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Abstract
Adversarial examples have been shown to de-
ceive Deep Neural Networks (DNNs), raising
widespread concerns about this security threat.
More seriously, as different DNN models share
critical features, feature-level attacks can gener-
ate transferable adversarial examples, thereby de-
ceiving black-box models in real-world scenarios.
Nevertheless, we have theoretically discovered
the principle behind the limited transferability of
existing feature-level attacks: Their attack effec-
tiveness is essentially equivalent to perturbing fea-
tures in one step along the direction of feature
importance in the feature space, despite perform-
ing multiple perturbations in the pixel space. This
finding indicates that existing feature-level attacks
are inefficient in disrupting features through mul-
tiple pixel-space perturbations. To address this
problem, we propose a P2FA that efficiently per-
turbs features multiple times. Specifically, we
directly shift the perturbed space from pixel to
feature space. Then, we perturb the features mul-
tiple times rather than just once in the feature
space with the guidance of feature importance to
enhance the efficiency of disrupting critical shared
features. Finally, we invert the perturbed features
to the pixels to generate more transferable adver-
sarial examples. Numerous experimental results
strongly demonstrate the superior transferability
of P2FA over State-Of-The-Art (SOTA) attacks.
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Figure 1. Comparison of existing feature-level attacks (FIA (Wang
et al., 2021), RPA (Zhang et al., 2022b), NAA (Zhang et al., 2022a),
DANAA (Jin et al., 2023), SFVA (Ren et al., 2023), and BFA
(Wang et al., 2024b)) and our attack. Adversarial examples are
generated on the source model (ResNet-152) (He et al., 2016a)
to attack the target model (ResNet-50) (He et al., 2016a). Our
attack keeps models from capturing important features of the object
and focusing on entirely irrelevant regions instead, while existing
feature-level attacks make models still focus on object-related
areas.

1. Introduction
DNNs have achieved significant success in various machine
learning tasks (Girshick, 2015; He et al., 2016b; Krizhevsky
et al., 2012). However, DNNs are vulnerable to adversar-
ial examples (Szegedy, 2013), which add elaborate and
imperceptible perturbations to original images to mislead
DNNs. The existence of adversarial examples has raised
concerns about the security of sensitive applications, such
as autonomous driving and face recognition. Research on
adversarial examples not only enhances the understanding
of their underlying principles and the drawbacks of DNNs,
but also contributes to improving the adversarial robustness
of DNNs (Goodfellow et al., 2014), ensuring their stability
and accuracy in diverse application scenarios.

Numerous adversarial attacks (Carlini & Wagner, 2017;
Xiao et al., 2018; Xie et al., 2019) have been proposed to
generate adversarial examples, which are typically catego-
rized into two types based on the attacker’s knowledge of
the target model: white-box attacks and black-box attacks.
White-box attacks imply that the attacker has full access
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to the knowledge of the target model (e.g., structure and
parameters) to generate adversarial examples via gradient
information. In contrast, in black-box attacks, the attacker
attacks only through the inputs and outputs of the target
model without detailed information about the internal struc-
ture, parameters, training data, and so on, which makes
black-box attacks more challenging and realistic. Therefore,
we focus on black-box attacks in this work.

Based on attack strategies, black-box attacks can be fur-
ther categorized as query-based attacks and transfer-based
attacks. Query-based attacks (Brendel et al., 2017; Ilyas
et al., 2018) approximate the gradient information through
queries or employ intelligent search algorithms to explore
the input space, thereby generating adversarial examples.
However, query-based attacks are impractical in many real-
world scenarios, such as face recognition and autonomous
driving, because a large number of queries are not allowed
in these scenarios. In contrast, transfer-based attacks (Lin
et al., 2019; Dong et al., 2019; Wang & He, 2021) are more
realistic and flexible, as they do not require any knowledge
of the target model. They first attack the local white-box
surrogate model and then transfer the obtained adversar-
ial examples directly to the unknown target model. The
ability of adversarial examples to cross models and retain
effectiveness is known as transferability.

Recently, feature-level attacks (Zhou et al., 2018; Lu et al.,
2020) have explored methods to improve the transferabil-
ity of adversarial examples by targeting intermediate layers
rather than directly perturbing the output layer of the surro-
gate model. Since key features are shared between different
DNN models (Ganeshan et al., 2019; Naseer et al., 2018),
these feature-level attacks enhance transferability by max-
imizing internal feature distortion to generate transferable
adversarial examples.

In feature-level attacks, the evaluation of feature importance
significantly affects the effectiveness of the attacks. FIA
(Wang et al., 2021) uses random pixel dropping transfor-
mation and aggregates the transformed gradient to assess
feature importance, suppressing model-specific features and
highlighting object-related features. RPA (Zhang et al.,
2022b) builds on FIA by recognizing the correlation be-
tween neighboring elements in a natural image. It then ap-
plies a random patch transformation to alter model-specific
features, which improves the identification of key object
features. In addition, NAA (Zhang et al., 2022a) attributes
the model’s output to each intermediate layer neuron and
employs an approximation scheme for neuron attribution,
allowing for an estimate of feature importance with reduced
computational overhead. Based on this approach, DANAA
(Jin et al., 2023) utilizes adversarial nonlinear path selection
to expand the attack points, yielding more accurate fea-
ture importance. SFVA (Ren et al., 2023) estimates feature

importance using Combined Feature Enhancement Trans-
formation (CFET). BFA (Wang et al., 2024b) categorizes
image features into white-box and black-box features, and
assesses feature importance by disrupting the white-box
features.

However, existing feature-level attacks still suffer from in-
efficiency. Specifically, by analyzing the loss functions of
the above feature-level attacks, we mathematically demon-
strate that they actually aim to perturb features along the
direction of feature importance in the feature space. We
experimentally validate this conclusion. Our results shows
that the effect of existing feature-level attacks, which per-
turb multiple times in pixel space, is no different from
perturbing features in one step along the direction of feature
importance in feature space. This inefficient perturbation
in pixel space limits the attacks’ ability to enhance the trans-
ferability.

To address the inefficiency of existing feature-level attacks,
this paper proposes P2FA. Specifically, we shift the perturba-
tion from pixel space to feature space and perturb important
features multiple times along the direction of feature impor-
tance within the feature space. The perturbed features are
then used to generate corresponding adversarial examples
via the feature inversion method. As illustrated in Fig. 1,
compared to existing feature-level attacks, the adversarial
example generated by the proposed P2FA keeps models
from capturing important features of the object and focusing
on entirely irrelevant regions instead. Extensive experi-
ments on the ImageNet-NIPS dataset (Kurakin et al., 2018)
demonstrate that P2FA significantly improve adversarial
transferability.

The main contributions of this paper are summarized below:

• We have theoretically identified the principle underly-
ing feature-level attacks: These feature-level attacks
aim to perturb feature in one step in feature space,
along the direction of feature importance. We verified
the conclusion experimentally. Our findings reveal the
inefficiency of existing feature-level attacks in disrupt-
ing important features, which limits their transferabil-
ity.

• We propose P2FA, a new attack paradigm, to address
the inefficiency issue and enhance adversarial transfer-
ability. P2FA generates transferable adversarial exam-
ples by perturbing important features multiple times
in the feature space and then inverting the perturbed
features back onto the image.

• Extensive experiments have demonstrated that the pro-
posed P2FA outperforms SOTA attacks in terms of
transferability.
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2. Related Work
Since Szegedy et al. (2013) discovered the adversarial ex-
ample, numerous adversarial attack algorithms have been
proposed to demonstrate the vulnerability of neural net-
works. In this paper, we focus on transfer-based attacks,
which initially target a local white-box surrogate model and
then apply the resulting adversarial examples to attack an
unknown target model. The paper further examines two
primary categories of transfer-based attacks: feature-level
attacks and input transformations.

2.1. Feature-level Attack

Feature-level attacks primarily target the internal feature
maps of the model. A common approach in feature-level
attacks is to expand the gap in these feature maps during the
generation of adversarial examples.

