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ABSTRACT

Reward models (RM) play a critical role in aligning generations of large language
models (LLM) to human expectations. However, prevailing RMs fail to capture
the stochasticity within human preferences and cannot effectively evaluate the re-
liability of reward predictions. To address these issues, we propose Uncertain-
aware RM (URM) and Uncertain-aware RM Ensemble (URME) to incorporate
and manage uncertainty in reward modeling. URM can model the distribution of
disentangled attributes within human preferences, while URME quantifies uncer-
tainty through discrepancies in the ensemble, thereby identifying potential lack
of knowledge during reward evaluation. Experiment results indicate that the pro-
posed URM achieves state-of-the-art performance compared to models with the
same size, demonstrating the effectiveness of modeling uncertainty within human
preferences. Furthermore, empirical results show that through uncertainty quan-
tification, URM and URME can identify unreliable predictions to improve the
quality of reward evaluations.

1 INTRODUCTION

Large language models (LLM) have demonstrated remarkable capabilities across various domains
(Singhal et al., 2023a; Cui et al., 2024; Kasneci et al., 2023). These powerful LLMs are trained
to align with human values and expectations to avoid harmful and toxic generations. To achieve
alignment, LLMs rely on feedbacks from reward models (RM), where the feedbacks are provided
in the form of rewards (Singhal et al., 2023a; Cui et al., 2024; Kasneci et al., 2023). These rewards
typically reflect the quality and users’ preferences of the responses provided, and hence reward
maximization will guide the LLM to more effectively satisfy user queries. In this paradigm, RMs
fundamentally decides the efficacy of alignment, as they primarily steer the LLMs through feedback.
Therefore, the reliability and accuracy of this feedback is essential in aligning LLMs with intended
human values and preferences.

However, current RMs fail to capture the stochastic nature of human preferences (Baylis, 1950)
and lack the ability to evaluate the reliability of the predicted rewards. In prevalent RMs, a value
head (usually a linear layer) is added to the pretrained base model and maps the hidden states to
reward scalars (Bai et al., 2022a; Ouyang et al., 2022) or attribute scores (Adler et al., 2024; Wang
et al., 2024a). This results in a deterministic reward modeling process, unable to accommodate the
variabilities of human preferences. Moreover, there is no other information to validate the reliability
of these reward predictions.

Uncertainty is of major importance in machine learning (Hüllermeier & Waegeman, 2021) and an
appropriate representation for uncertainty is essential for developing trustworthy and reliable mod-
els (Yang et al., 2009; Varshney & Alemzadeh, 2017). Uncertainty originates from two different
sources: aleatoric and epistemic. Aleatoric uncertainty refers to the inherent variability and ran-
domness of data. As opposed to this, epistemic uncertainty is caused by lack of knowledge, i.e.
ignorance of the model instead of any underlying randomness.

In the context of reward modeling for LLM, aleatoric uncertainty refers to the stochasticity of human
preferences, while epistemic uncertainty comes from the RMs’ lack of knowledge to make reliable
evaluations. Therefore, introducing uncertainty to reward modeling improves modeling capacity of
RMs and enhance reliability of the reward predictions. Consequently, by identifying and filtering
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out out-of-distribution (OOD) data where RMs fail to generalize, rewards with better reliability pave
the way for more efficient alignments of LLMs.

In this paper, we propose Uncertain-aware RM (URM) and Uncertain-aware RM Ensemble (URME)
to handle aleatoric and epistemic uncertainty in reward modeling respectively. URM is equipped
with an uncertainty-aware value head to model the distributions of multiple attributes within hu-
man preferences. We demonstrate that with the popular bradley-terry-model loss function (Bradley
& Terry, 1952), RMs cannot quantify uncertainty of human preferences even with an uncertainty-
aware value head. Therefore, URMs are trained via maximum likelihood estimation and attribute
regression. URME quantifies epistemic uncertainty by the discrepancies among URMs in the en-
semble, identifying potential lack of knowledge. During reward evaluation, filtering strategy can
be applied to prompt-response pairs with high uncertainty, in case that LLMs learn unintended or
potentially harmful behaviors that URMs may not be able to accurately evaluate.

