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ABSTRACT

Prototype-based federated learning (PFL) has emerged as a promising paradigm
to address data heterogeneity problems in federated learning, as it leverages mean
feature vectors as prototypes to enhance model generalization. However, its ro-
bustness against backdoor attacks remains largely unexplored. In this paper, we
identify that PFL is inherently resistant to existing backdoor attacks due to its
unique prototype learning mechanism and local data heterogeneity. To further ex-
plore the security of PFL, we propose BAPFL, the first backdoor attack method
specifically designed for PFL frameworks. BAPFL integrates a prototype poi-
soning strategy with a trigger optimization mechanism. The prototype poisoning
strategy manipulates the trajectories of global prototypes to mislead the prototype
training of benign clients, pushing their local prototypes of clean samples away
from the prototypes of trigger-embedded samples. Meanwhile, the trigger opti-
mization mechanism learns a unique and stealthy trigger for each potential tar-
get label, and guides the prototypes of trigger-embedded samples to align closely
with the global prototype of the target label. Experimental results across multiple
datasets and PFL variants demonstrate that BAPFL achieves a 33%-75% improve-
ment in attack success rate compared to traditional backdoor attacks, while pre-
serving main task accuracy. These results highlight the effectiveness, stealthiness,
and adaptability of BAPFL in PFL.

1 INTRODUCTION

Federated learning (FL) is a distributed machine learning paradigm that enables multiple clients to
collaboratively train a global model without sharing their private data, thus preserving data privacy.
Due to this advantage, FL has been widely applied in various real-world scenarios, such as personal-
ized recommendation (Zhang et al., 2024), autonomous driving (Li et al., 2022), and smart healthcare
(Liu et al., 2022). In such practical applications, however, clients usually gather data from diverse
sources, resulting in significant data heterogeneity. This data heterogeneity makes it challenging for
a unified global model to achieve high performance on all clients. To address this challenge, many
studies have focused on heterogeneous FL (Yan et al., 2025; Tang et al., 2024; Zhou et al., 2024; Tan
et al., 2022a). Among these approaches, prototype-based federated learning (PFL) (Tan et al., 2022a)
has shown great promise due to its ability to learn high-quality personalized models for clients with
minimal communication overhead.

Unlike vanilla FL methods that aggregate full model parameters across clients, PFL (Tan et al.,
2022a) exchanges class prototypes, i.e., the average feature vectors of samples within the same
class, to train models for clients. Typically, each client periodically updates its local prototypes and
model by minimizing classification loss and aligning local prototypes with the global prototypes.
The server then averages these local prototypes by class to form new global prototypes. Compared
to FL, PFL significantly reduces communication overhead and improves model generalization under
heterogeneous data (Tan et al., 2022b; 2025). With ongoing innovations in prototype representa-
tion (Tan et al., 2022b; Huang et al., 2023b; Fu et al., 2025b), optimization objective (Wang et al.,
2024), and robust aggregation (Tan et al., 2025; Yan et al., 2024), PFL is expected to play a key role
in real-world heterogeneous FL systems.

Despite its potential, the security of PFL remains underexplored. This research gap creates a critical
blind spot: as illustrated in Figure 1(a), attackers can exploit the prototype-sharing mechanism of
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Figure 1: The left subgraph illustrates the PFL system and its potential attack threat. The attacker
manipulates client C to upload poisoned prototypes PC (step I). PC deviates from the benign pro-
totypes like P1, thus it poisons the global prototypes P̄ (step II) and misleads the local training of
benign models (step III). The right subgraph compares the strategies of the traditional backdoor at-
tack (①) and our BAPFL attack (②).

PFL by manipulating some clients to upload poisoned prototypes (step I). These prototypes deviate
from benign prototypes uploaded by benign clients and cause the aggregated prototypes to drift from
the correct direction (step II), thereby misleading the local training of multiple benign clients (step
III). Affected by such attacks, the PFL system may cause serious consequences in security-critical
applications such as medical diagnosis and financial decision-making.

Among various federated attack strategies, backdoor attacks pose a particularly insidious and dan-
gerous threat (Feng et al., 2025). These attacks inject poisoned samples with specific triggers into the
training data to manipulate the model’s predictions. In this paper, we investigate the susceptibility of
PFL frameworks to backdoor attacks. We first explore whether the PFL approach is still vulnerable
to existing backdoor attacks. We observe that PFL exhibits strong robustness against existing back-
door attacks (see Section 3 for details). We attribute this robustness to two key factors: 1) The limited
influence of poisoned prototypes. Even if the global prototypes are contaminated by poisoned pro-
totypes, they only affect the embedding layer of benign models. While the unaffected decision layer
of the benign model obstructs the attack effectiveness. 2) Data heterogeneity of clients. Some clients
may lack the training samples of the target label. Thus, their decision layer does not learn parameters
for the target label. This inherently breaks the trigger-target label mapping and significantly reduces
the attack success rate (ASR).

These factors motivate us to rethink backdoor attack strategies for PFL. As illustrated in Figure 1(b),
while traditional backdoor attack can directly manipulate the trigger-embedded samples’ classifi-
cation in traditional FL by sharing full model parameters, we must strategically manipulate the
global prototype to mislead the trigger-embedded samples’ classification in an indirect manner. Ac-
cording to this analysis, we propose BAPFL, a novel backdoor attack method designed for PFL.
BAPFL effectively attacks PFL systems from the perspective of dual-direction prototype optimiza-
tion. Specifically, BAPFL comprises two components: 1) A prototype poisoning strategy (PPS)
that leverages poisoned prototypes to manipulate the global prototype away from the prototypes
of trigger-embedded samples (termed trigger prototypes), thereby guiding benign prototypes away
from these trigger prototypes. 2) A trigger optimization mechanism (TOM) that ensures the attack’s
effectiveness across heterogeneous clients. It learns stealthy triggers for target labels, and optimizes
the trigger prototypes to closely align with the global prototype of the target label. These two mod-
ules jointly enhance the effectiveness of BAPFL, achieving high ASR and main task accuracy (ACC)
across diverse PFL frameworks. Our main contributions are summarized as follows.

• This study delves into the security domain of PFL, and reveals that PFL exhibits strong
resistance to conventional backdoor attacks. We identify two key factors behind this resis-
tance: the limited influence of poisoned prototypes and data heterogeneity of clients.

• We propose a novel backdoor attack method for PFL, called BAPFL, which combines PPS
and TOM. PPS pushes benign prototypes away from trigger prototypes by manipulating
global prototype aggregation, while TOM pulls trigger prototypes closer to the global pro-
totypes of target labels by learning diverse stealthy triggers. This dual-direction prototype
optimization design enhances the effectiveness of BAPFL.
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• We quantitatively evaluate the performance of BAPFL in PFL based on representative
datasets including MNIST (LeCun et al., 1998), FEMNIST (Caldas et al., 2019), and
CIFAR-10 (Krizhevsky, 2009). Results show that BAPFL achieves a 35%-75% increase
in ASR while maintaining ACC. We also integrate BAPFL into different PFL frameworks
and heterogeneous settings, and the results highlight its broad adaptability.

2 RELATED WORK

To address the challenges posed by data heterogeneity in FL, existing solutions can be categorized
into model-based and data-based methods. Model-based methods aim to enhance the final model’s
ability to adapt to the diverse data distributions of clients. For instance, FedProx (Li et al., 2020)
introduces a proximal regularization term to restrict model divergence. Personalized FL approaches
(Zhang et al., 2023d; Lyu et al., 2024; Fan et al., 2025; Ye et al., 2024) enable each client to maintain
individualized models to better fit their local data. EAFL (Zhou et al., 2024) and HCFL (Guo et al.,
2025) partition clients into groups with similar data distributions and train separate global mod-
els per cluster. However, these methods incur high communication overhead. Data-based methods
are a more communication-efficient alternative, focusing on learning shared representations across
clients. For example, Fed2KD (Wen et al., 2023) shares knowledge across clients to boost the model
accuracy. GPFL (Zhang et al., 2023c) and FedCR (Zhang et al., 2023b) extract global and person-
alized features/representations to enhance model generalization. PFL (Tan et al., 2022a; Mu et al.,
2023; Tan et al., 2022b; Jiang et al., 2025; Fu et al., 2025a; Tan et al., 2025) leverages class proto-
types to align local and global semantics. FPL (Huang et al., 2023a) and FedPLVM (Wang et al.,
2024) further build hierarchical and unbiased prototypes for better learning performance. In this
paper, we focus on PFL and explore its security threats.

Backdoor attacks have proven effective in vanilla FL, and are typically categorized into data poi-
soning attacks (Feng et al., 2025) and model poisoning attacks (Bagdasaryan et al., 2020; Xie et al.,
2020; Liu et al., 2024). Data poisoning attacks inject trigger-embedded samples into local datasets
to poison local models. In contrast, model poisoning attacks directly manipulate model updates
for stronger attack effectiveness. Representative methods include model replacement (MR) (Bag-
dasaryan et al., 2020), which scales malicious updates to pollute the aggregated model but suffers
from dilution by subsequent benign updates. To enhance the persistence of the attack, Bad-PFL
(Fan et al., 2025) employs features from natural data as the trigger, while distributed backdoor
attack (DBA) (Xie et al., 2020) distributes trigger fragments across clients. Full combination back-
door attack (FCBA) (Liu et al., 2024) further creates diverse trigger variants to increase the ASR.
Additionally, BapFL (Ye et al., 2024) poisons the encoder layers and simulate classifiers to implant
effective triggers, PFedBA (Lyu et al., 2024) and 3DFed (Li et al., 2023) incorporate anomaly-aware
loss functions to improve attack stealthiness. Chameleon (Dai & Li, 2023) adapts the trigger pattern
to the evolving global model to maintain attack effectiveness under aggregation perturbations, while
A3FL (Zhang et al., 2023a) introduces adaptive gradient manipulation to preserve attack persistence
against common FL defenses.