Feature Importance-aware Attack (FIA) (Wang et al.,
2021) . FIA obtains feature importance by introducing
an aggregated gradient, which is computed by applying
random pixel dropping to the original image. The feature
importance directs the adversarial examples to disrupt the
key features, thereby enhancing their transferability. We
denote the feature map of the k-th layer of surrogate model
f as fk(·) , and the feature importance as ∆k. The objective
function of FIA is presented in Eq. (1):

argmin
xadv

∑
(∆k ⊙ fk(x

adv)), (1)

where ⊙ represents the Hadamard product operation and
xadv denotes the generated adversarial example.

Random Patch Attack (RPA) (Zhang et al., 2022b). RPA
improves upon FIA by introducing the patch-wise random
transformation to the original image, altering model-specific
features to obtain a more accurate measure of feature impor-
tance.The objective function of RPA is presented in Eq. (1).
The difference from FIA’s objective function lies in their
distinct ∆k.

Neuron Attribution-based Attack (NAA) (Zhang et al.,
2022a). NAA proposes a neuron attribution-based attack
that attributes model’s output exclusively to each neuron in
the intermediate layer. The objective functions of NAA are
presented in Eqs. (2) and (3):

Ak = (fk(x
adv)− fk(x

′))⊙ IA, (2)

argmin
xadv

∑
A

(j)
k ≥0

hp(A
(j)
k )− γ

∑
A

(j)
k <0

hn(−A
(j)
k ), (3)

where x′ represents the baseline image, ⊙ represents the
Hadamard product operation, IA represents the the integra-
tion of the gradient along a straight line from the features of

the baseline image to the features of the input, Ak represents
the attribution of all neurons in the k-th layer of the model,
and the parameter γ is used to balance the positive and neg-
ative attributions, A(j)

k denotes the j-th dimension of the
attribution Ak, while hp(·) and hn(·) are the transformation
functions applied to the positive and negative attributions,
respectively. In practical, γ is set to 1, and both hp(·) and
hn(·) are set to linear functions.

Double Adversarial Neuron Attribution Attack
(DANAA) (Jin et al., 2023). DANAA improves upon NAA
by attributing the model’s output to an intermediate layer
using adversarial nonlinear paths, thereby providing a more
accurate measure of the weights of individual neurons. The
objective function of DANAA is presented in Eq. (4):∑

(fk(x
adv)− fk(x

′))⊙ γk, (4)

where xadv denotes the generated adversarial example, x′

represents the baseline image, γk represents the the integra-
tion of the gradient along a non-linear path from the features
of the baseline image to the features of the input.

Salient Feature Variance Attack (SFVA) (Ren et al., 2023).
SFVA applies CFET (patch level mask, random noise, scale
transformation) to a clean copy of the image to estimate the
feature weight of the k-th layer. This is used to compute the
positive and negative salient variances, PVk and NVk. The
objective function of SFVA is presented in Eq. (5):

argmax
xadv

λ1 · τP (PVk) + τN (NVk), (5)

where τP (·) and τN (·) are transformation functions, and λ1

is the variance factor. In practical, λ1 is set to 1, and τP (·)
and τN (·) are set to identity functions.

Black-box Feature-driven Attack (BFA) (Wang et al.,
2024b). BFA divides image features into white-box fea-
tures and black-box features, obtains the fitted image by
disrupting the white-box features, and computes the fitted
gradient for the images with different fitting degrees. Finally,
the objective function is constructed based on the obtained
fitted gradient and feature map. The objective function of
BFA is presented in Eqs. (6) and (7):

F = fk(x
adv)⊙ I + I2, (6)

argmax
xadv

∑
F≥0

F − ω ·
∑
F<0

−F , (7)

where xadv denotes the generated adversarial example, ⊙
represents the Hadamard product operation, I represents the
fitted gradient and ω is the weight assigned to the control
positive and negative factors.
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Table 1. The attack success rates of the adversarial examples generated by FIA and its corresponding feature inversion attack (i.e.,FIA*)
against the other models, using Inception-v3 as a surrogate model.

Inception-v3 Inception-v4 Inception-ResNet-V2 ResNet-50 ResNet-152 Vgg-16 Vgg-19

FIA 98.8 86.2 78.7 82.0 75.4 85.1 83.7
FIA* 99.3 87.2 79.4 82.9 75.8 85.8 84.5

Figure 2. Schematic representation of the perturbations in pixel space and feature space for the existing feature-level attacks (top)
and the proposed P2FA (bottom). The objective function of existing feature-level attacks is to maximize the inner product of feature
importance W and feature maps fk(xadv

t ), then generate adversarial examples by adding adversarial perturbation in the pixel space
through backpropagation. P2FA directly adds adversarial perturbation to the feature maps in the feature space and generates adversarial
examples through feature inversion.

2.2. Input Transformation

Input transformation improves the transferability of adver-
sarial examples by data augmentation. Specifically,

Diverse Input Method (DIM) (Xie et al., 2019). DIM ap-
plies image transformations (random resizing and padding)
in each iteration to improve the transferability of the adver-
sarial examples.

Translation-Invariant Method (TIM) (Dong et al., 2019).
TIM improves the transferability of the adversarial exam-
ples by optimizing the perturbation across a set of translated
images. This approach reduces the sensitivity of the gener-
ated adversarial examples to the discriminative regions of
the attacked white-box model.

Patch-wise Iterative Method (PIM) (Gao et al., 2020).

PIM introduces an amplification factor and a projection ker-
nel into the step size during each iteration. This modification
enables the generated adversarial noise to exhibit aggrega-
tion characteristics and cover diverse discriminative regions
across different DNNs, thereby enhancing the transferability
of adversarial examples.

3. Methodology
3.1. Threat Model

We assume that the surrogate model is represented as f(·) :
x 7→ y , where x denotes the original image and y denotes
the corresponding ground-truth label. Our objective is to
generate an adversarial example xadv = x + ϵ by adding
a perturbation ϵ to a original image, such that the target
model f t(·) is misled, resulting in f t(xadv) ̸= y. In feature-
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level attacks, the generation of adversarial examples can be
formulated as the following optimization problem (Detailed
proof can be found in A.1 of the Appendix):

argmax
xadv

⟨W, fk(x
adv)⟩, s.t.||xadv − x||p ≤ ϵ, (8)

where W denotes the feature importance, fk(·) denotes the
k-th layer feature map of the surrogate model f , and ⟨·, ·⟩
denotes the inner product. ℓp-norm is adopted to measure
the distance between x and xadv , and p = ∞ in this work.

3.2. Motivation

Building on the established threat model, we identify and
analyze the issue of attack inefficiency in existing feature-
level attacks. To provide a clear explanation, we need to
introduce the following lemma.

Lemma 3.1. Cauchy–Schwarz inequality. Let u, v ∈ Rn

be arbitrary vectors. Then

⟨u, v⟩ ≤ ∥u∥2∥v∥2

with equality holding if and only if u = s · v and s ≥ 0.

Let us begin with the proof. First, we introduce fk(x),
which is independent of the optimization parameter, and
rewrite Eq. (8) as follows

argmax
xadv

⟨W, fk(x
adv)− fk(x)⟩,

s.t. ∥xadv − x∥p ≤ ϵ
(9)

Then, according to the Cauchy–Schwarz inequality, it fol-
lows that for any xadv ∈ {xadv|∥xadv − x∥p ≤ ϵ}, the
following inequality still holds:〈

W, fk(x
adv)− fk(x)

〉
≤∥W∥2∥fk(xadv)− fk(x)∥2

(10)

with equality holding if and only if fk(xadv) − fk(x) =
s ·W (s ≥ 0). In other words, when

fk(x
adv) = fk(x) + s ·W, s.t. ∥xadv − x∥p ≤ ϵ, (11)

Eq. (9) achieves its maximum value s·∥W∥22, and its optimal
solution is also the optimal solution of Eq. (8).

In summary, we only need to perturb the feature fk(x) in
one step along the direction of W to obtain the perturbed fea-
ture fk(x) + s ·W , and obtain adversarial example through
feature inversion that satisfies ∥xadv − x∥p ≤ ϵ. The ob-
tained adversarial example is the optimal solution of Eq. (8).
In practice, we additionally incorporate a clip function to
ensure that the crafted adversarial examples remain within
the ϵ-ball of x.

