

EFFICIENT OFFLINE REINFORCEMENT LEARNING VIA PEER-INFLUENCED CONSTRAINT

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Offline reinforcement learning (RL) seeks to learn an optimal policy from a fixed
 012 dataset, but distributional shift between the dataset and the learned policy often
 013 leads to suboptimal real-world performance. Existing methods typically use be-
 014 havior policy regularization to constrain the learned policy, but these conservative
 015 approaches can limit performance and generalization, especially when the behav-
 016 ior policy is suboptimal. We propose a Peer-Influenced Constraint (PIC) frame-
 017 work with a “peer review” mechanism. Specifically, we construct a set of similar
 018 states and use the corresponding actions as candidates, from which we select the
 019 optimal action to constrain the policy. This method helps the policy escape local
 020 optima while approximately ensuring the staying within the in-distribution space,
 021 boosting both performance and generalization. We also introduce an improved
 022 version, Ensemble Peer-Influenced Constraint (EPIC), which combines ensemble
 023 methods to achieve strong performance while maintaining high efficiency. Addi-
 024 tionally, we uncover the Coupling Effect between PIC and uncertainty estimation,
 025 providing valuable insights for offline RL. We evaluate our methods on classic
 026 continuous control tasks from the D4RL benchmark, with both PIC and EPIC
 027 achieving competitive performance compared to state-of-the-art approaches.

1 INTRODUCTION

031 Reinforcement learning (RL) focuses on optimizing sequential decision-making in dynamic envi-
 032 ronments (Sutton & Barto, 2018). By leveraging neural networks, online RL has achieved success
 033 in gaming and robotic manipulation (Mnih et al., 2013; 2015; Zhang et al., 2024a; Shi et al., 2024).
 034 However, its reliance on continuous interaction with the environment limits its application in sce-
 035 narios where data collection is expensive, time-consuming, or dangerous (Cao et al., 2025; Yu et al.,
 036 2021a). Offline RL addresses this by learning from a fixed, pre-collected dataset, eliminating the
 037 need for further interactions during training (Lange et al., 2012; Levine et al., 2020). Although
 038 promising, traditional online RL algorithms often struggle in offline settings due to the lack of on-
 039 line interaction for error correction, leading to instability and potential learning failures when errors
 040 propagate (Fujimoto et al., 2019; Tarasov et al., 2023a). This difficulty in accurately evaluating
 041 out-of-distribution (OOD) actions further challenges the value-based policy learning process.

042 To address distributional shifts between the dataset and the learned policy in offline RL, regu-
 043 larization is often applied during training to encourage policies to stay close to dataset actions during
 044 evaluation and improvement. Existing methods can be broadly categorized into value regulariza-
 045 tion and policy regularization methods. Value regularization methods penalize the Q-values of OOD
 046 actions to discourage them from being selected (Kumar et al., 2020; Yu et al., 2021b; Wu et al.,
 047 2021; Lyu et al., 2022; Nakamoto et al., 2024). Methods such as SAC-N and EDAC (An et al.,
 048 2021) use ensembles to estimate value distributions and apply pessimistic penalties. However, these
 049 methods often require large ensembles, leading to high computational costs and slower convergence
 050 speed. Additionally, many uncertainty estimators overlook critical information, such as inter-sample
 051 distances, which are essential for distinguishing in-distribution and OOD actions in RL.

052 Policy regularization methods constrain the policy by focusing on actions within the dataset, thereby
 053 avoiding OOD actions without relying on ensemble modeling (Kostrikov et al., 2021a; Nair et al.,
 054 2020; Fujimoto & Gu, 2021; Ma et al., 2024; Luo et al., 2024). While these methods are computa-
 055 tionally efficient, their generalization is limited by the restricted set of available actions, which may