To defend against backdoor attacks, existing solutions typically introduce defense strategies to iden-
tify and eliminate abnormal models in FL. Multi-Krum (Blanchard et al., 2017) selects the most
reliable client updates by evaluating the distance between updates and choosing those that are least
affected by outliers. Median (Zhang et al., 2023e) aggregates model updates by selecting the me-
dian across each parameter dimension, resisting interference from extreme values. Sign (Guo et al.,
2023) processes the sign of model updates to enhance FL robustness against malicious updates. To
further resist backdoor attacks under Non-IID data settings, FLAME (Nguyen et al., 2022) combines
differential privacy, norm clipping, and weight clustering to filter out potential malicious updates.
Additionally, Deepsight (Rieger et al., 2022) introduces a deep model inspection framework that
analyzes local updates to identify potential backdoor threats.

While significant progress has been made in designing and resisting backdoor attacks in FL, little
attention has been paid to the threat of backdoor attacks in PFL. In this paper, we fill this gap and
propose an effective backdoor attack specifically designed for PFL.
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3 MODELING AND ANALYSIS

3.1 FL VERSUS PFL

Consider a FL system with C clients (denoted as C = {1, . . . , c, . . . , C}) and a central server (Huang
et al., 2024). Each client c holds its dataset Dc = {(xi

c, y
i
c)}

|Dc|
i=1 . The local training objective is:

argmin
θ
LS =

1

|Dc|
∑|Dc|

i=1
ℓ(fθ(x

i
c), y

i
c), (1)

where ℓ(·, ·) denotes the loss of supervised learning, and fθ is the model parameterized by θ. In each
round, clients send model updates to the server for aggregation. However, under heterogeneous data,
the aggregated model may perform poorly on some clients.

PFL (Tan et al., 2022a) mitigates this issue by exchanging local prototypes, i.e., mean feature vec-
tors, instead of model updates to enhance model generalization. As illustrated in Figure 1(a), each
client shares a common feature extractor ϕ(·), and computes the local class prototype for class k as:

P (k)
c =

1

|D(k)
c |

∑
(xi

c,y
i
c)∈D(k)

c

ϕ(xi
c), (2)

where D(k)
c = {(xi

c, y
i
c) ∈ Dc | yic = k}. Then, the server aggregates local prototypes via:

P̄ (k) =
∑C

c=1

|D(k)
c |∑C

c′=1 |D
(k)
c′ |

P (k)
c . (3)

Subsequently, client c optimizes its local model using its private data and the global prototypes
P̄ = {P̄ (k)}k=1,2,... by minimizing a combined loss L, which includes the supervised loss LS and
a prototype regularization term LP , i.e.,

L = LS + λ · LP =
1

|Dc|
∑|Dc|

i=1
[ℓ(fθ(x

i
c), y

i
c) + λ · ∥ϕ(xi

c)− P̄ (yi
c)∥2], (4)

where λ is the coefficient that controls the trade-off between LS and LP .

3.2 THREAT MODEL

Adversary’s Goal. Similar to previous backdoor attacks (Xie et al., 2020; Feng et al., 2025), we
consider an adversary that can control multiple compromised clients to upload poisoned prototypes
after local training. Its goal is to contaminate benign clients’ models such that they misclassify
trigger-embedded samples as the target label, while maintaining high test accuracy on clean samples.
The adversary further aims for the backdoor to be stealthy and persistent, avoiding detection and
removal throughout training.

Adversary’s Knowledge and Capability. The adversary fully controls the compromised clients,
along with their data, training process, and the received global prototypes. However, the adversary
cannot control the server and the benign clients. That is, the adversary cannot modify the aggregation
rules or interfere with the training process of benign clients.

3.3 CHALLENGES OF BACKDOOR ATTACKS IN PFL

We consider a standard federated backdoor attack, where each compromised client c∗ poisons other
benign models by inserting a backdoor task into its local model training. During training, client c∗
minimizes the following loss:

L∗
S = (1− α) · 1

|Dc∗ |
∑|Dc∗ |

i=1
ℓ(fθ(x

i
c∗), y

i
c∗) + α · 1

mc∗

∑mc∗

j=1
ℓ(fθ(T (x

j
c∗)), yt), (5)

where T (·) is the trigger function that injects a trigger to the training samples and assigns them a
target label yt, mc∗ is the number of poisoned samples, and α is the poisoning ratio that controls the
importance of the backdoor task relative to the main task. In PFL, however, we observe this standard
backdoor attack consistently yields low ASR. We identify two key factors for this failure:
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Figure 2: The ASR and ACC of FL, PFL and PFL∗ under backdoor attacks.

(a) MNIST, r = 80 (b) MNIST, r = 160 (c) CIFAR-10, r = 80 (d) CIFAR-10, r = 160

Figure 3: t-SNE visualization of benign and poisoned prototypes at different training rounds r.

The limited influence of poisoned prototypes. In FL, the attacker can effectively embed backdoor
effect by poisoning all benign model parameters. In PFL, however, the attacker can only affect the
embedding layer of benign models via LP . Its attack effectiveness is obstructed by the unaffected
decision layer of the benign model. To validate this, we assess the performance of the backdoor
attack against the standard PFL and FL frameworks. Detailed experimental settings are provided
in Appendix B. The results are shown in Figure 2(a) and Figure 2(c). We find that the ASR in FL
setting remains above 70%, while the ASR in PFL reaches only around 10%-20%. This indicates
that global prototypes exert limited influence on the decision-making of benign clients’ models,
thereby obstructing the backdoor propagation path.

Data heterogeneity of clients. In PFL, some clients do not contain the training samples of the target
label yt. Thus their models lack classifier parameters for yt, inherently avoiding the mapping from
trigger to yt. We confirm this via an ablation study, in which we inject the training samples of yt
into all clients under PFL (denoted as “PFL∗”) and compare it with the original PFL. As shown in
Figure 2(b) and Figure 2(d), the attacker in PFL∗ achieves higher ASR across all attack rates.

The above challenges motivate us to rethink backdoor attack strategies in PFL. We first examine
the distribution changes of global and benign prototypes at the 80-th and 160-th training rounds
(TR) in PFL under backdoor attacks, and the results are shown in Figure 3. We observe that, as the
number of training round r increases, benign prototypes gradually converge toward the manipulated
global prototype. This motivates us to develop a novel attack strategy: by manipulating the global
prototype away from the trigger prototype, the attacker may indirectly push benign prototypes
away from the trigger prototypes, thereby increasing the probability of misclassifying trigger-
embedded samples. To further classify the trigger-embedded samples into the target label, the trigger
prototypes can be optimized toward the global prototype of the target label.

4 PROPOSED BAPFL: BACKDOOR ATTACK AGAINST PROTOTYPE-BASED
FEDERATED LEARNING

4.1 OVERVIEW

Based on the analysis in Section 3, we propose a novel backdoor attack method BAPFL, which
exploits the dual-direction prototype optimization mechanism to indirectly propagate backdoor be-
havior across diverse PFL frameworks (Tan et al., 2022a;b; 2025). As illustrated in Figure 4 and Ap-
pendix C. BAPFL integrates two components: prototype poisoning strategy and trigger optimization
mechanism. Each malicious client c∗ executes PPS and TOM to generate poisoned prototypes Pc∗
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Figure 4: Overview of BAPFL in PFL.

and optimize label-specific triggers, respectively. Specifically, the poisoned prototypes of PPS de-
liberately bias the global prototypes away from the trigger prototypes. This manipulation indirectly
influences the prototype learning of benign clients, pushing their benign prototypes to diverge from
the trigger prototypes. As this discrepancy increases, trigger-embedded samples are more likely to
be misclassified by benign models. Meanwhile, TOM expands the target label space and optimizes
triggers for each target label. This increases the probability that the target labels overlap with the
local label space of benign clients, thereby enabling the benign models to inadvertently activate the
trigger-target label mapping. Further theoretical analysis of BAPFL is provided in Appendix E.

4.2 PROTOTYPE POISONING STRATEGY (PPS)

PPS includes two steps: sample selection and prototype flipping. The former identifies the most
valuable trigger-embedded samples. The prototypes of these selected samples serve as the basis for
the latter, which constructs the accurate poisoned prototypes in a deliberately opposite direction,
thereby manipulating the global prototypes away from the trigger prototypes.

Sample Selection Strategy. Malicious clients first compute the attack value of each trigger-
embedded sample x∗ by computing the Euclidean distance between its prototype ϕ(x∗) and the
global prototype P̄ (y), where y is the ground-truth label of the clean sample x related to x∗. That is,

V (x∗) = ∥ϕ(x∗)− P̄ (y)∥2, (6)

where a larger distance implies higher attack value. Compared with other alternative measures such
as cosine similarity or projection, we employ Euclidean distance because PFL is inherently opti-
mized based on the L2 norm. This alignment enables the Euclidean distance to better reflect both
directional and magnitude shifts introduced by triggers (see Appendix G). The top-K samples with
the highest attack values are selected for training local model and constructing poisoned prototypes.