Consequently, we conclude that the feature-level attacks per-
turb the intermediate layer features of the surrogate model

Algorithm 1 Pixel2Feature Attack

Input: an original image x and ground-truth label y,
surrogate model f , intermediate layer k, the step size λ,
and the number of perturbations T
Output: The adversarial image xadv

Initialize xadv
0 = x, g0 = 0, µ = 1.

for t = 0 to T − 1 do
Calculate the feature importance Wt of xadv

t

gt+1 = µ · gt +Wt

f̃k = fk(x
adv
t ) + λ · gt+1

||gt+1|| 2
xadv
t+1 = FeatureInversion(f̃k)

end for
return xadv

T

toward fk(x) + s ·W . This suggests that the effect of the
existing feature-level attacks, which involve multiple per-
turbations in the pixel space, is effectively equivalent to
perturbing the features in one step along the direction
of feature importance in the feature space.

To validate the above conclusion, we conducted the follow-
ing experiments:

We employ existing feature-level attacks as baselines and
derive corresponding feature inversion attacks based on the
aforementioned conclusions. Specifically, we first perturb
the features along the direction of feature importance as
defined by the baseline in the feature space, and then gen-
erate corresponding adversarial examples through feature
inversion. The aforementioned conclusions are validated
if the attack success rates and perturbation distribution of
adversarial examples generated by the baselines and the
corresponding feature inversion attacks are similar. Due to
page limitations, Table 1 presents the experimental results
under the setting where the baseline attack is FIA and the
surrogate model is Inception-v3 (Szegedy et al., 2016). The
complete experimental results are provided in Table 5 in
A.2 of the Appendix.

We employ the Structural Similarity Index Measure (SSIM)
(Wang et al., 2004) to compute the distribution of the ad-
versarial example perturbations generated by baselines and
their corresponding feature inversion attacks. The computed
SSIM value greater than 0.99 indicates that the perturbations
are almost identical (The complete experimental results are
provided in Table 5 in A.2 of the Appendix).The experi-
mental results indicate that the attack success rates of the
adversarial examples generated by baselines and their cor-
responding feature inversion attacks are comparable, and
their perturbation distributions are almost identical. This
validates the aforementioned conclusion.

Therefore, the effect of the existing feature-level attacks,
which involve multiple perturbations in the pixel space to

5



Pixel2Feature Attack (P2FA): Rethinking the Perturbed Space to Enhance Adversarial Transferability

destroy important feature, is effectively equivalent to per-
turbing the features in one step along the direction of feature
importance in the feature space. This inefficiency limits the
transferability of existing feature-level attacks.

3.3. Pixel2Feature Attack

Inspired by the conclusion in Sec. 3.2, we propose P2FA to
address the inefficiency of existing feature-level attacks in
disrupting important features. It perturbs important features
multiple times in the feature space along the direction of
dynamic feature importance, thereby enhancing the transfer-
ability of adversarial examples. Specifically, as illustrated
in Fig. 2, unlike existing feature-level attacks, P2FA trans-
forms the perturbation space from pixel space to feature
space. As described in Eq. (12), the optimization parame-
ters are no longer adversarial examples in pixel space, but
feature maps in feature space. We solve the optimization
problem through multi-step iteration to achieve multiple
perturbations of features in the feature space:

argmax
fk

J(fk, y), (12)

where fk denotes the feature map of the k-th layer of
the surrogate model f , and J denotes the cross-entropy
loss. In gradient-based attacks, cross-entropy J(x, y) =
−1y · log softmax(f(x)), where 1y is the one-hot vector en-
coding class y, is used to update the input image x. We shift
it to J(fk, y) = −1y · log softmax(fpost

k (fk)) for feature
updates, where fpost

k is the post-k-th-layer model part.

To ensure that the perturbation effectively disrupts important
features, we adopt the feature importance to guide the per-
turbation direction. Unlike existing feature-level attacks that
maintain fixed feature importance, we dynamically update
the feature importance in each iteration to capture more re-
fined perturbation directions. In addition, to further improve
the adversarial transferability, we introduce momentum to
stabilize the update direction within the feature space and
prevent the perturbed features from converging to a local
optimum. The detailed update process for solving Eq. (12)
is as follows:

gt+1 = µ · gt +Wt, (13)

f̃k = fk + λ · gt+1

||gt+1||2
, (14)

where µ denotes the decay factor in the momentum, λ de-
notes the step size, and the feature importance Wt is derived
from the state-of-the-art BFA (Wang et al., 2024b) and ap-
plied iteratively as follows:

Wt =

N∑
n=1

∇fk(xIF
n )J(fk(x

IF
n ), y), (15)

where xIF
n = xadv

t + γ ·
∇

xIF
n−1

J(fk(x
IF
n−1),y)

∥∇
xIF
n−1

J(fk(xIF
n−1),y)∥2

, xIF
n de-

notes the fitted image, xadv
t denotes adversarial examples

generated by white-box attacks, γ denotes the perturba-
tion size, fk(xIF

n ) denotes the black-box features of the
fitted image. Finally, we employ the classical feature in-
version algorithm (Du et al., 2018) to map the optimal
perturbed features f∗

k back to the pixel space, generat-
ing adversarial examples. The detailed workflow of our
P2FA is outlined in Algorithm 1. Code is available at:
https://github.com/WH-Lrp/P2FA.

4. Experiments
4.1. Setup

Dataset. For a fair comparison, we adhere to previous
work by utilizing the ImageNet-NIPS dataset (Kurakin et al.,
2018), which comprises 1000 images for the NIPS 2017
adversarial competition.

Target Models. We employ seventeen classification models
as target models to evaluate the performance of different
attacks. Among these, seven are normally trained models:
Inception-V3 (Inc-v3) (Szegedy et al., 2016), Inception-
V4 (Inc-v4) (Szegedy et al., 2017), Inception-ResNet-V2
(IncRes-v2) (Szegedy et al., 2017), ResNet-50 (Res-50) (He
et al., 2016a), ResNet-152 (Res-152) (He et al., 2016a),
VGG16 (Vgg-16) (Simonyan, 2014), and VGG19 (Vgg-19)
(Simonyan, 2014). In addition, we select six advanced de-
fense methods, including Adv-Inc-v3 (Kurakin et al., 2016),
Adv-Ens-IncRes-v2 (Tramèr et al., 2017), random resizing
and padding (R&P) (Xie et al., 2017), feature distillation
(FD) (Liu et al., 2019), JPEG compression (JPEG) (Guo
et al., 2017) and bit-depth compression (Bit-Red) (Liu et al.,
2017). Finally, we select four vision transformers, including
PiT-S (Heo et al., 2021), CaiT-S (Touvron et al., 2021b),
DeiT-B (Touvron et al., 2021a), Swin-B (Liu et al., 2021).

Baseline Methods. We select six advanced feature-level at-
tack methods as our baselines: FIA (Wang et al., 2021), RPA
(Zhang et al., 2022b), NAA (Zhang et al., 2022a), DANAA
(Jin et al., 2023), SFVA (Ren et al., 2023), and BFA (Wang
et al., 2024b). In addition, we integrated all the methods
with two classic input transformation methods: PIM (Gao
et al., 2020) and DIM (Xie et al., 2019), to compare the
compatibility of the different attacks. When PIM and DIM
are combined with the baselines and P2FA, we denote them
as PIDI-FIA, PIDI-RPA, PIDI-NAA, PIDI-DANAA, PIDI-
SFVA, PIDI-BFA, PIDI-P2FA. We also integrated all the
methods with two up-to-date input transformation methods:
BSR (Wang et al., 2024a) and SIA (Wang et al., 2023)(The
experimental results are provided in Table 6 and Table 7 in
A.3 of the Appendix.)