Empirical results on a popular RM benchmark RewardBench (Lambert et al., 2024) demonstrate
that URM with 8B model size achieves state-of-the-art performance among models with the same
size and outperforms a number of strong large models including Nemotron-4-340B (Adler et al.,
2024). And through uncertainty quantification, URM and URME are able to identify their level
of knowledge for the input data and make the reward evaluations more reliable through filtering
strategy. Furthermore, results of best-of-n sampling validates that URM and URME can effectively
enhance the generation quality of LLMs.

Contributions of this paper include:

(1) We introduce URM and URME to model the uncertainty within human preferences and reward
models themselves.

(2) URM and URME are able to improve LLMs’ generation effectively. Notably, URM achieves
state-of-the-art performance on RewardBench compared with models of the same size (8B).

(3) Empirical results demonstrate that URM and URME can successfully quantify uncertainty to
identify areas where the models lack sufficient knowledge to make accurate predictions, leading to
more reliable reward evaluations.

2 PRELIMINARIES

LLM alignment typically consists of three stages (Ouyang et al., 2022): supervised fine-tuning
(SFT), reward modeling and proximal policy optimization (PPO) (Schulman et al., 2017). SFT
utilizes expert demonstrations to fine-tune the pretrained base model in a supervised-learning fashion
to enable LLMs to follow user instructions.

Reward Modeling Reward modeling aims to learns human preferences explicitly (Ouyang et al.,
2022) or implicitly (Rafailov et al., 2024). For some prompt x and a response pair (yw, yl), yw is
the chosen response preferred by humans and yl is rejected. Following the Bradley-Terry model
(Bradley & Terry, 1952), under RM r� the probability of yw being preferred than yl, i.e. yw � yl, is

P (yw � yl|x) = log
exp(r�(x, yw))

exp(r�(x, yw)) + exp(r�(x, yl))
= sigmoid(r�(x, yw)� r�(x, yl))

(1)

Thus, to train a RM to prioritize chosen responses over rejected responses, the loss function is the
maximum likelihood estimation of Eq. 1

L1 = �Ex,yw,yl⇠D [log sigmoid (r�(x, yw)� r�(x, yl))] , (2)
where r� is the reward model parameterized by �, consisting of the pretrained base model and a
linear value head. The trained RM can be used to improve the LLM’s generation by Best-of N
(BoN) (Stiennon et al., 2020) or RLHF (Ouyang et al., 2022).

PPO In this stage, LLMs are fine-tuned with feedbacks from the RM. To prevent the model deviate
too far from the pretrained model and forget linguistic skills, there is also an Kullback-Leibler (KL)
divergence penality in the reward from the RM. Thus, the total reward r̂ is

r̂(x, y) = r�(x, y)� ⌘KL(⇡(y|x)k⇡ref(y|x)), (3)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where ⌘ is the coefficient for the KL penalty, ⇡ is the model to be fine-tuned and ⇡ref is the reference
model which is usually the SFT model. Running PPO to maximize reward from Eq. 3 can not
only align the LLM with human preferences, but also prevent it from severely deviating from the
reference model.

3 RELATED WORK

3.1 MULTI-ATTRIBUTE REWARD MODELING

To generate helpful, harmless and truthful responses (Askell et al., 2021), LLMs must be aligned
with human expectations. Current methods fine-tune models based on human (Christiano et al.,
2017; Stiennon et al., 2020; Bai et al., 2022a; Ouyang et al., 2022) or AI feedbacks (Bai et al., 2022b;
Sun et al., 2024) to maximize preference-based rewards, which are provided by reward modeling.
Typically, a reward model is learned and LLMs will improve their generation quality according to
feedbacks from the reward model (Bai et al., 2022a; Ouyang et al., 2022; Shao et al., 2024; Stiennon
et al., 2020).