Prototype Flipping Strategy. To mislead the global prototype, malicious clients construct poisoned
prototypes and upload them to the server. Specifically, malicious client c∗ first computes the class-
wise trigger prototype P

(k)
tr from the selected samples. Then, c∗ computes the projection of P (k)

tr

onto the corresponding global prototype P̄ (k). Finally, c∗ constructs the poisoned prototype P (k)
c∗ by

performing a symmetrical flip of P (k)
tr with respect to this projection, i.e.,

P
(k)
c∗ = 2 · Pproj − P

(k)
tr , (7)

where Pproj =
P̄ (k)·P (k)

tr

P̄ (k)·P̄ (k) · P̄ (k) denotes the projection of P (k)
tr onto P̄ (k). Compared with other

flipping strategies such as origin-based or global prototype-based symmetry, our proposed prototype
flipping strategy achieves finer control over both the direction and the norm of poisoned prototypes
(see Appendix H). This ensures effective and stealthy attack for benign clients’ prototype learning.

6
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4.3 TRIGGER OPTIMIZATION MECHANISM (TOM)

TOM includes two steps: trigger optimization and trigger training. The former designates a specific
trigger to each target label, while the latter trains triggers for optimal effectiveness and stealthiness.

Trigger Optimization Strategy. To enhance attack effectiveness across benign clients with het-
erogeneous data, we expand the attack’s target label space from a single label yt to a label set Yt

that encompasses all local labels of benign clients. For each target label yt ∈ Yt, a specific trig-
ger (δyt ,Myt) is learned. This design enables BAPFL to perform personalized backdoor attacks
on benign clients. Specifically, if the local label space of benign client c contains the target label
yt, BAPFL can activate backdoor behaviors of c’s local model, enabling it to classify the samples
embedded with the trigger (δyt

,Myt
) as yt.

Trigger Training Strategy. For each target label yt, we learn a dedicated trigger pattern δyt and
a corresponding mask Myt , forming a trigger function Tyt(x) = (1 − Myt) ⊙ x + Myt ⊙ δyt .
The optimization objective of each trigger aims to simultaneously: 1) minimize classification loss of
Tyt

(x) to yt, 2) align the prototype of Tyt
(x) with the global prototype P̄ (yt), and 3) ensure visual

imperceptibility of the trigger. The corresponding loss function is formulated as:

Ltrigger = LS(fθ(Tyt(x)), yt)︸ ︷︷ ︸
target classification loss

+λ1 · ∥ϕ(Tyt(x))− P̄ (yt)∥2︸ ︷︷ ︸
prototype alignment

+λ2 · ∥Myt∥1 + λ3 · ∥δyt∥2︸ ︷︷ ︸
stealthiness loss

,
(8)

where λ1, λ2, and λ3 are hyperparameters balancing effectiveness and stealthiness.

5 PERFORMANCE EVALUATION

5.1 EXPERIMENT SETUP

Datasets and Models. Our experiments are conducted on four datasets: MNIST (LeCun et al.,
1998), FEMNIST (Caldas et al., 2019), CIFAR-10 (Krizhevsky, 2009) and CIFAR-100 (Krizhevsky,
2009), which are benchmark datasets for image classification. The dataset and model details are
provided in Appendix B.

Training Setting. We choose FedProto (Tan et al., 2022a) as the basic PFL framework. We set 20
clients and 200 training rounds. In each training round, each client performs 1 local epoch with a
local batch size of 4, and the learning rate is set to 0.01. We assume that all clients perform learning
tasks with heterogeneous statistical distributions. Specifically, each client is assigned a p-way q-shot
classification task, where p and q denote the maximum number of local classes and samples per class,
respectively. We also use a Dirichlet distribution with parameter β for data sampling. By default, we
set p = 5, q = 100, and β = 0.5. Additionally, we set α = 0.75, λ = 1, λ1 = 0.1, λ2 = 0.01 and
λ3 = 0.001 (see Appendix I for further analyses). All experiments are repeated 10 times, and the
average results ± standard deviation are reported.

Attack Setup. We simulate a backdoor attack scenario with attack rates (AR) of 10%, 20%, 30%,
and 40%, where AR denotes the proportion of malicious clients controlled by the attacker. For
each ground-truth label y, we randomly assign a different label (i.e., y′ ̸= y) as its target label.
The compromised clients train triggers for their respective target labels over 50 local rounds and
embed them into their local data to construct poisoned prototypes. During the training process of
compromised clients, we set the trigger and the local model to be trained alternately.

Baselines. To evaluate the effectiveness of BAPFL, we compare it with seven representative back-
door attack baselines: MR (Bagdasaryan et al., 2020), DBA (Xie et al., 2020), PFedBA (Lyu et al.,
2024), BapFL (Ye et al., 2024), Bad-PFL (Fan et al., 2025), Chameleon (Dai & Li, 2023) and A3FL
(Zhang et al., 2023a). We also assess the adaptability of BAPFL across other PFL frameworks,
including FedPD (Tan et al., 2025) and FedPCL (Tan et al., 2022b).

Defenses. We apply various backdoor defenses, including Multi-Krum (Blanchard et al., 2017), Me-
dian (Zhang et al., 2023e), Clipping (Wang et al., 2020), Sign (Guo et al., 2023), FLAME (Nguyen
et al., 2022) and Deepsight (Rieger et al., 2022).

Metrics. We report average main task accuracy (ACC, %) over clean samples and average attack
success rate (ASR, %) over triggered samples for all benign clients’ models on their test sets.
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Table 1: ACC and ASR of BAPFL and baselines in PFL.

Method AR = 10% AR = 20% AR = 30% AR = 40%

ACC ASR ACC ASR ACC ASR ACC ASR

MNIST
MR 96.79 ± 0.08 13.29 ± 0.12 97.39 ± 0.09 24.54 ± 0.10 97.47 ± 0.07 40.27 ± 0.11 97.89 ± 0.10 50.99 ± 0.11

DBA 97.60 ± 0.06 38.52 ± 0.09 97.51 ± 0.07 42.44 ± 0.08 96.04 ± 0.08 49.94 ± 0.10 98.08 ± 0.06 56.40 ± 0.09
PFedBA 97.98 ± 0.09 30.64 ± 0.11 97.45 ± 0.06 37.67 ± 0.14 96.32 ± 0.10 48.94 ± 0.09 97.22 ± 0.09 58.12 ± 0.13
BapFL 97.65 ± 0.06 35.48 ± 0.09 97.40 ± 0.07 42.03 ± 0.10 97.10 ± 0.08 50.22 ± 0.13 96.80 ± 0.06 58.95 ± 0.12

Bad-PFL 97.30 ± 0.07 28.15 ± 0.08 97.20 ± 0.06 33.77 ± 0.09 96.95 ± 0.07 39.80 ± 0.10 96.60 ± 0.08 46.50 ± 0.14
Chameleon 97.85 ± 0.05 32.10 ± 0.07 97.68 ± 0.09 38.25 ± 0.08 97.55 ± 0.05 44.34 ± 0.09 97.41 ± 0.06 49.75 ± 0.10

A3FL 97.90 ± 0.09 34.82 ± 0.06 97.75 ± 0.08 40.90 ± 0.07 97.62 ± 0.06 47.16 ± 0.12 97.45 ± 0.05 52.60 ± 0.13
BAPFL 97.96 ± 0.05 87.14 ± 0.10 97.85 ± 0.06 88.38 ± 0.12 96.89 ± 0.07 88.89 ± 0.09 96.90 ± 0.05 91.08 ± 0.11

FEMNIST
MR 90.97 ± 0.09 13.68 ± 0.11 91.31 ± 0.10 14.18 ± 0.09 90.17 ± 0.08 18.73 ± 0.10 88.31 ± 0.11 28.52 ± 0.12

DBA 89.80 ± 0.07 11.71 ± 0.10 91.21 ± 0.08 17.96 ± 0.11 89.83 ± 0.09 21.10 ± 0.12 89.41 ± 0.07 41.67 ± 0.09
PFedBA 90.49 ± 0.10 9.43 ± 0.11 91.11 ± 0.05 17.31 ± 0.13 89.05 ± 0.06 20.63 ± 0.11 88.37 ± 0.10 40.83 ± 0.08
BapFL 91.20 ± 0.06 36.10 ± 0.08 90.95 ± 0.07 40.50 ± 0.09 90.30 ± 0.07 43.25 ± 0.09 89.50 ± 0.06 49.80 ± 0.12

Bad-PFL 90.75 ± 0.07 29.45 ± 0.09 90.60 ± 0.06 34.10 ± 0.08 90.05 ± 0.08 39.95 ± 0.10 89.00 ± 0.07 47.25 ± 0.11
Chameleon 91.82 ± 0.09 28.45 ± 0.06 91.50 ± 0.08 33.90 ± 0.10 91.25 ± 0.06 38.55 ± 0.09 90.85 ± 0.08 44.08 ± 0.13

A3FL 91.90 ± 0.05 30.25 ± 0.07 91.65 ± 0.07 36.80 ± 0.12 91.33 ± 0.08 41.90 ± 0.10 90.95 ± 0.07 47.10 ± 0.12
BAPFL 91.94 ± 0.06 87.39 ± 0.08 91.29 ± 0.05 88.48 ± 0.09 90.55 ± 0.07 89.19 ± 0.11 89.18 ± 0.06 89.23 ± 0.10

CIFAR-10
MR 66.10 ± 0.11 11.32 ± 0.10 63.93 ± 0.10 13.08 ± 0.12 60.75 ± 0.09 13.36 ± 0.11 66.31 ± 0.10 13.81 ± 0.09

DBA 65.97 ± 0.08 10.25 ± 0.09 60.31 ± 0.09 10.63 ± 0.10 65.71 ± 0.08 13.48 ± 0.15 66.44 ± 0.09 13.59 ± 0.10
PFedBA 65.78 ± 0.09 7.11 ± 0.08 63.82 ± 0.06 8.91 ± 0.14 61.78 ± 0.12 13.59 ± 0.08 51.41 ± 0.05 19.27 ± 0.13
BapFL 64.80 ± 0.06 12.10 ± 0.09 63.95 ± 0.07 20.40 ± 0.10 62.70 ± 0.06 26.30 ± 0.11 61.50 ± 0.07 29.95 ± 0.12