Implementation Details. For a fair comparison, we adhere
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Table 2. Success rate of different attacks against normally trained models. The first column shows surrogate models, the first row lists
target models and the last column represents the average attack success rate. The best results are highlighted in bold.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-50 Res-152 Vgg-16 Vgg-19 Average

Inc-v3

FIA 98.8 86.2 78.7 82.0 75.4 85.1 83.7 84.3
RPA 98.7 86.6 81.8 85.4 79.5 86.4 85.0 86.2
NAA 97.7 81.0 73.9 78.4 72.1 81.9 79.2 80.6

DANAA 98.1 82.3 76.7 81.3 73.6 84.8 81.8 82.7
SFVA 98.8 87.0 83.0 86.0 80.9 87.7 85.2 86.9
BFA 100.0 95.1 92.0 91.9 90.5 93.3 92.4 93.6

P2FA(Ours) 100.0 96.5 94.9 95.2 92.5 94.8 96.0 95.7

Inc-v4

FIA 83.9 96.7 77.2 79.6 72.6 84.8 83.2 82.6
RPA 87.5 98.1 80.3 82.8 78.6 88.1 87.6 86.1
NAA 81.4 97.8 73.7 77.3 69.9 84.8 82.5 81.1

DANAA 82.1 98.0 77.5 81.1 74.7 85.8 84.9 83.4
SFVA 86.7 98.2 79.0 82.6 78.2 88.6 87.1 85.8
BFA 94.8 99.5 90.6 91.4 88.9 93.6 92.6 93.1

P2FA(Ours) 96.3 100.0 92.2 93.6 91.1 95.8 95.0 94.9

IncRes-v2

FIA 75.7 74.5 92.9 69.8 62.5 77.0 73.7 75.2
RPA 78.8 78.9 91.9 76.9 68.0 78.6 76.9 78.6
NAA 70.4 70.0 91.9 68.4 59.0 73.9 72.1 72.2

DANAA 76.9 76.1 94.2 73.5 66.7 78.4 77.3 77.6
SFVA 81.0 78.7 93.7 77.7 71.3 81.1 79.8 80.5
BFA 92.3 91.6 99.3 87.1 83.2 87.0 86.3 89.5

P2FA(Ours) 93.7 93.5 100.0 90.8 86.5 91.1 91.5 92.4

Res-152

FIA 76.2 78.4 62.5 98.0 100.0 91.9 88.7 85.1
RPA 87.4 86.3 74.2 99.0 100.0 95.1 94.4 90.9
NAA 81.7 79.5 71.8 97.8 99.9 92.5 91.2 87.8

DANAA 84.8 83.2 74.7 98.4 100.0 93.1 92.7 89.6
SFVA 86.8 85.6 78.2 99.4 100.0 94.9 94.2 91.3
BFA 92.7 92.3 85.4 99.6 100.0 97.0 96.9 94.8

P2FA(Ours) 94.9 94.4 88.7 99.9 100.0 98.0 98.4 96.3

to the parameter settings of FIA (Wang et al., 2021). Specif-
ically, we set the maximum perturbation to ϵ = 16 and the
number of integrations steps for the aggregated gradient to
N = 30. In addition, we set the decay factor to µ = 1.0 for
all the baselines, as they are optimized using the momentum
method. For the input transformation methods, we set the
transformation probability of the DIM to 0.7, the amplifica-
tion factor of the PIM to 2.5 and the kernel size to 3. We
select consistent intermediate layers for the feature-level
attacks: Mixed 5b for the Inc-v3 model, feature.6 for the
Inc-v4 model, Conv2d 4a for the IncRes-v2 model and the
last layer of block2 for the Res-152 model. For the proposed
P2FA, We set the step size to 105, the number of perturba-
tions to 3, and utilize the feature importance derived from
BFA.

4.2. Comparison of Transferability

In this section, we compare the transferability between the
proposed P2FA and the baselines. We select Inc-v3, Inc-
v4, IncRes-v2, and Res-152 as surrogate model to generate
adversarial examples, respectively, and then attack other
normally trained models, defense models and vision trans-

formers.

Attacking Normally Trained Models. Table 2 report the
attack success rates of the adversarial examples generated by
the proposed P2FA and baselines on normally trained mod-
els. The results demonstrate that P2FA exhibits a significant
advantage over baseline attacks, with an average improve-
ment of 2.1% compared to the best results of baselines. In
addition, our method can be integrated with the classic input
transformation methods, PIM and DIM, to further improve
the transferability. As shown in Table 3, the attack success
rate of PIDI-P2FA significantly improves to 97.4% after
combining PIM and DIM. In contrast, PIDI-BFA, the top-
performing baseline, achieves an average attack success
rate of 93.3%. Furthermore, Table 6 also demonstrates the
superiority of P2FA when combined with BSR or SIA in
attacking normally trained models. All these experiments
validate the effectiveness of P2FA.

Attacking Defense Models. Next, we evaluate the effective-
ness of our proposed P2FA and other baseline attacks on the
defense models. To enhance transferability, we integrate all
attack methods with the classic input transformation meth-
ods PIM and DIM. The results in Table 4 demonstrate that
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Table 3. Success rate of different attacks integrated with PIM and DIM against normally trained models. The first column shows source
models, the first row lists target models and the last column represents the average attack success rate. The best results are highlighted in
bold.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-50 Res-152 Vgg-16 Vgg-19 Average

Inc-v3

PIDI-FIA 99.1 89.3 84.7 86.9 79.0 87.2 86.8 87.6
PIDI-RPA 99.7 90.4 86.9 89.7 85.2 89.9 89.1 90.1
PIDI-NAA 98.0 83.0 78.6 83.3 75.9 85.3 83.0 83.9

PIDI-DANAA 98.9 86.1 81.9 85.7 81.2 88.9 85.8 86.9
PIDI-SFVA 99.1 88.8 85.4 88.3 83.7 89.6 88.4 89.0
PIDI-BFA 100.0 95.7 93.0 93.2 91.2 93.8 92.7 94.2

PIDI-P2FA(Ours) 100.0 98.4 97.3 97.3 96.7 97.0 97.4 97.7

Inc-v4

PIDI-FIA 87.6 97.9 83.0 84.6 79.4 88.1 87.5 86.9
PIDI-RPA 91.4 99.1 86.1 87.1 84.3 90.0 89.6 89.7
PIDI-NAA 84.5 98.1 79.1 83.4 75.7 88.4 85.2 84.9

PIDI-DANAA 85.7 97.5 80.8 84.1 78.6 88.0 87.2 86.0
PIDI-SFVA 88.0 98.4 81.1 86.0 81.6 90.4 87.9 87.6
PIDI-BFA 95.3 99.6 91.8 92.9 89.4 93.2 93.1 93.6

PIDI-P2FA(Ours) 98.9 100.0 96.9 97.2 95.8 97.9 97.9 97.8

IncRes-v2

PIDI-FIA 80.3 77.2 94.5 75.8 69.2 78.3 78.0 79.0
PIDI-RPA 83.3 81.2 94.1 80.0 73.3 82.0 78.9 81.8
PIDI-NAA 72.4 69.5 92.8 69.0 60.4 73.4 71.5 72.7

PIDI-DANAA 80.2 78.8 93.0 77.9 68.8 80.8 77.3 79.5
PIDI-SFVA 81.8 79.1 94.9 78.3 72.7 79.9 78.2 80.7
PIDI-BFA 92.6 90.8 99.1 87.2 83.1 88.1 86.3 89.6

PIDI-P2FA(Ours) 96.4 96.2 100.0 94.3 91.8 93.7 93.4 95.1

Res-152

PIDI-FIA 88.6 87.6 79.6 98.8 100.0 95.3 94.2 92.0
PIDI-RPA 91.5 90.0 83.2 99.6 100.0 96.3 96.2 93.8
PIDI-NAA 85.4 84.6 79.9 98.2 99.9 94.3 92.3 90.7

PIDI-DANAA 89.0 86.9 83.3 98.8 100.0 95.4 94.3 92.5
PIDI-SFVA 90.7 89.3 83.3 99.6 100.0 96.2 96.6 93.7
PIDI-BFA 93.9 93.1 89.2 99.7 100.0 97.4 97.4 95.8

PIDI-P2FA(Ours) 99.1 98.4 97.7 99.9 100.0 99.4 99.2 99.1

our proposed P2FA achieves an average attack success rate
of 62.6%, surpassing all baselines by over 7.0%. Further-
more, Table 7 also demonstrates the superiority of P2FA
when combined with BSR or SIA in attacking defense mod-
els. This indicates that our attack method is highly effective
in targeting defense models.