Recent studies show that human and LLM judges may introduce potential biases to annotations of
preference (Zhang et al., 2023; Kotek et al., 2023; Wang et al., 2024b; Chen et al., 2024a). More-
over, traditional RMs usually rely on single-dimensional feedback on general quality instead of
fine-grained multifaceted signals to indicate multiple attributes such as helpfulness, coherence and
verbosity (Dong et al., 2023b). Adler et al. (2024) discovered that multi-attribute RMs trained on
datasets with high-quality attribute-specific annotations (Cui et al., 2023; Wang et al., 2024c) are
able to disentangle real helpfulness and other irrelevant aspects such as lengthy bias (Shen et al.,
2023; Singhal et al., 2023b). There are also alignment methods directly aimed at multi-attribute
alignment. Zhou et al. (2023) includes preference on multiple attributes in the Direct Preference
Optimization (DPO) loss function (Rafailov et al., 2024), trying to optimize preference rewards for
all attributes simultaneously. Lou et al. (2024) proposed to achieve multi-attribute alignment se-
quentially, one attribute at a time, where LLMs learns to align with new attributes while staying
aligned with previous dimensions.

3.2 RLHF, OFFLINE RL AND UNCERTAINTY

In RLHF, LLM policy is optimized via interactions with the RM, whose training data is pre-collected
preference pairs (Bai et al., 2022a; Ouyang et al., 2022). In this setting, RLHF falls into the category
of offline RL, where RL policies cannot interact with the environment and get feedbacks in real time,
but instead can only be updated based on an offline dataset collected by some other policy (Levine
et al., 2020). Offline RL is notoriously difficult due to the distributional shift issue (Lou et al., 2022;
Ma et al., 2021; Prudencio et al., 2023). Recent advancements in iterative LLM alignment methods
(Yuan et al., 2024; Dong et al., 2024; Xiong et al., 2024) iterates between LLM fine-tuning and the
sampling and annotation of new training data, alleviating the distributional shift issue. Although
these iterative methods aim to transcend the constraints of the offline setting,, RLHF is still offline
within each iteration.

An important topic in offline RL is uncertainty quantification, which has long underpinned many
critical roles (Abdar et al., 2021), such as trustworthy decision-making (Huang et al., 2019; Eriksson
& Dimitrakakis, 2019) and improving reliability of machine learning models (Wang et al., 2019). In
offline RL, uncertainty quantification enables out-of-distribution data detection and keep the policy
within the offline dataset’s support area through conservative updates to avoid distributional shift
(Yu et al., 2020; Kidambi et al., 2020; An et al., 2021; Zhu et al., 2024). So it is natural to introduce
uncertainty to RLHF to make LLM alignment more reliable and effective.

Ensemble of RMs are discussed in previous works. However, we study the ensemble of uncertainty-
aware RMs to identify unreliable reward evaluations, while previous discussions are limited to using
RM ensembles to mitigate reward hacking Coste et al. (2023); Eisenstein et al. (2023) and using
value heads to disentangle length and quality in reward modeling Chen et al. (2024b). We notice a
concurrent work QRM Dorka (2024) which also models human preferences by distributions. QRM
only studies distributional RMs, while we also study the ensemble of such uncertainty-aware RMs.
Moreover, QRM is trained via quantile regression (Koenker, 2017), a variant of our attribute regres-
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Prompt: What is the range of the numeric output of a sigmoid node in a neural network?

Response: The output of a sigmoid node is bounded between -1 and 1.
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Figure 1: Architecture of URM and URME. URMs output µ and � to parameterize normal distribu-
tions, from which multi-attribute scores are sampled. The scores are then combined to reward scalars
by weights generated by a gating layer. URME consists of multiple URMs, allowing for quantifica-
tion of the epistemic uncertainty using the disagreement among the URMs. In the given example,
there is a substantial divergence among URMs, indicating significant epistemic uncertainty. Thus,
although URM 1 correctly assigns a small, negative reward to the input, the significant epistemic
uncertainty still indicates the URMs lack relevant knowledge to provide reliable evaluation of the
inputs.

sion. But we also studied uncertainty-aware RMs trained via maximum likelihood estimation, which
can better capture the uncertainty of rewards.

4 METHODOLOGY

In this section, we will introduce our uncertain-aware reward model (URM) and uncertainty-aware
reward model ensemble (URME) to quantify aleatoric and epistemic uncertainties respectively.