Bad-PFL 64.10 ± 0.09 9.75 ± 0.13 63.20 ± 0.08 18.50 ± 0.09 62.10 ± 0.07 23.60 ± 0.10 60.95 ± 0.06 26.50 ± 0.08
Chameleon 62.46 ± 0.07 12.86 ± 0.09 61.90 ± 0.08 16.55 ± 0.12 61.75 ± 0.09 21.47 ± 0.14 61.50 ± 0.08 25.90 ± 0.13

A3FL 62.35 ± 0.06 14.64 ± 0.10 61.80 ± 0.09 18.90 ± 0.10 61.60 ± 0.08 23.56 ± 0.12 61.35 ± 0.09 27.85 ± 0.11
BAPFL 62.38 ± 0.07 77.38 ± 0.12 61.47 ± 0.08 77.78 ± 0.11 60.93 ± 0.06 78.20 ± 0.10 60.83 ± 0.07 82.00 ± 0.12

CIFAR-100
MR 67.31 ± 0.16 5.12 ± 0.22 66.41 ± 0.15 8.45 ± 0.18 68.96 ± 0.20 9.63 ± 0.25 67.59 ± 0.17 10.58 ± 0.21

DBA 67.10 ± 0.18 8.56 ± 0.20 66.80 ± 0.17 10.42 ± 0.21 66.65 ± 0.19 12.15 ± 0.23 67.45 ± 0.18 13.82 ± 0.22
PFedBA 67.22 ± 0.19 7.30 ± 0.22 67.92 ± 0.14 11.65 ± 0.20 67.96 ± 0.18 13.70 ± 0.24 67.67 ± 0.16 15.48 ± 0.20
BapFL 67.10 ± 0.18 12.35 ± 0.24 67.45 ± 0.16 19.35 ± 0.22 67.38 ± 0.17 22.12 ± 0.20 67.21 ± 0.18 24.25 ± 0.23

Bad-PFL 67.20 ± 0.17 11.25 ± 0.19 66.99 ± 0.15 15.10 ± 0.21 67.50 ± 0.16 19.56 ± 0.23 67.80 ± 0.17 20.12 ± 0.19
Chameleon 67.28 ± 0.18 10.35 ± 0.18 67.05 ± 0.17 13.85 ± 0.22 66.95 ± 0.18 17.25 ± 0.19 66.85 ± 0.15 20.10 ± 0.20

A3FL 67.32 ± 0.19 11.80 ± 0.20 67.15 ± 0.16 15.25 ± 0.19 67.00 ± 0.17 18.95 ± 0.20 66.90 ± 0.16 21.75 ± 0.19
BAPFL 67.38 ± 0.15 75.67 ± 0.18 68.67 ± 0.16 76.22 ± 0.15 67.17 ± 0.19 77.81 ± 0.17 68.02 ± 0.14 79.82 ± 0.16

5.2 MAIN RESULTS

5.2.1 COMPARISONS BETWEEN BAPFL AND BASELINES

In the PFL framework FedProto, we compare the performance of BAPFL with baselines, i.e., MR,
DBA, PFedBA, BapFL, Bad-PFL, Chameleon, and A3FL, under varying attack rates on MNIST,
FEMNIST, CIFAR-10, and CIFAR-100. As shown in Table 1, BAPFL consistently achieves the
highest ASR across all settings, while maintaining comparable or even higher ACC. Notably,
BAPFL improves ASR by 33%–75% over baselines, demonstrating its superior effectiveness and
stealthiness in PFL. This is attributed to BAPFL’s unique prototype poisoning strategy tailored for
PFL, which misleads the optimization of the global prototype, and its multi-trigger optimization
mechanism that adapts to the heterogeneous label distribution across clients.

5.2.2 THE ATTACK PERFORMANCE OF BAPFL AGAINST ADVANCED DEFENSES

To further assess the stealthiness of BAPFL, we evaluate its performance under robust PFL with
several advanced defense strategies, namely Multi-Krum (Blanchard et al., 2017), Median (Zhang
et al., 2023e), Clipping (Wang et al., 2020), Sign (Guo et al., 2023), FLAME (Nguyen et al., 2022),
and Deepsight (Rieger et al., 2022). Table 2 presents the results of BAPFL on MNIST, FEMNIST,
CIFAR-10, and CIFAR-100 under these advanced defenses. We observe that these defense strategies
can mitigate the attack effects of BAPFL. Among them, FLAME achieves the strongest defensive
effects. However, even with FLAME, BAPFL still achieves at least 60% ASR while maintaining a
high ACC. This indicates that existing robust aggregation strategies have only limited effectiveness
on BAPFL. The key reason is that BAPFL leverages PPS to precisely control both the magnitude
and direction of poisoned prototypes, rendering them indistinguishable from benign ones (See Ap-
pendix F for further analysis).

Given these limitations, we believe that specialized defense mechanisms are needed to effectively
counter BAPFL. For instance, the server can maintain the historical information of class prototypes
uploaded by each client, and visualize the optimization paths rather than the current round of these
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Table 2: ACC and ASR of BAPFL under advanced defenses across different attack rates.

Defense AR=10% AR=20% AR=30% AR=40%

ACC ASR ACC ASR ACC ASR ACC ASR

MNIST
Multi-Krum 97.06 ± 0.08 66.81 ± 0.11 97.20 ± 0.06 67.30 ± 0.12 97.34 ± 0.09 71.02 ± 0.13 97.16 ± 0.07 74.64 ± 0.14

Median 97.36 ± 0.10 70.89 ± 0.13 98.20 ± 0.12 73.39 ± 0.14 97.56 ± 0.09 75.26 ± 0.12 97.90 ± 0.08 78.93 ± 0.15
Clipping 97.89 ± 0.11 68.09 ± 0.10 97.52 ± 0.07 73.74 ± 0.12 97.24 ± 0.12 76.92 ± 0.13 98.39 ± 0.09 77.08 ± 0.11

Sign 97.57 ± 0.06 77.85 ± 0.13 97.42 ± 0.08 78.10 ± 0.12 97.36 ± 0.05 79.46 ± 0.14 97.76 ± 0.09 80.53 ± 0.15
FLAME 98.01 ± 0.12 63.58 ± 0.20 98.06 ± 0.14 65.48 ± 0.18 97.82 ± 0.13 69.84 ± 0.19 98.28 ± 0.12 70.21 ± 0.21

Deepsight 97.91 ± 0.15 64.63 ± 0.22 97.87 ± 0.13 66.23 ± 0.19 98.19 ± 0.12 71.21 ± 0.18 98.37 ± 0.11 72.99 ± 0.17

FEMNIST
Multi-Krum 90.86 ± 0.09 63.42 ± 0.13 90.69 ± 0.11 64.33 ± 0.12 91.27 ± 0.10 71.27 ± 0.15 90.71 ± 0.08 74.03 ± 0.14

Median 91.85 ± 0.07 63.32 ± 0.10 92.75 ± 0.09 66.86 ± 0.14 92.58 ± 0.06 70.67 ± 0.13 92.90 ± 0.10 75.72 ± 0.12
Clipping 91.73 ± 0.12 67.57 ± 0.09 92.32 ± 0.08 69.33 ± 0.15 91.66 ± 0.11 72.30 ± 0.14 92.14 ± 0.07 74.77 ± 0.13

Sign 91.98 ± 0.05 76.90 ± 0.12 90.44 ± 0.09 77.78 ± 0.14 90.75 ± 0.07 78.45 ± 0.15 89.98 ± 0.11 80.06 ± 0.13
FLAME 90.12 ± 0.13 61.60 ± 0.15 89.89 ± 0.14 63.51 ± 0.17 89.67 ± 0.15 67.13 ± 0.19 89.92 ± 0.12 71.41 ± 0.22

Deepsight 90.87 ± 0.12 62.71 ± 0.18 90.77 ± 0.10 65.40 ± 0.16 90.82 ± 0.13 70.27 ± 0.17 91.15 ± 0.14 72.40 ± 0.20

CIFAR-10
Multi-Krum 57.15 ± 0.07 74.69 ± 0.14 57.00 ± 0.11 76.37 ± 0.12 55.43 ± 0.09 78.07 ± 0.13 55.16 ± 0.08 78.23 ± 0.15

Median 58.30 ± 0.12 73.32 ± 0.11 57.44 ± 0.10 75.97 ± 0.13 57.85 ± 0.09 76.12 ± 0.08 58.84 ± 0.11 78.26 ± 0.15
Clipping 57.76 ± 0.06 75.94 ± 0.13 58.49 ± 0.08 76.33 ± 0.14 57.90 ± 0.12 77.41 ± 0.09 57.70 ± 0.07 79.56 ± 0.13

Sign 58.18 ± 0.11 75.71 ± 0.12 59.49 ± 0.09 76.64 ± 0.14 58.75 ± 0.07 79.30 ± 0.15 57.56 ± 0.10 80.57 ± 0.13
FLAME 57.55 ± 0.15 71.36 ± 0.21 58.60 ± 0.17 73.42 ± 0.18 58.11 ± 0.16 75.95 ± 0.22 57.41 ± 0.14 77.21 ± 0.19

