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Abstract

Low-rank pseudoinverses are widely used to approximate matrix inverses in scal-
able machine learning, optimization, and scientific computing. However, real-
world matrices are often observed with noise, arising from sampling, sketching,
and quantization. The spectral-norm robustness of low-rank inverse approxima-
tions remains poorly understood. We systematically study the spectral-norm error
∥(Ã−1)p − A−1

p ∥ for an n× n symmetric matrix A, where A−1
p denotes the best

rank-p approximation of A−1, and Ã = A+E is a noisy observation. Under mild
assumptions on the noise, we derive sharp non-asymptotic perturbation bounds
that reveal how the error scales with the eigengap, spectral decay, and noise align-
ment with low-curvature directions of A. Our analysis introduces a novel applica-
tion of contour integral techniques to the non-entire function f(z) = 1/z, yielding
bounds that improve over naive adaptations of classical full-inverse bounds by up
to a factor of

√
n. Empirically, our bounds closely track the true perturbation er-

ror across a variety of real-world and synthetic matrices, while estimates based on
classical results tend to significantly overpredict. These findings offer practical,
spectrum-aware guarantees for low-rank inverse approximations in noisy compu-
tational environments.

1 Introduction

Low-rank matrix approximations are foundational tools in machine learning, optimization, and sci-
entific computing. They enable scalable algorithms by reducing memory and computation while
preserving the dominant structure in high-dimensional data [24, 57]. A recurring task is to apply or
approximate the inverse of a large symmetric (often positive semidefinite) matrix A ∈ Rn×n. Such
inverse computations arise in kernel methods [19, 63], Gaussian processes [44], covariance-based
inference [21, 33], and solvers for structured systems and graph Laplacians.

For large n, computing or storing the full inverse A−1 is often infeasible. A common alternative is
to approximate A−1 with a low-rank surrogate. Let A =

∑n
i=1 λiuiu

⊤
i be the eigendecomposition

of A, with eigenvalues λ1 ≥ · · · ≥ λn > 0 and orthonormal eigenvectors ui ∈ Rn. Then A−1 =∑n
i=1 λ

−1
i uiu

⊤
i , and the best rank-p approximation of A−1 in spectral norm is given by

A−1
p := argminrank(X)≤p ∥A−1 −X∥2 =

∑n
i=n−p+1 λ

−1
i uiu

⊤
i .

These directions capture the flattest (low-curvature) subspace, which dominates the condition num-
ber and affects stability in inverse-based algorithms. Such approximations are integral to fast solvers,
adaptive preconditioners, and randomized linear algebra [13, 18], as well as optimization [43].

In many applications, however, one does not observe A exactly but rather a noisy version Ã = A+E,
where E may arise from sampling error, sketching, quantization [3, 23], or deliberate perturbation
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for differential privacy [1, 61]. This naturally raises a basic question: How robust is the rank-p
pseudoinverse to noise—how large is ∥(Ã−1)p −A−1

p ∥?

This question is fundamental for assessing the stability of approximate solvers, Hessian-based pre-
conditioners, and downstream learning or optimization pipelines that rely on noisy second-order
information.

Classical matrix perturbation theory provides worst-case bounds for the full inverse:

∥Ã−1 −A−1∥ ≤ ∥A−1∥2∥E∥
1−∥A−1∥∥E∥ , (1)

under the condition ∥A−1∥∥E∥ < 1, or the first-order expansion

Ã−1 = A−1 −A−1EA−1 +O(∥E∥2);

see [26, 47]. Such perturbation bounds apply to arbitrary symmetric matrices A and perturbations
E, but they address the full inverse A−1 and do not account for truncation to rank p. Moreover,
they ignore the interaction between the noise and the eigengap, and scale poorly with n, often yield-
ing overly pessimistic estimates. Structured identities such as the Sherman–Morrison–Woodbury
formula apply only to specific low-rank updates, and recent results on low-rank perturbations un-
der Schatten norms [35, 46, 57] do not provide spectral-norm guarantees for pseudoinverses under
general noise.

Our contributions. We derive explicit, non-asymptotic spectral-norm perturbation bounds for the
error ∥(Ã−1)p − A−1

p ∥, where A−1
p is the best rank-p approximation of A−1 and Ã = A + E

is a noisy observation. While certain bounds can be obtained from classical perturbation theory,
our analysis yields sharper, spectrum-adaptive guarantees that depend explicitly on the eigengap
δp := λn−p−λn−p+1, the spectral decay of A, and the alignment of the perturbation E with its low-
curvature subspace. The main technical contribution is a novel application of contour bootstrapping
to the non-entire function f(z) = 1/z, enabling localized resolvent expansions around the smallest
eigenvalues and precise control over the perturbation of associated Riesz projectors [14, 27, 56].

Under the condition 4∥E∥ ≤ min{λn, δn−p}, our main theorem establishes the bound

∥(Ã−1)p −A−1
p ∥ ≤ 5

(
∥E∥
λ2
n

+ ∥E∥
λn−p δn−p

)
,

for positive-definite A (Theorem 2.1); an extension to arbitrary real symmetric matrices appears in
Section A. Our approach also applies to matrices with rank deficiency via their pseudoinverses (see
Remark A.7). This result provides: (1) an explicit and interpretable spectral-norm guarantee; (2)
up to a

√
n improvement over classical inverse bounds in realistic regimes; and (3) a quantitative

criterion for robustness of low-rank inverse approximations under general noise.

We empirically evaluate (i) the true perturbation error, (ii) our theoretical bound, and (iii) the esti-
mate implied by classical Neumann-series and Eckart–Young–Mirsky analyses. Tests on both real
and synthetic matrices—including sample covariance matrices, discretized elliptic operators, and
sparse structural stiffness matrices (e.g., BCSSTK09)—show that our bound tracks the actual error
within a small constant factor, whereas classical estimates often overpredict by one to two orders of
magnitude (see Figures 1–2). These results provide a robust, interpretable certificate for the stability
of noisy low-rank inverse approximations.

In Section 4.1, we evaluate the admissibility of the noise condition 4∥E∥ < min{λn, δn−p} on
standard datasets such as the 1990 US Census covariance and the BCSSTK09 stiffness matrices,
showing that the resulting safety margins comfortably exceed noise levels common in differential-
privacy and structural-engineering applications.

Section B presents an asymptotically refined bound for large-scale or synthetically structured ma-
trices. Section G demonstrates a concrete application: we apply our framework to improve the
theoretical convergence rate of the preconditioned conjugate-gradient (PCG) method. Using a
low-rank–plus–regularization preconditioner, our bound yields tighter condition-number estimates
and a provable n1/4 improvement in the guaranteed iteration count compared with the classical
Eckart–Young-Mirsky–Neumann-based analysis.

To the best of our knowledge, this is the first work to provide non-asymptotic spectral-norm bounds
for ∥(Ã−1)p−A−1

p ∥ under general additive noise. Our analysis addresses a fundamental robustness
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question in noisy inverse computation and complements existing algorithmic approaches by offering
structural, spectrum-aware guarantees for when a low-rank inverse remains reliable.

Related work. Classical perturbation theory provides tools for analyzing the inverse of a perturbed
matrix, but these focus on the full inverse and do not account for low-rank truncation or spectral
structure [26, 47]. While the literature on low-rank approximation is extensive—spanning random-
ized SVD, projection methods, and sketching techniques [18, 24, 42, 57]—it primarily addresses
approximation of A itself or f(A) when f is a monotone-operator function2, rather than inverse
computations.

Several recent works study perturbations of low-rank approximations under Schatten or Frobenius
norms [16, 35, 36, 37, 46], often in structured or sparse settings. However, these results do not
apply to the spectral-norm error of low-rank inverse approximations. Similarly, while the Sherman-
Morrison-Woodbury identity yields exact formulas for structured updates, it does not extend to ar-
bitrary noise. Approximate Hessian inversion has been studied in the context of sketching [43],
privacy [1, 61], and distributed optimization, but those works focus on convergence rather than the
spectral stability of low-rank pseudoinverses.

Our technical approach builds on the contour integral representation of matrix functions, a classical
tool in numerical analysis [27, 56]. While contour-based arguments have been used to analyze
perturbations of spectral functionals associated with entire functions such as the matrix exponential
(w.r.t. f(z) = exp(z)) [39, 59] or the eigenspace-projection (w.r.t f(z) = 1) [31, 41, 54], they
have rarely been applied to non-entire functions like the inverse. We adapt these techniques in a
non-trivial way to f(z) = 1/z, localizing the resolvent expansion around small eigenvalues and
bounding the impact of noise on the associated spectral projectors.

2 Theoretical results

For clarity, we present our main results in the case where A is positive definite (PD). Extensions to
general symmetric matrices are provided in Section A.

Setup. Let A ∈ Rn×n be a real symmetric PD matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn > 0
and corresponding orthonormal eigenvectors u1, . . . , un. For each 1 ≤ k ≤ n − 1, define the
eigenvalue gap

δk := λk − λk+1.

Then A−1 is also a real symmetric PD matrix, with eigenvalues λ−1
n ≥ λ−1

n−1 ≥ · · · ≥ λ−1
1 > 0,

and the same eigenvectors un, . . . , u1 (in reverse order).

Let E ∈ Rn×n be a symmetric perturbation (error) matrix, and define the perturbed matrix as
Ã := A+E. For a given rank 1 ≤ p ≤ n, let A−1

p and (Ã−1)p denote the best rank-p approximations
of A−1 and Ã−1, respectively.

Goal and classical baseline. Our objective is to derive a spectral-norm bound on the difference
between the best rank-p approximations of A−1 and Ã−1:

∥(Ã−1)p −A−1
p ∥.

While no prior results directly analyze this quantity, one can obtain a baseline estimate using classi-
cal tools: the Neumann expansion and the Eckart-Young-Mirsky (EYM) theorem [20]. Specifically,
defining E′ := Ã−1 −A−1 and applying a low-rank approximation argument yields:

∥(Ã−1)p −A−1
p ∥ ≤ 2(∥E′∥+ λ−1

n−p) ≤
8∥E∥
3λ2

n

+
2

λn−p
, (2)

valid when 4∥E∥ ≤ λn; see Section F. This condition is needed for the application of Neumann
expansion, and we refer to this bound as the EYM–N bound. This bound degrades when λn−p ≪
λ2
n/∥E∥ and fails to capture the limit ∥(Ã−1)p −A−1

p ∥ → 0 as ∥E∥ → 0.

Main result. We now present a sharper, spectrum-adaptive bound based on contour bootstrapping.
For clarity, we assume the eigenvalues of A are ordered as: +∞ = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λn > 0.