Attacking Vision Transformers. Finally, we evaluate the
effectiveness of our proposed P2FA and other baseline at-
tacks on the vision transformers. We integrate all attack
methods with the classic input transformation methods PIM
and DIM. The results in Table 4 demonstrate that our pro-
posed P2FA achieves an average attack success rate of
74.9%, surpassing all baselines by over 15%. Furthermore,
Table 7 also demonstrates the superiority of P2FA when
combined with BSR or SIA in attacking vision transformers.
This indicates that our attack method poses a significant
threat to advanced vision transformers.

4.3. Ablation Study

In this section, we conduct an ablation study to analyze the
three key factors that affect our proposed P2FA. The first

factor is the step size λ, which determines the magnitude
of perturbations along the direction of feature importance
in the feature space. The second factor is the number of
perturbations T , representing how many times features are
perturbed along the direction of feature importance. The
final factor is the effect of the choice of feature importance
on the performance of our algorithm. Due to page limita-
tions, the figures for the ablation study are shown in A.4 of
the Appendix.

Step Size. We analyze the effect of using different step sizes
on P2FA. Using Inc-v3 as the surrogate model, we evaluate
step sizes of 1, 10, 102, 103, 104, 105, 106 to analyze the
transferability of the adversarial examples generated with
different step sizes. The results are shown in Fig. 3, indicate
that the attack success rate stabilizes when the step size
exceeds 104, reaching its peak at 105. Consequently, we
select 105 as the optimal step size.

Number of Perturbations. We analyze the effect of the
number of perturbations along the direction of feature im-
portance in the feature space on P2FA. Using Inc-v3 as a
surrogate model, we vary the number of perturbations from
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Table 4. Success rate of different attacks integrated with PIM and DIM against defense models and vision transformers. The first column
shows source models, the first row lists target models and the last column represents the average attack success rate. The best results are
highlighted in bold.

Model Attack Adv-Inc-v3 Adv-Ens-IncRes-v2 R&P FD JPEG Bit-Red PiT-S CaiT-S DeiT-B Swin-B Average

Inc-v3

PIDI-FIA 65.0 34.4 37.3 53.9 46.7 34.7 54.6 39.7 43.4 27.4 43.7
PIDI-RPA 66.7 41.2 45.7 52.8 50.8 41.9 62.2 47.2 49.0 34.1 49.2
PIDI-NAA 55.4 34.8 39.3 41.6 45.3 34.4 56.4 40.4 44.9 32.8 42.5

PIDI-DANAA 59.7 39.2 48.0 47.4 50.8 42.3 63.5 48.5 51.0 38.2 48.9
PIDI-SFVA 61.3 40.5 46.1 48.8 49.2 40.3 62.2 46.0 51.5 35.9 48.2
PIDI-BFA 72.4 45.9 50.5 57.8 57.1 46.3 73.4 59.3 59.6 46.2 56.9

PIDI-P2FA(Ours) 76.7 51.8 58.0 63.3 61.3 52.8 85.2 73.0 75.9 60.3 65.8

Inc-v4

PIDI-FIA 60.7 36.6 40.7 52.2 43.7 37.3 54.7 40.1 40.3 32.5 43.9
PIDI-RPA 62.2 42.0 44.8 52.3 49.0 42.1 62.4 45.8 47.6 39.3 48.8
PIDI-NAA 51.5 35.5 38.9 41.9 44.5 35.8 58.2 41.9 45.1 37.4 43.1

PIDI-DANAA 55.2 40.7 46.4 45.7 44.2 44.3 61.5 49.1 50.5 43.5 48.1
PIDI-SFVA 58.0 44.2 47.9 47.7 47.4 44.5 63.7 50.4 50.7 43.6 49.8
PIDI-BFA 66.5 46.6 51.4 53.5 51.4 46.1 72.7 56.4 58.7 49.6 55.3

PIDI-P2FA(Ours) 71.8 52.5 57.9 59.6 55.0 52.1 84.9 73.2 74.6 65.7 64.7

IncRes-v2

PIDI-FIA 64.2 40.9 42.5 54.6 44.7 41.2 43.2 31.7 32.0 21.8 41.7
PIDI-RPA 66.6 52.1 52.7 58.1 52.6 52.1 53.1 43.1 43.3 30.4 50.4
PIDI-NAA 51.8 37.8 38.6 46.6 42.3 37.9 42.1 30.9 33.5 24.5 38.6

PIDI-DANAA 58.6 47.8 52.5 51.8 47.8 50.7 53.4 41.5 42.4 34.6 48.1
PIDI-SFVA 58.4 46.9 47.7 52.1 50.1 46.9 51.4 43.6 45.1 33.4 47.6
PIDI-BFA 72.6 61.2 61.4 60.8 56.8 60.8 64.6 52.9 53.1 40.8 58.5

PIDI-P2FA(Ours) 79.9 65.8 68.8 67.7 62.9 68.0 78.5 68.7 67.4 54.7 68.2

Res-152

PIDI-FIA 57.3 33.5 38.9 54.1 45.5 34.5 52.9 36.7 41.8 30.2 42.5
PIDI-RPA 59.8 40.4 46.6 53.7 51.1 39.8 65.1 47.3 53.5 42.2 50.0
PIDI-NAA 52.8 38.4 44.7 47.1 48.4 38.3 68.1 50.9 56.5 47.6 49.3

PIDI-DANAA 55.0 41.2 49.0 50.6 50.6 44.1 72.5 56.0 60.5 54.1 53.4
PIDI-SFVA 57.6 42.5 50.2 52.8 51.9 42.9 71.4 56.3 61.2 52.6 53.9
PIDI-BFA 61.6 45.0 50.6 56.4 55.8 45.3 78.2 59.7 66.6 55.5 57.5

PIDI-P2FA(Ours) 71.6 55.2 62.6 66.8 63.6 55.8 92.4 82.2 84.9 76.4 71.2

1 to 10 to analyze their effect on transferability. The results,
as illustrated in Fig. 4, demonstrate that the attack success
rate peaks when the number of perturbations is 3. Conse-
quently, we select 3 as the optimal number of perturbations
for our study.

Feature Importance. We analyze the impact of employing
different feature importance assessment methods on P2FA.
Using Inc-v3 as a surrogate model, we incorporate the fea-
ture importance metrics from FIA, RPA, NAA, DANAA,
SFVA, and BFA into our algorithm. The results are shown
in Fig. 5, indicating that the highest performance is achieved
when utilizing the feature importance derived from BFA.
Therefore, we select the feature importance of BFA and
dynamically compute it in each iteration.

5. Conclusion
In this paper, we propose P2FA to generate highly trans-
ferable adversarial examples. The proposed P2FA shifts
the space of perturbation from pixel space to feature space
directly and perturbs the features multiple times along the
direction of feature importance in the feature space to more
efficiently destroy important features. We conducted exten-
sive experiments to demonstrate the superior performance
of P2FA as compared to those state-of-the-art methods, and
our method can serve as a benchmark for evaluating the

robustness of various models.
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A. Appendix.
A.1. Proof

FIA: The optimization problem of FIA is

argmin
xadv

∑
(∆̄x

k ⊙ fk(x
adv)) =

〈
∆̄x

k, fk(x
adv)

〉
, (16)

where ∆̄x
k denotes the aggregate gradient,

∆̄x
k =

∑N
n=1 ∆

Tn(x)
k

∥
∑N

n=1 ∆
Tn(x)
k ∥2

, Tn(x) = x⊙Mn
pd
, Mn

pd
∼ Bernoulli(1− pd), (17)

where ∆x
k = ∂l(x,y)

∂fk(x)
, and l(·, y) denotes the logits output with respect to the true label y. Let W = −∆̄x

k , The optimization
problem of FIA can ultimately be rewritten as

argmax
xadv

〈
W, fk(x

adv)
〉
. (18)

RPA: The only difference between RPA and FIA is the different transformation T in Eq. (17), which will result in different
feature importance W , but does not affect the structure of the optimization problem. Therefore, the optimization problem of
RPA can also be rewritten as

argmax
xadv

〈
W, fk(x

adv)
〉
. (19)