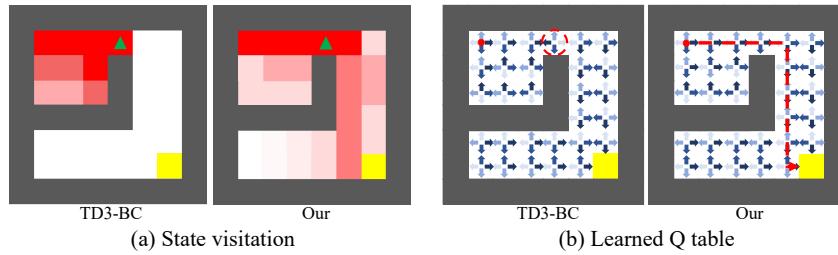


Figure 1: The illustrations and results of the motivation experiment. (a) State visitation heatmap (darker = higher probability): PIC escapes local optima and reaches the goal, while TD3+BC, constrained by its one-to-one state-action mapping, stalls. (b) Q-table visualization (darker arrows = higher Q): PIC drives the agent toward the goal; TD3+BC remains pessimistic.

not always be optimal. For example, TD3+BC (Fujimoto & Gu, 2021) shows limited generalization in a 2D grid world task (Sutton & Barto, 2018; Xu et al., 2023b) when the dataset contains missing actions, such as moving right (illustrated by the green triangle in Figure 1, see Appendix E.1 for details). This raises a critical question: *How can we more effectively utilize dataset information to enhance generalization while preserving computational efficiency?*

To answer the above question, we propose Peer-Influenced Constraint (PIC), a plug-in regularizer that exploits relationships within the dataset via a “peer review” mechanism. For a query state, PIC reuses actions from similar peer states and steers the policy toward a high-value candidate. This expands the effective in-dataset action set—reusing actions observed elsewhere rather than relying only on the behavior action—while remaining compute-light and ensemble-agnostic. When combined with ensembles, we observe a Coupling Effect between PIC strength and uncertainty estimation, enabling effective OOD penalties with substantially smaller ensembles. Building on this, we develop Ensemble Peer-Influenced Constraint (EPIC) to further improve data-coverage generalization at competitive training cost.

The contributions of this paper are as follows:

- We introduce PIC, a drop-in policy regularization module that reuses cross-state information in the dataset to guide the policy toward high-value, in-distribution actions, without training additional generative models or relying on large ensembles.
- We identify a Coupling Effect between PIC strength and uncertainty estimation that enables effective OOD penalties with smaller ensembles; building on this, we introduce EPIC, a PIC-enhanced ensemble with strong performance and high efficiency.
- We instantiate PIC in TD3, SAC, and IQN, demonstrating competitive performance and computational efficiency on offline RL benchmarks, as well as in offline-to-online and controlled generalization evaluations.

2 PRELIMINARIES

In this section, we briefly introduce the common RL settings, notations, and details of offline RL methods.

2.1 REINFORCEMENT LEARNING

In RL, the environment is typically modeled as an infinite-horizon Markov Decision Process (MDP), represented by the tuple $(\mathcal{S}, \mathcal{A}, \mathcal{P}, p_0, r, \gamma)$. This includes a state space \mathcal{S} , an action space \mathcal{A} , transition probabilities $\mathcal{P} : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0, 1]$, an initial state distribution p_0 , a reward function $r : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$, and a discount factor $\gamma \in [0, 1]$.

Given the MDP and the agent’s policy π_ϕ with parameter ϕ , at time t , the agent observes the state s_t and selects an action $a_t = \pi_\phi(s_t)$. The environment then provides a reward $r(s_t, a_t)$ and transitions to the next state s_{t+1} . Let $R_t = \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)$ denote the expected discounted reward of π_ϕ starting from time t , accounting for the randomness in the initial state distribution p_0 and the transition function \mathcal{P} . The Q-value $Q^\pi : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ represents the expected cumulative return obtained

108 by taking action a at state s and subsequently following the policy π_ϕ . It quantifies the long-term
 109 value of a state-action pair under the given policy:
 110

$$111 \quad Q^\pi(s, a) = \mathbb{E} \left[\sum_{t=0}^T \gamma^t r(s_t, a_t) | s_0 = s, a_0 = a \right]. \quad (1)$$

112 The goal in RL is to find the optimal policy $\pi^*(s) \in \operatorname{argmax}_a Q(s, a)$, maximizing R_t .
 113

115 2.2 OFFLINE REINFORCEMENT LEARNING

117 Classic RL requires environment interaction during training, which is impractical in tasks with high
 118 safety or cost constraints. Offline RL addresses this by learning an optimal policy from a pre-
 119 existing dataset $\mathcal{D} = (s, a, r, s')$ without environment access. However, adapting existing algorithms
 120 often leads to suboptimal policies due to overestimation bias for unseen state-action pairs, which is
 121 corrected in online RL through exploration and feedback but requires additional mechanisms in
 122 offline RL to stabilize training.