2A matrix function f is monotone-operator if, for all Hermitian A,B, A − B is positive semi-definite
implies f(A)− f(B) is positive-semi definite. For example, f(z) = zt with 0 < t < 1 is monotone-operator,
whereas f(z) = z2, f(z) = ez , and f(z) = 1/z are not.
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Theorem 2.1 (Main perturbation bound for PD matrices). Let A be a real symmetric PD matrix
and Ã = A+ E with E symmetric. If 4∥E∥ ≤ min{λn, δn−p}, then

∥(Ã−1)p −A−1
p ∥ ≤ 4∥E∥

λ2
n

+ 5∥E∥
λn−pδn−p

.

This bound consists of two interpretable components: the first term, ∥E∥/λ2
n, reflects classical

perturbation scaling for the full inverse, while the second term, ∥E∥/(λn−pδn−p), captures the
additional sensitivity introduced by projecting onto the subspace spanned by the smallest eigenvalues
of A.

When the eigengap δn−p = λn−p − λn−p+1 is well-separated and λn−p is not too small, the low-
rank approximation remains stable under noise, and the bound remains tight. Compared to classical
bounds, this result explicitly accounts for spectral structure and subspace alignment, providing a
more accurate estimate of the low-rank inverse perturbation.

Note that for p = n, we recover the full inverse case: (Ã−1)p = Ã−1 and A−1
p = A−1. In this

setting, δn−p = λ0 = +∞, so the second term vanishes and the bound simplifies to Θ(∥E∥/λ2
n),

recovering the Neumann bound.

The gap condition. The first assumption, ∥E∥ ≤ λn, ensures that Ã is invertible and Ã−1 is
well-defined. This matches the classical Neumann expansion, which fails when ∥A−1∥∥E∥ ≥ 1.

The second assumption, 4∥E∥ ≤ δn−p, which we call the gap assumption, ensures that the spectral
ordering of eigenvalues is preserved under perturbation. By Weyl’s inequality [62], this guarantees
that the eigenvectors associated with the smallest p eigenvalues of Ã remain aligned with those of A,
thereby preserving the low-rank inverse structure. When this assumption fails—i.e., when δn−p ≪
∥E∥—the eigenvalues of Ã can reorder, leading to instability in the low-rank approximation; see
Section K.1 for a concrete example.

Our bound for a random matrix noise model. If E is a Wigner matrix (i.e., symmetric with
i.i.d. sub-Gaussian entries), then ∥E∥ = (2 + o(1))

√
n with high probability. Substituting this into

Theorem 2.1 yields:
∥(Ã−1)p −A−1

p ∥ = O
(√

n
λ2
n
+

√
n

λn−pδn−p

)
.

In contrast, the EYM–N bound gives O(
√
n/λ2

n + 1/λn−p), which is larger when
√
n ≪ δn−p.

Comparison to the EYM–N bound. The EYM–N and bootstrapped bounds coincide in order of
magnitude when ∥E∥ ≫ λ2

n/λn−p. In contrast, when ∥E∥ ≪ λ2
n/λn−p, our bound is smaller by a

factor of
min

{
λ2
n

λn−p∥E∥ ,
δn−p

∥E∥

}
.

This “gain regime” arises naturally whenever either p < sr(A−1) :=
∑n

i=1 λn/λi or δn−pλn−p ≪
λ2
n, i.e., min{λn, δn−p} ≪ λ2

n/λn−p, assuming the conditions of Theorem 2.1 are met. Notably,
our bound becomes increasingly sharp as the noise level decreases.

In favorable cases, our result yields up to a
√
n-factor improvement. For example, consider a matrix

A with spectrum {n, 2n, . . . , 10n, 20n, 20n, . . . , 20n} and p = 10. If E is standard Gaussian noise,
the EYM–N bound evaluates to O

(√
n

n2 + 1
n

)
= O(1/n), while our bound gives O(

√
n/n2) =

O(n−3/2), demonstrating the expected
√
n-level gain. Section 4.2 empirically confirms that our

bound consistently tracks the true error within a small constant (typically below 10), and outperforms
the EYM–N estimate across both synthetic and real datasets.

Applicability of assumptions. Unlike the EYM–N bound, Theorem 2.1 additionally requires the
gap condition 4∥E∥ < δn−p. This assumption holds across a range of practically relevant matrix
classes. For example, suppose A = M⊤M is a sample covariance matrix, where M ∈ Rm×n

(m ≥ n, ensuring that A−1 is well-defined), and E is a symmetric matrix with i.i.d. sub-Gaussian
entries of mean zero and variance ∆2. If ∥M∥2F ≥ m log n and m > Cn3/2∆

logn for some constant
C > 0, then both the spectral and gap conditions of Theorem 2.1 hold with high probability.

In Section 4.1, we compute λn and δn−p for several real-world matrices A, and determine the
maximum noise level ∥E∥ for which the assumptions remain valid. Our findings show that both
conditions—4∥E∥ ≤ λn and 4∥E∥ ≤ δn−p—are satisfied robustly across many datasets.
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In practice, exact verification of these assumptions is often unnecessary: as long as the estimation
errors in λn and δn−p are within ∥E∥, our bound remains valid up to a constant factor (Step 3, Sec-
tion 3). Thus, the assumptions are robust to moderate misestimation and allow scalable application
in large-scale settings.

Remark 2.2 (A stronger but more technical bound). In the intermediate regime where
λ2
n/λn−p ≪ ∥E∥ ≪ min{δn−p, λn}, the bound in Theorem B.2 (Section B) offers an asymp-

totic improvement over both the simple bound of Theorem 2.1 and EYM–N bound. This refinement is
more technical and depends on additional structural quantities, such as the alignment of E with the
low-curvature eigenspace. While we do not empirically evaluate this bound, it may provide tighter
guarantees in settings where noise is moderate and the spectral decay of A−1 is slow.

3 Proof overview

This section delineates the proof framework for Theorem 2.1, organized into three core stages. First,
employing contour integration, we bound the perturbation by

∥(Ã−1)p −A−1
p ∥ ≤ F := 1

2πi∥
∫
Γ
z−1[(zI − Ã)−1 − (zI −A)−1]∥|dz|.

Here Γ is a contour on the complex plane, encircling the p-bottom eigenvalues of A and Ã. Unlike
the Eckart–Young-Mirsky–Neumann (EYM–N) bound (see Section F), this formulation preserves
the delicate A− E interaction. Secondly, we develop the contour bootstrapping technique (Lemma
3.1), which under the assumption 4∥E∥ ≤ min{λn, δn−p}, yields F ≤ 2F1 with

F1 := 1
2π

∫
Γ
∥z−1(zI −A)−1E(zI −A)−1∥|dz|.

This bootstrapping argument, crafted specifically for the non-entire function f(z) = 1/z, replaces
classical series expansions by a quantity that can be computed directly. Third, we construct a be-
spoke contour Γ— one specifically tailored so that the bottom-p eigenvalues of A and Ã lie at
prescribed distances from its sides. This tailored geometry renders the integral defining F1 tractable
and essentially tight, culminating in a sharp perturbation bound.

Step 1: Representing the perturbation ∥(Ã−1)p − A−1
p ∥ via classical contour method. Let

λ1 ≥ · · · ≥ λn > 0 be the eigenvalues of A with eigenvectors ui. Then, A−1 is well-defined, with
eigenvalues λ−1

n ≥ λ−1
n−1 ≥ · · · ≥ λ−1

1 > 0. Let λ̃1 ≥ · · · ≥ λ̃n > 0 denote the eigenvalue of Ã.
By Weyl’s inequality [62],

∥E∥ ≥ |λn − λ̃n| ≥ λn − λ̃n.

Under the assumption 4∥E∥ ≤ λn of Theorem 2.1, we obtain

λ̃n ≥ λn − ∥E∥ ≥ 3∥E∥ > 0.

Hence Ã is also positive definite, and Ã−1 is well-defined with eigenvalues λ̃−1
n ≥ λ̃−1

n−1 ≥ · · · ≥
λ̃−1
1 > 0.

We now present the contour method to bound the perturbation of low-rank approximations of in-
verses in the spectral norm. Let Γ be a contour in C that encloses λn, λn−1, . . . , λn−p+1 and ex-
cludes 0 and λ1, λ2, . . . , λn−p. Thus, f(z) = 1/z is analytic on the whole interior and boundary of
Γ, and hence the contour integral representation [27, 30, 47] gives us:

1
2πi

∫
Γ
z−1(zI −A)−1dz =

∑
n−p+1≤i≤n λ

−1
i uiu

⊤
i = A−1

p .

Here and later, i denotes
√
−1. The assumption 4∥E∥ < min{δn−p, λn} and the construction of Γ

(see later this section) ensure that the eigenvalues λ̃i for n ≥ i ≥ n − p + 1 lie within Γ, while 0
and all λ̃j for j ≤ n− p remain outside. We obtain the similar contour identity for Ã:

1
2πi

∫
Γ
z−1(zI − Ã)−1dz =

∑
n≥i≥n−p+1 λ̃

−1
i ũiũ

⊤
i = (Ã−1)p.

Thus, we obtain the contour inequality:

∥(Ã−1)p −A−1
p ∥ ≤ F := 1

2π

∫
Γ
∥z−1[(zI − Ã)−1 − (zI −A)−1]∥ |dz|.
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This inequality makes the A− E interaction explicit, but obtaining a sharp bound on its right-hand
side remains a formidable analytical challenge.

Step 2: Bounding F ≤ 2F1 via contour bootstrapping method for non-entire function f(z) =
1/z. By repeatedly applying the resolvent formula, one can expand

z−1[(zI − Ã)−1 − (zI −A)−1] =
∑∞

s=1 z
−1(zI −A)−1[E(zI −A)−1]s.

This yields the bound:

F ≤
∑∞

s=1 Fs, where Fs =
1
2π

∫
Γ

∥∥z−1(zI −A)−1[E(zI −A)−1]s
∥∥ |dz|.

The traditional approach [30] attempted to estimate Fs for each s. One can bound Fs by

O
(
∥E∥s

∫
Γ

|dz|
|z|mini∈[n] |z−λi|s+1

)
= O

[
∥E∥sMΓ

δ̄s+2

]
,

in which δ̄ := minz∈Γ,i∈[n]{|z|, |z−λi|} and MΓ is the total length of Γ. This traditional approach,
with appropriate choices of Γ, can only provide a bound of O

(
∥E∥/λ2

n + ∥E∥/δ2n−p

)
.

Moreover, when f(z) = 1 as in [54] or when f is an entire function as in [52], the dominant
contribution to F arises from the term F1, i.e., F = O(F1). We show that this relationship continues
to hold for the rational case f(z) = 1/z under the assumption 4∥E∥ ≤ min{λn, δn−p}.

Lemma 3.1 (Contour Bootstrapping). If 4∥E∥ ≤ min{λn, δn−p}, then

F ≤ 2F1 =
1

π

∫
Γ

∣∣z−1(zI −A)−1E(zI −A)−1
∣∣ |dz|.