NAA: The optimization problem of NAA is

argmin
xadv

∑
A

(j)
k ≥0

[hp(A
(j)
k )]− γ

∑
A

(j)
k <0

[hn(−A
(j)
k )], (20)

where

Ak = (fk(x
adv)− fk(x

′))⊙ IA

= (fk(x
adv)− fk(x

′))⊙ 1

n

n∑
m=1

∂F (xm, y)

∂fk(xm)
, (21)

where F (·, y) denotes the softmax output of the true label y and xm = (1− m
n )x′+ m

n x. In practical, γ = 1 and fp(·), fn(·)
are linear functions mapping to themselves, i.e.hp(x) = x, hn(x) = x. Eq. (20) can be rewritten as

argmin
xadv

∑
j

A
(j)
k =

〈
fk(x

adv)− fk(x
′),

1

n

n∑
m=1

∂F (xm, y)

∂fk(xm)

〉
, (22)

which is equivalent to

argmin
xadv

〈
fk(x

adv),

∑n
m=1

∂F (xm,y)
∂fk(xm)∥∥∥∑n

m=1
∂F (xm,y)
∂fk(xm)

∥∥∥
2

〉
. (23)

Let W = −
∑n

m=1
∂F (xm,y)
∂fk(xm)∥∥∥∑n

m=1
∂F (xm,y)
∂fk(xm)

∥∥∥
2

, The optimization problem of NAA can eventually be rewritten as

argmax
xadv

〈
W, fk(x

adv)
〉
. (24)
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DANAA: DANAA differs from NAA only in that the paths used to compute xm in W in Eq. (23) are different, which will
result in a different W , but does not affect the structure of the optimization problem. Therefore, the optimization problem of
DANAA can also be written as

argmax
xadv

〈
W, fk(x

adv)
〉
. (25)

SFVA: The optimization problem of SFVA is

argmax
xadv

λ · τP (PVk) + τN (NVk). (26)

where the positive salient variance PVk of the k-th layer feature map is denoted as

PVk =
∑

[Mp(x)−Mp(xadv)], (27)

the positive salient maps Mp(x) is denoted as

Mp
i (x) =

{
Mi(x) if Mi(x) ≥ 0

0 otherwise
, (28)

the negative salient variance NVk of the k-th layer feature map is denoted as

NVk =
∑

[Mn(x)−Mn(xadv)], (29)

the negative salient maps Mn(x) is denoted as

Mn
i (x) =

{
Mi(x) if Mi(x) ≤ 0

0 otherwise
, (30)

the salient feature maps M(x) = Ŵ ∗ ⊙ fk(x), whereŴ ∗ denotes the optimal feature weights. In practical, λ = 1 and
τP (·), τN (·) are identity functions, i.e. τP (x) = x, τN (x) = x. Eq. (26) can be rewritten as

argmax
xadv

PVk +NVk =
∑

[Mp(x)−Mp(xadv)] +
∑

[Mn(x)−Mn(xadv)]

=
[∑

Mp(x) +
∑

Mn(x)
]
−

[∑
Mp(xadv) +

∑
Mn(xadv)

]
=

∑
i

Mi(x)−
∑
i

Mi(x
adv)

=
∑
i

[
Ŵ ∗ ⊙ fk(x)− Ŵ ∗ ⊙ fk(x

adv)
]

=
〈
Ŵ ∗, fk(x)− fk(x

adv)
〉
. (31)

Let W = −Ŵ ∗ and removing the terms that are not related to the optimization parameters, the optimization problem of
SFVA can finally be rewritten as

argmax
xadv

〈
W, fk(x

adv)
〉
. (32)

BFA: The optimization problem of BFA is

argmax
xadv

∑
F≥0

F − ω ·
∑
F<0

−F. (33)

where F = fk(x
adv) ⊙ I + I2 and I denotes the fitted gradient. In the official code, ω is set to 1.0 which degrades the

optimization problem to

argmax
xadv

∑
F =

∑
fk(x

adv)⊙ I + I2. (34)
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Since I2 is a constant term independent of the optimization parameters, Eq. (34) can be rewritten as

argmax
xadv

∑
fk(x

adv)⊙ I =
〈
I, fk(x

adv)
〉
. (35)

Let W = I , the optimization problem of BFA can be finally rewritten as

argmax
xadv

〈
W, fk(x

adv)
〉
. (36)

In summary, the above optimization problems of feature-level attacks are all equivalent to

argmax
xadv

〈
W, fk(x

adv)
〉
. (37)

where W denotes the feature importance.

A.2. The Attack Success Rates of the Adversarial Examples Generated by Feature-level Attacks and Their
Corresponding Feature Inversion Attacks (Table 5)

A.3. Success Rate of Different Attacks Integrated with BSR or SIA Against Normally Trained Models, Defense
Models and Vision Transformers (Table 6, Table 7 )

A.4. Ablation Study Figures(Fig. 3, Fig. 4, Fig. 5)

Figure 3. The effect of the choice of step size on attack success rate. Using Inc-v3 as a surrogate model, different step sizes are chosen to
generate adversarial examples and their success rates are reported against different target models.
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Figure 4. The effect of the choice of the number of perturbations on attack success rate. Using Inc-v3 as a surrogate model, different
numbers of perturbations are chosen to generate adversarial examples and their success rates are reported against different target models.

Figure 5. The effect of feature importance selection on attack success rate. Using Inc-v3 as a surrogate model, the proposed feature
importance assessment methods in different feature-level attacks are selected to generate adversarial examples and their success rates are
reported against different target models.
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Table 5. The attack success rates and the value of SSIM of the adversarial examples generated by feature-level attacks and their
corresponding Feature Inversion Attacks. The first column shows surrogate models, the first row lists target models and the last column
represents the value of SSIM. Average represent the average attack success rates. * denotes Feature Inversion Attack.

Model Attack Inception-v3 Inception-v4 Inception-ResNet-V2 ResNet-50 ResNet-152 Vgg-16 Vgg-19 Average SSIM

Inc-v3

FIA 98.8 86.2 78.7 82.0 75.4 85.1 83.7 84.3 0.9978FIA* 99.3 87.2 79.4 82.9 75.8 85.8 84.5 85.0
RPA 98.7 86.6 81.8 85.4 79.5 86.4 85.0 86.2 0.9966RPA* 99.0 87.1 82.4 86.0 80.4 86.6 85.9 86.8
NAA 97.7 81.0 73.9 78.4 72.1 81.9 79.2 80.6 0.9972NAA* 98.6 81.8 74.7 79.2 73.0 82.3 80.1 81.4

DANAA 98.1 82.3 76.7 81.3 73.6 84.8 81.8 82.7 0.9945DANAA* 98.8 83.3 77.5 82.1 74.5 85.3 82.4 83.4
SFVA 98.8 87.0 83.0 86.0 80.9 87.7 85.2 86.9 0.9937SFVA* 99.3 87.7 84.1 86.2 81.2 88.0 86.1 87.5
BFA 100.0 95.1 92.0 91.9 90.5 93.3 92.4 93.6 0.9945BFA* 100.0 96.1 92.3 92.6 91.6 94.2 92.7 94.2

Inc-v4

FIA 83.9 96.7 77.2 79.6 72.6 84.8 83.2 82.6 0.9967FIA* 84.4 97.2 78.1 80.3 72.7 85.2 84.1 83.1
RPA 87.5 98.1 80.3 82.8 78.6 88.1 87.6 86.1 0.9974RPA* 88.1 98.7 81.1 83.3 79.4 89.0 88.2 86.8
NAA 81.4 97.8 73.7 77.3 69.9 84.8 82.5 81.1 0.9956NAA* 82.2 98.4 74.7 78.1 70.1 85.5 83.2 81.7

DANAA 82.1 98.0 77.5 81.1 74.7 85.8 84.9 83.4 0.9956DANAA* 82.5 98.6 78.7 82.2 75.2 86.1 85.3 84.1
SFVA 86.7 98.2 79.0 82.6 78.2 88.6 87.1 85.8 0.9984SFVA* 87.2 98.6 79.9 83.3 79.2 88.9 87.8 86.4
BFA 94.8 99.5 90.6 91.4 88.9 93.6 92.6 93.1 0.9947BFA* 95.3 99.6 91.2 91.9 89.6 94.2 93.4 93.6