123 To counteract overestimation bias, a common approach is to address the root cause: the Q-value
 124 estimates. Uncertainty estimation helps by highlighting that Q-values for OOD actions are more un-
 125 certain than those for in-sample actions. Both SAC-N and EDAC (An et al., 2021) use an ensemble
 126 of N Q-functions to approximate the Q-value distribution. They update the i -th critic parameter θ_i
 127 by minimizing the squared temporal difference loss:

$$128 \quad L(\theta_i) = \mathbb{E}_{(s, a, r, s') \sim \mathcal{B}} [(y - Q_{\theta_i}(s, a))^2], \quad (2)$$

130 where $y = r + \gamma \min_{i=1, \dots, N} Q_{\theta'_i}(s', \pi_{\phi'}(s'))$, θ' and ϕ' represent the parameters of the target networks
 131 for the critic and actor, respectively, \mathcal{B} is a minibatch from \mathcal{D} .
 132

133 The policy can be improved by:

$$134 \quad L_1(\phi) = \mathbb{E}_{s \sim \mathcal{B}} \left[- \min_{i=1, \dots, N} Q_{\theta_i}(s, \pi_\phi(s)) \right]. \quad (3)$$

137 Using the minimum Q-value penalizes OOD actions and avoids overestimation with large N , but
 138 methods such as SAC-N and EDAC incur high cost from maintaining N Q-networks.

139 In addition to value regularization methods, policy constraint methods directly constrain the learned
 140 policy to stay close to the behavior policy in the dataset, thereby avoiding OOD actions. For exam-
 141 ple, TD3+BC (Fujimoto & Gu, 2021) extends the Equation (3) by incorporating a behavior cloning
 142 loss term into the policy update:

$$143 \quad L_{\text{BC}}(\phi) = \mathbb{E}_{(s, a) \sim \mathcal{B}} [|a - \pi_\phi(s)|^2]. \quad (4)$$

145 TD3+BC achieves competitive performance with lower computational costs compared to ensemble-
 146 based methods. However, it often struggles in datasets with limited action diversity, which restricts
 147 policy improvement and leads to suboptimal generalization.
 148

149 3 METHOD

151 In this section, we introduce our method. We first define PIC and establish performance gap bounds,
 152 before integrating PIC into an offline RL algorithm. We then extend PIC to ensemble-based RL
 153 methods, where we uncover a Coupling Effect between PIC and uncertainty quantification. Building
 154 on these insights, we propose EPIC, which unifies PIC and the Coupling Effect to enable efficient
 155 and generalized policy learning. The gradient propagation of actor training in EPIC is illustrated in
 156 Figure 2.
 157

158 3.1 PEER-INFLUENCED CONSTRAINT

160 Inspired by representation learning-based RL methods (Fujimoto et al., 2023; Ni et al., 2024) and
 161 dataset-constrained approaches (Ran et al., 2023), which capture structural information in the en-
 162 vironment by mapping similar states or state-action pairs to similar embeddings, we observe that