For entire functions f , the perturbation depends only on the top p singular values of A, and the
contour Γ is chosen to isolate the leading eigenvalues {λ1, . . . , λp}. In contrast, the rational func-
tion f(z) = 1/z requires the contour to enclose the smallest eigenvalues of A while avoiding the
singularity at z = 0.

This non-entire setting introduces two significant technical challenges. First, the relevant spectral
components lie in the smallest p eigenvalues of A, which are much more sensitive to perturbation.
Indeed, when Ã is a deformed Wigner matrix, ∥Ã−1∥ = O(n) with high probability for any fixed
real A; see [29, 45, 48]. In such cases, the smallest singular values of A are effectively destroyed
by noise, illustrating the instability of low-curvature directions. Moreover, the perturbation of the
low-rank approximation ∥Ãp − Ap∥ does not control the inverse approximations; see Section K.2
for a concrete counterexample. Second, constructing Γ to isolate these low-lying eigenvalues while
maintaining analyticity of f(z) = 1/z requires additional care in bounding the associated resolvent
terms.

Step 3: Construction of Γ, F1-estimation and proof completion of Theorem 2.1. Now we show
how Lemma 3.1, along with a careful choice of a contour Γ can be used to prove Theorem 2.1.
We need to construct the contour Γ so that (i) the lowest p-eigenvalues of A and Ã lie inside and
remain aligned, (ii) every point z ∈ Γ is at least3 δn−p/2 or λn/2 from the spectrum of A, and (iii)
the integral with respect to the resulting geometry is finite and computationally tractable. Indeed,
the contour Γ is set as a rectangle with vertices (x0, T ), (x1, T ), (x1,−T ), (x0,−T ), where x0 :=

λn/2, x1 := λn−p+1 +
δn−p

2 , T := 2λ1. Then, we split Γ into four segments:

• Vertical segments: Γ1 := {(x0, t)| − T ≤ t ≤ T}; Γ3 := {(x1, t)|T ≥ t ≥ −T}.

• Horizontal segments: Γ2 := {(x, T )|x0 ≤ x ≤ x1} ; Γ4 := {(x,−T )|x1 ≥ x ≥ x0}.

Given the construction of Γ, we have

2πF1 =
∑4

k=1 Mk, where Mk :=
∫
Γk

∥
∑

n≥i,j≥1
1

z(z−λi)(z−λj)
uiu

⊤
i Euju

⊤
j ∥|dz|.

3The factor 1/2 may be replaced by any fixed constant c ∈ (0, 1) by adjusting the contour Γ, and the
estimate changes only up to a constant. This flexibility makes the bound robust to moderate misestimation of
λn and δn−p in practice.
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0 λn λn−p+1

Γ3

λn−p

Γ1

Γ2

Γ4

Re (z) = 0

Note that the setting of the height T = 2λ1 ensures that the integral does not blow up, and at the
same time, the main contributions are the integrals along the vertical edges Γ1,Γ3, i.e., M1,M3.4
We now estimate M1. Using the submultiplicative property of the spectral norm and factoring out
E, we have

M1 ≤
∫
Γ1

1
|z| · ∥(zI −A)−1∥ · ∥E∥ · ∥(zI −A)−1∥ |dz| =

∫
Γ1

∥E∥ · 1
|z|·min1≤i≤n |z−λi|2 |dz|.

Here, we use the standard identity that

∥(zI −A)−1∥ = 1
min1≤i≤n |z−λi| .

The key observation is that |z − λi| ≥ |z − λn| for any z ∈ Γ1 and 1 ≤ i ≤ n. Hence, the r.h.s is at
most ∫

Γ1
∥E∥ · 1

|z|·|z−λn|2 |dz|.

By the definition of Γ1 := {(x0, t)| − T ≤ t ≤ T}, we parameterize z = x0 + it for t ∈ [−T, T ].
Then |z| =

√
x2
0 + t2 and |z−λn|2 = (λn−x0)

2+ t2, since λn is real. Moreover, on this segment,
|dz| = dt. Therefore, the integral becomes

∥E∥ ·
∫ T

−T
1√

x2
0+t2((x0−λn)2+t2)

dt = ∥E∥ ·
∫ T

−T
1

((λn/2)2+t2)3/2
dt.

By Lemma C.2, ∫ T

−T
1

((λn/2)2+t2)3/2
dt ≤ π

(λn/2)2
= 4π

λ2
n
.

Therefore, M1 ≤ 4π∥E∥
λ2
n

.

In a similar manner, replace Γ1 by Γ3 := {(x1, t)| − T ≤ t ≤ T , we also obtain

M3 ≤
∫
Γ3

∥E∥|dz|
|z|·min1≤i≤n |z−λi|2 ≤

∫ T

−T
∥E∥dt√

x2
1+t2((x1−λn−p)2+t2)

.

By Lemma C.2 and the fact that |x1 − λn−p| = δn−p/2, M3 is at most

π∥E∥
x1·δn−p/2

= 4π∥E∥
(λn−p+λn−p+1)δn−p

≤ 4π∥E∥
λn−pδn−p

.

Arguing similarly, we also obtain that M2,M4 ≤ ∥E∥
4λ2

1
(Section C.2), and hence M2 + M4 <

∥E∥/(2λ2
1). These estimates imply

F1 ≤ 1
2π (M1 +M2 +M3 +M4) ≤ 2∥E∥

λ2
n

+ 2.5∥E∥
λn−pδn−p

.

The last inequality follows the facts that λn ≤ λn−p, λn−p+1, and max{λn−pδn−p, λ
2
n} < λ2

1. This
F1’s upper bound and Lemma 3.1 prove Theorem 2.1.

Proving the contour bootstrapping lemma (Lemma 3.1). The first observation is that using the
Sherman-Morrison-Woodbury formula M−1− (M+N)−1 = (M+N)−1NM−1 [28] and the fact
that Ã = A+ E, we obtain

(zI −A)−1 − (zI − Ã)−1 = (zI −A)−1E(zI − Ã)−1.

Using this, we can rewrite

F = 1
2π

∫
Γ
∥z−1(zI −A)−1E(zI − Ã)−1∥|dz|

as
1
2π

∫
Γ
∥f(z)(zI −A)−1E(zI −A)−1 − f(z)(zI −A)−1E[(zI −A)−1 − (zI − Ã)−1∥|dz|.

4In [54], the contour construction was free to extend rightward, making the primary contribution to the
integral only come from the left vertical segment. In contrast, our contour has to be more restrictive, and both
vertical segments play an equally essential role in the analysis.
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Using the triangle inequality, we first see that F is at most
1
2π

∫
Γ
∥z−1(zI −A)−1E(zI −A)−1∥|dz|+ 1

2π

∫
Γ
∥z−1(zI −A)−1E[(zI −A)−1 − (zI − Ã)−1]∥|dz|︸ ︷︷ ︸ .

Next is the key observation that the second term in the equation above can be rearranged and upper-
bounded as follows, so that the original perturbation appears again:

maxz∈Γ∥(zI−A)−1E∥
2π

∫
Γ
∥z−1[(zI −A)−1 − (zI − Ã)−1]∥|dz|.

Thus, we have
F ≤ F1 +maxz∈Γ

∥∥(zI −A)−1E
∥∥ · F.

Furthermore, our assumption that 4∥E∥ ≤ min{δn−p, λn} and the definition of Γ imply

maxz∈Γ

∥∥(zI −A)−1E
∥∥ ≤ ∥E∥·maxz∈Γ

∥∥(zI −A)−1
∥∥ = ∥E∥

minz∈Γ,i∈[n] |z−λi| =
∥E∥

min{δn−p,λn}/2 ≤ 1
2 .

Equivalently, F ≤ F1 + F/2, and hence F ≤ 2F1. We thus complete the proof overview of
Lemma 3.1 and, consequently, Theorem 2.1.

4 Empirical results

We empirically validate the perturbation bound in Theorem 2.1, demonstrating that it

(i) holds on real datasets, and

(ii) yields significantly tighter estimates than the EYM–N bound.

4.1 Assumption of Theorem 2.1 on real-world datasets

Theorem 2.1 requires the spectral condition 4∥E∥ < min{λn, δn−p}, where λn is the smallest
eigenvalue of the matrix A, and δn−p := λn−p − λn−p+1 denotes the eigengap near the truncation
threshold. We translate this requirement into a data-dependent upper bound on the noise variance
for two real-world matrices.

We perform this analysis on two matrices: the 1990 US Census covariance matrix (n = 69) and the
BCSSTK09 stiffness matrix (n = 1083). Specifically, we first compute λn and δn−p for the smallest
p such that the spectral tail satisfies

∥A−1−A−1
p ∥

∥A−1∥ < 0.05,

ensuring that at least 95% of the inverse spectral mass is retained. We then translate these spec-
tral quantities into the maximum permissible noise level ∥E∥, and derive the corresponding sub-
Gaussian variance threshold

∆max :=
min{λn,δn−p}

8
√
n

.

Datasets. We use two widely studied matrices: the 69× 69 US Census covariance matrix from the
UCI ML repository [5], commonly used in studies on differentially private PCA [4, 12, 36], and
the 1083 × 1083 BCSSTK09 matrix [15], a stiffness matrix arising from a finite-element model of a
clamped plate [6, 9, 11, 17, 50].

Noise model and variance threshold. We consider symmetric noise matrices E with i.i.d.
sub-Gaussian entries (mean zero, variance proxy ∆2). With high probability, ∥E∥ = (2 +
o(1))∆

√
n, as established in [58, 60]. Thus, Theorem 2.1 is valid whenever 4(2 + o(1))∆

√
n <

min{λn, δn−p}, equivalently, ∆ < ∆max.

Results and conclusion. For the US Census matrix with p = 17, we compute ∆max ≈ 47.8; for
BCSSTK09 with p = 8, we find ∆max ≈ 26.9. These thresholds comfortably exceed the noise levels
commonly used in practice. For instance, in differential privacy, Laplacian noise with scale b satisfies
∥E∥ ≤

√
2b. Since ε-DP corresponds to b = 1/ε, Theorem 2.1 applies as long as ε > 0.03—well

within the commonly accepted range for strong privacy [40]. Similarly, prior work using BCSSTK09
applies noise at the level ∥E∥ < 10−5∥A∥ ≈ 6.7× 102, which translates to ∆ ≈ 10.2 < ∆max.

Section H (Table 1) confirms that this safety margin persists for a range of p values. We conclude
that the assumptions of Theorem 2.1 are satisfied in several practical settings, making it broadly
applicable to workflows in differential privacy, structural engineering, and numerical linear algebra.
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4.2 Empirical sharpness of Theorem 2.1

To gauge the practical sharpness of our new low-rank inverse–perturbation bound, we benchmark it
on three markedly different matrices—a dense covariance matrix from the 1990 US Census, a large
sparse stiffness matrix (BCSSTK09), and a synthetic discretized Hamiltonian with an almost linear
spectrum. By injecting both Gaussian Orthogonal Ensemble and Rademacher noise at ten escalating
levels that respect the stability requirement of Theorem 2.1, we create a broad test bed that spans
dense, sparse, and near-Toeplitz spectra as well as moderate to severe perturbations. The goal is to
compare

(i) the true error,

(ii) our bound, and

(iii) the Eckart–Young-Mirsky–Neumann (EYM–N) bound under the same conditions.