IncRes-v2

FIA 75.7 74.5 92.9 69.8 62.5 77.0 73.7 75.2 0.9936FIA* 76.6 75.1 93.0 70.8 63.2 77.7 74.2 75.8
RPA 78.8 78.9 91.9 76.9 68.0 78.6 76.9 78.6 0.9951RPA* 79.2 79.6 92.5 77.8 68.9 79.7 77.4 79.3
NAA 70.4 70.0 91.9 68.4 59.0 73.9 72.1 72.2 0.9977NAA* 70.9 70.7 92.7 69.2 59.9 74.5 73.1 73.0

DANAA 76.9 76.1 94.2 73.5 66.7 78.4 77.3 77.6 0.9959DANAA* 77.4 76.7 94.9 74.4 67.2 79.3 78.3 78.3
SFVA 81.0 78.7 93.7 77.7 71.3 81.1 79.8 80.5 0.9964SFVA* 81.8 79.4 94.3 78.7 71.8 81.9 80.3 81.2
BFA 92.3 91.6 99.3 87.1 83.2 87.0 86.3 89.5 0.9951BFA* 93.2 92.6 99.5 88.0 84.1 87.8 87.1 90.3

Res-152

FIA 76.2 78.4 62.5 98.0 100.0 91.9 88.7 85.1 0.9973FIA* 76.9 79.2 63.2 98.5 100.0 92.5 89.5 85.7
RPA 87.4 86.3 74.2 99.0 100.0 95.1 94.4 90.9 0.9975RPA* 87.9 87.2 74.8 99.3 100.0 95.9 95.2 91.5
NAA 81.7 79.5 71.8 97.8 99.9 92.5 91.2 87.8 0.9963NAA* 82.3 80.4 72.2 98.5 99.9 93.4 92.0 88.4

DANAA 84.8 83.2 74.7 98.4 100.0 93.1 92.7 89.6 0.9966DANAA* 85.6 84.1 75.1 98.8 100.0 93.7 93.1 90.1
SFVA 86.8 85.6 78.2 99.4 100.0 94.9 94.2 91.3 0.9961SFVA* 87.2 86.4 78.9 99.6 100.0 95.5 95.2 91.8
BFA 92.7 92.3 85.4 99.6 100.0 97.0 96.9 94.8 0.9976BFA* 93.3 92.8 86.2 99.7 100.0 97.8 97.8 95.4
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Table 6. Success rate of different attacks integrated with BSR or SIA against normally trained models. The first column shows source
models, the first row lists target models and the last column represents the average attack success rate. The best results are highlighted in
bold.

Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-50 Res-152 Vgg-16 Vgg-19 Average

Inc-v3

BSR-FIA 99.7 86.3 78.9 84.9 75.4 88.1 85.1 85.5
BSR-RPA 99.8 89.4 84.3 87.4 79.9 89.6 88.1 88.4
BSR-NAA 99.9 85.1 78.7 83.0 76.6 86.9 84.1 84.9

BSR-DANAA 99.2 85.8 79.0 82.5 76.8 87.0 85.6 85.1
BSR-SFVA 99.9 87.8 83.4 85.8 78.8 88.1 85.8 87.1
BSR-BFA 100.0 91.2 86.7 88.5 84.5 90.6 89.6 90.2

BSR-P2FA(Ours) 100.0 98.7 96.2 97.3 96.2 97.3 97.7 97.6
SIA-FIA 100.0 94.0 89.1 92.0 86.8 93.5 93.2 92.7
SIA-RPA 99.9 94.8 91.6 93.6 91.0 94.3 94.9 94.3
SIA-NAA 99.9 93.9 90.2 92.4 88.9 92.8 92.2 92.9

SIA-DANAA 99.9 95.3 91.8 94.0 90.6 94.5 93.1 94.2
SIA-SFVA 100.0 95.1 91.3 94.8 90.2 94.2 93.5 94.2
SIA-BFA 100.0 97.0 94.7 96.4 93.9 96.3 96.1 96.3

SIA-P2FA(Ours) 100.0 99.5 98.9 99.4 98.6 99.3 99.5 99.3

Inc-v4

BSR-FIA 88.1 99.5 80.1 86.2 79.3 92.6 89.9 88.0
BSR-RPA 91.4 100.0 82.8 87.8 81.5 92.8 92.4 89.8
BSR-NAA 87.8 99.9 79.2 83.4 75.9 89.8 88.4 86.3

BSR-DANAA 87.9 98.6 80.9 86.0 79.1 90.9 89.6 87.6
BSR-SFVA 90.3 99.6 80.5 86.0 79.4 91.0 89.9 88.1
BSR-BFA 92.6 99.4 86.4 89.6 84.0 93.4 93.0 91.2

BSR-P2FA(Ours) 98.8 100.0 97.3 98.1 97.1 98.1 98.2 98.2
SIA-FIA 94.0 100.0 86.9 92.8 87.8 95.1 94.6 93.0
SIA-RPA 96.1 100.0 90.7 93.4 90.3 96.5 96.2 94.7
SIA-NAA 94.5 99.9 89.7 92.9 88.8 95.0 94.0 93.5

SIA-DANAA 94.6 99.8 92.0 93.6 89.6 95.3 94.8 94.2
SIA-SFVA 95.2 100.0 90.4 93.6 90.6 95.8 95.2 94.4
SIA-BFA 96.6 99.7 93.5 95.2 92.6 96.1 96.2 95.7

SIA-P2FA(Ours) 99.6 100.0 98.7 99.6 98.9 99.6 99.6 99.4

IncRes-v2

BSR-FIA 81.8 77.5 98.7 75.5 66.3 81.9 79.3 80.1
BSR-RPA 85.0 82.9 98.7 80.4 72.6 85.2 82.2 83.9
BSR-NAA 77.5 75.6 97.0 73.2 66.7 78.9 75.5 77.8

BSR-DANAA 80.5 78.3 95.7 77.2 67.3 81.8 79.3 80.0
BSR-SFVA 83.6 79.6 96.9 78.2 71.2 82.2 80.5 81.7
BSR-BFA 88.2 87.1 99.0 83.2 75.4 86.8 84.2 86.3

BSR-P2FA(Ours) 95.7 95.8 100.0 93.5 90.1 93.6 92.8 94.5
SIA-FIA 91.3 89.8 99.9 85.5 80.0 88.1 87.8 88.9
SIA-RPA 94.1 92.6 99.9 89.7 85.5 91.3 91.5 92.1
SIA-NAA 91.8 90.0 99.7 88.6 83.6 90.0 87.9 90.2

SIA-DANAA 93.7 91.1 99.2 89.4 85.4 90.9 91.6 91.6
SIA-SFVA 94.3 91.6 99.4 90.7 87.2 90.6 90.5 92.0
SIA-BFA 95.4 94.2 99.5 92.5 90.1 93.7 92.6 94.0

SIA-P2FA(Ours) 99.5 98.4 99.9 98.1 97.4 98.0 98.3 98.5

Res-152

BSR-FIA 79.0 77.9 64.3 98.8 100.0 94.3 93.3 86.8
BSR-RPA 86.5 83.1 70.6 99.5 100.0 96.3 95.7 90.2
BSR-NAA 84.0 82.9 73.7 98.6 100.0 95.1 93.4 89.7

BSR-DANAA 88.0 86.1 76.9 99.1 99.9 95.4 94.4 91.4
BSR-SFVA 87.3 84.9 77.1 99.5 100.0 95.9 94.7 91.3
BSR-BFA 90.6 88.8 80.2 99.6 100.0 97.3 96.7 93.3

BSR-P2FA(Ours) 98.8 98.3 96.4 99.9 100.0 99.8 99.7 99.0
SIA-FIA 86.0 85.7 73.3 99.6 100.0 96.5 96.2 91.0
SIA-RPA 92.2 89.5 80.8 99.9 100.0 98.1 97.6 94.0
SIA-NAA 92.2 90.7 84.0 99.8 100.0 97.7 97.9 94.6

SIA-DANAA 94.2 92.7 87.5 99.8 100.0 98.5 98.1 95.8
SIA-SFVA 93.1 91.9 84.6 99.9 100.0 98.1 97.9 95.1
SIA-BFA 95.3 94.3 87.7 99.8 100.0 98.3 98.6 96.3

SIA-P2FA(Ours) 99.2 98.8 96.8 100.0 100.0 99.9 99.9 99.2
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Table 7. Success rate of different attacks integrated with BSR or SIA against defense models and vision transformers. The first column
shows source models, the first row lists target models and the last column represents the average attack success rate. The best results are
highlighted in bold.

