθN such that for
any input hi ∈ RD takes from (2.1), they map

hi = [xi; yi;w; pi(1); . . . ; pi(j − 1);0; 1; ti]
Attnθj−−−−→ h̃i = [xi; yi;w; pi(1); . . . ; pi(j);0; 1; ti],

where pi(j) is approximation for pi(j) (Definition 1). In the expressions of hi and h̃i, the dimension of 0 differs. Specifically,
the 0 in hi is larger than in h̃i. The dimensional difference between these 0 vectors equals the dimension of pi(j). Suppose
function r is Lr-smooth in bounded domain W , then for any i ∈ [n+ 1], j ∈ [N], pi(j) such that

pi(j) = pi(j) + ϵ(i, j), ∥ϵ(i, j)∥2 ≤

{
(
∑j−1

l=0 Kl/2Ll
rB

l
v)
√
Kϵr , 1 ≤ j ≤ N − 1

(
∑N−1

l=0 Kl/2Ll
rB

l
v)
√
dϵr , j = N

.

19

In-Context Deep Learning via Transformer Models

Additionally, for any j ∈ [N], the norm of parameters Bθj defined as (B.1) such that

Bθj ≤ 1 +KC1.

Proof of Lemma 2. First we need to give a approximation for activation function r(t). By our assumption and Definition 4,
r(t) is (ϵr, R1,M1, C1)-approximable by sum of ReLUs, there exists:

r(t) =

M1∑
m=1

c1mσ(⟨a1m, [t; 1]⟩) with
M1∑
m=1

∣∣c1m∣∣ ≤ C1, ∥a1m∥1 ≤ 1, ∀m ∈ [M1], (C.5)

such that supt∈[−R1,R1] |r(t)− r(t)| ≤ ϵr. Let pi(0) := pi(0) = xi. Similar to pi(j) follows Definition 1, we pick pi(j)
such that for any j ∈ [N],

pi(j)[k] := r(v⊤jkpi(j − 1)). (C.6)

Fix any j ∈ [N], suppose the input sequences hi = [xi; yi;w; pi(1); . . . ; pi(j − 1);0; 1; ti]. Then for every m ∈ [M1], k ∈
[K](or k ∈ [d] if j = N), we define matrices Qj

m,k,K
j
m,k, V

j
m,k ∈ RD×D such that for all i ∈ [n+ 1],

Qj
m,khi =

a1m[1] · pi(j − 1)
a1m[2]
0

 , Kj
m,khi =

vjk1
0

 , V j
m,khi = c1me1j,k , (C.7)

where e1j,k denotes the position unit vector of element pi(j)[k] because this position only depends on j, k. Since input
hi = [xi; yi;w; pi(1); . . . ; pi(j − 1);0; 1; ti], those matrices indeed exist. In fact, it is simple to check that

Qj
m,k =

 0 a1m[1]IK(j) 0 0 0
0 0 0 a1m[2] 0
0 0 0 0 0

 ,

Kj
m,k =

 0 IK(j, k) 0 0 0
0 0 0 1 0
0 0 0 0 0

 ,

V j
m,k =

 0 0 0 0
0 0 c1m(j, k) 0
0 0 0 0

 , (C.8)

are suffice to (C.7). IK(j), IK(j, k), c1m(j, k) represents their positions are related to variables in parentheses. In Addition,
by (B.1), notice that they have operator norm bounds

max
j,m,k

∥Qj
m,k∥1 ≤ 1, max

j,m,k
∥Kj

m,k∥1 ≤ 1, max
j

∑
k,m

∥V j
m,k∥1 ≤ KC1.

Consequently, for any j ∈ [N], Bθj ≤ 1 + C1.

By our construction follows (C.7), a simple calculation shows that∑
m∈[M1],k∈[K]

σ(⟨Qj
m,khi,K

j
m,khs⟩)V j

m,khs

=

K∑
k=1

M1∑
m=1

c1mσ(⟨a1m, [v⊤jkpi(j − 1); 1]⟩)e1j,k
(
By our construction (C.7)

)

=

K∑
k=1

(r(v⊤jkpi(j − 1)))e1j,k
(
By definition of r follows (C.5)

)
= [0; pi(j);0].

(
By definition of pi(j) follows (C.6)

)
20

In-Context Deep Learning via Transformer Models

Therefore, by definition of ReLU Attention layer follows Definition 7, the output h̃i becomes

h̃i = [Attnθj (hi)]

= hi +
1

n+ 1

n+1∑
s=1

∑
m∈[M1],k∈[K]

σ(⟨Qj
m,khi,K

j
m,khs⟩)V j

m,khs

= hi +
1

n+ 1

n+1∑
s=1

(n+ 1)[0; pi(j);0]

= [xi; yi;w; pi(1); . . . ; pi(j − 1);0; 1; ti] + [0, pi(j),0]

= [xi; yi;w; pi(1); . . . ; pi(j − 1); pi(j);0; 1; ti].

Therefore, let the attention layer θj = {(Qj
m,k,K

j
m,k, V

j
m,k)}(k,m), we construct Attnθj such that

hi = [xi; yi;w; pi(1); . . . ; pi(j − 1);0; 1; ti]
Attnθj−−−−→ h̃i = [xi; yi;w; pi(1); . . . ; pi(j);0; 1; ti].

In addition, by setting R1 = max{BvBr, 1} , the lemma then follows directly by induction on j. For the base case j = 1, it
holds

|pi(1)[k]− pi(1)[k]| =
∣∣ri(v⊤1kxi)[k]− r(v⊤1kxi)

∣∣ (
By Definition 1

)
≤ ϵr.

(
By definition of r follows (C.5)

)
Suppose the claim holds for iterate j − 1 and function r is Lr-smooth in bounded domain W . Then for iterate j,

|pi(j)[k]− pi(j)[k]|
≤
∣∣pi(j)[k]− r(v⊤jkpi(j − 1))

∣∣+ ∣∣r(v⊤jkpi(j − 1))− pi(j)[k]
∣∣ (

By triangle inequality
)

≤ ϵr + Lr∥v⊤jk∥2∥pi(j − 1)− pi(j − 1)∥2
(
By (C.5) and Cauchy–Schwarz inequality

)
≤ ϵr +

√
KLrBv(ϵr

j−2∑
l=0

Kl/2Ll
rB

l
v)

(
By inductive hypothesis

)

≤ ϵr

j−1∑
l=0

Kl/2Ll
rB

l
v,

Thus, it holds

∥pi(j)− pi(j)∥2 =

√√√√ K∑
k=1

|pi(j)[k]− pi(j)[k]|2

≤
√
K(ϵr

j−1∑
l=0

Kl/2Ll
rB

l
v).

This finishes the induction. Then for the output layer j = N , it holds

∥pi(N)− pi(N)∥2 =

√√√√ d∑
k=1

|pi(N)[k]− pi(N)[k]|2

≤
√
d(ϵr

N−1∑
l=0

Kl/2Ll
rB

l
v).

Thus we complete the proof.

21

In-Context Deep Learning via Transformer Models

C.3 Proof of Lemma 3

Lemma 10 (Lemma 3 Restated: Approximate r′i(j)). Let upper bounds Bv, Bx > 0 such that for any k ∈ [K], j ∈
[N] and i ∈ [n], ∥vjk∥2 ≤ Bv , and ∥xi∥2 ≤ Bx. For any j ∈ [N], i ∈ [n], define

B′j
r := max

|t|≤BvB
j−1

r′

|r′(t)|, B0
r′ := Bx, and Br′ := max

j
Bj

r′ .

Suppose function r′(t) is (ϵr′ , R2,M2, C2)-approximable for R2 = max{BvBr′ , 1}, M2 ≤ Õ(C2
2ϵ

′−2
r), where C2 depends

only on R2 and the C2-smoothness of r′. Then, for any ϵr > 0, there exist an attention layer AttnθN+1
such that for any

input hi ∈ RD takes from (3.13), it maps

hi = [xi; yi;w; pi;0; 1; ti]
AttnθN+1−−−−−−→ h̃i = [xi; yi;w; pi; r

′
i;0; 1; ti],

where r′i(j) is approximation for r′i(j) (Definition 2) and r′i := [r′i(0); . . . ; r
′
i(N − 1)] ∈ R(N−2)K+d. Similar to Lemma 2,

in the expressions of hi and h̃i, the dimension of 0 differs. In addition, let Er be defined in (3.12), for any i ∈ [n + 1],
j ∈ [N], k ∈ [K], r′i(j) such that

r′i(j − 1)[k] = r′i(j − 1)[k] + ϵ(i, j, k), |ϵ(i, j, k)| ≤ ϵr′ + Lr′BvErϵr,

where ϵr denotes the error generated in approximating r by sum of ReLUs r follows (C.5). Additionally, the norm of
parameters BθN+1

defined as (B.1) such that BθN+1
≤ 1 +K(N − 1)C2.

Proof of Lemma 3. By Definition 2, recall that for any j ∈ [N], i ∈ [n+ 1], k ∈ [K],

r′i(j)[k] = r′(v⊤j+1k
pi(j)). (C.9)

Therefore we need to give a approximation for r′. By our assumption and Definition 4, r′(t) is (ϵr′ , R2,M2, C2)-
approximable by sum of relus. In other words, there exists:

r′(t) =

M2∑
m=1

c2mσ(⟨a2m, [t; 1]⟩) with
M2∑
m=1

∣∣c2m∣∣ ≤ C2, ∥a2m∥2 ≤ 1, ∀m ∈ [M2], (C.10)

such that supt∈[−R2,R2] |r
′(t)− r′(t)| ≤ ϵr′ . Similar to (C.9), we pick r′i(j) such that

r′i(j)[k] := r′(v⊤j+1k
pi(j)). (C.11)

To ensure (C.11), we construct our attention layer as follows: for every j ∈ [N],m ∈ [M2], k ∈ [K], we define matrices
QN+1

j,m,k,K
N+1
j,m,k, V

N+1
j,m,k ∈ RD×D such that

QN+1
j,m,khi =

a2m[1] · pi(j − 1)
a2m[2]
0

 , KN+1
j,m,khi =

vjk1
0

 , V N+1
j,m,khi = c2me2j,k , (C.12)

for all i ∈ [n + 1] and e2j,k denotes the position unit vector of element r′i(j)[k]. Since input hi = [xi; yi;w; pi;0; 1; ti],
similar to (C.8), those matrices indeed exist. In addition, they have operator norm bounds

max
j,m,k

∥QN+1
j,m,k∥1 ≤ 1, max

j,m,k
∥KN+1

j,m,k∥1 ≤ 1,
∑
j,m,k

∥V N+1
j,m,k∥1 ≤ K(N − 1)C2.

Consequently, by definition of parameter norm follows (B.1), BθN+1
≤ 1 +K(N − 1)C2.

22

In-Context Deep Learning via Transformer Models

A simple calculation shows that∑
j∈[N],m∈[M2],k∈[K]

σ(⟨QN+1
j,m,khi,K

N+1
j,m,khs⟩)V N+1

j,m,khs

=

N∑
j=1

K∑
k=1

M2∑
m=1

c2mσ(⟨a2m, [v⊤jkpi(j − 1); 1]⟩)e2j,k
(
By our construction follows (C.12)

)

=

N∑
j=1

K∑
k=1

(r′(v⊤jkpi(j − 1)))e2j,k
(
By definition of r′ follows (C.5)

)
= [0; r′i(0); . . . ; r

′
i(N − 1);0]

(
By definition of r′i(j) follows (C.11)

)
= [0; r′i;0],

(
By definition of r′i

)
Therefore, by definition of ReLU Attention layer follows Definition 7, the output h̃i becomes

h̃i = [AttnθN (hi)]

= hi +
1

n+ 1

n+1∑
s=1

∑
j∈[N−1],m∈[M2],k∈[K]

σ(⟨QN
j,m,khi,K

N
j,m,khs⟩)V N

j,m,khs

= hi +
1

n+ 1

n+1∑
s=1

(n+ 1)[0; r′i;0]

= [xi; yi;w; pi;0; 1; ti] + [0; r′i;0]

= [xi; yi;w; pi; r
′
i;0; 1; ti].