Fig. 1 gives the architecture of URM and URME. URMs quantify the aleatoric uncertainty by
modeling the distribution of scores, and the epistemic uncertainty is quantified by the disagreement
within the URME. In the given example, the response is incorrect and there is large disagreement
within the URME, indicating significant epistemic uncertainty and the models’ lack of relevant
knowledge.

4.1 UNCERTAINTY-AWARE REWARD MODEL

Traditional RMs optimize the Bradley-Terry model loss (BT-loss) in Eq. 2,to enlarge the discrep-
ancy between the rewards of chosen and rejected responses so that the preference probability is
maximized. The value head will map hidden states from the base model to a scalar reward. Such
mapping is deterministic and thus cannot catch any uncertainty (Chua et al., 2018) within the reward
modeling process.

However, at its core, human preferences exhibit a distinctly probabilistic nature, rather than being
strictly deterministic (Baylis, 1950). This issue is further exaggerated due to the bias and incon-
sistencies introduced by human annotators (Sylolypavan et al., 2023; Sleeman & Gilhooly, 2023;
Chen et al., 2024a). Between individuals, preferences differ from person to person. This means
what’s preferable for one may not be for another. Even within individuals, preferences are not static.
They can swing based on numerous factors such as mood and context. These stochastic natures of
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human preferences contribute to adopting a probabilistic framework for modeling preferences with
aleatoric uncertainty.

Prior works have explored a number of uncertainty-aware neural networks (Neal, 2012; Lakshmi-
narayanan et al., 2017), especially in RL (Gal et al., 2016; Depeweg et al., 2016) and model-based
RL (MBRL) (Chua et al., 2018; Yu et al., 2020; Kidambi et al., 2020).

Reward !
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Estimated reward 
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Figure 2: Comparison between URM and tradi-
tional RM in estimating preference distribution.

Considering RMs act similarly to the reward
part of the dynamics model in MBRL, aleatoric
uncertainty within human preferences can be
captured by outputting the parameters of a pa-
rameterized distribution. Specifically, unlike
traditional RMs that output a single determin-
istic reward value, uncertainty-aware RMs can
model the distributions of human preferences.
As schematically shown in Fig. 2, given a
prompt-response pair with multiple preference
annotation samples, traditional RMs can only
provide a fixed reward estimation and fails to
represent the real preference. But uncertainty-
aware RMs are able to offer a more accurate
approximation of the human preference distri-
bution.

To model the preference reward distribution, URM adds an probabilistic value head to the pretrained
base model. The value head takes in the last hidden state h of the base model and outputs mean µ
and logged standard deviation � to parameterize a normal distribution N (µ, exp(2�)), from which
preference rewards are sampled, and the aleatoric uncertainty is quantified by variance of the distri-
bution. Reparameterization technique is adopted to enable gradient back-propagation.

However, we show that introducing the probabilistic value head and the sample-based reward to
RMs with BT-loss, the aleatoric uncertainty still cannot be quantified.

We denote the reparameterization parameter ↵ ⇠ N (0, 1), and thus the sampled reward r = µ +
↵exp(�). Substituting chosen reward rw and rejected reward rl into BT-loss in Eq. 2. For some
given input x, yw, yl, gradient w.r.t. the logged standard deviation �w is given by

r�wL1 = �E↵w,↵l⇠N (0,1)

⇥
↵w

�
1� sigmoid(rw � rl)

�
exp(�w)

⇤
= 0,

where rw = µw+↵wexp(�w) and rl = µl+↵lexp(�l). Similarly, r�lL1 = 0. The unlearning effect
of the variance term demonstrates that under the BT-loss, RMs still cannot quantify the uncertainty
even equipped with a probabilistic value head.

Recent advances in multi-attribute RMs demonstrate they are capable of providing fine-grained re-
wards and disentangling real helpfulness and other irrelevant aspects such as lengthy bias (Adler
et al., 2024; Chen et al., 2024a). The multi-attribute scores consist of human-or-AI-annotated rat-
ings on multiple aspects such as helpfulness, coherence and verbosity. To learn a multi-attribute
uncertainty-aware RM, we propose two ways to train the probabilistic value head.