Deepsight 59.54 ± 0.14 72.60 ± 0.20 58.98 ± 0.15 74.63 ± 0.22 59.50 ± 0.13 76.21 ± 0.18 59.39 ± 0.12 77.58 ± 0.20

CIFAR-100
Multi-Krum 61.19 ± 0.20 70.42 ± 0.25 61.05 ± 0.18 72.38 ± 0.26 60.75 ± 0.21 74.91 ± 0.24 60.45 ± 0.19 75.12 ± 0.27

Median 62.21 ± 0.16 68.95 ± 0.21 62.05 ± 0.15 70.82 ± 0.23 61.85 ± 0.17 72.90 ± 0.22 61.70 ± 0.16 73.92 ± 0.23
Clipping 61.75 ± 0.18 69.30 ± 0.22 61.60 ± 0.17 71.15 ± 0.24 61.40 ± 0.19 73.58 ± 0.23 61.35 ± 0.18 74.85 ± 0.25

Sign 62.83 ± 0.15 72.25 ± 0.24 62.55 ± 0.14 74.58 ± 0.25 62.35 ± 0.16 76.62 ± 0.26 62.10 ± 0.15 77.54 ± 0.27
FLAME 61.95 ± 0.19 65.91 ± 0.23 62.00 ± 0.18 66.85 ± 0.24 61.85 ± 0.20 69.92 ± 0.26 61.65 ± 0.19 70.25 ± 0.27

Deepsight 62.35 ± 0.17 67.85 ± 0.21 62.20 ± 0.16 69.91 ± 0.23 62.05 ± 0.18 71.84 ± 0.24 61.90 ± 0.17 72.98 ± 0.25

Table 3: BAPFL performance in various PFL frameworks.

Method AR = 10% AR = 20% AR = 30% AR = 40%

ACC ASR ACC ASR ACC ASR ACC ASR

FedPCL 49.11 ± 0.10 72.91 ± 0.10 48.64 ± 0.11 75.89 ± 0.12 48.61 ± 0.10 78.78 ± 0.11 49.81 ± 0.12 81.82 ± 0.12

FedPD 97.87 ± 0.08 65.11 ± 0.09 97.91 ± 0.07 70.56 ± 0.10 96.97 ± 0.09 77.74 ± 0.11 97.28 ± 0.08 79.40 ± 0.10

prototypes to identify poisoned prototypes. This is because the single-round update of poisoned
prototypes is minimal and difficult to distinguish from the update of benign prototypes, while the
optimization paths of benign and poisoned prototypes are clearly different. Specifically, in PFL, the
poisoned prototypes share a consistent optimization objective, which aims to pull the global proto-
type away from the trigger prototype, rather than move towards the global prototype. In contrast,
the benign prototypes aims to continually move towards the global prototype. Additionally, benign
clients can further mitigate the effects of BAPFL by fine-tuning their local models on clean datasets
and correcting the misled benign prototypes.

5.2.3 INTEGRATE BAPFL INTO DIFFERENT PFL FRAMEWORKS

To demonstrate the adaptability of BAPFL, we evaluate its effectiveness against two other repre-
sentative PFL frameworks: FedPCL and FedPD. FedPCL employs a contrastive loss to enhance
prototype alignment. FedPD adopts robust aggregation based on cosine similarity and encourages
inter-class prototype separation. We apply BAPFL to FedPCL on the OFFICE-10 dataset (Gong
et al., 2012), and to FedPD on MNIST, respectively. The results are shown in Table 3. We observe
that as the attack rate increases, the ASR of BAPFL in FedPCL increases from 72.91% to 81.82%,
while ACC remains stable. This confirms the vulnerability of FedPCL to our attack. Moreover, al-
though FedPD adopts robust aggregation, BAPFL still achieves 65.11%-79.4% ASR, demonstrating
its ability to bypass FedPD’s defense.

5.2.4 DATA HETEROGENEITY

To evaluate the robustness of BAPFL under varying degrees of data heterogeneity, we simulate dif-
ferent data heterogeneity scenarios by adjusting the values of p, q, and β across clients. Specifically,
for MNIST, we fix q = 100, β = 0.5, and vary p from 3 to 7. For FEMNIST, we fix p = 5,
β = 0.5, and vary q from 40 to 120. For CIFAR-10, we fix p = 5, q = 100, and vary β over
{0.1, 0.3, 0.5, 0.7, 0.9}. Then, we evaluate the ASR of our BAPFL method under these settings. The
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Figure 5: The ASR of BAPFL under varying degrees of data heterogeneity.

Table 4: Ablation results of BAPFL on benchmark datasets under different attack rates.

Method AR = 10% AR = 20% AR = 30% AR = 40%

ACC ASR ACC ASR ACC ASR ACC ASR

MNIST
DBA 97.60 ± 0.11 38.52 ± 0.12 97.51 ± 0.09 42.44 ± 0.10 96.04 ± 0.10 49.94 ± 0.11 98.08 ± 0.08 56.40 ± 0.13

DBA+PPS 98.05 ± 0.10 62.15 ± 0.11 97.98 ± 0.12 69.43 ± 0.09 97.72 ± 0.08 71.50 ± 0.12 97.48 ± 0.11 75.64 ± 0.10
PPS+TOM 97.96 ± 0.05 87.14 ± 0.10 97.85 ± 0.06 88.38 ± 0.12 96.89 ± 0.07 88.89 ± 0.09 96.90 ± 0.05 91.08 ± 0.11

FEMNIST
DBA 89.80 ± 0.09 11.71 ± 0.10 91.21 ± 0.12 17.96 ± 0.11 89.83 ± 0.10 21.10 ± 0.12 89.41 ± 0.08 41.67 ± 0.13

DBA+PPS 89.80 ± 0.11 60.25 ± 0.09 90.09 ± 0.08 69.72 ± 0.12 89.72 ± 0.09 72.72 ± 0.10 88.91 ± 0.10 73.58 ± 0.11
PPS+TOM 91.94 ± 0.06 87.39 ± 0.08 91.29 ± 0.05 88.48 ± 0.09 90.55 ± 0.07 89.19 ± 0.11 89.18 ± 0.06 89.23 ± 0.10

CIFAR-10
DBA 65.97 ± 0.08 10.25 ± 0.09 60.31 ± 0.10 10.63 ± 0.12 65.71 ± 0.09 13.48 ± 0.11 66.44 ± 0.11 13.59 ± 0.10

DBA+PPS 65.59 ± 0.09 45.64 ± 0.11 61.86 ± 0.08 47.85 ± 0.10 61.87 ± 0.11 49.93 ± 0.09 65.16 ± 0.10 50.69 ± 0.11
PPS+TOM 62.38 ± 0.07 77.38 ± 0.12 61.47 ± 0.08 77.78 ± 0.11 60.93 ± 0.06 78.20 ± 0.10 60.83 ± 0.07 82.00 ± 0.12

CIFAR-100
DBA 67.10 ± 0.18 8.56 ± 0.20 66.80 ± 0.17 10.42 ± 0.21 66.65 ± 0.19 12.15 ± 0.23 67.45 ± 0.18 13.82 ± 0.22

DBA+PPS 67.52 ± 0.16 37.68 ± 0.16 68.21 ± 0.14 39.83 ± 0.17 67.73 ± 0.17 42.14 ± 0.19 67.88 ± 0.15 44.30 ± 0.20
PPS+TOM 67.38 ± 0.15 75.67 ± 0.18 68.67 ± 0.16 76.22 ± 0.15 67.17 ± 0.19 77.81 ± 0.17 68.02 ± 0.14 79.82 ± 0.16

experimental results in Figure 5 show that BAPFL consistently achieves ASR of at least 75% across
all heterogeneous settings, demonstrating its strong robustness.

5.3 ABLATION STUDY

To evaluate the effectiveness of each component in BAPFL, we conduct an ablation study of BAPFL
on three datasets, i.e., MNIST, FEMNIST, CIFAR-10, and CIFAR-100. Specifically, we examine the
individual contributions of the PPS and TOM in BAPFL. The experimental results under different
datasets and various attack rates are summarized in Table 4. Across all datasets, BAPFL(PPS+TOM)
consistently achieves the highest ASR with minimal impact on ACC. Removing either component
significantly reduces ASR of BAPFL. For example, in the ablation study based on MNIST, when
AR is 20%, BAPFL(PPS+TOM) achieves 88.38% ASR, while BAPFL(DBA+PPS) drops ASR to
69.43%, and BAPFL(DBA) alone achieves only 42.44%. Similar trends are observed in results based
on FEMNIST, CIFAR-10 and CIFAR-100. These results highlight that both PPS and TOM are es-
sential for enhancing BAPFL’s effectiveness. We also provide a case study in Appendix J to visualize
the effects of PPS and TOM. Additionally, the computation and communication overhead introduced
by BAPFL(PPS+TOM) is analyzed in Appendix K, showing the low overhead of BAPFL.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the problems of applying existing backdoor attacks in PFL and propose a
novel and effective backdoor attack method BAPFL. By carefully designing poisoned prototypes and
optimizing specific triggers for target labels, BAPFL successfully induces targeted misclassifications
in benign models while evading detection. Comprehensive evaluations across diverse datasets and
PFL frameworks demonstrate that BAPFL significantly improves ASR with negligible performance
degradation on main tasks. BAPFL underscores the need for stronger defenses in PFL and provides
insights into designing secure and trustworthy PFL systems. In future work, we intend to extend our
methodology to other FL frameworks that adopt non-gradient-based aggregation strategies.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This paper presents an attack method that undermines the trustworthiness of federated learning.
Although this attack method may seem harmful, we strongly believe that the benefits of publishing
this paper outweigh the drawbacks. Specifically, this attack method can motivate researchers to
explore more effective defense strategies, serve as an assessment tool for testing the trustworthiness
of federated learning, and raise awareness of potential threats faced by users implementing federated
learning in real-world scenarios.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we utilize LLMs as an auxiliary tool to assist in checking grammar and spelling errors.