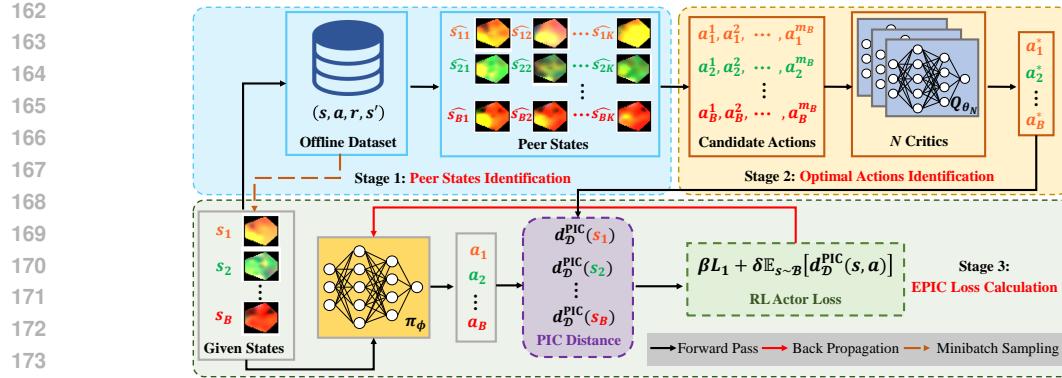


Figure 2: Actor training workflow of EPIC. It consists of three stages: identifying peer states, selecting optimal actions, and computing the PIC loss. First, peer states are retrieved for a given state. Next, the corresponding optimal actions are determined. Finally, the PIC distance is calculated, and the actor is updated by jointly optimizing the Q-value loss L_1 and the PIC loss.

offline RL datasets often contain rich but underutilized structural information about states. Specifically, we propose to utilize the inherent structure of the dataset, where states with similar characteristics (e.g., proximity or shared features) often contain valuable information for guiding policy learning. We first introduce PIC, a novel approach that leverages peer states to enhance policy learning in offline RL. We then describe an efficient peer states search method for fast and effective state matching. Finally, we present a practical algorithm that integrates PIC into TD3 to enhance offline RL performance.

Definition 1 (PIC Distance). *Let s be a state from the dataset \mathcal{D} , and let $\pi_\phi(s)$ be a parameterized policy. The PIC distance is defined as:*

$$d_{\mathcal{D}}^{\text{PIC}}(s) = \|\pi_\phi(s) - a^*\|, \quad (5)$$

where a^* is the optimal action selected from a candidate action set \mathcal{A}' .

The optimal action a^* is determined as:

$$a^* = \arg \max_{a \in \mathcal{A}'} \min_{i=1,2} Q_{\theta_i}(s, a), \quad (6)$$

where Q_{θ_1} and Q_{θ_2} are the Q-values estimated by the two critics. To address potential overestimation issues in critics, we use two critics to provide more reliable candidate action value estimates (Fujimoto & Gu, 2021; Zhang et al., 2025).

The candidate set \mathcal{A}' includes: (1) Actions of the given state s ; (2) Actions corresponding to the K peer states. Each peer state, \hat{s}_j , is determined as: To ensure that peer states are distinct from s , we explicitly exclude s during nearest-neighbor retrieval. Formally, the j -th peer state \hat{s}_j is defined as:

$$\hat{s}_j = \arg \min_{\hat{s} \in \mathcal{D} \setminus (\mathcal{D}_{j-1} \cup \{s\})} \|s - \hat{s}\|, \quad j = 1, 2, \dots, K, \quad (7)$$

where \mathcal{D}_{j-1} is the set of already selected $j-1$ peer states of s . Since one state in \mathcal{D} could correspond to multiple actions, the size of \mathcal{A}' may be greater than $K + 1$.

PIC is built upon the assumption that, in continuous control domains with local smoothness, nearby states tend to share similar optimal actions, which makes the peer-based action constraint both feasible and effective. This approach yields a more optimal behavior constraint by accounting for actions of the given state, potential peer-state actions, effectively escaping local optima for more generalized policy learning. Furthermore, we provide an analysis of the performance gap between the learned policy π_ϕ using PIC constraint and the optimal policy π^* .