Setting. In this subsection, we consider three different matrices A:

(i) real matrices: the 69× 69 covariance of the 1990 US Census (A := Census, n = 69),

(ii) the 1083× 1083 BCSSTK09 stiffness matrix (A := BCSSTK09, n = 1083), and

(iii) synthetic matrix: the approximately linear spectrum A (A := Discretized Hamiltonian) de-
rived by discretizing the 1–D quantum harmonic oscillator 5 on n ∈ {500, 1000} grid points (see
Appendix I for the detailed construction).

We set the low-rank parameter p satisfies ∥A−1 − A−1
p ∥/∥A−1∥ < 0.05. This yields p = 17 for

A = Census, p = 8 for A = BCSSTK09, and p = 10 for A = Discretized Hamiltonian.

We perturb each A by either Gaussian Orthogonal Ensemble (GOE) noise E1 or Rademacher
noise E2. Each Ek is scaled by ten equally spaced factors CA so that 4CA∥Ek∥ spans up to
min{λn, δn−p}, i.e., CA ∈ {1.5, 2.0, . . . , 6} forA = Census, CA ∈ {1.2, 1.4, . . . , 3} forA =
BCSSTK09, and CA ∈ {10−4, 10−3.67, . . . , 10−1} for A = Discretized Hamiltonian; see Table 1
and Appendix I. This scaling range ensures that the assumption of Theorem 2.1 is satisfied.

Evaluation. For each configuration (A,Ek, n, p), we report:

(i) the empirical error ∥(Ã−1)p −A−1
p ∥ (100 trials),

(ii) our bound 4∥E∥
λ2
n

+ 5∥E∥
λn−pδn−p

, and

(iii) the EYM–N bound 8∥E∥
3λ2

n
+ 2

λn−p
.

For the 1990 US Census, we additionally preprocess the data to ensure all entries are numeric: we
discard the header row and the indexing column, then replace every non-numeric field with 0. We
record the ratio our bound

actual error . As is standard, all numerical results are reported as mean ± standard
deviation in .4e format, and the curves for Actual Error, Our Bound, and EYM–N Bound are plotted
with error bars (cap width = 3pt) and logarithmic y-axis.

Results and conclusion. For every matrix tested-the 69×69 US-Census covariance, the 1083×1083
BCSSTK09 stiffness matrix, and the discretised Hamiltonians with n ∈ {500, 1000}—our low-rank
inverse bound consistently outperforms the EYM–N estimate and closely follows the measured error
for all noise models Ek and scaling factors CA; see Figures 1–2. (The error bars for Our Bound and
the EYM–N Bound are too small to discern.) In every experiment our bound

actual error < 10, whereas the EYM–
N bound is typically looser by more than an order of magnitude; see Tables 2-9. This improvement
is uniform across matrix sizes n ∈ {69, 500, 1000, 1083}, demonstrating that our estimate captures
the leading error term in practice and is therefore a reliable error certificate for low-rank inverse
approximations.

5The inverse harmonic oscillator and its discretized version are central to many studies in spectral perturba-
tion theory; e.g., implicit time-stepping, preconditioning in quantum simulations, and the design of Gaussian-
process covariance kernels [7, 34, 49, 51]. Low-rank approximations of these inverses enable fast O(n logn)
solvers and reduced-order models [24, 38, 55].
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Figure 1: Four panels show (i) Actual Error, (ii) Our Bound, and (iii) EYM–N Bound, over 100
trials for real-world matrices A = Census (n = 69, p = 17) and A = BCSSTK09 (n = 1083, p = 8),
perturbed by Gaussian/Rademacher noise.

Figure 2: Four panels show (i) Actual Error, (ii) Our Bound, and (iii) EYM–N Bound, over 100
trials for A = Hamiltonian (p = 10, n ∈ {500, 1000}) perturbed by Gaussian/Rademacher noise.

5 Conclusion, limitations, and future work

We present the first non-asymptotic spectral-norm perturbation bounds for low-rank approxima-
tions of matrix inverses under general additive noise. Our results characterize how the error
∥(Ã−1)p − A−1

p ∥ depends on spectral quantities such as the smallest eigenvalue λn, the eigengap
δn−p, and the alignment of noise with low-curvature eigenspaces. In regimes where these quan-
tities are well-behaved, our bound improves upon classical Neumann-based estimates by up to a√
n-factor. This analysis introduces a new application of contour bootstrapping to the non-entire

function f(z) = 1/z, allowing us to isolate and control the impact of perturbations on inverse
approximations projected onto the smallest eigencomponents of A.

We validate our bounds on diverse matrix classes—including dense covariance matrices, sparse
stiffness matrices, and discretized quantum Hamiltonians—under both Gaussian and Rademacher
noise. Across all settings, our bound tracks the empirical error within a small constant factor and
consistently outperforms the Eckart–Young-Mirsky–Neumann baseline, often by over an order of
magnitude. These findings yield robust, spectrum-aware guarantees for low-rank inverse estimation
in noisy numerical pipelines.

Despite these contributions, several limitations remain. Our guarantees depend on spectral quantities
that may be difficult to estimate efficiently, especially in black-box or data-driven scenarios. In
particular, verifying the gap condition δn−p > 4∥E∥ requires accurate access to the tail of the
spectrum, which can be computationally demanding. Moreover, our results are tailored to static
matrices and do not directly extend to adaptive or iterative settings where the matrix evolves over
time.

Nonetheless, our framework provides a principled tool for certifying the stability of inverse-based
methods in the presence of noise. In optimization and machine learning, it can inform the use of
low-rank Hessian approximations, preconditioners, or trust-region updates under noisy curvature in-
formation. Future directions include analyzing structured or time-varying noise, developing adaptive
gap estimators, obtaining the sharp perturbation bounds of low-rank inverse approximation for other
structured metrics such as Schatten-p norm or the Ky Fan norm, and extending contour techniques
to other non-entire matrix functions such as resolvents or matrix roots.
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A Extension of Theorem 2.1 for an arbitrary symmetric matrix A

In this section, we extend Theorem 2.1 to the perturbation of the best rank-p approximation of the
inverse when A is a symmetric matrix. To simplify the presentation, we assume that the eigenvalues
(singular values) are different, so the eigenvectors (singular vectors) are well-defined (up to signs).
However, our results hold for matrices with multiple eigenvalues.

For a general symmetric matrix A, we interpret its collection of p-least singular values as follows.
Since −1 < 0, to make the perturbation well-defined, there exists a natural number 1 ≤ k ≤ n such
that

λ1 > λ2 > · · · > λk > 0 > λk+1 > · · · > λn.

Hence, there is an integer number k1 such that {σn, σn−1, . . . , σn−p+1} ≡ {|λi|, i ∈ S} for

S := {k − (k1 − 1), k − (k1 − 2), . . . , k, k + 1, k + 2, . . . , k + (p− k1)}.
In general, there is a permutation π of [n] such that σn−p = |λπ(p)| for all 0 ≤ p ≤ n− 1. We have
the following extension of Theorem 2.1
Theorem A.1. If 4∥E∥ < min{δk−k1

, δk+p−k1
, σn}, and σn−p − σn−p+1 > 2∥E∥ then

∥(Ã−1)p −A−1
p ∥ ≤ 4∥E∥

λ2
k

+
5∥E∥

λk−k1
δk−k1

+
4∥E∥
|λk+1|2

+
5∥E∥

|λk+p−k1+1|δk+p−k1

.

Note that when A is not PD, Ã with the eigenvalues λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n is not necessarily
PD. And hence, the set {|λ̃k−k1+1|, . . . , |λ̃k|, |λ̃k+1|, . . . , |λ̃k+p−k1 |} may not correspond to the p

least singular values of Ã. This issue is resolved by enforcing the singular-value gap condition
σn−p − σn−p+1 > 2∥E∥.
Remark A.2. This extension is important when A has both positive and negative eigenvalues. In
real-world applications where data is often arbitrary, it is natural for the eigenvalues of A to span
both signs. While singular value decomposition (SVD) could be used to apply Theorem 2.1, sin-
gular value gaps are typically small. By working directly with eigenvalues, we exploit the fact
that the eigenvalue gaps δk−k1

= λk−k1
− λk−k1+1 and δk+(p−k1) = λk+p−k1

− λk+p−k1+1 are
significantly larger than σn−p − σn−p+1 when λπ(p) · λπ(p+1) < 0. For example, if λπ(n−p) =

−
√
n+ log n, λπ(n−p+1) =

√
n, λπ(n−p+2) = −2

√
n, λπ(n−p+3) = 2

√
n+ log n, then

min{δk−k1
, δk+p−k1

} = Θ(
√
n) while σn−p − σn−p+1 = log n.

Proof of Theorem A.1 Since the spectrum of A is

λ1 ≥ λ2 ≥ · · · ≥ λk > 0 > λk+1 ≥ · · · ≥ λn,

the spectrum of A−1 is

λ−1
k ≥ λ−1

k−1 ≥ · · · ≥ λ−1
1 > 0 > λ−1

n ≥ λ−1
n−1 ≥ · · · ≥ λ−1

k+1.

We construct the contour Γ as follows:

Γ = Γ[1] ∪ Γ[2] ∪ L,

in which Γ[1] and Γ[2] are rectangles, whose vertices are

Γ[1] : (a0, T ), (a1, T ), (a1,−T ), (a0,−T ) with a0 := λk/2, a1 := λk−(k1−1)+δk−k1/2, T := 2σ1;

and

Γ[2] : (b0, T ), (b1, T ), (b1,−T ), (b0,−T )with b0 := λk+1/2, b1 := λk+p−k1−δk+p−k1/2, T := 2σ1;

and L is a segment, connecting (b0, T ) and (a0, T ).

0 λk λk−k1+1

Γ3

λk−k1

Γ1

Γ2

Γ4

Re (z) = 0

Γ[2] Γ[1]

L

λk+1λk+p−k1
λk+p−k1+1
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Applying the contour bootstrapping argument, we obtain∥∥∥(Ã−1)p −A−1
p

∥∥∥ ≤ 2F1 :=
1

π

∫
Γ

∥∥z−1(zI −A)−1E(zI −A)−1
∥∥ |dz|

= 2(F
[1]
1 + F

[2]
1 + F

[L]
1 ),

(3)

in which

F
[1]
1 :=

1

2π

∫
Γ[1]

∥∥z−1(zI −A)−1E(zI −A)−1
∥∥ |dz|,

F
[2]
1 :=

1

2π

∫
Γ[2]

∥∥z−1(zI −A)−1E(zI −A)−1
∥∥ |dz|

F
[L]
1 :=

1

2π

∫
L

∥∥z−1(zI −A)−1E(zI −A)−1
∥∥ |dz|.