Next, we calculate the error accumulation in this approximation layer. By our assumption, R2 = max{BvBr′ , 1}. Thus, for
any j ∈ [N], k ∈ [K], i ∈ [n+ 1], it holds

v⊤jkpi(j − 1) ≤ R2.

As our assumption, we suppose function r′ is Lr-smooth in bounded domain W . Combining above, the upper bound of
error accumulation |r′i(j)[k]− r′i(j)[k]| becomes

|r′i(j)[k]− r′i(j)[k]|
≤
∣∣r′i(j)[k]− r′(v⊤jkpi(j − 1))

∣∣+ ∣∣r′(v⊤jkpi(j − 1))− r′i(j)[k]
∣∣ (

By triangle inequality
)

≤ ϵr′ + Lr′∥v⊤jk∥2∥pi(j − 1)− pi(j − 1)∥2
(
By (C.10) and Cauchy–Schwarz inequality

)
≤ ϵr′ + Lr′BvErϵr.

(
By definition of Er follows (3.12)

)
Thus we complete the proof.

C.4 Proof of Lemma 4

Lemma 11 (Lemma 4 Restated: Approximate ∂1ℓ(pi(N), yi)). Let upper bounds Bv, Bx, > 0 such that for any k ∈
[K], j ∈ [N] and i ∈ [n], ∥vjk∥2 ≤ Bv , and ∥xi∥2 ≤ Bx. For any k ∈ [d], suppose function u(t, y)[k] be (ϵl, R3,M

k
3 , C

k
3)-

approximable for R3 = max{BvBr, By, 1}, M3 ≤ Õ((Ck
3)

2ϵ−2
l), where Ck

3 depends only on Rk
3 and the C3-smoothness

of u(t, y)[k]. Then, there exists an MLP layer MLPθN+2 such that for any input sequences hi ∈ RD takes from (3.15), it
maps

hi = [xi; yi;w; pi; r
′
i;0; 1; ti]

MLPθN+2−−−−−−→ h̃i = [xi; yi;w; pi; r
′
i; gi;0; 1; ti],

where gi ∈ Rd is an approximation for u(pi(N), yi). For any k ∈ [d], assume u(pi(N), yi) is Ll- Lipschitz continuous.

23

In-Context Deep Learning via Transformer Models

Then the approximation gi such that,

gi[k] = u(pi(N), yi)[k] + ϵ(i, k), with |ϵ(i, k)| ≤ ϵl + LlErϵr.

Additionally, the parameters θN+2 such that BθN+2
≤ max{R3 + 1, C3}.

Proof of Lemma 4. By our assumption and Definition 4, for any k ∈ [d], function u[k](t, y) is (ϵl, R3,M
k
3 , C

k
3)-

approximable by sum of relus, there exists :

gk(t, y) =

Mk
3∑

m=1

c3,km σ(⟨a3,km , [t; y; 1]⟩) with
Mk

3∑
m=1

∣∣c3,km

∣∣ ≤ C3, ∥a3,km ∥2 ≤ 1, ∀m ∈ [Mk
3], (C.13)

such that sup(t,y)∈[−R3,R3]2 |gk(t, y)− u[k](t, y)| ≤ ϵl. Then we construct our MLP layer.

Let M3 :=
∑d

k=1 M
k
3 , we pick matrices WN+1

1 ∈ RM3×D,WN+1
2 ∈ RD×M3 such that for any i ∈ [n+ 1],m ∈ [M3],

WN+1
1 hi =



a3,11 [1] · pi(N) + a3,11 [2] · yi + a3,11 [3]−R3(1− ti)
...

a3,1
M1

3
[1] · pi(N) + a3,1M1 [2] · yi + a3,1

M1
3
[3]−R3(1− ti)

...
a3,d1 [1] · pi(N) + a3,d1 [2] · yi + a3,d1 [3]−R3(1− ti)

...
a3,d
Md

3
[1] · pi(N) + a3,d

Md [2] · yi + a3,d
Md

3
[3]−R3(1− ti)


∈ RM3 ,

WN+1
2 [j,m] = c3,km · 1{j = Dk

g ,M
k−1
3 < m ≤ Mk

3 }, (C.14)

where Dk
g denotes the position of element gi[k]. Since input hi = [xi; yi;w; pi; r

′
i;0; 1; ti], similar to (C.8), those matrices

indeed exist. Furthermore, by (B.1), they have operator norm bounds

∥WN+1
1 ∥1 ≤ R3 + 1, ∥WN+1

2 ∥1 ≤ C3

Consequently, BθN+2
≤ max{R3 + 1, C3}.

By our construction (C.14), a simple calculation shows that

WN+1
2 σ(WN+1

1 hi) =

d∑
k=1

Mk
3∑

m=1

σ(⟨a3,km , [pi(N); yi; 1]⟩ −R3(1− ti)) · c3,km eDk
g

= 1{tj = 1} ·


0

g1(pi(N), yi)
...

gd(pi(N), yi)
0

 .

For k ∈ [d], we let gi[k] = 1{tj = 1} · gk(pi(N), yi)eDk
g

for i ∈ [n+ 1]. Hence, MLPθN+2 maps

hi = [xi; yi;w; pi; r
′
i;0; 1; ti]

MLPθN+2−−−−−−→ h̃i = [xi; yi;w; pi; r
′
i; gi;0; 1; ti],

Next, we calculate the error generated in this approximation. By setting R3 = max{BvBr, By, 1}, for any i ∈ [n+ 1], it
holds

pi(N) ≤ R3, yi ≤ R3

24

In-Context Deep Learning via Transformer Models

Moreover, as our assumption, we suppose function ∂1ℓ is Ll-smooth in bounded domain W . Therefore, by the definition of
the function g, for each i ∈ [n], the error becomes

|gi[k]− u(pi(N), yi)[k]|
≤ |gi[k]− u(pi(N), yi)[k]|+ |u(pi(N), yi)[k]− u(pi(N), yi)[k]|

(
By triangle inequality

)
≤ ϵl + Ll∥pi(N)− pi(N)∥2

(
By the definition of gk follows (C.13) and Ll-smooth assumption

)
≤ ϵl + LlErϵr, .

(
By the definition of Er follows (3.12)

)
Combining above, we complete the proof.

C.5 Proof of Lemma 5

Lemma 12 (Lemma 5 Restated: Approximate st(j)). Recall that si(j) = r′i(j − 1) ⊙ (V ⊤
j+1 · si(j + 1)) fol-

lows Definition 3. Let the initial input takes from (3.17). Then, there exist N element-wise multiplication layers:
EWMLθN+3

, . . . ,EWMLθ2N+2
such that for input sequences, j ∈ [N],

hi = [xi; yi;w; pi; r
′
i; gi; si(N); . . . ; si(j + 1);0; 1; ti],

they map EWMLθ2N+3−j
(hi) = [xi; yi;w; pi; r

′
i; gi; si(N); . . . ; si(j);0; 1; ti], where the approximation si(j) is defined

as recursive form: for any i ∈ [n+ 1], j ∈ [N − 1],

si(j) :=

{
r′i(j − 1)⊙ (V ⊤

j+1 · si(j + 1)), j ∈ [N − 1]

r′i(N − 1)⊙ gi, j = N.

Additionally, for any j ∈ [N], BθN+2+j
defined in (B.1) satisfies BθN+2+j

≤ 1.

Proof of Lemma 5. By Lemma 2 and Lemma 3, we obtain pi(j) and r′i(j), the approximation for pi(j) (3.3) and r′i(j)
respectively. Using pi(j) and r′i(j), we construct N element-wise multiplication layers to approximate si(j).

We give the construction of parameters directly. For every j ∈ [N − 1], k ∈ [K], we define matrices
Q2N+3−j

k ,K2N+3−j
k , V 2N+3−j

k ∈ RD×D such that for all i ∈ [n+ 1],

Q2N+3−j
k hi =


vj+11 [k]

...
vj+1K [k]

0

 , K2N+3−j
k hi =

[
si(j + 1)

0

]
, V 2N+3−j

k hi = r′i(j − 1)[k] · e3j,k , (C.15)

where e3j,k denotes the position unit vector of element si(j)[k].

Since input hi = [xi; yi;w; pi; r
′
i; gi; si(N); . . . ; si(j + 1);0; 1; ti], similar to (C.8), those matrices indeed exist. Thus, it is

straightforward to check that∑
k∈[K]

γ(⟨Q2N+3−j
k hi,K

2N+3−j
k hi⟩)V 2N+3−j

k hi

=

K∑
k=1

(V ⊤
j+1[k, ∗] · si(j + 1))r′i(j − 1)[k]e3j,k

(
By definition of EWML layer follows Definition 6

)

=


0

ri(j − 1)[1]V ⊤
j+1[1, ∗] · si(j + 1)

...
r′i(j − 1)[k]V ⊤

j+1[K, ∗] · si(j + 1)
0


(
By definition of e3j,k

)

25

In-Context Deep Learning via Transformer Models

=

 0
r′i(j − 1)⊙ (V ⊤

j+1 · si(j + 1))
0

 (
By definition of hadamard product

)
= [0; si(j);0].

(
By definition of si(j) follows (3.20)

)
Therefore, by the definition of EWML layer follows Definition 6, the output h̃i becomes

h̃i = [Attnθ2N+3−j
(hi)]

= hi +
∑

m∈[2],k∈[K]

σ(⟨Q2N+3−j
m,k hi,K

2N+3−j
m,k hs⟩)V 2N+3−j

m,k hs

= hi + [0; s(j);0]

= [xi; yi;w; pi; r
′
i; gi; si(N − 1); . . . ; si(j + 1);0; 1; ti] + [0; si(j);0]

= [xi; yi;w; pi; r
′
i; gi; si(N − 1); . . . ; si(j);0; 1; ti].

Finally we come back to approximate the initial approximation si(N) = r′i(N − 1)⊙ gi. Notice that gi and r′i(N − 1) are
already in the input hi = [xi; yi;w; pi; r

′
i; gi;0; 1; ti], thus it is simple to construct EWMLN+3 , similar to (C.15), such

that it maps,

[xi; yi;w; pi; r
′
i; gi;0; 1; ti]

EWMLN+3−−−−−−−→ [xi; yi;w;0; 1; pi; r
′
i; gi; si(N);0; 1; ti].

Since we don’t using the sum of ReLU to approximate any variables, these step don’t generate extra error. Besides, by
(3.19), matrices have operator norm bounds

max
j,k

∥QN+2+j
k ∥1 ≤ 1, max

j,k
∥KN+2+j

k ∥1 ≤ 1, max
j,k

∥V N+2+j
k ∥1 ≤ 1.

Consequently, for any j ∈ [N], BθN+2+j
≤ 1. Thus we complete the proof.

C.6 Proof of Lemma 6

Lemma 13 (Lemma 6 Restated: Error for gisi(j)). Suppose the upper bounds Bv, Bx > 0 such that for any k ∈ [K], j ∈
[N] and i ∈ [n], ∥vjk∥2 ≤ Bv , and ∥xi∥2 ≤ Bx. Let r′i(j) ∈ RK such that r′i(j)[k] := r′(v⊤j+1k

pi(j)) follows Definition 2.
Let si(j) = Ri(j− 1)V ⊤

j+1 . . . Ri(N − 2)V ⊤
N ·Ri(N − 1)u follows Definition 3. Let r′i(j), gi, si(j) be the approximations

for r′i(j), u(pi(N), yi), si(j) follows Lemma 3, Lemma 4 and Lemma 5 respectively. Let Br′ be the upper bound of r′i(j)[k]
and r′i(j)[k] as defined in Lemma 3. Let Bl be the upper bound of gi[k] and u(pi(N), yi)[k] as defined in Lemma 4. Then
for any i ∈ [n+ 1], j ∈ [N], k ∈ [K],

si(j)[k] ≤ Bs,

|si(j)[k]− si(j)[k]| ≤ Er
s ϵr + Er′

s ϵr′ + El
sϵl,

where

P := max{
√
K,

√
d}

Bs := max
j∈[N]

{(P ·Br′Bv)
N−jBr′Bl},

Er
s := max

j∈[N]
{Lr′ErPBsB

2
v [

N−j−1∑
l=0

(Br′BvP)l] + (Br′BvP)N−j(BlLr′BvEr +Br′LlEr)},

Er′

s := max
j∈[N]

{PBsBv[

N−j−1∑
l=0

(Br′BvP)l] + (Br′BvP)N−jBl},

El
s := max

j∈[N]
{(Br′BvP)N−jBr′}.