Theorem 1 (Performance Gap of PIC). *Assume that μ and $P(s'|s, a)$ are Lipschitz continuous. For any (s, a) and its peer pair (\hat{s}_j, \hat{a}_j) , suppose $\|\hat{s}_j - s\| \leq \epsilon_s$, $\|\mu(\hat{s}_j) - \pi(s)\| \leq \epsilon_a$, and $\max_{s \in S} |\pi^*(s) - \mu(s)| \leq \epsilon_*$, conditions that can be satisfied by PIC. Then, the following inequality holds:*

$$|J(\pi^*) - J(\pi)| \leq \frac{CL_P R_{\max}}{1 - \gamma} (\epsilon_a + L_s \epsilon_s + \epsilon_*), \quad (8)$$

216 where C is a positive constant, L_P and L_s represent the Lipschitz constant, R_{\max} is the max value
 217 of reward.
 218

219 For a detailed proof, please see Appendix B. Observed from Theorem 1, the performance gap is
 220 influenced by ϵ_a , ϵ_s , and ϵ_* . PIC reduces ϵ_s by ensuring that peer states \hat{s}_j are close to the given state
 221 s , thereby minimizing state deviations. PIC reduces ϵ_a by selecting actions a^* from the candidate
 222 set that are close to both the behavior policy $\mu(s)$ and the optimal policy $\pi^*(s)$, thus minimizing the
 223 action discrepancy. Finally, PIC reduces ϵ_* by aligning the learned policy with the optimal policy,
 224 narrowing the performance gap and improving generalization.
 225

226 PIC is similar to TD3+BC (Fujimoto & Gu, 2021), but with significant differences. While TD3+BC
 227 relies on strict state-action correspondences, limiting exploration and adaptability, our approach
 228 avoids these constraints. Unlike methods that minimize the distance between $(s, \pi_\phi(s))$ and its
 229 nearest state-action pair in \mathcal{D} (Ran et al., 2023), which can result in incorrect constraints due to
 230 state mismatches, our method considers actions from both the given state and similar states. This
 231 enables optimal action selection without state mismatches and eliminates the need for extensive
 232 tuning, ensuring better performance, avoiding the OOD issues.
 233

232 3.1.1 EFFICIENT PEER STATES SEARCH

234 PIC identifies, for each state $s \in \mathcal{D}$, its K nearest peer states in the state space. To accelerate
 235 retrieval, we adopt a precomputed KD-Tree (Bentley, 1975), a standard index for efficient nearest-
 236 neighbor search (Ran et al., 2023; Zhang et al., 2023), which significantly reduces training-time
 237 computation by avoiding redundant searches. Concretely, we build the KD-Tree over all dataset
 238 states once before training, and query it during training to fetch the K nearest states in $\mathcal{O}(|s| \log |\mathcal{D}|)$
 239 time per query (Ram & Sinha, 2019), where $|s|$ denotes the state dimensionality. Unlike dataset-
 240 constraint methods (Ran et al., 2023) that search jointly over state and action spaces, our approach
 241 compares states only, lowering computational cost while maintaining accuracy.
 242

243 3.1.2 PRACTICAL ALGORITHM

244 PIC is versatile and can be integrated as a component into any Actor-Critic methods. In this paper,
 245 we combine it with the straightforward and easy-to-implement TD3 method, introducing a practical
 246 algorithm called PIC-TD3. The actor update for PIC-TD3 is:

$$247 \quad 248 L_{\text{PT}}(\phi) = \mathbb{E}_{s \sim \mathcal{B}} [-\beta Q_{\theta_1}(s, a)] + \delta \mathbb{E}_{s \sim \mathcal{B}} [d_{\mathcal{D}}^{\text{PIC}}(s)], \quad (9)$$

249 where $a = \pi_\phi(s)$, $\beta = \frac{\alpha |\mathcal{B}|}{\sum_{s_i, a_i} Q(s_i, a_i)}$, and the α in β is a hyper-parameter. δ is the PIC strength
 250 parameter. The setting of β is similar to that in TD3+BC (Fujimoto & Gu, 2021), designed to
 251 mitigate sensitivity to Q-value estimates. The pseudocode of PIC-TD3 is provided in Appendix C.
 252