Now, we are going to bound F
[1]
1 . First, we split Γ[1] into four segments:

• Γ1 := {(a0, t)| − T ≤ t ≤ T}.

• Γ2 := {(x, T )|a0 ≤ x ≤ a1}.

• Γ3 := {(a1, t)|T ≥ t ≥ −T}.

• Γ4 := {(x,−T )|a1 ≥ x ≥ a0}.

Therefore,
F

[1]
1 =

∑4
l=1

1
2π

∫
Γl

∥∥z−1(zI −A)−1E(zI −A)−1
∥∥ |dz|.

Notice that ∥∥z−1(zI −A)−1E(zI −A)−1
∥∥ ≤ ∥E∥ 1

|z|×mini∈[n] |z−λi|2 ,

we further obtain
2πF

[1]
1 ≤ M1 + ∥E∥ (N2 +N4) +M3,

in which
M1 :=

∫
Γ1

∥∥z−1(zI −A)−1E(zI −A)−1
∥∥ |dz|,

M3 :=
∫
Γ3

∥∥z−1(zI −A)−1E(zI −A)−1
∥∥ |dz|,

and
Nl :=

∫
Γl

1
|z|×mini∈[n] |z−λi|2 |dz| for l ∈ {2, 4}.

We use the following lemmas (their proofs are delayed to Section C.1 and Section C.2).

Lemma A.3. Under assumptions of Theorem A.1,

M1 ≤ 4π∥E∥
λ2
k

.

Lemma A.4. Under assumptions of Theorem A.1,

M3 ≤ min 4π∥E∥
λk−k1

δk−k1
.

Lemma A.5. Under assumptions of Theorem A.1,

N2, N4 ≤ 1
T 2 .

Together Lemma A.3, Lemma A.4, and Lemma A.5 imply

F
[1]
1 ≤ 1

2π

(
M1 +M3 +

∥E∥
N2

+ ∥E∥
N4

)
≤ 2∥E∥

λ2
k

+ 2∥E∥
λk−k1

δk−k1
+ ∥E∥

4πσ2
1
.

By a similar manner, we also obtain

F
[2]
1 ≤ 2∥E∥

λ2
k+1

+ 2∥E∥
|λk+p−k1+1|δk+p−k1

+ ∥E∥
4πσ2

1
.

For bounding F
[L]
1 , we use the following lemma, which proof is also delayed to Section C.3.
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Lemma A.6. Under assumptions of Theorem A.1,

F
[L]
1 ≤ 1

2π

|a0 − b0| × ∥E∥
T 3

.

Since |a0 − b0| ≤ |a0| + |b0| ≤ 2σ1 = T , we further obtain F
[L]
1 ≤ ∥E∥

8πσ2
1
. Combining above

estimates for F [1]
1 , F

[2]
1 , and F

[L]
1 , we finally obtain

F ≤ 2F1 ≤ 4∥E∥
λ2
k

+
4∥E∥

λk−k1δk−k1

+
∥E∥
πσ2

1

+
4∥E∥
λ2
k+1

+
4∥E∥

|λk+p−k1+1|δk+p−k1

,

which is less than the r.h.s of Theorem A.1. We complete the proof.
Remark A.7. Our approach directly extends to the case where A is a symmetric PSD of rank
r < n (rank-deficient). In this setting, one replaces A−1, A−1

p , and Ã−1
p with A† (the pseudoin-

verse of A), A†
p, and the projection of Ã† onto the subspace corresponding to the nonzero eigen-

values λ̃r, λ̃r−1, . . . , λ̃r−p+1 respectively. The contour Γ can then be constructed with respect to
(λr, λr−p+1, δr−p), and the analysis proceeds similarly.

B Refinements of Theorem 2.1 and Theorem A.1

By looking at the finer structure of M1 and M3, one can obtain a more nuanced bound. The key
idea is to control the spectral decay of A and to take into account the interaction between E and the
p-bottom eigenvectors of A. Recall the notations from the previous section. Given the eigenvalues
of A, λ1 > λ2 > · · · > λk > 0 > λk+1 > · · · > λn, there is an integer number k1 such that
{σn, σn−1, . . . , σn−p+1} ≡ {|λi|, i ∈ S} for

S := {k − (k1 − 1), k − (k1 − 2), . . . , k, k + 1, k + 2, . . . , k + (p− k1)}.
In general, there is a permutation π of [n] such that σn−p = |λπ(p)| for all 0 ≤ p ≤ n− 1.

To characterize how quickly the singular values of A grow, we define the doubling distance r ≥ p
(with respect to the index p) as follows. Let k− (k1 − 1) ≤ r1 ≤ k− 1 be the smallest integer such
that 2λk ≤ λk−r1 and let 1 ≤ r2 ≤ n − k be the smallest integer such that 2|λk+1| ≤ |λk+r2+1|.
Set r := min{r1, r2} if 1 ≤ k ≤ n − 1 and r := max{r1, r2} if k ∈ {0, n}. Define the important
subset Ir := {i | k+ r2 ≥ i ≥ k− r1+1} and the interaction parameter x := maxi,j∈Ir |u⊤

i Euj |.
The asymptotic refinement of Theorem A.1 is
Theorem B.1. If 4∥E∥ < δ := min{δk−k1 , δk+p−k1 , σn} and σn−p − σn−p+1 > 2∥E∥, then

∥(Ã−1)p −A−1
p ∥ ≤ O

(
∥E∥

σnσn−r
+ r2x

λ2
k
+ r2x

λk−k1
δk−k1

+ r2x
|λk+1|2 + r2x

|λk+p−k1+1|δk+p−k1

)
.

In particular, when A is PD, the doubling distance r ≥ p is simply the smallest positive integer
satisfying 2λn−p+1 ≤ λn−r, and the interaction term is x := maxn−r+1≤i,j≤n |u⊤

i Euj | . The
refinement of Theorem 2.1 is
Theorem B.2 (Refinement of Theorem 2.1). If 4∥E∥ < min{δn−p, λn}, then

∥(Ã−1)p −A−1
p ∥ ≤ O

(
∥E∥

λnλn−r
+ r2x

λ2
n
+ r2x

λn−pδn−p

)
.

Comparison to EYM–N bound in the intermediate regime min{λn, δn−p} ≫ ∥E∥ ≫ λ2
n

λn−p

When A is PD and the noise E is in the intermediate regime, our result improves upon the clas-
sical bound by a factor of O

(
min

{
λn−r

λn
, ∥E∥
r2x

})
. When E is a Wigner random noise, with high

probability, ∥E∥ = (2 + o(1))
√
n and x = O(log n) [60, 41, 53], this gaining factor simplifies to

min
{

λn−r

O(λn)
,

√
n

O(r2 logn)

}
, yielding up to a

√
n-factor improvement. This is achievable when the

stable rank sr(A−1) is ∼ Õ(1) 6 and E is a Wigner random noise [41, 53]. As a concrete example,
consider A with spectrum {(1− 1

2 )n, . . . , (1−
1

n−9 )n, 40
√
n, 8

√
n, 4

√
n}, perturbed by the standard

Gaussian noise E ∼ N (0, I). For p = 6 ( rp = 11), the EYM–N bound gives O(n−1/2), whereas
Theorem 2.1 yields Õ(n−1), a clear

√
n-level gain.

6Õ hides poly-log factors
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Proof of Theorem B.1 This proof follows exactly the proof of Theorem A.1, except the following
asymptotically finer estimates of M1 and M3.

Lemma B.3. Under the assumption of Theorem B.1,

M1 ≤ O
(

∥E∥
λkσn−r

+ r2x
λ2
k

)
.

Lemma B.4. Under the assumption of Theorem B.1,

M3 ≤ O
(

∥E∥
λk−k1

σn−r
+ r2x

λk−k1
δk−k1

)
.

The proofs of these lemmas will be delayed to the next section. Combining the estimates of N2, N4

from Lemma A.5 with Lemma B.3 and Lemma B.4, we obtain F
[1]
1 at most

O
(

∥E∥
λkσn−r

+ r2x
λ2
k
+ ∥E∥

λk−k1
σn−r

+ r2x
λk−k1

δk−k1
+ ∥E∥

σ2
1

)
≤ O

(
∥E∥

σnσn−r
+ r2x

λ2
k
+ r2x

λk−k1
δk−k1

)
.

In a similar manner, we also obtain

F
[1]
2 ≤ O

(
∥E∥

σnσn−r
+ r2x

|λk+1|2 + r2x
|λk+p−k1+1|δk+p−k1

)
.

Combining these estimates with Lemma A.6 that F [L]
1 = O

(
∥E∥/σ2

1

)
, we finally obtain

F ≤ 2F1 ≤ O
(

∥E∥
σnσn−r

+ r2x
λ2
k
+ r2x

λk−k1
δk−k1

+ ∥E∥
σnσn−r

+ r2x
|λk+1|2 + r2x

|λk+p−k1+1|δk+p−k1
+ ∥E∥

σ2
1

)
,

which simplifies to

O
(

∥E∥
σnσn−r

+ r2x
λ2
k
+ r2x

λk−k1
δk−k1

+ r2x
|λk+1|2 + r2x

|λk+p−k1+1|δk+p−k1

)
.

We complete the proof.

C Contour integral estimations

In this section, we present the contour integral estimations used in the previous section: Lemma A.3,
Lemma B.3, Lemma A.4, Lemma B.4 (integration over vertical segments); Lemma A.5 (integration
over horizontal segments), and Lemma A.6 (integration over L-segment). We first present two
technical lemmas, which are used several times in the upcoming sections.

Lemma C.1. Let a, T be positive numbers such that a ≤ T . Then,∫ T

−T
1

t2+a2 dt ≤ π
a .

Proof of Lemma C.1 We have ∫ T

−T
1

t2+a2 dt = 2
∫ T

0
1

t2+a2

= 2
aarctan(T/a)

≤ 2
a · π

2 = π
a .

Lemma C.2. Let a, b, c, T be positive numbers such that a, b, c ≤ T . Then,∫ T

−T
1√

(t2+a2)(t2+b2)(t2+c2)
dt ≤ π

max{a,b,c}×min{a,b,c} .

Proof of Lemma C.2 Without the loss of generality, we can assume that a ≤ b ≤ c ≤ T . We have∫ T

−T
1√

(t2+a2)(t2+b2)(t2+c2)
dt ≤ 1

c ·
∫ T

−T
1√

(t2+b2)(t2+a2)
dt

≤ 1
c ·
∫ T

−T
1

t2+a2 dt

≤ π
ac (by Lemma C.1).
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C.1 Estimating integrals over vertical segments

In this section, we are going estimate M1 - integral over the left vertical segment (prove Lemma A.3
and Lemma B.3), and then by a similar argument, we obtain the upper bound for M3 - integral over
the right vertical segment of Γ1 (Lemma A.4 and Lemma B.4). First, we estimate M1 as follows.