26

In-Context Deep Learning via Transformer Models

Above, Bs is the upper bound of si(j)[k] and Er
s , E

r′

s , El
s are the coefficients of ϵr, ϵ

′
r, ϵl in the upper bounds of

|si(j)[k]− si(j)[k]|, respectively.

Proof of Lemma 6. By Lemma 5, we manage to approximate si(j) by si(j). By triangle inequality, we have

|si(j)[k]− si(j)[k]|
≤ |r′i(n− 1)[k]− r′i(n− 1)[k]| ·

∣∣v⊤n+1k
si(n+ 1)

∣∣+ |r′i(n− 1)[k]| ·
∣∣(v⊤n+1k

si(n+ 1))− (v⊤n+1k
si(n+ 1))

∣∣.
We bound these four terms separately. By Lemma 3, |r′i(n− 1)[k]− r′i(n− 1)[k]| is bounded by ϵr′ + Lr′BvErϵr. We
then use induction to establish upper bounds for si(j)[k] and |si(j)[k]− si(j)[k]|.

We first use induction to prove the first two statements. To begin with, we illustrate the recursion formula for si(j). By
(3.20), recall that for any j ∈ [N],

si(j) :=

{
r′i(j − 1)⊙ (V ⊤

j+1 · si(j + 1)), j ∈ [N − 1]

r′i(N − 1)⊙ gi, j = N.

We consider applying induction to prove the first statement:

si(j)[k] ≤ (P ·Br′Bv)
N−nBr′Bl.

As for the base case, j = N :

si(N)[k] = r′i(N − 1)[k] · gi[k] ≤ Br′Bl.

Therefore, if the statement holds for j = n+ 1, by (3.20) and our assumption, it holds

si(n)[k] = r′i(n− 1)[k] · (v⊤j+1k
si(n+ 1))

(
By recursion formula (3.20)

)
≤ r′i(n− 1)[k] · ∥vn+1k∥2 · ∥si(n+ 1)∥2

(
By Cauchy-schwarz inequality

)
≤ r′i(n− 1)[k] · ∥vn+1k∥2 ·max{

√
K,

√
d} ·max

k
|si(n+ 1)[k]|

≤ (Br′Bv) ·max{
√
K,

√
d} · (max{

√
K,

√
d} ·Br′Bv)

N−n−1Br′Bl

(
By inductive hypothesis

)
= (P ·Br′Bv)

N−nBr′Bl.
(
By definition of P follows Lemma 6

)
Thus, by the principle of induction, the first statement is true for all integers j ∈ [N]. Moreover, by the definition of Bs

followsLemma 6, we know Bs is the upper bound of si(j)[k]. Next we apply induction to prove the second statement:

|si(j)[k]− si(j)[k]| ≤ (ϵr′ + Lr′BvErϵr)PBvBs[

N−n−1∑
l=0

(Br′BvP)l]

+ (Br′BvP)N−n[(BlLr′BvEr +Br′LlEr)ϵr +Blϵr′ +Br′ϵl].

For the base case, j = N :

|si(N)[k]− si(N)[k]|
= |r′i(N − 1)[k] · gi[k]− r′i(N − 1)[k] · u(pi(N), yi)[k]|

(
By definition (3.20) and (3.6)

)
≤ |r′i(N − 1)[k]− r′i(N − 1)[k]| · |gi[k]|+ |r′i(N − 1)[k]| · |gi[k]− u(pi(N), yi)[k]|

(
By triangle inequality

)
≤ (ϵr′ + Lr′BvErϵr)Bl +Br′(ϵl + LlErϵr).

(
By (3.14) and (3.16)

)
= (BlLr′BvEr +Br′LlEr)ϵr +Blϵr′ +Br′ϵl

Therefore, if the statement holds for j = n+ 1, by (3.20) and our assumption, it holds

|si(n)[k]− si(n)[k]|

27

In-Context Deep Learning via Transformer Models

=
∣∣r′i(n− 1)[k] · (v⊤n+1k

si(n+ 1))− r′i(n− 1)[k] · (v⊤n+1k
si(n+ 1))

∣∣ (
By the recursion formula (3.6) and (3.20)

)
≤ |r′i(n− 1)[k]− r′i(n− 1)[k]| ·

∣∣v⊤n+1k
si(n+ 1)

∣∣
+ |r′i(n− 1)[k]| ·

∣∣(v⊤n+1k
si(n+ 1))− (v⊤n+1k

si(n+ 1))
∣∣ (

By triangle inequality
)

≤ (ϵr′ + Lr′BvErϵr)PBvBs +Br′Bv∥si(n+ 1)− si(n+ 1)∥2(
By error accumulation of approximating r′ follows (3.14)

)
≤ (ϵr′ + Lr′BvErϵr)PBvBs +Br′BvP max

k
|si(n+ 1)[k]− si(n+ 1)[k]|

≤ (ϵr′ + Lr′BvErϵr)PBvBs +Br′BvP
{
(ϵr′ + Lr′BvErϵr)PBvBs[

N−n−2∑
l=0

(Br′BvP)l]

+ (Br′BvP)N−n−1[(BlLr′BvEr +Br′LlEr)ϵr +Blϵr′ +Br′ϵl]
} (

By inductive hypothesis
)

≤ (ϵr′ + Lr′BvErϵr)PBvBs[

N−n−1∑
l=0

(Br′BvP)l]

+ (Br′BvP)N−n[(BlLr′BvEr +Br′LlEr)ϵr +Blϵr′ +Br′ϵl].

Thus, by the principle of induction, the second statement is true for all integers j ∈ [N − 1]. By the definition of Es follows
Lemma 6, it is simple to check that

|si(j)[k]− si(j)[k]| ≤ Er
s ϵr + Er′

s ϵr′ + El
sϵl.

Thus we complete the proof.

C.7 Proof of Theorem 1

Theorem 3 (Theorem 1 Restated: In-context gradient descent on N -layer NNs). Fix any Bv, η, ϵ > 0, L ≥ 1. For any input
sequences takes from (2.1), their exist upper bounds Bx, By such that for any i ∈ [n], ∥yi∥2 ≤ By, ∥xi∥2 ≤ Bx. Assume
functions r(t), r′(t) and u(t, y)[k] are Lr, Lr′ , Ll-Lipschitz continuous. Suppose W is a closed domain such that for any
j ∈ [N − 1] and k ∈ [K],

W ⊂
{
w = [vjk] ∈ RDN : ∥vjk∥2 ≤ Bv

}
,

and ProjW project w into bounded domain W . Assume ProjW = MLPθ for some MLP layer with hidden dimension
Dw parameters ∥θ∥ ≤ Cw. If functions r(t), r′(t) and u(t, y)[k] are C4-smoothness, then for any ϵ > 0, there exists a
transformer model NNθ with (2N + 4)L hidden layers consists of L neural network blocks TFN+2

θ ◦ EWMLN
θ ◦ TF2

θ,

NNθ := TFN+2
θ ◦ EWMLN

θ ◦ TF2
θ ◦ . . . ◦ TF

N+2
θ ◦ EWMLN

θ ◦ TF2
θ,

such that the heads number M l, embedding dimensions Dl, and the parameter norms Bθl suffice

max
l∈[(2N+4)L]

M l ≤ Õ(ϵ−2), max
l∈[(2N+4)L]

Dl ≤ O(NK2) +Dw, max
l∈[(2N+4)L]

Bθl ≤ O(η) + Cw + 1,

where Õ(·) hides the constants that depend on d,K,N , the radius parameters Bx, By, Bv and the smoothness of r and ℓ.
And this neural network such that for any input sequences H(0), take from (2.1), NNθ(H

(0)) implements L steps in-context
gradient descent on risk Eqn (2.2): For every l ∈ [L], the (2N + 4)l-th layer outputs h((2N+4)l)

i = [xi; yi;w
(l);0; 1; ti] for

every i ∈ [n+ 1], and approximation gradients w(l) such that

w(l) = ProjW(w(l−1) − η∇Ln(w
(l−1)) + ϵ(l−1)), w(0) = 0,

where ∥ϵ(l−1)∥2 ≤ ηϵ is an error term.

Proof Sketch. Let the first 2N + 2 layers of NNθ are Transformers and EWMLs constructed in Lemma 2, Lemma 3,
Lemma 4, and Lemma 5. Explicitly, we design the last two layers to implement the gradient descent step (Lemma 1).

28

In-Context Deep Learning via Transformer Models

We then establish the upper bounds for error ∥∇wLn(w) − ∇wLn(w)∥2, where ∇wLn(w), derived from the outputs
of NNθ, approximates ∇wLn(w). Next, for any ϵ > 0, we select appropriate parameters ϵl, ϵr and ϵr′ to ensure that
∥∇wLn(w

(l−1))−∇wLn(w
(l−1))∥2 ≤ ϵ holds for any l ∈ [L].

Proof of Theorem 1. We consider the first N +2 transformer layers TFN+2
θ are layers in Lemma 2 ,Lemma 3 and Lemma 4.

Then we let the middle N element-wise multiplication layers EWMLN
θ be layers in Lemma 5. We only need to check

approximability conditions. By Lemma 7 and our assumptions, for any ϵr, ϵr′ , ϵl, it holds

• Function r(t) is (ϵr, R1,M1, C1)-approximable for R1 = max{BvBr, 1}, M1 ≤ Õ(C2
1ϵ

−2
r), where C1 depends only

on R1 and the C2-smoothness of r(t).

• Function r′(t) is (ϵr′ , R2,M2, C2)-approximable for R2 = max{BvBr′ , 1}, M2 ≤ Õ(C2
2ϵ

′−2
r), where C2 depends only

on R2 and the C2-smoothness of r′(t).

• Function ∂1ℓ(t, y) is (ϵl, R3,M3, C3)-approximable for R3 = max{BvBr, 1}, M3 ≤ Õ(C2
3ϵ

−2
l), where C3 depends

only on R3 and the C3-smoothness of u(t, y)[k].

which suffice approximability conditions in Lemma 2, Lemma 3 and Lemma 4.

Now we construct the last two layers to implement w − η∇Ln(w) and ProjW(w). First we construct a attention layer to
approximate w − η∇Ln(w). For every m ∈ [2], j ∈ [N], k ∈ [K], we consider matrices Q2N+3

m,j,k , j
2N+3
m,j,k , V 2N+3

m,j,k ∈ RD×D

such that

Q2N+3
1,j,k hi =

[
1
0

]
, K2N+3

1,j,k hi =

[
si(j)[k]

0

]
, V 2N+3

1,j,k hi = −η(n+ 1)

2n

 0
pi(j − 1)

0

 ,

Q2N+3
2,j,k hi =

[
−1
0

]
, K2N+3

2,j,k hi =

[
si(j)[k]

0

]
, V 2N+3

2,j,k hi = −η(n+ 1)

2n

 0
−pi(j − 1)

0

 . (C.16)

Furthermore, we define approximation gradient ∇wLn(w) as follows,

∇wLn(w) := − 1

η(n+ 1)

n+1∑
t=1

∑
m∈[2],j∈[N],k∈[K]

σ(⟨Q2N+3
m,j,k hi,K

2N+3
m,j,k ht⟩)V 2N+3

m,j,k ht

=
1

2n

n+1∑
t=1

K∑
k=1

N∑
j=1

(σ(st(j)[k])− σ(−st(j)[k]))

 0
pt(j − 1)

0

 (
By our construction (C.16)

)

=
1

2n

n+1∑
t=1

K∑
k=1

N∑
j=1

st(j)[k] ·

 0
pt(j − 1)

0

 (
By f(x) = σ(x)− σ(−x)

)

=
1

2n

n+1∑
t=1

N∑
j=1

 0
IK×K ⊗ pt(j − 1) · st(j)

0

 (
By definition of Kronecker product

)

=
1

2n

n∑
t=1


0

At(1)
...