B EXPERIMENTAL SETTINGS

Our experiments are conducted on a small-scale local network consisting of machines equipped
with Intel Xeon CPU E5-1650 v4 @ 3.60GHz, 64GB RAM, and NVIDIA GTX 4090 GPUs. All
experiments are implemented in Python. The backdoor attack is implemented based on the code of
PFedBA (Lyu et al., 2024), and the attack rate varies from {10%, 20%, 30%, 40%}. The compro-
mised clients train triggers for the target labels over 50 local rounds and embed them into their local
data to train local models. During the training process of compromised clients, we set the trigger
and the local model to be trained alternately. For all experiments, the model information is detailed
in Table 5, and the training settings are described in Section 5.1.

Table 5: Dataset and model architecture

Dataset Labels Image size Training/Test images Model

MNIST 10 1*28*28 60k/10k 2Conv + 2Fc
FEMNIST 10 1*128*128 22k/3k 2Conv + 2Fc
CIFAR-10 10 3*32*32 50k/10k ResNet18 (He et al., 2016)
CIFAR-100 100 3*32*32 50k/10k ResNet101 (He et al., 2016)

C THE PSEUDO-CODE OF APPLYING BAPFL TO PFL

Algorithm 1 PFL process with BAPFL Attack

1: Server Executes:
2: Initialize global prototypes P̄ = {P̄ (k)}k=1,2,...

3: while the current training round r ≤ the final round do
4: Broadcast P̄ to clients for local training
5: Aggregate the local prototypes of clients to update P̄
6: end while
7: Client Executes:
8: if this client is compromised then
9: /*Execute TOM*/

10: Triggers ← Download the trigger network from the adversary and train it with P̄ based on
Equation equation 8

11: /*Execute PPS*/
12: Select the top-K samples with the highest attack value based on Equation equation 6
13: Train fθ according to Equation equation 5
14: Poisoned prototypes Pc ← Flip trigger prototypes
15: else
16: Train Pc and fθ with P̄ according to Equation equation 4
17: end if
18: return the new prototypes Pc to the server

D VISUAL EXAMPLES OF TRIGGER-EMBEDDED SAMPLES

In this appendix, we present visual examples of trigger-embedded samples generated by our pro-
posed BAPFL method across the three datasets used in our experiments. Specifically, we selected
two images with embedded triggers from each dataset to illustrate the stealthiness of the backdoor
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attack. As shown in Figures 6, the triggers generated by BAPFL introduce only minimal and visually
imperceptible modifications, demonstrating the high stealthiness of our attack.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 6: Original images (a-f) vs. trigger-embedded images (g-l).

E THEORETICAL ANALYSIS OF BAPFL

In this appendix, we formally analyze how the proposed BAPFL enhances backdoor effectiveness
in prototype-based federated learning (PFL).

E.1 EFFECTIVENESS OF PPS

We first introduce a key assumption that underlies prototype-based classification in PFL.

Assumption 1. In a well-trained PFL model, a sample x is classified as label k if its extracted feature
ϕ(x) is closer (in ℓ2 distance) to the global prototype P̄ (k) than to any other prototype. That is,

label(x) = argmin
k
∥ϕ(x)− P̄ (k)∥2. (1)

Under this assumption, the attack success rate (ASR) is increased if the features of trigger-embedded
samples ϕ(Tyt

(x)) are misaligned with the global prototype P̄ (y) of the original label and become
closer to other class prototypes. We now show that PPS increases this misalignment by manipulating
the process of prototype aggregation.

Theorem 1. The PPS increases the misclassification probability of trigger-embedded samples in be-
nign models by poisoning the global prototype aggregation. Specifically, it manipulates the global
prototype P̄ (k) of class k to deviate from the trigger prototype P

(k)
tr , thereby misleading the opti-

mization of benign prototypes and increasing the distance between the benign prototype P
(k)
c and

P
(k)
tr .

Proof: P̄ (k) is computed as the average of clients’ local prototypes, i.e.,

P̄ (k) =
1

C

C∑
c=1

P (k)
c . (2)

The malicious client c∗ uploads a poisoned prototype P
(k)
c∗ defined as:

P
(k)
c∗ = 2 · Pproj − P

(k)
tr , (3)

where

Pproj =
P̄ (k) · P (k)

tr

P̄ (k) · P̄ (k)
· P̄ (k). (4)

This poisoned prototype P
(k)
c∗ is the reflection of P (k)

tr with respect to the projection point Pproj

on P̄ (k), thus intentionally pushing the aggregated prototype away from the direction of P (k)
tr . Let
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Cb denote the set of benign clients and Cm the set of malicious clients. The new aggregated global
prototype becomes:

P̄ (k)
new =

1

|Cb|+ |Cm|

(∑
c∈Cb

P (k)
c +

∑
c∗∈Cm

P
(k)
c∗

)
. (5)

Since the poisoned prototypes are reflected points away from P
(k)
tr , the vector P̄ (k)

new −P
(k)
tr increases

in magnitude compared to P̄ (k) − P
(k)
tr , i.e.,

∥P̄ (k)
new − P

(k)
tr ∥2 > ∥P̄ (k) − P

(k)
tr ∥2. (6)

In the subsequent training rounds, benign clients optimize their local prototypes P
(k)
c to minimize

the consistency loss LP with the (now biased) global prototype:

LP = ∥P (k)
c − P̄ (k)

new∥2. (7)

Thus, P (k)
c is continuously pulled toward P̄

(k)
new , and consequently, ∥P (k)

c − P
(k)
tr ∥2 increases over

training rounds. According to Assumption 1, for a clean sample x, if its feature ϕ(x) approximates
P

(k)
c , then the classification result of this sample x is:

k = argmin
j
∥ϕ(x)− P̄ (j)

new∥2. (8)

For the corresponding trigger-embedded sample x∗ with target label yt, its feature ϕ(x∗) approxi-
mates P (k)

tr . Since ∥P (k)
c −P

(k)
tr ∥ becomes larger due to PPS, the probability that ϕ(x∗) is closest to

P̄
(k)
new decreases, i.e.,

Pr

[
argmin

j
∥ϕ(x∗)− P̄ (j)

new∥2 = k

]
↓ . (9)

Therefore, PPS increases the misclassification probability of trigger-embedded samples in benign
models.

E.2 EFFECTIVENESS OF TOM

We now analyze how TOM increases the ASR in PFL. Specifically, by aligning trigger prototypes
with the global prototypes of target labels that overlap with local label spaces, TOM increases the
probability that the trigger-target label mapping is unintentionally activated in benign clients.

Assumption 2. For a trigger-embedded sample x∗ with target label yt, its classification is determined
by the proximity of its feature ϕ(Tyt

(x)) to the global prototype P̄ (k):

label(Tyt(x)) = argmin
k
∥ϕ(Tyt(x))− P̄ (k)∥2. (10)

Theorem 2. TOM increases the probability that the trigger-target label mapping is unintentionally
activated by benign models.

Proof: Let Yt denote the set of target labels chosen by the attacker, where:

Yt =
⋃

c∈Cb

Yc, (11)

and Yc is the local label space of benign client c. Yt maximizes the probability that any benign client
c has yt ∈ Yc for some yt ∈ Yt. For each target label yt ∈ Yt, TOM optimizes a dedicated trigger
pattern (δyt ,Myt) to construct a trigger function:

Tyt(x) = (1−Myt)⊙ x+Myt ⊙ δyt . (12)
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TOM jointly optimizes (δyt
,Myt

) to minimize the loss Ltrigger. After training, P (yt)
tr ≈ P̄ (yt). Now

consider a benign client c such that yt ∈ Yc. Suppose the trigger-embedded sample Tyt
(x) is injected

into c’s testing batch, TOM increases the likelihood that:

ϕ(Tyt
(x)) ≈ P

(yt)
tr ≈ P̄ (yt). (13)

Therefore, under Assumption 2, the probability that a benign model classifies Tyt
(x) as yt increases:

Pr

[
argmin

k
∥ϕ(Tyt(x))− P̄ (k)∥2 = yt

]
↑ . (14)

Hence, TOM increases the chance of “unintentional backdoor activation” across benign clients.

In conclusion, our theoretical analysis demonstrates that the integration of PPS and TOM enables
BAPFL to effectively enhance the the ASR in PFL.

F THEORETICAL PROOF: BAPFL BYPASSES OUTLIER-BASED ROBUST
AGGREGATION STRATEGIES

Let F : {P (k)
c }Cc=1 → P̄ (k) be a robust aggregation function that computes the global prototype

P̄ (k) from local prototypes P (k)
c uploaded by clients. Outlier-based defenses (e.g., Multi-Krum) rely

on similarity-based or distance-based filtering, rejecting prototypes that deviate significantly from
the majority distribution. Let P (k)

c∗ denote the malicious prototype generated by BAPFL’s prototype
poisoning strategy (PPS).

Theorem 1. BAPFL can successfully evade any similarity-based or distance-based outlier detection
strategy F by ensuring that the malicious prototype P (k)

c∗ generated by PPS stays within an arbitrarily
small neighborhood of the benign prototype distribution.