Using the spectral decomposition (zI −A)−1 =
∑n

i=1
uiu

⊤
i

(z−λi)
, we can rewrite M1 as

M1 =
∫
Γ1

∥∥∥∑n≥i,j≥1
1

z(z−λi)(z−λj)
uiu

⊤
i Euju

⊤
j

∥∥∥ |dz|.
Define a set of indices

Ir := {i | k + r2 ≥ i ≥ k − r1 + 1},
and denote its complement is Icr := [n] \ Ir. By the triangle inequality, M1 is at most∫

Γ1

∥∥∥∑i,j∈Ir
1

z(z−λi)(z−λj)
uiu

⊤
i Euju

⊤
j

∥∥∥ |dz|+ ∫Γ1

∥∥∥∑i,j∈Ic
r

1
z(z−λi)(z−λj)

uiu
⊤
i Euju

⊤
j

∥∥∥ |dz|
+
∫
Γ1

∥∥∥∥∥∑i∈Ir,j∈Ic
r

i∈Ic
r ,j∈Ir

1
z(z−λi)(z−λj)

uiu
⊤
i Euju

⊤
j

∥∥∥∥∥ |dz|.
Consider the first term, by the triangle inequality, we have∫

Γ1

∥∥∥∑i,j∈Ir
1

z(z−λi)(z−λj)
uiu

⊤
i Euju

⊤
j

∥∥∥ |dz|
≤
∑

i,j∈Ir

∫
Γ1

∥∥∥ 1
z(z−λi)(z−λj)

uiu
⊤
i Euju

⊤
j

∥∥∥ |dz|
=
∑

i,j∈Ir

∫
Γ1

|u⊤
i Euj |·∥uiu

⊤
j ∥

|z||(z−λi)(z−λj)| |dz|

≤
∑

i,j∈Ir
x
∫ T

−T
1√

(a2
0+t2)((a0−λi)2+t2)((a0−λj)2+t2)

dt.

The last inequality follows the facts that ∥uiu
⊤
j ∥ = 1,Γ1 := {z | z = a0 + it,−T ≤ t ≤ T} and

x := maxi,j∈Ir |u⊤
i Euj |. By the construction of Γ1, we have

|a0 − λi| ≥ λk

2 = a0 for all 1 ≤ i ≤ n. (4)

Thus, by Lemma C.2, the r.h.s. is at most

r2x · π
a2
0
= 4πr2x

λ2
k

,

or equivalently, ∫
Γ1

∥∥∥∑i,j∈Ir
1

z(z−λi)(z−λj)
uiu

⊤
i Euju

⊤
j

∥∥∥ |dz| ≤ 4πr2x
λ2
k

. (5)

Next, we bound the second term as follows∫
Γ1

∥∥∥∑i,j∈Ic
r

1
z(z−λi)(z−λj)

uiu
⊤
i Euju

⊤
j

∥∥∥ |dz|
=
∫
Γ1

∥∥∥ 1
z

(∑
i∈I−rc

uiu
⊤
i

z−λi

)
E
(∑

i∈Ic
r

uiu
⊤
i

z−λi

)∥∥∥ |dz|
≤
∫
Γ1

|z|−1 ·
∥∥∥∑i∈Ic

r

uiu
⊤
i

z−λi

∥∥∥ · ∥E∥ ·
∥∥∥∑i∈Ic

r

uiu
⊤
i

z−λi

∥∥∥ |dz|
≤ ∥E∥

∫
Γ1

1
|z|mini∈Icr

|z−λi|2 |dz|

= ∥E∥
∫ T

−T
1√

a2
0+t2×mini∈Icr

[(a0−λi)2+t2]
dt.

(6)

Moreover, by the construction of Γ1 and the definition of r,

|a0 − λi| ≥ min{|a0 − λk−r1 |, |a0 − λk+r2+1|} ≥ min{λk−r1

2 ,
|λk+r2+1|

2 } ≥ σn−r

2 . (7)

where the second inequality follows the fact i /∈ Ir. Thus, by Lemma C.2, the r.h.s. is at most

∥E∥ × π
a0×σn−r/2

= 4π∥E∥
σn−rλk

.
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It follows that ∫
Γ1

∥∥∥∑i,j∈Ic
r

z
(z−λi)(z−λj)

uiu
⊤
i Euju

⊤
j

∥∥∥ |dz| ≤ 4π∥E∥
σn−rλk

. (8)

Now we consider the last term:∫
Γ1

∥∥∥∥∥∑i∈Ir,j∈Ic
r

i∈Ic
r ,j∈Ir

1
z(z−λi)(z−λj)

uiu
⊤
i Euju

⊤
j

∥∥∥∥∥ |dz| ≤ 2∥E∥
∫
Γ1

1
|z|mini∈Ir,j∈Icr

|(z−λi)(z−λj)| |dz|.

By (7) and (4), the r.h.s. is at most

2∥E∥
∫ T

−T
1√

(t2+a2
0)(t

2+a2
0)(t

2+(σn−r/2)2)
dt ≤ 2∥E∥ · π

a0×σn−r/2
(by Lemma C.2)

= 8π∥E∥
σn−rλk

.
(9)

It implies ∫
Γ1

∥∥∥∥∥∑i∈Ir,j∈Ic
r

i∈Ic
r ,j∈Ir

1
z(z−λi)(z−λj)

uiu
⊤
i Euju

⊤
j

∥∥∥∥∥ |dz| ≤ 8π∥E∥
σn−rλk

. (10)

Combining (5), (8) and (10), we finally obtain

M1 ≤ 4πr2x
λ2
k

+ 12π∥E∥
λkσn−r

. (11)

This proves Lemma B.3. For Lemma A.3, we directly have

M1 ≤ ∥E∥ ·
∫
Γ1

1
|z|×mini∈[n] |z−λi|2 |dz| ≤ ∥E∥ ·

∫ T

−T
1√

(a2
0+t2)×(a2

0+t2)
dt

≤ π∥E∥
a2
0

= 4π∥E∥
λ2
k

(by Lemma C.2).

By a similar argument, by replacing Γ1 by Γ3 := {z = a1 + it,−T ≤ i ≤ T} and replacing a0 by
a1, we have

M3 ≤ 2πr2x
a1δk−k1

+ 6π∥E∥
a1σn−r

= O
(

r2x
λk−k1

δk−k1
+ ∥E∥

λk−k1
σn−r

)
,

and

M3 ≤ π∥E∥
a1·δk−k1

/2 = 4π∥E∥
(λk−k1−1+λk−k1

)δk−k1
≤ 4π∥E∥

λk−k1
δk−k1

.

This proves Lemma B.4 and Lemma A.4.

C.2 Estimating integrals over horizontal segments

We are going to bound M2 - integral over the top horizontal segment of Γ1 (prove Lemma A.5). The
treatment of M4 follows a similar manner. We have

N2 =
∫
Γ2

1
|z|mini∈[n] |z−λi|2 |dz|

=
∫ a1

a0

1√
x2+T 2·mini∈[n]((x−λi)2+T 2)

dx (since Γ2 := {z | z = x+ iT, a0 ≤ x ≤ a1})

≤
∫ a1

a0

1
T ·T 2 dx

= a1−a0

T 3 ≤ 1
T 2 .

By similar arguments, we can prove
N4 ≤ 1

T 2 .

These estimates prove Lemma A.5.

C.3 Estimating integrals over segment L

In this section, we estimate F
[L]
1 , proving Lemma A.6. Recall that

F
[L]
1 :=

1

2π

∫
L

∥∥z−1(zI −A)−1E(zI −A)−1
∥∥ |dz|,
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in which L := {t+ iT, b0 ≤ t ≤ a0}. Arguing similarly to the previous sections, we also have∫
L

∥∥z−1(zI −A)−1E(zI −A)−1
∥∥ |dz| ≤ ∥E∥ ·

∫
L

1

|z|mini∈[n] |z − λi|2
|dz|

= ∥E∥ ·
∫ a0

b0

1√
t2 + T 2 × ((t− λi)2 + T 2)

dt

≤ ∥E∥ ·
∫ a0

b0

1

T 3
dt

=
|a0 − b0|∥E∥

T 3
.

This proves Lemma A.6.

F Perturbation bound for inverse low-rank approximations via classical
methods

In this section, we present and prove the Eckart–Young–Mirsky-Neumann (EYM–N) bound, as
stated in Equation 2 in Section 2. Let A be a symmetric positive definite (PD) matrix with eigenval-
ues λ1 ≥ λ2 ≥ · · · ≥ λn > 0, and let E be a symmetric perturbation matrix. Define Ã := A + E,
and let λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n be the eigenvalues of Ã. For each 1 ≤ p ≤ n, denote by A−1

p and
(Ã−1)p the best rank-p approximations (in spectral norm) of A−1 and Ã−1, respectively.
Theorem F.1 (Eckart–Young-Mirsky–Neumann bound). If 4∥E∥ ≤ λn, then

∥(Ã−1)p −A−1
p ∥ ≤ 8∥E∥

3λ2
n

+
2

λn−p
.

Proof. Since A is a PD matrix, A−1 is well-defined with the eigenvalues λ−1
n ≥ λ−1

n−1 ≥ · · · ≥
λ−1
1 > 0. Thus, by the Eckart–Young-Mirsky theorem [20], we have

∥A−1 −A−1
p ∥ = λ−1

n−p.

By Weyl’s inequality [62], we have

∥E∥ ≥ |λn − λ̃n| ≥ λn − λ̃n.

Together with the assumption that 4∥E∥ ≤ λn, this implies

λ̃n ≥ λn − ∥E∥ ≥ 4∥E∥ − ∥E∥ = 3∥E∥ > 0.

Hence, Ã is also a positive definite matrix. As a result, Ã−1 is well-defined with the eigenvalues
λ̃−1
n ≥ λ̃−1

n−1 ≥ · · · ≥ λ̃−1
n > 0. Thus, similarly, we also have

∥Ã−1 − (Ã−1)p∥ = λ̃−1
n−p.

Combining the above equalities with the triangle inequality, we obtain:

∥(Ã−1)p −A−1
p ∥ ≤ ∥(Ã−1)p − Ã−1∥+ ∥Ã−1 −A−1∥+ ∥A−1 −A−1

p ∥

= λ̃−1
n−p + ∥Ã−1 −A−1∥+ λ−1

n−p.
(12)

Applying Weyl’s inequality again, we further have

∥Ã−1 −A−1∥ ≥ |λ̃−1
n−p − λ−1

n−p| ≥ λ̃−1
n−p − λ−1

n−p,

equivalently
λ̃−1
n−p ≤ λ−1

n−p + ∥Ã−1 −A−1∥. (13)
Together (12) and (13) imply

∥(Ã−1)p −A−1
p ∥ ≤ 2

(
λ−1
n−p + ∥Ã−1 −A−1∥

)
.
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To bound ∥Ã−1 −A−1∥, we use a Neumann series expansion. Under the assumption ∥E∥ ≤ λn/4,
we have:

∥Ã−1 −A−1∥ ≤ ∥E∥
λ2
n

· 1

1− ∥E∥/λn
≤ ∥E∥

λ2
n

· 1

1− 1/4
=

4∥E∥
3λ2

n

.