At(N)
0

 ,
(
By sn+1(j) = 0 follows Lemma 5

)

where At(j) := IK×K ⊗ pt(j − 1) · st(j) denotes the approximation for At(j). Therefore, by the definition of ReLU
attention layer follows Definition 7, for any i ∈ [n+ 1],

h̃i = [Attnθ2N+3
(hi)]

29

In-Context Deep Learning via Transformer Models

= hi +
1

n+ 1

n+1∑
i=1

∑
m∈[2],j∈[N],k∈[K]

σ(⟨Q2N+3
m,j,k hs,K

2N+3
m,j,k hi⟩)V 2N+3

m,j,k hi

= [xi; yi;w; pi; r
′
i; gi; si;0; 1; ti]−

η

2n

n∑
t=1


0

At(1)
...

At(N)
0


= [xi; yi;w − η∇wLn(w); pi; r

′
i; gi;0; 1; ti].

(
By definition of ∇wLn(w)

)
Since we do not use approximation technique like Definition 4, this step do not generate extra error. Besides,by (B.1),
matrices have operator norm bounds

max
j,m,k

∥Q2N+3
j,m,k ∥1 ≤ 1, max

j,m,k
∥K2N+3

j,m,k ∥1 ≤ 1,
∑
j,m,k

∥V 2N+3
j,m,k ∥1 ≤ 2ηNK.

Consequently, Bθ2N+3
≤ 1 + 2ηNK. Fix any ϵ > 0, then we pick appropriate ϵr, ϵ

′
r, ϵl such that

∥ϵ(l−1)∥2 = η∥∇wLn(w
(l−1))−∇wLn(w

(l−1))∥2 ≤ ηϵ.

By Definition 3 and Lemma 6, for any j ∈ [N − 1], i ∈ [n], it holds

∥Ai(j)−Ai(j)∥2

≤
K∑

k=1

∥si(j)[k]pi(j − 1)− si(j)[k]pi(j − 1)∥2
(
By Definition 2 and definition of Ai(j)

)

≤
K∑

k=1

|si(j)[k]− si(j)[k]| · ∥pi(j − 1)∥2 + |si(j)[k]| · ∥pi(j − 1)− pi(j − 1)∥2
(
By triangle inequality

)
≤ P [(Er

s ϵr + Er′

s ϵr′ + El
sϵl)

√
PBr +BsErϵr],

(
By (3.12) and Lemma 6

)
where Bs is the upper bound of si(j)[k] and Er

s , E
r′

s , El
s are the coefficients of ϵr, ϵ

′
r, ϵl in the upper bounds of

|si(j)[k]− si(j)[k]| follow Lemma 6, respectively. We can drive similar results as j = N . Actually, by P =
max{

√
K,

√
d} follows Lemma 6, above inequality also holds for j = N . Therefore, the error in total such that for

any w,

∥∇wLn(w)−∇wLn(w)∥2

= ∥ 1

2n

n∑
t=1


0

At(1)
...

At(N)
0

− 1

2n

n∑
t=1


0

At(1)
...

At(N)
0

 ∥2
(
By definition of Ln(w) and Ln(w)

)

≤ 1

2
max
1≤t≤n

{
N∑
j=1

∥At(j)−At(j)∥2}

≤ N

2
P [(Er

s ϵr + Er′

s ϵr′ + El
sϵl)

√
PBr +BsErϵr].

(
By the error accumulation results derived before

)
Let Cl, Cr, Cr′ denotes coefficients in front of ϵl, ϵr, ϵr′ respectively. Then it holds

Cl = NP
3
2BrE

l
s,

Cr = NP
3
2BrE

r
s +NPBsEr,

30

In-Context Deep Learning via Transformer Models

Cr′ = NP
3
2BrE

r′

s .

Thus, to ensure ∥∇wLn(w)−∇wLn(w)∥2 ≤ ϵ, we only need to select ϵl, ϵr, ϵ′r as

ϵl =
2ϵ

3Cl
, ϵr =

2ϵ

3Cr
, ϵ′r =

2ϵ

3Cr′
.

Therefore, we only need to pick the last MLP layer MLP2N+4 such that it maps

[xi; yi;w − η∇wLn(w); pi; r
′
i; gi; si;0; 1; ti]

MLP2N+4−−−−−−→ [xi; yi; ProjW(w − η∇wLn(w));0; 1; ti].

By our assumption on the map ProjW , this is easy.

Finally, we analyze how many embedding dimensions of Transformers are needed to implement the above ICGD. Recall that

xi, yi ∈ Rd, w ∈ R2dK+(N−2)K2

, pi ∈ R(N−1)K+d, r′i ∈ R(N−2)K+d, gi ∈ Rd, si ∈ R(N−1)K+d.

Therefore, max{Ω(NK2), Dw} embedding dimensions of Transformer are required to implement ICGD on deep models.

Combining the above, we complete the proof.

Remark 5 (Modest Assumptions). Our assumptions remain modest. For example, we require that the loss function l(·), the
activation function r(·), and its derivative r

′
(·) are C4-smoothness. Many settings meet these conditions, including those

using the sigmoid activation function as r(·) and the squared loss function.

C.8 Proof of Corollary 1.1

Corollary 3.1 (Corollary 1.1 Restated: Error for implementing ICGD on N -layer neural network). Fix L ≥ 1, under
the same setting as Theorem 1, (2N + 4)L-layer neural networks NNθ approximates the true gradient descent trajectory
{wl

GD}l≥0 ∈ RDN with the error accumulation

∥wl − wl
GD∥2 ≤ L−1

f (1 + nLf)
lϵ,

where Lf denotes the Lipschitz constant of LN (w) within W .

First we introduce a helper lemma.

Lemma 14 (Error for Approximating GD, Lemma G.1 of (Bai et al., 2023)). Let W ⊂ Rd is a convex bounded domain
and ProjW projects all vectors into W . Suppose f : W → R and ∇f is Lf -Lipschitz on W . Fix any ϵ > 0, let sequences
{wl}l≥0 ∈ Rd and {wl

GD}l≥0 ∈ Rd are given by w0 = w0
GD = 0, then for all l ≥ 0,

wl = ProjW(wl−1 − η∇Ln(w
l−1) + ϵl−1), ∥ϵl−1∥2 ≤ ηϵ,

wl
GD = ProjW(wl−1

GD − η∇Ln(w
l−1
GD))

To show the convergence, we define the gradient mapping at w with step size η as,

Gf
W,η :=

w − ProjW(w − η∇Ln(w))

η
.

Then if η ≤ Lf , for all L ≥ 1, convergence holds

min
l∈[L−1]

∥Gf
W,η(w

l)∥22 ≤ 1

L

L−1∑
l=1

∥Gf
W,η(w

l)∥22 ≤ 8(f(0)− infw∈W f(w))

ηL
+ 10ϵ2.

Moreover, for any l ≥ 0, the error accumulation is

∥wl − wl
GD∥2 ≤ L−1

f (1 + nLf)
lϵ.

31

In-Context Deep Learning via Transformer Models

Lemma 14 shows Theorem 1 leads to exponential error accumulation in the general case. Moreover, Lemma 14 also provides
convergence of approximating GD. Then we proof Corollary 1.1.

Proof. For any small ϵ, by Theorem 1, the neural network NNθ implements each gradient descent step with error bounded
by ϵ. Then we simply apply Lemma 14 to complete the proof.

32

In-Context Deep Learning via Transformer Models

D Extension: Different Input and Output Dimensions
In this section, we explore the ICGD on N -layer neural networks under the setting where the dimensions of input xi and
label yi can be different. Specifically, we consider our prompt datasets {(xi, yi)}i∈[n] where xi ∈ Rdx and yi ∈ Rdy . We
start with our new N -layer neural network.

Definition 10 (N -Layer Neural Network). An N -Layer Neural Network comprises N − 1 hidden layers and 1 output layer,
all constructed similarly. Let r : R → R be the activation function. For the hidden layers: for any i ∈ [n+ 1], j ∈ [N − 1],
and k ∈ [K], the output for the first j layers w.r.t. input xi ∈ Rd, denoted by predh(xi; j) ∈ RK , is defined as recursive
form:

predh(xi; 1)[k] := r(v⊤1kxi), and predh(xi; j)[k] := r(v⊤jkpredh(xi; j − 1)),

where v1k ∈ Rd and vjk ∈ RK for j ∈ {2, . . . , N − 1} are the k-th parameter vectors in the first layer and the j-th layer,
respectively. For the output layer (N -th layer), the output for the first N layers (i.e the entire neural network) w.r.t. input
xi ∈ Rdx , denoted by predo(xi;w,N) ∈ Rdy , is defined for any k ∈ [dy] as follows:

predo(xi;w,N)[k] := r(v⊤Nk
predh(xi;N − 1)),

where vNk
∈ RK are the k-th parameter vectors in the N -th layer and w ∈ R(dx+dy)K+(N−2)K2

denotes the vector
containing all parameters in the neural network,

w :=
[
v⊤11 , . . . , v

⊤
1K , . . . , v⊤jk , . . . v

⊤
N−11

, . . . , v⊤N−1K
, v⊤N1

, . . . , v⊤Ndy

]⊤
.

Notice that our new N -layer neural network only modify the output layer compared to Definition 1. Intuitively, this results
in minimal change in output, which allows our framework in Section 3.3 to function across varying input/output dimensions.
Theoretically, we derive the explicit form of gradient ∇Ln(w).

Lemma 15 (Decomposition of One Gradient Descent Step). Fix any Bv, η > 0. Suppose the empirical loss function Ln(w)
on n data points {(xi, yi)}i∈[n] is defined as

Ln(w) :=
1

2n

n∑
i=1

ℓ(f(w, xi), yi), where ℓ : Rdy × Rdy → R is a loss function,

where f(w, xi), yi) is the output of N -layer neural networks (Definition 10) with modified output layer. Suppose closed
domain W and projection function ProjW(w) follows (3.4). Let Ai(j), r

′
i(j), Ri(j), Vj be as defined in Definition 2 (with

modified dimensions), then the explicit form of gradient ∇Ln(w) becomes

∇Ln(w) =
1

2n

n∑
i=1

Ai(1)
...

Ai(N)

 ,

where Ai(j) denote the derivative of ℓ(pi(N), yi) with respect to the parameters in the j-th layer,

Ai(j) =

(Ri(N − 1) · VN · . . . ·Ri(j − 1) ·
[
IK×K ⊗ pi(j − 1)⊤

]
)⊤ · (∂ℓ(pi(N),yi)

∂pi(N))⊤, j ̸= N

(Ri(N − 1) ·
[
Idy×dy

⊗ pi(N − 1)⊤
]
)⊤ · (∂ℓ(pi(N),yi)

∂pi(N))⊤, j = N.

Proof. Simply follow the proof of Lemma 1. We show the different terms compared to Definition 2:

33

In-Context Deep Learning via Transformer Models

• Let Dj ∈ R denote the total number of parameters in the first j layers.

Dj =


0, j = 0

dxK, j = 1

(j − 1)K2 + dxK, 2 ≤ j ≤ N − 1

(N − 2)K2 + (dx + dy)K, j = N,

• The intermediate term Ri(N − 1),

Ri(N − 1) = diag{r′(v⊤j+11
pi(j)), . . . , r

′(v⊤j+1dy
pi(j))} ∈ Rdy×dy .

• The parameters matrices of the first and the last layers:

Vj :=


[
v11 , . . . , v1K

]⊤
∈ RK×dx , j = 1[

vN1
, . . . , vNdy

]⊤
∈ Rdy×K , j = N.

Thus we complete the proof.

Lemma 15 shows that the explicit form of gradient ∇Ln(w) holds the same structure as Lemma 1. Therefore, it is simple to
follow our framework in Section 3.3 to approximate ∇Ln(w) term by term. Finally, we introduce the generalized version of
main result Theorem 1.