Proof. Assume benign local prototypes follow

P (k)
c = µ(k) + ϵc, ∥ϵc∥2 ≤ σ. (15)

The outlier-based defenses (e.g., Multi-Krum) reject any prototype with deviation exceeding

∥P (k)
c − µ(k)∥2 > τ, τ = O(σ). (16)

In BAPFL, the trigger used is optimized iteratively and designed to be stealthy, meaning that the
embedded trigger introduces only minimal perturbation to the original image. Due to this imper-
ceptibility, the trigger barely affects the extracted feature representation. Consequently, the trigger
prototype P

(k)
tr stays close to both the benign prototype and the global prototype P̄ (k), i.e.,

∥P (k)
tr − P̄ (k)∥2 ≈ ∥P (k)

c − P̄ (k)∥2 ≤ τ − δ, δ ≪ 1. (17)

The poisoned prototype P
(k)
c∗ is constructed as the axis-symmetric version of P (k)

tr with respect to
the global benign prototype, i.e.,

P
(k)
c∗ = 2 · Pproj − P

(k)
tr , (18)

where Pproj is the projection of P (k)
tr onto P̄ (k):

Pproj =
P̄ (k) · P (k)

tr

∥P̄ (k)∥22
· P̄ (k). (19)

This geometric construction ensures:

∥P (k)
c∗ − P̄ (k)∥2 = ∥P (k)

tr − P̄ (k)∥2. (20)

Since outlier-based defenses cannot detect P
(k)
tr , the axis-symmetric poisoned prototype P

(k)
c∗ ,

which preserves the same distance to P̄ (k), is also undetectable. That is,

∥P (k)
c∗ − P̄ (k)∥2 ≤ τ − δ, (21)

Thus, the poisoned prototype remains within the inlier region of the robust aggregation function
F and cannot be filtered out by any similarity-based or distance-based defense strategy. Hence, F
cannot detect or remove P

(k)
c∗ .
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Table 6: Comparison of different sample selection strategies in terms of benign ACC and ASR.

Method MNIST FEMNIST CIFAR10

ACC ASR ACC ASR ACC ASR

Euclidean distance 97.96 ± 0.05 87.14 ± 0.10 91.94 ± 0.06 87.39 ± 0.08 62.38 ± 0.07 77.38 ± 0.12
Random 97.88 ± 0.09 87.11 ± 0.13 91.89 ± 0.08 86.18 ± 0.10 59.82 ± 0.11 73.13 ± 0.11
Projection 97.81 ± 0.10 83.36 ± 0.09 91.99 ± 0.12 85.99 ± 0.12 60.62 ± 0.08 75.02 ± 0.10
CS 98.08 ± 0.07 86.17 ± 0.10 91.97 ± 0.11 86.82 ± 0.09 61.70 ± 0.10 71.01 ± 0.09
JSD 98.06 ± 0.11 86.37 ± 0.08 91.57 ± 0.07 85.41 ± 0.11 61.91 ± 0.12 76.96 ± 0.13
IG 97.89 ± 0.05 81.63 ± 0.11 90.56 ± 0.10 86.98 ± 0.10 60.07 ± 0.09 76.09 ± 0.12
Entropy 98.10 ± 0.09 83.70 ± 0.12 92.98 ± 0.09 85.04 ± 0.08 61.26 ± 0.11 76.61 ± 0.09

Table 7: Performance comparison of BAPFL with different flipping strategies.

Method AR = 10% AR = 20% AR = 30% AR = 40%
ACC ASR ACC ASR ACC ASR ACC ASR

MNIST
OBF 98.10 ± 0.09 87.10 ± 0.12 97.52 ± 0.11 87.58 ± 0.09 96.67 ± 0.10 88.18 ± 0.11 96.79 ± 0.08 89.40 ± 0.10
GPF 97.71 ± 0.12 77.18 ± 0.09 98.15 ± 0.08 83.23 ± 0.10 98.21 ± 0.11 85.67 ± 0.12 98.01 ± 0.09 87.57 ± 0.13
PFS 97.96 ± 0.05 87.14 ± 0.10 97.85 ± 0.06 88.38 ± 0.12 96.89 ± 0.07 88.89 ± 0.09 96.90 ± 0.05 91.08 ± 0.11

FEMNIST
OBF 91.69 ± 0.11 83.45 ± 0.09 91.62 ± 0.10 85.36 ± 0.12 90.49 ± 0.09 86.60 ± 0.10 89.90 ± 0.08 87.56 ± 0.11
GPF 91.11 ± 0.12 81.88 ± 0.11 91.06 ± 0.08 83.02 ± 0.10 89.93 ± 0.10 84.23 ± 0.12 89.56 ± 0.11 85.82 ± 0.08
PFS 91.94 ± 0.06 87.39 ± 0.08 91.29 ± 0.05 88.48 ± 0.09 90.55 ± 0.07 89.19 ± 0.11 89.18 ± 0.06 89.23 ± 0.10

CIFAR-10
OBF 62.21 ± 0.10 73.04 ± 0.09 60.23 ± 0.08 73.19 ± 0.11 58.57 ± 0.09 73.21 ± 0.10 64.67 ± 0.12 73.43 ± 0.08
GPF 63.54 ± 0.11 72.86 ± 0.10 61.45 ± 0.09 73.33 ± 0.12 58.36 ± 0.10 73.48 ± 0.08 61.06 ± 0.13 73.56 ± 0.09
PFS 62.38 ± 0.07 77.38 ± 0.12 61.47 ± 0.08 77.78 ± 0.11 60.93 ± 0.06 78.20 ± 0.10 60.83 ± 0.07 82.00 ± 0.12

G COMPARISON OF DIFFERENT SAMPLE SELECTION STRATEGIES

To validate the effectiveness of our Euclidean-distance-based sample selection strategy, we re-
place this strategy in BAPFL with other sample selection strategies based on different measure-
ment standards and conducted a comparison. Specifically, we further compare the our sample se-
lection strategy against strategies based on different measures, including random selection, proto-
type projection (Projection), cosine similarity (CS), Jensen-Shannon divergence (JSD), information
gain (IG) and prediction entropy (Entropy). For each method, malicious clients first assign an at-
tack score to every trigger-embedded sample according to the corresponding metric, and then se-
lect the top-K most “poisonous” samples to construct poisoned prototypes and optimize their lo-
cal models. The implementation details of these strategies are shown in our released code (see the
get next poison all train batch function).

We report the average main-task accuracy (ACC) and the attack success rate (ASR) of benign clients
across three datasets: MNIST, FEMNIST, and CIFAR10, under the same setting of 10% malicious
clients and a 10× 10 trigger. The results are summarized in Table 6.

From Table 6, we observe that the Euclidean distance consistently achieves a strong balance between
preserving benign task performance and maximizing attack effectiveness. On MNIST and FEM-
NIST, the Euclidean distance rule attains the highest ASR while maintaining competitive ACC. On
CIFAR10, the Euclidean distance rule outperforms other strategies by a clear margin in both ACC
and ASR. This confirms that the sample selection strategy based on the Euclidean distance is indeed
the most effective choice for PFL. This is because the prototype optimization of PFL is formulated
and optimized with the Euclidean distance, Euclidean distance ensures that the sample-selection
strategy is consistent with the underlying optimization mechanism of PFL. This consistency enables
Euclidean distance to more accurately capture the directional and magnitude shifts introduced by
triggers, thereby identifying the most poisonous samples and consistently yielding superior ASR.

H COMPARISON OF DIFFERENT FLIPPING STRATEGIES

To validate the effectiveness of our proposed prototype flipping strategy (PFS) in the PPS, we com-
pare it against two intuitive baselines: 1) Origin-based flipping (OBF). This strategy reflects the
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Figure 7: Effect of the weight λ on ASR and ACC of BAPFL on the MNIST dataset.

trigger prototype P
(k)
tr based on the origin to construct the poisoned prototype P

(k)
c∗ , i.e.,

P
(k)
c∗ = −P (k)

tr . (22)

Although simple and effective, OBF reduces the stealthiness of the attack since it often yields un-
stable or easily detectable poisoned prototypes that are significantly different from the benign pro-
totypes. 2) Global prototype-based flipping (GPF). This strategy reflects P

(k)
tr with respect to the

global prototype P̄ (k) to construct P (k)
c∗ , i.e.,

P
(k)
c∗ = 2 · P̄ (k) − P

(k)
tr . (23)

Compared with OBF, GPF achieves finer control over the direction of P (k)
c∗ , but it lacks control over

the norm of P (k)
c∗ , potentially weakening attack effectiveness or introducing excessive perturbation.

Conversely, our PFS enables fine-grained control over both the direction and norm of P (k)
c∗ , achieving

more precise manipulation of the global prototype while preserving stealth.

Experimental Comparison. In PFL, we report the main task accuracy (ACC) and ASR of BAPFL
with different flipping strategies across three datasets (MNIST, FEMNIST, CIFAR-10) and varying
attack rates (AR = 10% to 40%). The results are shown in Table 7. Across all datasets and attack
rates, the BAPFL with PFS consistently achieves the highest ASR while maintaining comparable or
even better ACC than other baselines. This demonstrates that our strategy provides a more effective
and stealthy attack mechanism by precisely constructing the direction and norm of the poisoned
prototypes.

I THE SENSITIVITY ANALYSIS FOR ADDITIONAL HYPERPARAMETERS

I.1 THE EFFECT OF λ FOR BAPFL

To assess the effect of the weight λ of LP for BAPFL, we evaluate the ASR and ACC of BAPFL in
PFL with λ ∈ {1, 2, 3, 4, 5}. Figure 7 presents the experimental results on the MNIST dataset. We
observe that BAPFL achieves consistently high ASR across all settings, with only minor fluctuations
across different λ values. Moreover, the ACC of BAPFL generally remains stable. However, under
high attack rates, the ACC of BAPFL decreases slightly as λ increases. For example, when the attack
rate is 40%, the ACC value drops from 97% (λ = 1) to 92% (λ = 5). The attacker can mitigate this
effect by reducing the attack rate. Overall, BAPFL demonstrates its effectiveness under different λ
settings.