Substituting this bound into the earlier inequality yields:

∥(Ã−1)p −A−1
p ∥ ≤ 2

(
4∥E∥
3λ2

n

+
1

λn−p

)
=

8∥E∥
3λ2

n

+
2

λn−p
.

G Application: Improving the convergence rate of preconditioned conjugate
gradient

In this section, we analyze the convergence rate of the preconditioned conjugate gradient (PCG)
method for solving Ax = b using an approximately low-rank preconditioner M . Without loss of
generality, let A ∈ Rn×n be symmetric positive definite and b ∈ Rn.

An effective preconditioner should (i) approximate A−1 closely and (ii) accelerate computation. In
practice, the exact matrix A is rarely available; instead, one typically works with an approximate
version Ã, obtained via rounding or sketching. Although one could in principle set M = Ã−1,
computing with a dense inverse is computationally expensive. A more practical choice is therefore

M := (Ã−1)p + τU⊥U
⊤
⊥ ,

for some small τ > 0, where U⊥U
⊤
⊥ denotes the projection onto the orthogonal complement of the

subspace spanned by (Ã−1)p. This low-rank–plus–regularization preconditioner has been widely
adopted in various schemes, including randomized Nyström preconditioners [22], low-rank correc-
tion and deflation methods [8, 10], and low-rank updates for interior-point preconditioners [25].

Let x̂(k) denote the PCG iterate after k steps using M , and let x∗ = A−1b be the exact solution. A
central question is: for a prescribed accuracy ε > 0, how many iterations are required to guarantee

∥x̂(k) − x∗∥ < ε ?

Let E = Ã−A, and write A =
∑n

i=1 λiuiu
⊤
i , where λ1 ≥ · · · ≥ λn > 0 and {ui}ni=1 are orthonor-

mal eigenvectors. For each 1 ≤ i ≤ n− 1, define the spectral gap δi := λi − λi+1. Combining the
spectral perturbation bound from Theorem 2.1 with the standard PCG residual estimate yields the
following result.
Corollary G.1. Under the above setting, for any given ε > 0, if 4∥E∥ ≤ min{λn, δn−p}, then

∥x̂(k) −A−1b∥ < ε after k = O

(√
∥A∥
τλn

(
∥E∥
λ2
n

+ ∥E∥
δn−pλn−p

+ 1
∥A∥

)
· log(2/ε)

)
iterations.

Proof. Let rk denote the residual at the k-th iteration. To achieve ∥x̂(k) −A−1b∥ < ε, we require

∥rk∥A
∥r0∥A

≤ ε, where ∥x∥A =
√
x⊤Ax.

Using the standard CG residual bound, ∥rk∥A

∥r0∥A
≤ 2
(√κ(MA)−1√

κ(MA)+1

)k
, we require

(√
κ(MA)− 1√
κ(MA) + 1

)k

≤ ε

2
,

equivalently,

k ≥
√

κ(MA)

2 log(2/ε). (14)

Here, κ(MA) = ∥MA∥ · ∥(MA)−1∥ is the condition number of MA.
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Analyzing κ(MA). Given the decomposition A =
∑n

i=1 λiuiu
⊤
i , and since M = (Ã−1)p +

τU⊥U
⊤
⊥ , we can write

MA = ((Ã−1)p − (A−1)p)A+

n∑
i=n−p+1

uiu
⊤
i + τU⊥U

⊤
⊥A.

Thus,

κ(MA) = κ

((Ã−1)p − (A−1)p)A+

n∑
i=n−p+1

uiu
⊤
i + τU⊥U

⊤
⊥A

 .

Since M acts as an approximate inverse on the dominant subspace and scales the complement by
τ , the smallest eigenvalue of MA is approximately τλn, while the largest is dominated by 1 +
∥((Ã−1)p − (A−1)p)A∥. Hence,

κ(MA) ≤ O

(
1 + ∥((Ã−1)p − (A−1)p)A∥

τλn

)
. (15)

In practice, we set τ ≤ 1/∥A∥, which ensures the complement contribution τλ1 ≤ 1; with this
choice, the bound in (15) holds up to absolute constants. Equality holds approximately when the
eigenvectors of (Ã−1)p align closely with {un−p+1, . . . , un}, which is typical since Ã approximates
A.

By Theorem 2.1, under 4∥E∥ ≤ min{λn, δn−p},

∥(Ã−1)p −A−1
p ∥ ≤ O

(
∥E∥
λ2
n

+
∥E∥

δn−pλn−p

)
.

Substituting into (15) yields

κ(MA) ≤ O

(
∥A∥
τλn

(
∥E∥
λ2
n

+
∥E∥

δn−pλn−p
+

1

∥A∥

))
.

Substituting this bound into (14) completes the proof.
Remark G.2. By a similar argument, the classical Eckart-Young-Mirsky-Neumann bound (2) yields

∥(Ã−1)p −A−1
p ∥ ≤ 8∥E∥

3λ2
n

+
2

λn−p
,

leading to the weaker estimate

κ(MA) ≤ O

(
∥A∥
τλn

(
∥E∥
λ2
n

+
1

λn−p

))
.

Consequently,

∥x̂(k) −A−1b∥ < ε after k = O

(√
∥A∥
τλn

(
∥E∥
λ2
n

+
1

λn−p

)
· log(2/ε)

)
iterations.

As discussed in Section 2, Theorem 2.1 improves upon the classical Eckart-Young-Mirsky-Neumann
bound by up to a factor of

√
n. Consequently, Corollary G.1 improves the condition number estimate

by up to the same factor, corresponding to an improvement of order n1/4 in the guaranteed iteration
count.

H Maximal allowable variance proxy

Recall from Section 4.1 that, given a matrix A, we aim to report the maximal allowable variance
proxy ∆max for the noise matrix E, such that the assumption of Theorem 2.1 holds.

We consider two real-world matrices: the 1990 US Census covariance matrix and the BCSSTK09
stiffness matrix. Each is perturbed by a random matrix E with independent, mean-zero, sub-
Gaussian entries and variance proxy ∆2. It is well known that, with high probability, ∥E∥ =
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(2 + o(1))∆
√
n, [58, 60]. Thus, for each matrix A and chosen integer p, the noise level prescribed

by Theorem 2.1 is valid whenever
4(2 + o(1))∆

√
n < min{λn, δn−p},

which implies the variance proxy must satisfy

∆max :=
min{λn, δn−p}

8
√
n

.

Table 1 reports ∆max for each p ∈ [1, pA], where pA is the smallest integer such that

∥(A−1)pA
−A−1∥

∥A−1∥
< 0.05.

For BCSSTK09 and p ∈ {2, 7}, the eigengaps δn−p are extremely small (below 10−9), rendering the
corresponding low-rank approximations numerically unstable. We omit ∆max in these positions to
avoid reporting unreliable values. All numerical values are presented in scientific notation. In each
sub-table, we boldface the smallest reported value of ∆max.

Table 1: Maximal allowable variance proxy ∆max = min{λn, δn−p}/(8
√
n) for the 1990 US Cen-

sus (n = 69, 1 ≤ p ≤ 17) and BCSSTK09 (n = 1083, 1 ≤ p ≤ 8). Entries are reported in scientific
notation. Missing entries correspond to unstable eigengaps.

(a) 1990 US Census (n = 69, 1 ≤ p ≤ 17)

p ∆max p ∆max

1 2.18 × 101 10 4.78 × 101

2 4.78 × 101 11 4.78 × 101

3 4.33 × 101 12 2.37 × 101

4 2.75 × 101 13 4.43 × 101

5 4.78 × 101 14 3.86 × 101

6 4.37 × 101 15 2.60 × 101

7 4.78 × 101 16 2.79 × 101

8 4.55 × 101 17 4.78 × 101

9 4.78 × 101

(b) BCSSTK09 (n = 1083, 1 ≤ p ≤ 8)

p ∆max

1 2.70 × 101

2 −
3 2.70 × 101

4 2.70 × 101

5 3.83 × 100

6 2.70 × 101

7 −
8 2.70 × 101

I Discretized synthetic Hamiltonian

In this section, we describe the construction of the discretized synthetic Hamiltonian matrix A used
in Section 4.2. We begin with the one-dimensional quantum harmonic oscillator:

Ĥ = − ℏ2

2m

d2

dx2
+

1

2
mω2x2,

whose natural length scale is ℓ :=
√
ℏ/(mω). Following standard finite-difference benchmarks [55,

38], we truncate the domain to (−L,L) with homogeneous Dirichlet boundary conditions and set
L = 8ℓ.

Let xi = −L+i∆x for i = 1, . . . , n, with step size ∆x = 2L/(n+1), and define the dimensionless
grid points ξi = xi/ℓ and mesh size h = ∆x/ℓ.

A second-order finite-difference discretization of Ĥ yields an n × n real symmetric tridiagonal
matrix H with entries

Hii =
2

h2
+ ξ2i , Hi,i±1 = − 1

h2
(1 ≤ i ≤ n).

Scaling. As is standard, we set ℏ = m = 1 and ω = 4, so that ℓ =
√
1/4 = 1/2 [2, 32]. For h →

0, the eigenvalues of H converge to the exact oscillator levels 4i+2+O(h2) for 0 ≤ i ≤ n−1 [55,
Program 8], so the discrete spectrum is approximately linear.

Finally, to produce the matrix A, whose smallest eigenvalue λn and gap δn−p are compatible with
either standard Gaussian or Rademacher noise, we apply the scaling

A := 2
√
nH.
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J Empirical sharpness of Theorem 2.1 – numerical results

We numerically report the two scale-free ratios discussed in Section 4.2:

EYM–N bound
our bound

and
empirical error

our bound
,

across various configurations (A,Ek, n, p); see Tables 2-9. These ratios reflect the comparative
tightness of bounds and are invariant to scaling or normalization. We omit the standard deviations
here as they are uniformly small and do not affect interpretation. In all experiments, the ratio EYM–N

Ours
exceeds 1 across all CA, while Empirical

Ours remains consistently around 0.3− 0.4.

Table 2: Relative tightness of the EYM–N bound and the empirical error compared to our bound on
Census (n = 69, p = 17) under Gaussian noise.

CA 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

EYM–N
Ours 5.69 3.08 3.16 2.66 2.33 2.10 1.92 1.78 1.67 1.32 1.50

Empirical
Ours 0.433 0.395 0.454 0.473 0.401 0.461 0.443 0.427 0.435 0.402 0.446

Table 3: Relative tightness of the EYM–N bound and the empirical error compared to our bound on
Census (n = 69, p = 17) under Rademacher noise.