Maximum Likelihood Estimation In URM, scores of all attributes are modeled by a distribution,
we can train the probabilistic value head with maximum likelihood estimation (MLE). Since at-
tributes are disentangled in multi-attribute RMs, it is fair to assume that they are independent, i.e.
diagonal covariance for the parameterized normal distribution. Thus, the MLE loss function for
URM is

L2 = �Ex,y⇠D [logP✓(R|x, y)] = �Ex,y⇠D

"
nX

i=0

logP✓(Ri|x, y)
#
, (4)

where Ri is the i-th attribute score from the label and logP✓(Ri|x, y) is the log-probility of Ri from
the parameterized distribution N (µi, exp(2�i)). Thourgh MLE, the probabilistic value head is able
to efficiently approximate the attribute scores’ distribution, hence training URMs to fit the unique
characteristics of the attribute scores.
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Attributes Regression with Reparameterization we can also directly regress the sample-based
rewards on multi-attribute scores R 2 Rn, similar as Adler et al. (2024) but with sampling and
reparameterization. In this setting, URM’s mean square error (MSE) loss function is

L3 = Ex,y⇠D

"
nX

i=0

(ri(x, y)�Ri)
2

#
(5)

where i indicates i-th attribute, and ri ⇠ N (µi, exp(2�i)) is sampled from the distribution pa-
rameterized by the output of the probabilistic value head. To enable gradient back-propagation,
we use the reparameterization technique, so that r = µ + ↵exp(�), where reparameterization
parameter↵ ⇠ N (0, 1). A more detailed analysis of this MSE loss is given in the appendix B.

With the trained probabilistic value head, during inference we can use mean µi for each attribute i
as the scores. We learn a gating layer to combine the multi-attribute scores to a reward scalar via
weighted sum (Wang et al., 2024a). The gating layer is a fully-connected network, whose input is
the last hidden states of the base LLM. And the learning objective of the gating layer is to prioritize
chosen responses over rejected responses through the BT loss. For some prompt x, chosen response
yw and rejected response yl, the gating layer will output weights ! to combine the scores and thus
the loss function is given by

L4 = �Ex,yw,yl⇠D

⇥
log sigmoid

�
µT (x, yw)!(x, yw)� µT (x, yl)!(x, yl)

�⇤
, (6)

Since the gating layer only offers weights to combine the scores, the base model and the proba-
bilistic value head are kept frozen during training the gating layer. Besides the gating layer, the
multi-attribute scores can also be combined by prior weights and still demonstrate competitive per-
formance (Adler et al., 2024).

4.2 UNCERTAINTY-AWARE REWARD MODEL ENSEMBLE

Bootstrap ensemble of models is simple and effective for epistemic uncertainty quantification com-
pared with other methods (Neal, 2012; Hernández-Lobato & Adams, 2015; Blundell et al., 2015).

High

URM 1 URM 2 URM 3

(", $)("′, $′)

!×#

Known Unknown

Training Data Test Data

Low

Reward

Figure 3: Illustration of URME in epistemic uncertainty
quantification.

Fig. 3 illustrates how URME works
in quantifying uncertainty. The input
space X⇥Y (X for prompt and Y for
response) is split into the known and
unknown area. In the known area,
the training dataset can well support
URMs to make reliable reward eval-
uations. However, in the unknown
area, the situation differs. Given that
each model utilizes different weight
initialization and is optimized with
distinct data mini-batches, the en-
semble models are likely to diverge,
potentially leading to varying and in-
consistent evaluations. This inconsis-
tency and divergence among models
indicates the degree of uncertainty in
URME and large uncertainty in turn indicates the input data may belong to the unknown area.

Specifically, after obtaining distributions of the multi-attribute scores, the uncertainty can be mea-
sured by the largest discrepancy in URME

u1(x, y) = max
i,j

�
r(i)(x, y)� r(j)(x, y)

�
, (7)

where i, j are URMs within the ensemble. Yu et al. (2020) proposed to capture both epistemic and
aleatoric uncertainty by the largest variance in the ensemble

u2(x, y) = max
i

(k⌃(i)(x, y)kF ), (8)
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Table 1: Results on RewardBench. RewardBench evaluates four abilities: Chat, Chat-Hard (C-
HARD), Safety and Reasoning. Rankings are decided by the overall average score of all categories.