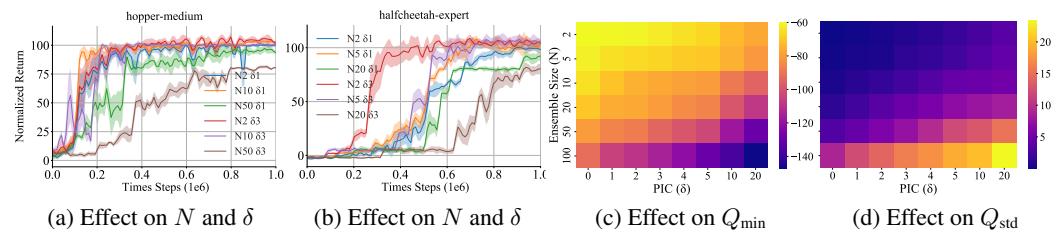
253 Note that PIC is designed as a versatile plugin that can be seamlessly integrated into different RL
 254 algorithms without requiring major architectural modifications. In Appendix F.3, we incorporate
 255 PIC into IQL (Kostrikov et al., 2021b) and SAC (Haarnoja et al., 2018), showing that it consistently
 256 improves performance and scales effectively.
 257

258 3.2 ENSEMBLE PEER-INFLUENCED CONSTRAINT

259 In this section, we first assess how PIC augments ensemble-based methods and reveal a Coupling
 260 Effect between PIC strength and uncertainty estimation. We then introduce EPIC, which attains
 261 state-of-the-art performance with strong generalization and improved computational efficiency. Fi-
 262 nally, we discuss why EPIC works.
 263

264 3.2.1 INTEGRATING PIC WITH ENSEMBLE METHODS

265 Policy constraint methods are typically more efficient and stable, but ensemble-based value con-
 266 straint methods, like EDAC (An et al., 2021), can perform well in certain environments. However,
 267 these methods often require large networks and extensive resources, especially on some expert-level
 268 datasets. We explore whether PIC can bring benefits to such ensemble methods by integrating it
 269 with EDAC and testing its effectiveness. As shown in Figure 3 (a) and (b), decent performance

Figure 3: The impact of ensemble size N and PIC strength δ on performance and uncertainty.**Algorithm 1** Ensemble Peer-Influenced Constraint Algorithm (EPIC)

```

Input: Observation state  $\mathcal{S}$ , offline dataset  $\mathcal{D}$ 
Output: Learned policy  $\pi$ 
Initialize: Critic networks  $\{Q_{\theta_i}\}_{i=1}^N$ , actor network  $\pi_\phi$ , target networks  $\{Q_{\theta'_i}\}_{i=1}^N$ ,  $\phi'$ , and peer state number  $K$ 
for  $t = 1$  to  $T$  do
    Sample a mini-batch  $\mathcal{B} = \{(s, a, r, s')\}$  from  $\mathcal{D}$ 
    Find peer states in  $\mathcal{D}$  of sample state by  $\hat{s}_j = \arg \min_{\hat{s} \in \mathcal{D} \setminus \mathcal{D}_{j-1}} \|s - \hat{s}\|$ 
    Construct candidate action set  $\mathcal{A}'$ 
    Select the optimal action  $a^*$  using  $a^* = \arg \max_{a \in \mathcal{A}'} \min_{i=1,2,\dots,N} Q_{\theta_i}(s, a)$ 
    Calculate PIC distance of sample state by  $d_{\mathcal{D}}^{\text{PIC}}(s) = \|\pi_\phi(s) - a^*\|$ 
    Update  $\theta_i$  by minimizing  $L_{\text{EPIC}}(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim \mathcal{B}} [(y - Q_{\theta_i}(s, a))^2 + \text{ES}]$ 
    Update  $\phi$  using gradient descent with  $L_{\text{EPIC}}(\phi) = \beta L_1(\phi) + \delta \mathbb{E}_{s \sim \mathcal{B}} [d_{\mathcal{D}}^{\text{PIC}}(s)]$ 
     $\theta'_i \leftarrow \tau \theta_i + (1 - \tau) \theta'_i$ ,  $\phi' \leftarrow \tau \phi + (1 - \tau) \phi'$ 
end for

```

is achieved with $N = 2$ (the original PIC-TD3 version), and performance improves with increasing N . However, when N is too large, such as in hopper-medium ($N = 50$) or halfcheetah-expert ($N = 20$), the policy converges more slowly, and the convergence performance also degrades. Additionally, we find that higher PIC strength reduces the number of critics needed to achieve comparable performance.