CA 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

EYM–N
Ours 4.26 3.07 2.47 2.11 1.87 1.69 1.57 1.47 1.39 1.32 1.27

Empirical
Ours 0.398 0.395 0.415 0.407 0.401 0.404 0.403 0.397 0.424 0.402 0.410

Table 4: Relative tightness of the EYM–N bound and the empirical error compared to our bound on
BCSSTK09 (n = 1083, p = 8) under Gaussian noise.

CA 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

EYM–N
Ours 3.23 2.87 2.59 2.37 2.20 2.06 1.95 1.85 1.76 1.69

Empirical
Ours 0.320 0.325 0.353 0.372 0.334 0.347 0.318 0.348 0.306 0.354

Table 5: Relative tightness of the EYM–N bound and the empirical error compared to our bound on
BCSSTK09 (n = 1083, p = 8) under Rademacher noise.

CA 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

EYM–N
Ours 2.48 2.22 2.03 1.88 1.75 1.66 1.57 1.50 1.44 1.39

Empirical
Ours 0.317 0.324 0.332 0.341 0.326 0.379 0.337 0.325 0.314 0.349

Table 6: Relative tightness of the EYM–N bound and the empirical error compared to our bound on
Discretized Hamiltonian (n = 500, p = 10) under Gaussian noise.
CA 10−4.00 10−3.67 10−3.33 10−3.00 10−2.67 10−2.33 10−2.00 10−1.67 10−1.33 10−1.00

EYM–N
Ours 1334 618.2 287.9 133.8 62.53 29.38 13.98 6.84 3.53 1.99

Empirical
Ours 0.301 0.326 0.331 0.346 0.321 0.318 0.339 0.338 0.309 0.371

Table 7: Relative tightness of the EYM–N bound and the empirical error compared to our bound on
Discretized Hamiltonian (n = 500, p = 10) under Rademacher noise.
CA 10−4.00 10−3.67 10−3.33 10−3.00 10−2.67 10−2.33 10−2.00 10−1.67 10−1.33 10−1.00

EYM–N
Ours 946.6 439.6 204.0 95.06 44.54 21.04 10.10 5.05 2.69 1.60

Empirical
Ours 0.315 0.327 0.326 0.310 0.331 0.317 0.308 0.340 0.307 0.309
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Table 8: Relative tightness of the EYM–N bound and the empirical error compared to our bound on
Discretized Hamiltonian (n = 1000, p = 10) under Gaussian noise.
CA 10−4.00 10−3.67 10−3.33 10−3.00 10−2.67 10−2.33 10−2.00 10−1.67 10−1.33 10−1.00

EYM–N
Ours 1330 617.8 287.3 133.6 62.39 29.33 13.96 6.83 3.52 1.99

Empirical
Ours 0.317 0.334 0.373 0.336 0.347 0.310 0.322 0.314 0.330 0.349

Table 9: Relative tightness of the EYM–N bound and the empirical error compared to our bound on
Discretized Hamiltonian (n = 1000, p = 10) under Rademacher noise.
CA 10−4.00 10−3.67 10−3.33 10−3.00 10−2.67 10−2.33 10−2.00 10−1.67 10−1.33 10−1.00

EYM–N
Ours 942.0 438.0 204.0 94.80 44.30 20.90 10.10 5.03 2.69 1.60

Empirical
Ours 0.341 0.331 0.328 0.362 0.321 0.301 0.340 0.353 0.332 0.322

K Examples illustrating limitations of low-rank inverse approximation

This section presents two illustrative examples demonstrating subtle failure modes in low-rank in-
verse approximation.

K.1 Eigenvalue reordering due to small eigengaps

We construct an example where a small eigenvalue gap δn−p causes the eigenvalues of Ã−1 to
reorder, making the low-rank error ∥(Ã−1)p−A−1

p ∥ a poor proxy for the global error ∥Ã−1−A−1∥.
In fact, the ratio

∥(Ã−1)p −A−1
p ∥

∥Ã−1 −A−1∥
→ ∞ as n → ∞.

We illustrate this for p = 1 (the construction generalizes). Let Diag[a1, . . . , an] denote the diagonal
matrix with entries a1, . . . , an. Define:

A = Diag[(4K + 1)
√
n, 4K

√
n, n, . . . , n], E = Diag[

√
n, 3

√
n, 0, . . . , 0].

Then,
Ã = A+ E = Diag[(4K + 2)

√
n, (4K + 3)

√
n, n, . . . , n].

The inverses are:

A−1 = Diag

[
1

(4K + 1)
√
n
,

1

4K
√
n
,
1

n
, . . . ,

1

n

]
,

Ã−1 = Diag

[
1

(4K + 2)
√
n
,

1

(4K + 3)
√
n
,
1

n
, . . . ,

1

n

]
.

The best rank-1 approximations retain the top eigenvalue:

(Ã−1)1 = Diag

[
1

(4K + 2)
√
n
, 0, . . . , 0

]
, A−1

1 = Diag

[
0,

1

4K
√
n
, 0, . . . , 0

]
.

Hence,

∥(Ã−1)1 −A−1
1 ∥ = max

{
1

(4K + 2)
√
n
,

1

4K
√
n

}
= Θ

(
1

4K
√
n

)
,

while

∥Ã−1 −A−1∥ = Θ

(
1

K2
√
n

)
.

Choosing K = nε, we find the ratio

∥(Ã−1)1 −A−1
1 ∥

∥Ã−1 −A−1∥
= Θ(nε) → ∞ as n → ∞.
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K.2 Failure of direct low-rank approximation error to predict inverse error

We now give an example where the low-rank approximation error ∥Ãp−Ap∥ is zero, but the inverse
approximation error ∥(Ã−1)p −A−1

p ∥ grows with n.

Let

A = Diag

[
n,

1

2
√
n
,

1√
n
, . . . ,

1√
n

]
, E = Diag

[
0,

1

2
√
n
,

1√
n
, . . . ,

1√
n

]
.

Then,

Ã = A+ E = Diag

[
n,

1√
n
,

2√
n
, . . . ,

2√
n

]
.

The best rank-1 approximations retain the largest diagonal entry:

A1 = Ã1 = Diag[n, 0, . . . , 0].

Hence, ∥Ã1 −A1∥ = 0. Now consider the inverses:

A−1 = Diag

[
1

n
, 2

√
n,

√
n, . . . ,

√
n

]
, Ã−1 = Diag

[
1

n
,
√
n,

√
n

2
, . . . ,

√
n

2

]
.

The rank-1 inverse approximations retain the largest entries:

A−1
1 = Diag[0, 2

√
n, 0, . . . , 0], (Ã−1)1 = Diag[0,

√
n, 0, . . . , 0].

Hence, ∥(Ã−1)1 − A−1
1 ∥ =

√
n. This example shows that even when the direct approximation

error ∥Ãp − Ap∥ vanishes, the inverse approximation error can diverge. Consequently, bounding
∥Ãp −Ap∥ alone is insufficient to understand the behavior of low-rank inverse approximations.

L Some classical perturbation bounds

This section recalls standard classical results referenced in Section 2, Section 3, and Section F.

Theorem L.1 (Eckart-Young-Mirsky bound [20]). Let A, Ã ∈ Rn×n, and let Ap, Ãp denote their
respective best rank-p approximations. Set E := Ã−A. Then,

∥Ãp −Ap∥ ≤ 2 (σp+1 + ∥E∥) ,

where σp+1 is the (p+ 1)st singular value of A.

Theorem L.2 (Weyl’s inequality [62]). Let A,E ∈ Rn×n be symmetric, and define Ã := A + E.
Then, for any 1 ≤ i ≤ n,

|λ̃i − λi| ≤ ∥E∥ and |σ̃i − σi| ≤ ∥E∥,

where λi, λ̃i are the ith eigenvalues of A and Ã, and σi, σ̃i are the corresponding singular values.

M Notation

This section collects key notations used throughout the paper. Let A,E be symmetric n×n matrices,
and define the perturbed matrix Ã := A+ E.
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Table 10: Summary of notation used in the paper
Symbol Definition

n Dimension of A, Ã
p Target rank parameter

A−1
p Best rank-p approximation to A−1

(Ã−1)p Best rank-p approximation to Ã−1

λ1 ≥ · · · ≥ λn Eigenvalues of A in descending order

λ̃1 ≥ · · · ≥ λ̃n Eigenvalues of Ã in descending order
σ1 ≥ · · · ≥ σn Singular values of A in descending order
δi i-th eigengap: δi := λi − λi+1

ui Eigenvector of A corresponding to λi

ũi Eigenvector of Ã corresponding to λ̃i

Γ Contour enclosing {λn−p+1, . . . , λn} (p. 5)

F
1

2π

∫
Γ

∥z−1
[(zI − Ã)

−1 − (zI − A)
−1

]∥ |dz| (p. 5)

Fs
1

2π

∫
Γ

∥z−1
(zI − A)

−1
[E(zI − A)

−1
]
s∥ |dz| (p. 5)

F1
1

2π

∫
Γ

∥z−1
(zI − A)

−1
E(zI − A)

−1∥ |dz| (p. 5, Lem. 3.1)

∆max Max. allowable variance:
min{λn, δn−p}

8
√
n

(Sec. 4.1)

sr(A−1) Stable rank of A−1:
∥A−1∥2

F

∥A−1∥2
(p. 23)

Doubling distance r Smallest r s.t. 2λn−p+1 ≥ λn−r (p. 16, Sec. B)

Interaction term x max
n−r+1≤i,j≤n

|u⊤
i Euj | (p. 16, Sec. B)

∥ · ∥ Spectral norm
∥ · ∥F Frobenius norm
EYM–N bound Eckart-Young-Mirsky-Neumann bound
PD Positive semi-definite
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paper’s contributions and scope?
Answer: [Yes]
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data (e.g., Census and BCSSTK09) are publicly available and cited appro-
priately. Code and instructions are provided in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Subsection 4.1 and Subsection 4.2 describe matrix dimensions, truncation
ranks, noise scales, trial counts, and the methods used to compute bounds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Section 4.2 reports error bars across 100 trials as mean ± standard deviation,
with clear plots and captions.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or fig-
ures symmetric error bars that would yield results that are out of range (e.g., negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experiments are lightweight and run on standard CPU machines; resource
requirements are described in the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is theoretical and empirical, uses only publicly available
datasets, and conforms to ethical standards.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: This is a theoretical paper on spectral norm perturbation bounds with no direct
societal or ethical impact pathways.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release models or datasets with any risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets (e.g., Census, BCSSTK09) are properly cited (e.g., [15], [36]) and
are in the public domain or released under open academic licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce new datasets, models, or other assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve any human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research does not involve human subjects and thus does not require IRB
approval.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The research does not use LLMs for any component of the core methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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