MODEL BASE SCORE CHAT C-HARD SAFETY REASON

URM (Ours) Llama3.1-8B 92.9 95.5 88.2 91.1 97.0
SFR-Judge-r Llama3.1-70B 92.7 96.9 84.8 91.6 97.6
Skywork-8B Llama3.1-8B 92.5 95.8 87.3 90.8 96.2
Nemotron-RM Nemotron4-340B 92.0 95.8 87.1 91.5 93.6
GRM Llama3-8B 91.5 95.5 86.2 90.8 93.6
ArmoRM Llama3-8B 90.4 96.9 76.8 90.5 97.3
InternLM2-RM InternLM2-20B 90.2 98.9 76.5 89.5 95.8
SteerLM-RM Llama3-70B 88.8 91.3 80.3 92.8 90.6
Gemini-1.5-pro - 88.2 92.3 80.6 87.9 92.0
GPT-4o - 86.7 96.1 76.1 88.1 86.6
GPT-4-turbo - 86.0 95.3 74.3 87.6 86.9

where ⌃(i) is the covariance of i-th URM, which is diagonal in our case. This uncertainty estimator
quantifies uncertainties from both sources and works effectively in offline MBRL setting.

Accurate reward evaluation is crucial in LLM alignment, as it fundamentally steers the learning pro-
cess. Thus, we can adopt a filtering strategy to discard data with highly uncertain reward evaluations,
since RMs may exhibit poor generalization and lack sufficient knowledge to provide reliable feed-
backs for them. In this way, we can prevent LLMs from learning undesired behaviors, promoting a
more controlled and trustworthy alignment process.

5 EXPERIMENT

5.1 EXPERIMENT SETTINGS

In our experiment, URM is based on Llama3.1 with 8 billion parameters. Before adding the prob-
abilistic value head, we initialize URM’s base model with weights from Liu & Zeng (2024). The
gating layer consists of two fully-connected layers with hidden size 4096 activated by SELU (Klam-
bauer et al., 2017). More information on URM training and implementation is given in the appendix
A.1, C.1. URME have 3 URMs with different random seeds, probabilistic value head initialization
and mini-batches of training data.

We utilize HelpSteer 2 (Wang et al., 2024c) as the training dataset to train the base model and the
probabilistic value head for 1 epoch with learning rate 2 ⇥ 10�6. After obtaining the attribute-
specific uncertain-aware probabilistic value head and base model, we keep them frozen and train the
gating layer on Skywork-reward-preference-80k (Liu & Zeng, 2024) for 4000 steps with batchsize
256. During training, we held out 4k data from the dataset as validation set to choose the checkpoint
with highest validation accuracy.

RewardBench (Lambert et al., 2024) , our evaluation benchmark for RMs, has 2985 questions and
response pairs. For multi-attribute RMs and BT-model RMs, a prediction for a response pair is
correct if the RM gives a higher reward to the chosen response than the rejected response. For
generative models, RewardBench evaluates them via LLM-as-a-judge (Zheng et al., 2023). If the
generative model prioritizes the chosen response than the rejected response, the prediction is seen
as correct. To test URM and URME’s ability in improving LLMs’ generation quality, we evaluate
URM and URME with best-of-n sampling (Stiennon et al., 2020) on AlpacaEval (Li et al., 2023).
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(a) Skywork-RM base (b) Fsfairx-RM base

Figure 4: RewardBench overall scores for the ablation study. URM Reg is URM trained with at-
tribute regression while URM MLE is trained via maximum likelihood estimation. ’Ablation’ re-
places the uncertainty-aware value head with a linear layer directly predicting the attribute scores.

5.2 RESULTS

5.2.1 OVERALL RESULTS

Table 1 gives the results on RewardBench. The compared baselines include multi-attribute RMs
(Nemotron4-Reward (Adler et al., 2024), ArmoRM (Wang et al., 2024a), SteerLM-RM (Dong
et al., 2023b)), BT-model RMs (Skywork-reward (Liu & Zeng, 2024), GRM (Yang et al., 2024),
InternLM2-RM (Cai et al., 2024)) and generative RMs (SFR-Judge-r, Gemini-1.5-pro (Google,
2024), GPT-4o (OpenAI, 2024b), GPT-4-turbo (OpenAI, 2024a)). SFR-Judge-r is a chatbot de-
veloped by Salesforce based on Llama3.1-70B.