Model Attack Adv-Inc-v3 Adv-Ens-IncRes-v2 R&P FD JPEG Bit-Red PiT-S CaiT-S DeiT-B Swin-B Average

Inc-v3

BSR-FIA 52.6 24.3 28.1 38.1 40.0 23.8 40.0 24.4 29.9 18.9 32.0
BSR-RPA 56.1 29.4 34.2 40.1 43.6 29.6 49.6 31.8 37.7 22.7 37.5
BSR-NAA 53.8 33.4 37.8 40.6 44.0 33.5 54.8 38.0 42.7 28.2 40.7

BSR-DANAA 56.0 34.0 38.8 41.2 44.9 33.8 55.5 38.3 44.9 31.0 41.8
BSR-SFVA 55.2 32.9 38.3 41.6 45.7 33.2 54.3 36.9 43.0 28.2 40.9
BSR-BFA 57.7 31.6 37.3 42.2 46.4 31.8 59.3 37.5 44.5 29.3 41.8

BSR-P2FA(Ours) 77.8 50.2 56.3 61.5 60.6 50.4 82.8 69.3 74.4 55.7 63.9
SIA-FIA 62.4 33.7 37.8 48.7 47.8 33.8 56.3 38.5 43.1 28.2 43.0
SIA-RPA 67.8 40.9 43.6 50.1 53.9 40.6 66.5 46.0 50.2 36.8 49.6
SIA-NAA 65.1 45.4 49.5 49.4 55.7 45.0 71.6 54.0 57.4 44.3 53.7

SIA-DANAA 69.1 48.8 52.9 53.0 58.2 48.6 74.5 57.8 59.4 45.7 56.8
SIA-SFVA 66.4 45.3 49.4 52.2 56.9 45.1 70.6 53.6 55.1 42.6 53.7
SIA-BFA 72.6 46.2 49.4 54.2 59.2 46.1 76.9 59.0 62.7 46.2 57.3

SIA-P2FA(Ours) 83.2 61.9 63.9 72.1 70.9 61.7 91.0 81.4 81.9 69.5 73.8

Inc-v4

BSR-FIA 48.4 26.2 31.0 38.4 39.6 26.3 45.4 26.4 31.9 21.1 33.5
BSR-RPA 50.8 29.3 34.6 39.5 39.4 29.3 48.5 30.3 34.7 25.4 36.2
BSR-NAA 51.0 34.1 38.4 38.8 42.9 33.8 55.8 38.6 41.1 30.8 40.5

BSR-DANAA 54.9 36.3 39.9 40.4 41.7 36.3 55.6 41.3 44.4 32.1 42.3
BSR-SFVA 51.5 34.4 40.5 39.7 43.7 34.6 55.8 39.7 42.3 32.2 41.4
BSR-BFA 56.0 32.5 37.3 41.0 41.2 31.7 57.4 38.5 42.6 31.6 41.0

BSR-P2FA(Ours) 74.5 54.6 60.1 59.1 58.9 54.5 86.5 70.9 75.5 62.6 65.7
SIA-FIA 57.9 34.1 36.9 46.1 44.8 33.9 54.2 34.8 40.1 29.6 41.2
SIA-RPA 60.5 39.3 43.3 48.6 47.9 39.7 62.5 42.3 45.8 35.8 46.6
SIA-NAA 62.2 47.6 50.1 48.5 52.4 47.1 68.7 52.1 53.9 46.4 52.9

SIA-DANAA 64.9 50.2 52.5 51.7 54.5 50.3 72.6 55.3 57.1 46.4 55.6
SIA-SFVA 60.8 48.0 51.2 49.7 55.2 47.4 72.7 55.7 55.9 48.8 54.5
SIA-BFA 65.7 46.5 50.2 53.2 55.0 46.5 73.9 55.8 58.7 46.7 55.2

SIA-P2FA(Ours) 79.7 63.4 65.8 69.6 67.7 63.8 91.7 82.8 83.1 75.4 74.3

IncRes-v2

BSR-FIA 57.1 32.6 33.1 43.3 41.2 32.7 33.8 21.3 25.6 12.7 33.3
BSR-RPA 63.5 42.7 43.4 48.5 47.2 42.8 46.3 30.9 35.1 20.4 42.1
BSR-NAA 56.4 41.2 42.6 43.5 46.1 41.0 45.0 33.5 34.3 22.8 40.6

BSR-DANAA 59.0 44.3 44.4 46.0 46.1 44.2 49.5 36.5 37.6 23.9 43.2
BSR-SFVA 58.5 42.5 44.7 47.5 48.5 42.4 48.9 36.2 38.8 24.2 43.2
BSR-BFA 65.4 45.7 47.1 49.2 47.3 45.7 52.9 37.6 39.4 25.0 45.5

BSR-P2FA(Ours) 79.7 64.7 67.6 66.1 62.5 65.3 76.0 63.9 66.9 48.9 66.2
SIA-FIA 68.1 45.8 44.9 56.8 52.9 46.0 48.5 34.0 38.7 23.3 45.9
SIA-RPA 74.3 58.1 56.6 60.9 60.3 57.8 62.4 46.7 49.4 33.3 56.0
SIA-NAA 70.8 61.0 60.7 58.5 60.5 61.2 62.9 53.0 50.7 40.2 58.0

SIA-DANAA 73.4 65.3 64.7 60.3 64.6 64.8 67.9 56.3 54.9 42.2 61.4
SIA-SFVA 70.6 61.9 61.6 61.9 64.3 62.4 68.5 56.7 55.8 42.4 60.6
SIA-BFA 78.1 67.6 66.2 63.9 66.3 67.3 72.1 60.3 59.8 44.8 64.6

SIA-P2FA(Ours) 87.8 76.7 75.7 77.2 75.1 76.3 87.8 80.9 81.9 67.8 78.7

Res-152

BSR-FIA 41.4 20.4 24.6 36.2 33.4 20.4 35.8 20.1 26.8 17.1 27.6
BSR-RPA 43.4 24.9 31.1 38.4 40.7 24.9 48.7 26.2 34.3 23.5 33.6
BSR-NAA 47.0 34.1 40.1 41.2 45.2 34.4 63.8 43.8 50.5 38.2 43.8

BSR-DANAA 47.7 33.6 39.6 42.2 45.4 32.9 63.8 42.1 50.2 38.3 43.6
BSR-SFVA 48.6 33.4 39.2 43.2 45.7 32.7 62.5 42.4 49.5 35.9 43.3
BSR-BFA 48.4 30.1 37.6 42.3 46.5 30.2 61.4 38.3 49.6 32.9 41.7

BSR-P2FA(Ours) 70.5 53.4 61.5 62.9 61.5 52.7 90.3 77.3 83.2 72.9 68.6
SIA-FIA 44.9 25.6 29.9 40.7 38.8 25.7 46.2 26.0 33.7 24.8 33.6
SIA-RPA 48.4 30.4 37.3 43.9 44.4 30.8 56.4 33.2 43.0 33.7 40.2
SIA-NAA 54.7 41.2 47.4 48.8 51.2 40.5 74.0 53.3 60.9 49.5 52.2

SIA-DANAA 55.5 41.4 47.6 50.2 52.3 41.1 72.6 51.5 59.9 47.6 52.0
SIA-SFVA 54.5 40.4 46.1 48.7 52.1 39.9 71.9 51.1 57.2 45.4 50.7
SIA-BFA 54.8 37.4 43.6 50.2 54.1 37.8 73.6 49.1 59.6 45.9 50.6

SIA-P2FA(Ours) 70.2 55.0 59.4 68.4 66.8 54.8 90.4 80.6 83.1 73.9 70.3
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