Theorem 4 (In-Context Gradient Descent on N -layer NNs). Fix any Bv, η, ϵ > 0, L ≥ 1. For any input sequences takes
from (2.1), where {(xi, yi)}i∈[n] and xi ∈ Rdx and yi ∈ Rdy , their exist upper bounds Bx, By such that for any i ∈ [n],
∥yi∥2 ≤ By , ∥xi∥2 ≤ Bx. Assume functions r(t), r′(t) and u(t, y)[k] are Lr, Lr′ , Ll-Lipschitz continuous. Suppose W is
a closed domain such that for any j ∈ [N − 1] and k ∈ [K],

W ⊂
{
w = [vjk] ∈ RDN : ∥vjk∥2 ≤ Bv

}
,

and ProjW project w into bounded domain W . Assume ProjW = MLPθ for some MLP layer with hidden dimension
Dw parameters ∥θ∥ ≤ Cw. If functions r(t), r′(t) and u(t, y)[k] are C4-smoothness, then for any ϵ > 0, there exists a
transformer model NNθ with (2N + 4)L hidden layers consists of L neural network blocks TFN+2

θ ◦ EWMLN
θ ◦ TF2

θ,

NNθ := TFN+2
θ ◦ EWMLN

θ ◦ TF2
θ ◦ . . . ◦ TF

N+2
θ ◦ EWMLN

θ ◦ TF2
θ,

such that the heads number M l, parameter dimensions Dl, and the parameter norms Bθl suffice

max
l∈[(2N+4)L]

M l ≤ Õ(ϵ−2), max
l∈[(2N+4)L]

Dl ≤ O(K2N) +Dw, max
l∈[(2N+4)L]

Bθl ≤ O(η) + Cw + 1,

where Õ(·) hides the constants that depend on d,K,N , the radius parameters Bx, By, Bv and the smoothness of r
and ℓ. And this neural network such that for any input sequences H(0), take from (2.1), NNθ(H

(0)) implements L
steps in-context gradient descent on risk Ln(w) follows Lemma 15: For every l ∈ [L], the (2N + 4)l-th layer outputs
h
((2N+4)l)
i = [xi; yi;w

(l);0; 1; ti] for every i ∈ [n+ 1], and approximation gradients w(l) such that

w(l) = ProjW(w(l−1) − η∇Ln(w
(l−1)) + ϵ(l−1)), w(0) = 0,

where ∥ϵ(l−1)∥2 ≤ ηϵ is an error term.

34

In-Context Deep Learning via Transformer Models

E Extension: Softmax Transformer
In this part, we demonstrate the existence of pretrained Softmax transformers capable of implementing ICGD on an N -layer
neural network. First, we introduce our main technique: the universal approximation property of softmax transformers in
Appendix E.1. Then, we prove the existence of pretrained softmax transformers that implement ICGD on N -layer neural
networks in Appendix E.2.

E.1 Axillary Lemma: Universal Approximation of Softmax Transformer

Softmax-Attention Layer. We replace modified normalized ReLU activation σ/n in ReLU attention layer (Definition 7) by
standard softmax. Thus, for any input sequence H ∈ RD×n, a single head attention layer outputs

Attn (H) = H +W (O)(V H) Softmax
[
(KH)⊤(QH)

]
, (E.1)

where W (O), Q,K, V ∈ RD×D ∈ Rd×d are the weight matrices. Then we introduce the softmax transformer block, which
consists of two feed-forward neural network layers and a single-head self-attention layer with the softmax function.

Definition 11 (Transformer Block TSoftmax). For any input sequences H ∈ RD×n, let FF(H) := H +W2 ·ReLU(W1H +
b11

T
L) + b21

T
L be the Feed-Forward layer, where d′ is hidden dimensions, W1 ∈ Rd′×D, W2 ∈ RD×d′

, b1 ∈ Rl, and
b2 ∈ Rd. We configure a transformer block with Softmax-attention layer as TSoftmax := {FF◦Attn◦FF : Rd×L → Rd×L}.

Universal Approximation of Softmax-Transformer. We show the universal approximation theorem for Transformer
blocks (Definition 11). Specifically, Transformer blocks TSoftmax are universal approximators for continuous permutation
equivariant functions on bounded domain.

Lemma 16 (Universal Approximation of TSoftmax). Let f(·) := Rd×n → Rd×n be any L-Lipschitz permutation equivariant
function supported on [0, Bx]

d×n. We denote the discrete input domain of [0, Bx]
d×n by a grid GD with granularity

D ∈ N defined as GD = {Bx/D, 2Bx/D, . . . , Bx}d×n ⊂ Rd×n. For any κ > 0, there exists a transformer network
fSoftmax ∈ TSoftmax, such that for any Z ∈ [0, Bx]

d×n, it approximate f(Z) as:

∥fSoftmax(Z)− f(Z)∥2 ≤ κ.

Proof Sketch. First, we use a piece-wise constant function to approximate f and derive an upper bound based on its
L-Lipschitz property. Next, we demonstrate how the feed-forward neural network F (FF)

1 quantizes the continuous input
domain into the discrete domain GD through a multiple-step function, using ReLU functions to create a piece-wise
linear approximation. Then, we apply the self-attention layer F (SA) on F (FF)

1 , establishing a bounded output region
for F (SA)

S ◦ F (FF)
1 . Finally, we employ a second feed-forward network F (FF)

2 to predict fSoftmax(Z) and assess the
approximation error relative to the actual output f(Z) . See Appendix E.4 for a detailed proof.

E.2 In-Context Gradient Descent with Softmax Transformer

In-Context Gradient Descent with Softmax Transformer. By applying universal approximation theory (Lemma 16), we
now illustrate how to use Transformer block TSoftmax (Definition 11) and MLP layers (Definition 8) to implement ICGD on
general risk function Ln(w).

Theorem 5 (Theorem 2 Restated: In-Context Gradient Descent on General Risk Function). Fix any Bw, η, ϵ > 0, L ≥ 1.
For any input sequences takes from (2.1), their exist upper bounds Bx, By such that for any i ∈ [n], ∥yi∥max ≤ By,
∥xi∥max ≤ Bx. Suppose W is a closed domain such that ∥w∥max ≤ Bw and ProjW project w into bounded domain
W . Assume ProjW = MLPθ for some MLP layer. Define l(w, xi, yi) as a loss function with L-Lipschitz gradient. Let
Ln(w) =

1
n

∑n
i=1 ℓ(w, xi, yi) denote the empirical loss function, then there exists a Softmax-transformer NNθ, such that

for any input sequences H(0), take from (2.1), NNθ(H
(0)) implements L steps in-context gradient descent on Ln(w): For

every l ∈ [L], the 4l-th layer outputs h(4l)
i = [xi; yi;w

(l);0; 1; ti] for every i ∈ [n+ 1], and approximation gradients w(l)

such that

w(l) = ProjW(w(l−1) − η∇Ln(w
(l−1)) + ϵ(l−1)), w(0) = 0,

where ∥ϵ(l−1)∥2 ≤ ηϵ is an error term.

35

In-Context Deep Learning via Transformer Models

E.3 Proof of Theorem 2

Proof of Theorem 2. We only need to construct a 4 layers transformer capable of implementing single step gradient descent.
With out loss of generality, we assume w ∈ RDw . Recall that the input sequences H ∈ RD×(n+1) takes form

H :=

x1 x2 · · · xn xn+1

y1 y2 · · · yn 0
q1 q2 · · · qn qn+1

 ∈ RD×(n+1), qi :=


w
0
1
ti

 ∈ RD−(d+1). (E.2)

Let function f : RD×n → RD×n output

f(H) =

x1 x2 · · · xn xn+1

y1 y2 · · · yn 0
q1 q2 · · · qn qn+1

 , qi :=


w − η∇Ln(w)

0
1
ti

 ∈ RD−(d+1).

By Lemma 16, for any κ > 0, there exists a transformer network fSoftmax ∈ TSoftmax, such that for any in-
put H ∈ [−B,B]d×L, we have ∥fSoftmax(H)− f(H)∥2 ≤ κ. Therefore, by the equivalence of matrix norms,
∥fSoftmax(H)− f(H)∥max ≤ κ holds without loss of generality. Above B := max{Bx, By, Bw, 1} denotes the up-
per bound for every elements in H . Thus, we obtain w from the identical position of w in fSoftmax(H). Suppose we choose
κ = ϵ√

Dw
, then it holds

∥w − (w − η∇Ln(w)∥2 ≤
√

Dw∥w − (w − η∇Ln(w)∥max

≤ ∥fSoftmax − f(H)∥max

≤
√
Dw · ϵ√

Dw

≤ ϵ.

Finally, by our assumption, there exists an MLP layer such that for any i ∈ [n+ 1], it maps

[xi; yi;w − η∇Ln(w);0; 1; ti]
MLP−−−→ [xi; yi; ProjW(w − η∇wLn(w));0; 1; ti].

Therefore, a four-layer transformer fSoftmax ◦MLP is capable of implementing one-step gradient descent through ICL.
As a direct corollary, there exist a 4L-layer transformer consists of L identical blocks fSoftmax ◦MLP to approximate L
steps gradient descent algorithm. Each block approximates a one-step gradient descent algorithm on general risk function
Ln(w).

E.4 Proof of Lemma 16

In this section, we introduce a helper lemma Lemma 17 to prove Lemma 16. At the beginning, we assume all input sequences
are separated by a certain distance.

Definition 12 (Token-wise Separateness, Definition 1 of (Kajitsuka & Sato, 2024)). Let N ≥ 1 and Z(1), . . . , Z(N) ∈ Rd×n

be input sequences. Then, Z(1), . . . , Z(N) are called token-wise (rmin, rmax, δ)-separated if the following three conditions
hold.
• For any i ∈ [N] and k ∈ [n],

∥∥∥Z(i)
:,k

∥∥∥
2
> rmin holds.

• For any i ∈ [N] and k ∈ [n],
∥∥∥Z(i)

:,k

∥∥∥
2
< rmax holds.

• For any i, j ∈ [N] and k, l ∈ [n] with Z
(i)
:,k ̸= Z

(j)
:,l ,
∥∥∥Z(i)

:,k − Z
(j)
:,l

∥∥∥
2
> δ holds.

Note that we refer to Z(1), . . . , Z(N) as token-wise (rmax, ϵ)-separated instead if the sequences satisfy the last two conditions.

Then we introduce the definition of contextual mapping. Intuitively, a contextual mapping can provide every input sequence
with a unique id, which enables us to construct approximation for labels.

36

In-Context Deep Learning via Transformer Models

Definition 13 (Contextual mapping, Definition 2 of (Kajitsuka & Sato, 2024)). Let input sequences Z(1), . . . , Z(N) ∈ Rd×n.
Then, a map q : Rd×n → Rd×n is called an (r, δ)-contextual mapping if the following two conditions hold:

• For any i ∈ [N] and k ∈ [n],
∥∥∥q (Z(i)

)
:,k

∥∥∥
2
< r holds.

• For any i, j ∈ [N] and k, l ∈ [n], if Z(i)
:,k ̸= Z

(j)
:,l , then

∥∥∥q (Z(i)
)
:,k

− q
(
Z(j)

)
:,l

∥∥∥
2
> δ holds.

In particular, q
(
Z(i)

)
for i ∈ [N] is called a context id of Z(i).

Next, we show that a softmax-based 1-layer attention block with low-rank weight matrices is a contextual mapping for
almost all input sequences.