The results on RewardBench confirm URM’s strong ability in reward modeling. URM achieves the
highest ranking among 8B models and outperforms a number of larger models including Nemotron-
4-340B-Reward, also a multi-attribute RM. Except Chat where almost all models have relatively
good performance, URM demonstrates improvement over the base model Skywork-8B in all abil-
ities. Especially, compared to ArmoRM which is also a multi-attribute RM with gating layers,
URM’s better performance shows the efficacy of modeling human preferences as distributions.

5.2.2 ABLATION STUDY

Here we study the effect of the uncertain-aware value head and different training methods of URMs.
To test the applicability of URM, we initialize URM with two different base models: Skywork-RM
(Liu & Zeng, 2024) and Fsfairx-RM (Dong et al., 2023a). Fig. 4 gives the results of our ablation
study. ’Ablation’ refers to the model with a value head to directly map hidden states to score val-
ues instead of sampling in URM. All other components of Ablation are kept the same as URM.
URM Reg is an URM trained with the attribute regression loss function in Eq. 5, while URM MLE
is trained via maximum likelihood estimation. Since the dataset Helpsteer 2 for our attribute pre-
diction has already been used in the base model Skywork-RM, Ablation and URM MLE do not
demonstrate improvement over the base model, and only URM Reg surpasses the base model by
modeling the preference distributions. But with base model Fsfairx-RM not trained with Helpsteer
2 previously, all our models demonstrate significant improvement over the base model. Especially,
URM trained via attribute regression significantly outperform its counterpart with MLE loss. How-
ever, although URM Reg has better performance in prioritizing chosen responses over the rejected,
URM MLE demonstrates better uncertainty quantification and distribution modeling ability. We
theoretically illustrate this phenomenon in the appendix B. Thus, for other studies involving uncer-
tainty quantification, we use URMs trained via the MLE loss.

Fig. 4 indicates regression-based training methods achieve higher scores on RewardBench. This
could potentially be credited to the high quality of Helpsteer 2 dataset, which is meticulously pro-
cessed and derived from Helpsteer (Wang et al., 2023). This quality enables even the simplest
direct attribute regression to deliver substantial performance improvements, as shown by the Abla-
tion with base model Fsfairx-RM. However, the introduction of noise via the sampling-based scores
in URM Reg makes URMs more robust in distinguishing between chosen and rejected responses.
Despite this, we anticipate that URM MLE would prove more successful on real-world datasets,
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Figure 5: Attribute score distributions modeled by URM. Means and variances are estimated and
averaged by OOD and in-distributional samples separately.

which often encompass a wide spectrum of data quality, so that modeling distributions of the scores
becomes more necessary.

5.2.3 UNCERTAINTY QUANTIFICATION

Now we study the uncertainty quantification of URM and URME and how they behave when dealing
in-distribution and OOD data. Given the challenge inherent in identifying what precisely is OOD
for LLMs, we adopt numeric calculations as simulated OOD data. This is because LLMs are known
to underperform in this skill area. Details are given in the appendix A.2.

Fig. 5 gives the attribution score attributions of OOD and in-distribution data modeled by URM. Due
to the lack of knowledge to accurately evaluate the OOD data, the modeled distributions for OOD
data have significantly larger variance and are much closer to uniformity than for in-distributional
data. Therefore, this uncertainty quantified by the variance can serve as an informative tool for
identifying and filtering out OOD data, where reward models exhibit a tendency towards making
uniform guess than providing an accurate evaluation. This strategy ensures the evaluated outcomes
are both more dependable and robust.

(a) URME uncertainty
By reward gaps

(b) URME uncertainty
By covariance norms

Uncertainty threshold

Uncertainty threshold

(c) Filtering reward evaluations
with uncertainty

Figure 6: URME’s uncertainty quantification by (a) maximum reward gaps and (b) maximum co-
variance norms. Larger discrepancies exist among the URM ensemble when dealing with OOD data.
(c) Reward evaluation accuracy when uncertainty of prompt-response pairs is within the threshold.
2000 test questions are used in this evaluation. The results confirm that uncertainty of URM and
URME is able to indicate reliability of reward predictions.