I.2 ANALYSIS OF α

According to Eq. equation 5, the hyperparameter α controls the relative importance of the backdoor
task compared to the main classification task. When α is close to 0, the optimization is dominated
by the clean task, which preserves high ACC but fails to inject an effective backdoor, resulting
in a low ASR. In contrast, when α = 1, the compromised client fully ignores the clean task and
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Table 8: Effect of α on ACC and ASR across three datasets, AR = 10%.

α
MNIST FEMNIST CIFAR-10

ACC ASR ACC ASR ACC ASR

1 58.40±0.08 29.70±0.12 66.20±0.10 25.10±0.11 33.50±0.09 30.60±0.10
0.75 97.96±0.05 87.14±0.10 91.94±0.06 87.39±0.08 62.38±0.07 77.38±0.12
0.5 97.54±0.07 53.49±0.11 90.60±0.09 25.50±0.12 64.20±0.10 48.90±0.13
0.25 97.90±0.12 29.20±0.08 91.40±0.05 14.90±0.09 64.70±0.11 22.50±0.08

only optimizes for the backdoor objective. This leads to a severe drop in ACC on benign clients,
indicating that the injected model is no longer useful for the original task.

We conducted additional experiments on MNIST, FEMNIST, and CIFAR-10 to systematically eval-
uate the effect of α, with results reported in Table 8. The results demonstrate that setting α = 0.75
achieves the best trade-off: the backdoor is injected with high effectiveness (high ASR) while main-
taining competitive benign performance (high ACC). Extremely large or small values of α disrupt
this balance, either by weakening the backdoor effect or by severely damaging clean accuracy.

I.3 ANALYSIS OF λ1, λ2, λ3

The three coefficients λ1, λ2, λ3 correspond to the auxiliary loss terms introduced in Eq. 8. Specif-
ically, λ1 balances the prototype alignment objective, while λ2 and λ3 regulate the stealthiness
penalty by constraining the mask Myt

and the trigger pattern δyt
, respectively.

In practice, we first rescaled each loss item to ensure that all terms are of comparable magnitude,
thereby preventing any single component from dominating the optimization. After normalization,
we empirically set λ1 = 0.1, λ2 = 0.01, λ3 = 0.001, which results in balanced contributions across
different objectives and leads to stable convergence.

We further conducted experiments with small perturbations (±50%) to λ1, λ2, and λ3. As shown in
Table 9, even with these perturbations, the performance (both ACC and ASR) of BAPFL remains
largely unaffected, indicating that BAPFL is relatively insensitive to these hyperparameters once
proper normalization is applied. This robustness highlights that the success of BAPFL does not rely
on fine-tuning these parameters.

Table 9: Sensitivity analysis of λ1, λ2, and λ3 for BAPFL on MNIST.

λ1 λ2 λ3
AR = 10% AR = 20% AR = 30% AR = 40%

ACC ASR ACC ASR ACC ASR ACC ASR

0.1 0.01 0.001 97.96 87.14 97.85 88.38 96.89 88.89 96.90 91.08
0.05 0.01 0.001 97.93 86.35 97.82 87.10 96.84 87.22 96.78 89.49
0.15 0.01 0.001 97.90 87.12 97.78 88.08 96.85 88.25 96.81 90.85
0.1 0.005 0.001 97.91 86.42 97.79 87.85 96.87 88.18 96.83 90.70
0.1 0.015 0.001 97.94 86.95 97.83 87.65 96.83 87.86 96.79 89.78
0.1 0.01 0.0005 97.92 86.05 97.81 87.95 96.83 87.40 96.79 88.89
0.1 0.01 0.0015 97.89 86.48 97.76 88.05 96.82 88.12 96.80 89.67

J CASE STUDY

To further illustrate the effectiveness of the PPS and TOM of BAPFL, we conduct a case study on
FEMNIST, in which we visualize the prototype distribution and the classification results of trigger
prototypes for a benign client under three attack strategies: BAPFL(DBA), BAPFL(DBA+PPS), and
BAPFL(PPS+TOM). As shown in Figure 8(a), the trigger prototypes of BAPFL(DBA) are optimized
toward the global prototype of the target label, but most of them are still close to their corresponding
benign prototypes. This leads to a low ASR. In contrast, in the case of BAPFL(DBA+PPS) (Fig-
ure 8(b)), PPS separates the benign prototypes from the trigger prototypes. This enables more trigger
prototypes to approach the global prototype of the target label, which increases the ASR. Finally, in

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Benign prototype Trigger prototype Global prototype of target label Correct prediction

1.5

1.0

0.5

0.0

-0.5

-1.5

-1.0

0 2 4-2-4-6

(a)  BAPFL(DBA) (b)  BAPFL(DBA+PPS) (c)  BAPFL(PPS+TOM)

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5
-2 -1 0 1 2

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5
-2 -1 0 1 2

Deviation

Attack 

success

Figure 8: The principal component analysis (PCA) visualization of benign and trigger prototypes
for benign client 1 under different attack strategies. The trigger prototypes classified as the original
label are marked with purple circles.

Table 10: Training time comparison between benign training and BAPFL-based malicious training.

Dataset Benign Training Malicious Training

MNIST 139.55 s 168.25 s
FEMNIST 490.34 s 562.05 s
CIFAR-10 445.84 s 510.46 s
CIFAR-100 585.23 s 744.78 s

the case of BAPFL(PPS+TOM) (Figure 8(c)), TOM further expands the target label space and en-
hances the alignment of trigger prototypes with the global prototype of the target labels, achieving
the highest ASR across all attack strategies. The above results indicate that both PPS and TOM in
BAPFL play a crucial role in enhancing the ASR.

K COMPUTATION AND COMMUNICATION OVERHEAD ANALYSIS OF BAPFL

Computation Overhead. Compared with benign training, BAPFL-based malicious training incurs
additional computation due to the trigger optimization mechanism and prototype poisoning strategy.
To evaluate this overhead, we measure the training time of client 1 over 200 rounds of benign training
and malicious training. The results are summarized in Table 10. From Table 10, we can see that the
overhead of malicious training is only slightly higher than that of benign training. Specifically, the
additional cost introduced by malicious training is only 20% for MNIST, 15% for FEMNIST, 14%
for CIFAR-10, and 27% for CIFAR-100. This is because the time-consuming trigger optimization in
BAPFL only needs to be performed for three rounds (each with 50 epochs) to achieve convergence,
and no further trigger optimization is required afterward. Such a training setup ensures that the
computation overhead introduced by the BAPFL attack remains minimal.

Communication Overhead. The number of local prototypes uploaded by the client 1 does not
change between benign and malicious training. Only the parameter values within the local prototypes
are modified. Therefore, BAPFL does not introduce additional communication overhead.

L PERFORMANCE OF BAPFL UNDER TYPICAL BACKDOOR ATTACK
SETTINGS

In this section, we analyze the performance of BAPFL under typical settings, where the number
of clients are set to 200 and 10% of clients are randomly selected to participate in each round. We
conduct experiments on two benchmark datasets, MNIST and CIFAR-10, and compare the results
of BAPFL with baseline methods, the details are shown in Table 11.

As shown in Table 11, BAPFL consistently outperforms all baseline methods across different attack
rates in both ACC and ASR. Notably, BAPFL achieves the highest ASR at all attack rates in both
datasets while maintaining competitive or superior accuracy compared to the baselines. For instance,
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Table 11: ACC and ASR of BAPFL and baselines under typical backdoor attack settings.

Defense AR=10% AR=20% AR=30% AR=40%

ACC ASR ACC ASR ACC ASR ACC ASR

MNIST
MR 96.19 11.34 96.50 20.27 96.45 32.09 96.55 44.12

DBA 96.58 22.15 96.25 26.37 96.77 36.45 96.82 45.52
PFedBA 97.25 18.92 96.85 24.23 96.36 37.77 96.55 47.58
BapFL 97.54 25.16 97.34 30.27 96.95 39.65 96.86 48.15

Bad-PFL 97.25 22.51 96.65 27.60 96.45 34.85 96.55 43.14
Chameleon 96.85 26.35 97.17 31.55 96.82 41.16 96.90 46.20

A3FL 97.35 28.45 97.20 34.15 96.85 42.65 97.05 47.05
BAPFL 97.82 71.34 97.88 75.12 96.87 80.12 96.96 82.51

CIFAR-10
MR 57.15 10.11 57.00 13.21 55.43 14.43 55.16 14.61

DBA 58.38 9.23 57.44 12.33 57.85 13.53 58.84 14.34
PFedBA 57.76 10.34 58.49 13.13 57.98 15.25 57.78 16.24
BapFL 58.18 10.32 59.49 14.32 58.75 18.53 57.56 20.22

Bad-PFL 59.54 10.22 58.98 15.13 59.54 16.34 57.41 18.62
Chameleon 57.55 8.32 58.60 11.32 58.11 14.22 59.39 15.23

A3FL 62.35 12.33 62.18 16.53 62.05 17.83 61.92 19.53
BAPFL 62.18 73.82 62.05 73.92 61.25 75.42 61.12 77.82

in MNIST, BAPFL achieves the highest ASR values (ranging from 71.34% to 82.51%), significantly
surpassing other methods such as MR, DBA, and Chameleon, while still preserving high accuracy.
These results highlight BAPFL’s robustness and effectiveness in typical backdoor attack settings.
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