Lemma 17 (Softmax attention is contextual mapping, Theorem 2 of (Kajitsuka & Sato, 2024)). Let Z(1), . . . , Z(N) ∈ Rd×n

be input sequences with no duplicate word token in each sequence, that is,

Z
(i)
:,k ̸= Z

(i)
:,l ,

for any i ∈ [N] and k, l ∈ [n]. Also assume that Z(1), . . . , Z(N) are token-wise (rmin, rmax, ϵ) separated. Then, there
exist weight matrices W (O) ∈ Rd×s and V,K,Q ∈ Rs×d such that the ranks of V,K and Q are all 1, and 1-layer
single head attention with softmax, i.e., F (SA)

S with h = 1 is an (r, δ)-contextual mapping for the input sequences
Z(1), . . . , Z(N) ∈ Rd×n with r and δ defined by

r = rmax +
ϵ

4

δ =
2(log n)2ϵ2rmin

r2max(|V|+ 1)4(2 log n+ 3)πd
exp

(
−(|V|+ 1)4

(2 log n+ 3)πdr2max

4ϵrmin

)
.

Applying Lemma 17, we extends Proposition 1 of (Kajitsuka & Sato, 2024) to our Lemma 161. We provide explicit upper
bound of error ∥fSoftmax(Z)− f(Z)∥2 and analysis with function f of a broader supported domain.

Lemma 18 (Lemma 16 Restated: Universal Approximation of TSoftmax). Let f(·) := Rd×n → Rd×n be any L-Lipschitz
permutation equivariant function supported on [0, Bx]

d×n. We denote the discrete input domain of [0, Bx]
d×n by a grid

GD with granularity D ∈ N defined as GD = {Bx/D, 2Bx/D, . . . , Bx}d×n ⊂ Rd×n. For any κ > 0, there exists a
transformer network fSoftmax ∈ TSoftmax (Definition 11), such that for any Z ∈ [0, Bx]

d×n, it approximate f(Z) as:

∥fSoftmax(Z)− f(Z)∥2 ≤ κ.

Proof. We begin our 3-step proof.

Approximation of f by piece-wise constant function. Since f is a continuous function on a compact set, f has
maximum and minimum values on the domain. By scaling with F (FF)

1 and F (FF)
2 , f is assumed to be normalized: for any

Z ∈ Rd×n \ [0, Bx]
d×n

f(Z) = 0,

and for any Z ∈ [0, Bx]
d×n

−By ≤ f(Z) ≤ By.

Let D ∈ N be the granularity of a grid GD:

GD = {Bx

D
,
2Bx

D
, . . . , Bx}d×n ⊂ Rd×n,

1This extension builds on the results of (Hu et al., 2025a), which extend the rank-1 requirement to any rank for attention weights.
Additionally, Hu et al. (2025b) apply similar techniques to analyze the statistical rates of diffusion transformers (DiTs).

37

In-Context Deep Learning via Transformer Models

where each coordinate only take discrete value Bx/D, 2Bx/D, ..., Bx. Now with a continuous input Z, we approximate f
by using a piece-wise constant function f evaluating on the nearest grid point L of Z in the following way:

f(Z) =
∑

L∈GD

f (L) 1Z∈L+[−Bx/D,0)d×n . (E.3)

Additionally if Z ∈ L+ [−1/D, 0)d×n, denote it as Q(Z) = L.

Now we bound the piece-wise constant approximation error ∥f − f∥ as follows.

Define set PD = {L+ [−Bx/D, 0)d×n|L ∈ GD}. It is a set of regions of size (Bx

D)d×n, whose vertexes are the points in
GD.

For any subset U ∈ PD, the maximal difference of f and f in this region is:

max
Z∈U

∥f(Z)− f(Z)∥2 = max
Z∈U

∥f(Z)− f(Q(Z))∥2

≤ max
Z,Z′∈U

∥f(Z)− f(Z ′)∥2

≤ L · max
Z,Z′∈U

∥Z − Z ′∥2
(
By f is a L-Lipschitz function

)
= L ·

√
dn · (Bx

D
)2

(
Z, Z′ are in the same Bx

D
-wide (d · n)-dimension U .

)
=

L
√
dnBx

D
. (E.4)

Quantization of input using F (FF)
1 . In the second step, we use F (FF)

1 to quantize the continuous input domain into GD.
This process is achieved by a multiple-step function, and we use ReLU functions to approximate this multiple-step functions.
This ReLU function can be easily implemented by a one-layer feed-forward network.

First for any small δ > 0 and z ∈ R, we construct a δ-approximated step function using ReLU functions:

σR

[
z
δ

]
− σR

[
z
δ −Bx

]
D

=


0 z < 0
z
δD 0 ≤ z < δBx

Bx

D δBx ≤ z

, (E.5)

where a one-hidden-layer feed-forward neural network is able to implement this. By shifting (E.5) by Bx, for any t ∈ [D−1],
we have:

σR

[
z
δ − tBx

δD

]
− σR

[
z
δ −Bx − tBx

δD

]
D

=


0 z < tBx

D
z
δD

tBx

D ≤ z < δBx + tBx

D
Bx

D δBx + tBx

D ≤ z

, (E.6)

when δ is small the above function approximates to a step function:

quant
(t)
D (z) =

{
0 z ≤ tBx

D
Bx

D
tBx

D ≤ z
.

By adding up (E.6) at every t ∈ [D − 1], we have an approximated multiple-step function

D−1∑
t=0

σR

[
z
δ − tBx

δD

]
− σR

[
z
δ −Bx − tBx

δD

]
D

(E.7)

38

In-Context Deep Learning via Transformer Models

≈
D−1∑
t=0

quant
(t)
D (z)

(
when δ is small.

)
= quantD(z)

=


0 z < 0
Bx

D 0 ≤ z < Bx

D
...

...
Bx Bx − Bx

D ≤ z

. (E.8)

Note that the error of approximation at z here estimated as:∣∣∣∣∣
D−1∑
t=0

σR

[
z
δ − tBx

δD

]
− σR

[
z
δ −Bx − tBx

δD

]
D

− quantD(z)

∣∣∣∣∣ ≤ Bx

D
, (E.9)

and for matrix Z ∈ Rd×n:

∥
D−1∑
t=0

σR

[
Z
δ − Q(Z)

δD

]
− σR

[
Z
δ −BxE − Q(Z)

δD

]
D

− quantD(Z)∥2

≤
√

d× n× (
Bx

D
)2

(
Z ∈ Rd×n

)
=

Bx

√
dn

D
.

Subtract the last step function from (E.7) we get the desired result:

D−1∑
t=0

σR

[
z
δ − tBx

δD

]
− σR

[
z
δ −Bx − tBx

δD

]
D

− (σR

[
z

δ
− Bx

δ

]
− σR

[
z

δ
− 1− Bx

δ

]
). (E.10)

This equation approximate the quantization of input domain [0, Bx] into {Bx/D, . . . , Bx} and making R \ [0, Bx] to 0. In
addition to the quantization of input domain [0, Bx], we add a penalty term for input out of [0, Bx] in the following way:

−BxσR

[
(z −Bx)

δ

]
+BxσR

[
(z −Bx)

δ
− 1

]
−BxσR

[
−z

δ

]
+BxσR

[
−z

δ
− 1

]
(E.11)

≈ penalty(z) =


−Bx, z ≤ 0

0, 0 < z ≤ Bx

−Bx, Bx < z.

.

Both (E.10) and (E.11) can be realized by the one-layer feed-forward neural network. Also, it is straightforward to show
that generate both of them to input Z ∈ Rd×n.

Combining both components together, the fırst feed-forward neural network layer F (FF)
1 approximates the following

function F (FF)

1 (Z):

F (FF)
1 ≈ F (FF)

1 (Z) = quantd×n
D (Z) +

d∑
t=1

n∑
k=1

penalty(Zt,k). (E.12)

Note how we generalize penalty(·) to multi-dimensional occasions in the above equation. Whenever an input sequence Z
has one entry Zt,k out of [0, Bx]

d×n, we penalize the whole input sequence by adding a −Bx to all entries. This makes all

39

In-Context Deep Learning via Transformer Models

entries of this quantization lower bounded by −dnBx.

(E.12) quantizes inputs in [0, Bx]
d×n with granularity D, while every element of the output is non-positive for inputs outside

[0, Bx]
d×n. In particular, the norm of the output is upper-bounded when every entry in Z is out of [0, Bx], this adds −dnBx

penalties to all entries:

max
Z∈Rd×n

∥∥∥F (FF)
1 (Z):,k

∥∥∥
2
=
√
d · (−dnBx)2

(
One column is d−dimension.

)
≤ dn ·

√
dBx, (E.13)

for any k ∈ [n].

Estimating the Influence of Self-Attention F (SA). Define G̃D ⊂ GD as:

G̃D = {L ∈ GD | ∀k, l ∈ [n], L:,k ̸= L:,l} . (E.14)

It is a set of all the input sequences that don’t have have identical tokens after quantization.

Within this set, the elements are at least Bx

D separated by the quantization. Thus Lemma 17 allows us to construct a
self-attention F (SA) to be a contextual mapping for such input sequences.

Since when D is sufficiently large, originally different tokens will still be different after quantization. In this context, we
omit GD/G̃D for simplicity.

From the proof of Lemma 17 in (Kajitsuka & Sato, 2024), we follow their way to construct self-attention and have following
equation: ∥∥∥F (SA)

S (Z):,k − Z:,k

∥∥∥
2
<

1

4
√
dD

max
k′∈[n]

∥Z:,k′∥2, (E.15)

for any k ∈ [n] and Z ∈ Rd×n.

Combining this upper-bound with (E.13) we have

∥∥∥F (SA)
S ◦ F (FF)

1 (Z):,k −F (FF) (Z):,k

∥∥∥
2
<

1

4
√
dD

max
k′∈[n]

∥F (FF)(Z:,k)∥2

<
1

4
√
dD

× dn
√
dBx

(
By (E.13)

)
=

dnBx

4D
. (E.16)

We show that if we take large enough D, every element of the output for Z ∈ Rd×n\[0, Bx]
d×n is upper-bounded by

F (SA)
S ◦ F (FF)

1 (Z)t,k <
Bx

4D
(∀t ∈ [d], k ∈ [n]). (E.17)

To show (E.17) holds, we consider the opposite occasion that there exists a F (SA)
S ◦ F (FF)

1 (Z)t0,k0
≥ Bx/4D. Then we

divide the case into two sub cases:

1. The whole F (FF)
1 (Z) receives no less than 2 penalties. In this occasion, since every entry consists of two counterparts in

(E.12): the quantization part quantd×n
D (Z) ∈ [0, Bx] and aggregated with a penalty part

∑d
t=1

∑n
k=1 penalty(Zt,k) ≤

−2Bx, for every entry we have F (FF) (Z)t,k ≤ −Bx.

40

In-Context Deep Learning via Transformer Models

This yields that:

∥F (SA)
S ◦ F (FF)

1 (Z):,k0
−F (FF) (Z):,k0

∥2 ≥ ∥F (SA)
S ◦ F (FF)

1 (Z)t0,k0
−F (FF) (Z)t0,k0

∥2

≥ |Bx

4D
− (−Bx)|

≥ dn

4D
Bx,

(
for a large enough D

)

thus we derive a contradiction towards (E.16) from the assumption, proving it to be incorrect.

2. The whole F (FF)
1 (Z) receives only one penalty. In this case all entries in Z is penalized by −Bx and satisfies:

F (FF)
1 (Z)t,k ∈ [−Bx, 0]

d×n. (E.18)

By (E.15), this further denotes:∥∥∥F (SA)
S ◦ F (FF)

1 (Z):,k −F (FF)
1 (Z):,k

∥∥∥
2
<

1

4
√
dD

max
k′∈[n]

∥F (FF)
1 (Z):,k′ ∥2

(
By (E.15)

)
≤ 1

4
√
dD

√
d×B2

x

(
By (E.18)

)
=

Bx

4D
. (E.19)

Yet by our assumption, there exists such an entry F (SA)
S ◦ F (FF) (Z)t0,k0

≥ Bx/4D, which since F (FF)
1 (Z)t0,k0

≤ 0,
yields: ∥∥∥F (SA)

S ◦ F (FF)
1 (Z):,k0

−F (FF)
1 (Z):,k0

∥∥∥
2
≥
∥∥∥F (SA)

S ◦ F (FF)
1 (Z)t0,k0

−F (FF)
1 (Z)t0,k0

∥∥∥
2

≥ |Bx

4D
− 0|

=
Bx

4D

The final conclusion contradict the former result, suggesting the prerequisite to be fallacious.