We quantify uncertainty in URME with two metrics: maximum reward gaps in Eq. 7 and maximum
covariance norms in Eq. 8. URME uncertainty quantification results are given in Fig. 6(a), (b).

9
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Quantified uncertainty under two metrics both indicate that URME is substantially more uncertain
on OOD data. The results confirm that when the URMs lack relevant knowledge to make accurate
reward predictions, they will diverge with each other, demonstrating significant discrepancies.

To test whether quantifying uncertainty is able to improve reliability of the evaluated rewards, we
utilize 2k prompts from our held-out validation set (described earlier) and evaluate their rewards
and uncertainties. Fig. 6(c) gives URM and URME’s evaluation accuracy with uncertainty-based
filtering. In this setup, prompts and responses (either the chosen or rejected) with uncertainty larger
than the threshold are filtered out. URME use reward gaps to quantify uncertainty and URM’s
uncertainty is quantified by summation of each attribute distribution’s variance. The results vali-
date our claim that reward predictions with low uncertainty are more reliable than those with high
uncertainty. Therefore, through uncertainty quantification, we can decide whether the reward pre-
dictions are unreliable and need to be filtered out, which will lead to improved reliability of reward
evaluations.

5.2.4 GENERATION RESULTS IMPROVEMENT

We evaluate URM and URME’s ability in improving LLMs’ generations with best-of-n sampling on
AlpacaEval (Li et al., 2023). Specifically, we prompt Llama3-8b-Instruct model with 805 questions
from AlpacaEval for n times, evaluate each response’s reward and choose the response with highest
reward (highest average reward for URME) as the answer. The answer is then compared against the
reference answer provided by the benchmark with LLM-as-a-judge (Zheng et al., 2023). In LLM-
as-a-judge, we use the official prompt of AlpacaEval and GPT-4-0125-preview as the judge. Details
are given in the appendix A.3.

Table 2: Win rates of Llama3-8b-Instruct against reference answers on AlpacaEval.

Evaluator Best-of-1 Best-of-4 Best-of-8 Best-of-16 Best-of-32 Best-of-64

URM 81.2% 82.7% 83.1% 83.5% 83.9% 85.3%
URME 81.2% 83.4% 84.5% 85.5% 86.6% 86.4%

Table 2 gives the results of using URM and URME to improve generation quality. In our experi-
ments, the baseline model Llama3-8b-Instruct achieves 81.2% win rate (best-of-1). As the number
of samples increases, both URM and URME are able to evaluate the quality of responses, thus ame-
liorating the baseline model’s generative performance. Furthermore, URME is able to consistently
outperform URM in improving generation quality, as it combines the strength of several independent
models and mitigates biases during reward evaluation (Coste et al., 2023; Eisenstein et al., 2023).

6 CONCLUSION AND FUTURE WORK

In this paper, we study the uncertainty issue in reward modeling for LLMs. Uncertainty-aware Re-
ward Model (URM) and Uncertain-aware Reward Model Ensemble (URME) are proposed to model
and quantify the uncertainty during reward modeling. Unlike previous methods that determinis-
tically map hidden states to reward scalars, URM and URME model the distribution of rewards
and evaluate prediction confidence by uncertainty quantification. Notably, among RMs with 8B
or smaller model size, URM achieves state-of-the-art performance on RewardBench, surpassing a
number of larger models. Empirical evidence further validates that through uncertainty quantifica-
tion, URM and URME can effectively evaluate their level of knowledge for input data, leading to
more reliable reward predictions.

The limitation of our paper is that our experiment for generation improvements is limited to best-of-
n due to the limit of computation resources. In the future, we plan to introduce URM and URME to
prevailing LLM alignment methods like RLHF Ouyang et al. (2022) and iterative DPO Yuan et al.
(2024). Another direction to look at is model merging for URMs in the weight space (Ramé et al.,
2024), which demonstrate competitive efficiency and robustness compared to ensembles. A simple
empirical study to RM merging with URMs is included in the appendix C.1.
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