Joining the incorrectness of the two sub-cases of the opposite occasion, we confirm the upper bound when input Z is outside
[0, Bx]

d×n in (E.17).

For the input Z inside [0, Bx]
d×n, we now show it is lower-bounded by

F (SA)
S ◦ F (FF)

1 (Z)t,k >
3Bx

4D
(∀t ∈ [d], k ∈ [n]). (E.20)

By our construction, every entry Z in [0, Bx]
d×n satisfies:

F (FF)
1 (Z)t,k ∈ [

Bx

D
,Bx]. (E.21)

By (E.15): ∥∥∥F (SA)
S ◦ F (FF)

1 (Z):,k −F (FF)
1 (Z):,k

∥∥∥
2

<
1

4
√
dD

max
k′∈[n]

∥F (FF)
1 (Z):k′ ∥2

(
By (E.15)

)
41

In-Context Deep Learning via Transformer Models

≤ 1

4
√
dD

√
d×B2

x

(
d-dimensional vector with each entry has maximum value Bx.

)
=

Bx

4D
. (E.22)

This yields:

|F (SA)
S ◦ F (FF)

1 (Z)t,k −F (FF)
1 (Z)t,k | ≤

∥∥∥F (SA)
S ◦ F (FF)

1 (Z):,k −F (FF)
1 (Z):,k

∥∥∥
2

<
Bx

4D
. (E.23)

Finally, we have:

F (SA)
S ◦ F (FF)

1 (Z)t,k

> F (FF)
1 (Z)t,k −

∥∥∥F (SA)
S ◦ F (FF)

1 (Z)t,k −F (FF)
1 (Z)t,k

∥∥∥
2

>
Bx

D
− ∥F (SA)

S ◦ F (FF)
1 (Z)t,k −F (FF)

1 (Z)t,k ∥2
(
By (E.21).

)
>

Bx

D
− Bx

4D

(
By (E.23)

)
=

3Bx

4D
.

Hence we finally finish the proof for the upper bound of F (SA)
S ◦ F (FF)

1 (Z)t,k for Z outside [0, Bx] in (E.17) and lower
bound for Z inside [0, Bx] in (E.20).

Approximation Error. Now, we can conclude our work by constructing the final feed-forward network F (FF)
2 . It receives

the output of the self-attention layer and maps the ones in G̃D ⊂ (3Bx/4D,∞)d×n to the corresponding value of the target
function, and the rest in (−∞, Bx/4D)d×n to 0.

In order to adapt to the L2 norm, we use a continuous and Lipschitz function to map the input Z to its targeted corresponding
output f(Q(Z)).

According to piece-wise linear approximation, function F (FF)
2 exists such that for any input L ∈ GD, it maps it to

corresponding f(L), and for an arbitrary input Z, its output suffices:

F (FF)
2 (Z) ∈ [min

∥L−Z∥max≤Bx
2D

f(L), max
∥L−Z∥max≤Bx

2D

f(L)]. (E.24)

Next we estimate the difference between F (FF)
2 ◦ F (SA)

S ◦ F (FF)
1 and F (FF)

2 ◦ F (SA)
S ◦ F (FF)

1 .

The difference is caused by the difference between F (FF)

1 and F (FF)
1 . By (E.9), this difference is bounded by 1

D in every
dimension, for any input Z ∈ Rd×n:

∥F (FF)

1 (Z)−F (FF)
1 (Z)∥2 <

√
dnBx

D
.

By (E.19):

∥F (SA)
S ◦ F (FF)

1 (Z)−F (SA)
S ◦ F (FF)

1 (Z)∥2

≤ ∥F (SA)
S ◦ F (FF)

1 (Z)−F (FF)

1 (Z)∥2 + ∥F (FF)

1 (Z)−F (FF)
1 (Z)∥2

+ ∥F (FF)
1 (Z)−F (SA)

S ◦ F (FF)
1 (Z)∥2

(
By triangle inequality

)
42

In-Context Deep Learning via Transformer Models

≤
√
dnBx

D
+ 2 ·

√
nBx

4D
.

(
By ∥A∥2 ≤ ∥A∥F and (E.19)

)
In the section on quantization of the input, we used piece-wise linear functions (E.7) to approximate piece-wise-constant
functions (E.8), this creates a deviation for the inputs on the boundaries of the constant regions. Consider Z as one of these
inputs whose value deviated from F (FF)

2 ◦ F (SA)
S ◦ F (FF)

1 (Q(Z)). Let f(L1) denote the value given to F (FF)
2 ◦ F (SA)

S ◦
F (FF)

1 (Z). Because the deviation take the output to a grid at most
√
dnBx/D +

√
nBx/2D away from its original grid,

under the quantization of the output, f(L1) at most deviate from its original output F (FF)
2 ◦ F (SA)

S ◦ F (FF)

1 (Z) by the
distance of

√
dnBx/D +

√
nBx/2D aggregated with 2 times of the maximal distance within a grid. They sum up to be:

∥F (FF)
2 ◦ F (SA)

S ◦ F (FF)
1 −F (FF)

2 ◦ F (SA)
S ◦ F (FF)

1 ∥2 ≤ L · (2
√
dnBx +

√
nBx

2D
+ 2

√
dnBx

D
)

< L
6
√
dnBx +

√
nBx

2D
.

Lastly, by condition we neglect the GD \ G̃D part. This yields:

F (FF)
2 ◦ F (SA)

S ◦ F (FF)

1 = f.

Thus, adding up the errors yields:

∥f −F (FF)
2 ◦ F (SA)

S ◦ F (FF)
1 ∥2

≤ ∥f − f∥2 + ∥f −F (FF)
2 ◦ F (SA)

S ◦ F (FF)
1 ∥2

(
By triangle inequality

)
= L

6
√
dnBx +

√
nBx

2D
+ L

√
dnBx

D

(
By (E.4)

)
=

L(8
√
dn+

√
n)Bx

2D
.

For any κ > 0, we select large enough D, such that

LBx

2D
(8
√
dn+

√
n) ≤ κ.

This completes the proof.

43

In-Context Deep Learning via Transformer Models

F Experimental Details
In this section, we conduct experiments to verify the capability of ICL to learn deep feed-forward neural networks. We
conduct the experiments based on 3-layer NN, 4-layer NN and 6-layer NN using both ReLU-Transformer and Softmax-
Transformer based on the GPT-2 backbone.

Experimental Objectives. Our objectives include the following three parts:

• Objective 1. Validating the performance of ICL matches that of training N -layer networks, i.e., the results in Theorem 1,
Theorem 4, and Theorem 5.

• Objective 2. Validating the ICL performance in scenarios where the testing distribution diverges from the pretraining one
or where prompt lengths exceed those used in pretraining.

• Objective 3. Validating the ICL performance in scenarios where the distribution of parameters in the N -layer network
diverges from that of the pretraining phase.

• Objective 4. Validating that a deeper transformer achieves better ICL performance, supporting the idea that scaling up
the transformer enables it to perform more ICGD steps.

Computational Resource. We conduct all experiments using 1 NVIDIA A100 GPU with 80GB of memory. Our
code is based on the PyTorch implementation of the in-context learning for the transformer (Garg et al., 2022) at https:
//github.com/dtsip/in-context-learning.

F.1 Experiments for Objectives 1 and 2

In this section, we conduct experiments to validate Objectives 1 and 2. We sample the input of feed-forward network
x ∈ Rd from the Gaussian mixture distribution: w1N(−2, Id) + w2N(2, Id), where w1, w2 ∈ R. We consider three kinds
of network f : Rd → R, (i) 3-layer NN, (ii) 4-layer NN, and (iii) 6-layer NN. We generate the true output by y = f(x). In
our setting, we use d = 20.

Model Architecture. The sole difference between ReLU-Transformer and Softmax-Transformer is the activation function
in the attention layer. Both models comprise 12 transformer blocks, each with 8 attention heads, and share the same hidden
and MLP dimensions of 256.

Transformer Pretraining. We pretrain the ReLU-Transformer and Softmax-Transformer based on the GPT-2 backbone. In
our setting, we sample the pertaining data from N(−2, Id), i.e., w1 = 1 and w2 = 0. Following the pre-training method in
(Garg et al., 2022), we use the batch size as 64. To construct each sample in a batch, we use the following steps (take the
generation for the i-th sample as an example):

1. Initialize the parameters in fi with a standard Gaussian distribution, i.e., N(0, I).

2. Generate n queries {xi,j}nj=1 (i.e., input of fi) from the Gaussian mixture model ω1N(−2, Id) + ω2N(2, Id). Here we
take n = 51.

3. For each query xi,j , use yi,j = fi(xi,j) to calculate the true output.

This generates a training sample for the transformer model with inputs

[xi,1, yi,1, · · · , xi,50, yi,50, xi,51] ,

and training target

oi = [yi,1, · · · , yi,50, yi,51] .

We use the MSE loss between prediction and true value of oi. The pretraining process iterates for 500k steps.

Testing Method. We generate samples similar to the pretraining process. The batch size is 64, and the number of batch is
100, i.e., we have 6400 samples totally. For each sample, we extend the value n from 51 to 76 to learn the performance of
in-context learning when the prompt length is longer than we used in pretraining. The input to the model becomes

[xi,1, yi,1, · · · , xi,75, yi,75, xi,76] .

44

https://github.com/dtsip/in-context-learning
https://github.com/dtsip/in-context-learning

In-Context Deep Learning via Transformer Models

We assess performance using the mean R-squared value for all 6400 samples.

Baseline. We use the 3-layer, 4-layer, and 6-layer feed-forward neural networks with 200 hidden dimensions as baselines
by training them with in-context examples. Specially, given a testing sample (take the i-th sample as an example), which
includes prompts {xi,j , yi,j}k−1

j=1 and a test query xi,k. We use {xi,j , yi,j}k−1
j=1 to train the network with MSE loss for 100

epochs. We select the highest R-squared value from each epoch as the testing measure and calculate the average across all
6400 samples.

F.1.1 PERFORMANCE OF RELU TRANSFORMER.

We use four different Gaussian mixture distributions ω1N(−2, Id) + ω2N(2, Id) for the testing data: (i) ω1 = 1, ω2 = 0,
(ii) ω1 = 0.9, ω2 = 0.1, (iii) ω1 = 0.7, ω2 = 0.3, (iv) ω1 = 0.5, ω2 = 0.5. Here the distribution in the first setting matches
the distribution in pretraining. We show the results in Figure 3.

0 25 50 75
In-context Examples

1.5
1.0
0.5
0.0
0.5
1.0

R-
Sq

ua
re

d

N(2, I)
0.9N(2, I) + 0.1N(2, I)
0.7N(2, I) + 0.3N(2, I)
0.5N(2, I) + 0.5N(2, I)
3-Layer NN

(a) 3-Layer NN

0 25 50 75
In-context Examples

1.5
1.0
0.5
0.0
0.5
1.0

R-
Sq

ua
re

d

N(2, I)
0.9N(2, I) + 0.1N(2, I)
0.7N(2, I) + 0.3N(2, I)
0.5N(2, I) + 0.5N(2, I)
4-Layer NN

(b) 4-Layer NN

0 25 50 75
In-context Examples

0.2
0.0
0.2
0.4
0.6
0.8
1.0

R-
Sq

ua
re

d

N(2, I)
0.9N(2, I) + 0.1N(2, I)
0.7N(2, I) + 0.3N(2, I)
0.5N(2, I) + 0.5N(2, I)
6-Layer NN

(c) 6-Layer NN

Figure 3: Performance of ICL in ReLU-Transformer: ICL learns 3-layer, 4-layer, and 6-layer NN and achieves R-squared
values comparable to those from training with prompt samples. The results also show the ICL performance declines as the
testing distribution diverges from the pretraining one.

F.1.2 PERFORMANCE OF SOFTMAX TRANSFORMER.

We use four different Gaussian mixture distribution ω1N(−2, Id) + ω2N(2, Id) for the testing data: (i) ω1 = 1, ω2 = 0, (ii)
ω1 = 0.9, ω2 = 0.1, (iii) ω1 = 0.7, ω2 = 0.3, (iv) ω1 = 0.5, ω2 = 0.5. Here the distribution in the first setting matches the
distribution in pretraining. We show the results in Figure 4.

0 25 50 75
In-context Examples

0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

R-
Sq

ua
re

d

N(2, I)
0.9N(2, I) + 0.1N(2, I)
0.7N(2, I) + 0.3N(2, I)
0.5N(2, I) + 0.5N(2, I)
3-Layer NN

(a) 3-Layer NN

0 25 50 75
In-context Examples

1.0
0.5
0.0
0.5
1.0

R-
Sq

ua
re

d

N(2, I)
0.9N(2, I) + 0.1N(2, I)
0.7N(2, I) + 0.3N(2, I)
0.5N(2, I) + 0.5N(2, I)
4-Layer NN

(b) 4-Layer NN

0 25 50 75
In-context Examples

0.0
0.2
0.4
0.6
0.8
1.0

R-
Sq

ua
re

d

N(2, I)
0.9N(2, I) + 0.1N(2, I)
0.7N(2, I) + 0.3N(2, I)
0.5N(2, I) + 0.5N(2, I)
6-Layer NN

(c) 6-Layer NN

Figure 4: Performance of ICL in Softmax-Transformer: ICL learns 3-layer, 4-layer, and 6-layer NN and achieves
R-squared values comparable to those from training with prompt samples. The results also show the ICL performance
declines as the testing distribution diverges from the pretraining one. Note that performance decreases when the prompt
length exceeds the pretraining length (i.e., 50), a well-known issue (Dai et al., 2019; Anil et al., 2022). We believe this is
due to the absolute positional encodings in GPT-2, as noted in (Zhang et al., 2024)

The results in Appendix F.1.1 and Appendix F.1.2 show that the performance of ICL in the transformer matches that
of training N -layer networks, regardless of whether the prompt lengths are within or exceed those used in pretraining.
Furthermore, the ICL performance declines as the testing distribution diverges from the pretraining one.

F.2 Experiments for Objective 3

In this section, we conduct experiments to validate Objective 3. For these experiments, we use testing data that is identical
to the training data, which follows a distribution of N(−2, Id). We vary the distribution of parameters in the N -layer
network. During the training process, we set the distribution as N(0, I). In the testing process, we examine different

45

In-Context Deep Learning via Transformer Models

distributions, including N(0, I), N(−0.5, I), and N(0.5, I). All other model hyperparameters and experimental details
remain consistent with those described in Appendix F.1. We evaluate the ICL performance of both the ReLU-Transformer
and the Softmax-Transformer for 4-layer networks, as shown in Figure 5 and Figure 6. The results demonstrate that the ICL
performance in the transformer matches that of training N -layer networks, regardless of whether the parameter distribution
in the N -layer network diverges from that of the pretraining phase.

0 25 50 75
In-context Examples

0.0
0.2
0.4
0.6
0.8
1.0

R-
Sq

ua
re

d

ICL of Transformer
4-Layer NN (Param. ~ N(0, I))

(a) Parameters ∼ N(0, I)

0 25 50 75
In-context Examples

0.0
0.2
0.4
0.6
0.8
1.0

R-
Sq

ua
re

d

ICL of Transformer
4-Layer NN (Param. ~ N(0.5, I))

(b) Parameters ∼ N(−0.5, I)

0 25 50 75
In-context Examples

0.0
0.2
0.4
0.6
0.8
1.0

R-
Sq

ua
re

d

ICL of Transformer
4-Layer NN (Param. ~ N(0.5, I))

(c) Parameters ∼ N(0.5, I)

Figure 5: Performance of ICL Across Various N -layer Network Parameter Distributions for the ReLU-Transformer:
ICL learns 4-layer NN and achieves R-squared values comparable to those from training with prompt samples, even when
the parameter distribution in the N -layer network during testing diverges from that in the pretraining phase (N(0, I)).

0 25 50 75
In-context Examples

0.0
0.2
0.4
0.6
0.8
1.0

R-
Sq

ua
re

d

ICL of Transformer
4-Layer NN (Param. ~ N(0, I))

(a) Parameters ∼ N(0, I)

0 25 50 75
In-context Examples

0.0
0.2
0.4
0.6
0.8
1.0

R-
Sq

ua
re

d

ICL of Transformer
4-Layer NN (Param. ~ N(0.5, I))

(b) Parameters ∼ N(−0.5, I)

0 25 50 75
In-context Examples

0.0
0.2
0.4
0.6
0.8
1.0

R-
Sq

ua
re

d

ICL of Transformer
4-Layer NN (Param. ~ N(0.5, I))

(c) Parameters ∼ N(0.5, I)

Figure 6: Performance of ICL Across Various N -layer Network Parameter Distributions for the Softmax-Transformer:
ICL learns 4-layer NN and achieves R-squared values comparable to those from training with prompt samples, even when
the parameter distribution in the N -layer network during testing diverges from that in the pretraining phase (N(0, I)).

F.3 Experiments for Objective 4

In this section, we conduct experiments to validate Objective 4. For these experiments, we use testing data identical to the
pertaining data from N(−2, Id). We vary the number of layers in the transformer architecture, testing configurations with
4, 6, 8 and 10 layers. All other model hyperparameters and experimental details remain consistent with those described
in Appendix F.1. We evaluate the ICL performance of both the ReLU-Transformer and the Softmax-Transformer with
15, 30, and 45 in-context examples, as shown in Figure 7. The results show that a deeper transformer achieves better ICL
performance, supporting the idea that scaling up the transformer enables it to perform more ICGD steps.

46

In-Context Deep Learning via Transformer Models

4 6 8 10
ReLU-Transformer Layer Depth

0.82
0.83
0.84
0.85
0.86
0.87
0.88

R-
Sq

ua
re

d

15 In-context Examples
30 In-context Examples
45 In-context Examples

(a) ReLU-Transformer

4 6 8 10
Softmax-Transformer Layer Depth

0.85
0.86
0.87
0.88
0.89
0.90
0.91

R-
Sq

ua
re

d

15 In-context Examples
30 In-context Examples
45 In-context Examples

(b) Softmax-Transformer

Figure 7: Performance of ICL Across Varying Transformer Depths: We use the number of in-context examples as 15, 30,
or 45 for both the ReLU-Transformer and the Softmax-Transformer. The results show that a deeper transformer achieves
better ICL performance, supporting the idea that scaling up the transformer enables it to perform more ICGD steps.

47

In-Context Deep Learning via Transformer Models

G Application: ICL for Diffusion Score Approximation
In this part, we give an important application of our work, i.e., learn the score function of diffusion models by the in-context
learning of transformer models. We give the preliminaries about score matching generative diffusion models in Appendix G.1.
Then, we give the analysis for ICL to approximate the diffusion score function in Appendix G.2.

G.1 Score Matching Generative Diffusion Models

Diffusion Model. Let x0 ∈ Rd be initial data following target data distribution x0 ∼ P0. In essence, a diffusion generative
model consists of two stochastic process in Rd:

• A forward process gradually add noise to the initial data (e.g., images): x0 → x1 → · · · → xT .

• A backward process gradually remove noise from pure noise: yT → yT−1 → · · · → y0.

Importantly, the backward process is the reversed forward process, i.e., yt
d
≈ xT−t for i ∈ 0, . . . , T .2 This allows the

backward process to reconstruct the initial data from noise, and hence generative. To achieve this time-reversal, a diffusion
model learns the reverse process by ensuring the backward conditional distributions mirror the forward ones. The most
prevalent technique for aligning these conditional dynamics is through “score matching” — a strategy training a model to
match score function, i.e., the gradients of the log marginal density of the forward process (Song et al., 2020b;a; Vincent,
2011). To be precise, let Pt, pt(·) denote the distribution function and destiny function of xt. The score function is given by
∇ log pt(·). In this work, we focus on leveraging the in-context learning (ICL) capability of transformers to emulate the
score-matching training process.

Score Matching Loss. We introduce the basic setting of score-matching as follows3. To estimate the score function, we use
the following loss to train a score network sW (·, t) with parameters W :

min
W

∫ T

T0

γ(t)Ext∼Pt

[
∥sW (xt, t)−∇ log pt(xt)∥22

]
dt, where γ(t) is a weight function, (G.1)

and T0 is a small value for stabilizing training and preventing the score function from diverging. In practice, as ∇ log pt(·)
is unknown, we minimize the following equivalent loss (Vincent, 2011).

min
W

∫ T

T0

γ(t)Ex0∼P0

[
Ext|x0

[
∥sW (xt, t)−∇ log p(xt|x0)∥22

]]
dt, (G.2)

where p(xt|x0) is distribution of xt conditioned on x0.

G.2 ICL for Score Approximation

We first give the problem setup about the ICL for score approximation as the following:

Problem 3 (In-Context Learning (ICL) for Score Function ∇ log pt(·)). Consider the score function ∇ log pt(·) for any
t ≥ 0. Given a dataset Dn := {(xi, yi)}i∈[n], where {xi}i∈[n] ⊆ Rd and yi = ∇ log pti(xi) ⊆ Rd (ti ≥ 0), and a test input
xn+1, the goal of “ICL for Score Function” is to find a transformer T to predict yn+1 based on xn+1 and the in-context
dataset Dn. In essence, the desired transformer T serves as the trained score network sW (·, t).

To solve Problem 3, we follow two steps: (i) Approximate the diffusion score function ∇ log pt(·) with a multi-layer
feed-forward network with ReLU activation functions under the given training dataset Dn. (ii) Approximate the gradient
descent used to train this network by the in-context learning of the Transformer until convergence, using the same training
set Dn as the prompts of ICL.

For the first step, we follow the score approximation results based on a multi-layer feed-forward network with ReLU
activation in (Chen et al., 2023), stated as next lemma.

Lemma 19 (Score Approximation by Feed-Forward Networks, Theorem 1 of (Chen et al., 2023)). Given an approximation
error ϵ > 0, for any initial data distribution P0, there exist a multi-layer feed-forward network with ReLU activation,

2 d
≈ denotes distributional equivalence.

3Please also see Appendix A.1 and (Chen et al., 2024; Chan et al., 2024; Yang et al., 2023) for overviews.

48

In-Context Deep Learning via Transformer Models

f(w, x, t) : RDw × Rd × R → Rd. Then for any t ∈ [T0, T], we have ∥f(w, ·, t)−∇ log pt(·)∥L2(Pt)
≤ O(ϵ).

With the approximation result, we reduce the Problem 3 to Problem 2, where the loss function is (G.1). Following Theorem 1,
we show that the in-context learning of transformer models can approximate the score function of diffusion model.

49

	Introduction
	Preliminaries: ICL and ICGD
	In-Context Gradient Descent on -Layer Neural Networks
	Problem Setup: ICGD for -Layer Neural Networks
	Explicit Gradient Descent of -Layer Neural Networks
	Transformers Approximate Gradient Descent of -Layer Neural Networks In-Context

	In-Context Deep Learning with Softmax Transformers
	Numerical Studies
	Conclusion
	Related Work, Broader Impact, Further Discussion and Limitations
	Related Work
	Further Discussion
	Limitations

	Supplementary Theoretical Backgrounds
	Transformers
	ReLU Provably Approximates Smooth -Variable Functions

	Proofs of Main Text
	Proof of
	Proof of
	Proof of
	Proof of
	Proof of
	Proof of
	Proof of
	Proof of

	Extension: Different Input and Output Dimensions
	Extension: Softmax Transformer
	Axillary Lemma: Universal Approximation of Softmax Transformer
	In-Context Gradient Descent with Softmax Transformer
	Proof of
	Proof of

	Experimental Details
	Experiments for Objectives 1 and 2
	Performance of ReLU Transformer.
	Performance of Softmax Transformer.

	Experiments for Objective 3
	Experiments for Objective 4

	Application: ICL for Diffusion Score Approximation
	Score Matching Generative Diffusion Models
	ICL for Score Approximation