We further measure and analyze the relationship between various uncertainty metrics, ensemble size N , and PIC strength δ on the hopper-medium-expert dataset. We sample 10,000 state-action pairs and compute the uncertainty metrics Q_{\min} , Q_{std} , and $Q_{\text{clip}} = Q_{\text{mean}} - Q_{\min}$ at the same time step under different values of N and δ . We then calculate the average values and present the heatmaps in Figure 3 (c) and (d); results for Q_{clip} are reported in Appendix F.1.

Our findings show that, for a fixed N , increasing δ raises uncertainty, allowing smaller ensembles to maintain sufficient penalties for OOD actions. Conversely, for a fixed δ , increasing N results in higher uncertainty as well. We analyze that as PIC strength increases, the policy increasingly selects in-distribution actions while assigning more conservative values to potential OOD actions. As a consequence, Q_{\min} becomes more pessimistic, thereby further reducing overestimation, and ensemble disagreement Q_{std} tends to increase on OOD candidates, and Q_{clip} also tends to increase. These changes reflect a stronger penalization of high-risk, potentially OOD actions, similar to the increased OOD penalty produced by using a larger ensemble size.

These observations suggest that without PIC, Q-value estimates for OOD actions often exhibit low uncertainty, leading to the overestimation of their values. This in turn requires the use of large ensembles to mitigate the risk of inaccurate Q-value predictions and ensure reliable performance. By incorporating PIC, we introduce a “Coupling Effect” that not only improves policy performance with smaller ensembles but also significantly reduces computational overhead. Furthermore, we measure the fraction of policy actions that lie in in-distribution regions under different training steps, PIC strengths δ , and ensemble sizes N . The results, reported in Appendix F.1, show that introducing PIC significantly increases the in-distribution ratio compared to the no-PIC baseline. Moreover, this ratio consistently grows as δ , the training horizon, and N increase, indicating that the policy is progressively concentrated on the dataset support. From the perspective of the policy distribution, this

324 provides additional evidence for the coupling effect: stronger PIC constraints and larger ensembles
 325 jointly help keep the learned policy close to in-distribution regions.

326 Building on this Coupling Effect, we apply PIC to EDAC and introduce the EPIC, which produces
 327 state-of-the-art, generalized policies with high computational efficiency. The actor update for EPIC
 328 is as follows:

$$329 \quad L_{\text{EPIC}}(\phi) = \beta L_1(\phi) + \delta \mathbb{E}_{s \sim \mathcal{B}} [d_{\mathcal{D}}^{\text{PIC}}(s)], \quad (10)$$

330 where L_1 is defined in Equation (3) and the optimal action a^* in $d_{\mathcal{D}}^{\text{PIC}}(s)$ is
 331

$$333 \quad a^* = \arg \max_{a \in \mathcal{A}'} \min_{i=1,2,\dots,N} Q_{\theta_i}(s, a). \quad (11)$$

334 The critic update method in EPIC is consistent with EDAC, with the addition of an ensemble simi-
 335 larity (ES) term to Equation (2):

$$336 \quad L_{\text{EPIC}}(\theta_i) = \mathbb{E}_{(s, a, r, s') \sim \mathcal{B}} [(y - Q_{\theta_i}(s, a))^2 + \text{ES}], \quad (12)$$

337 where $\text{ES} = \frac{\eta}{N-1} \sum_{1 \leq i \neq j \leq N} \langle \nabla_a Q_{\theta_i}(s, a), \nabla_a Q_{\theta_j}(s, a) \rangle$, η is a hyperparameter and N is the en-
 338 semble size. The ES term encourages diversity among critics, but to better evaluate the effectiveness
 339 of PIC, we set $\eta = 1$ in most environments. EPIC’s pseudocode is provided in Algorithm 1.

340 3.2.2 WHY EPIC WORKS

341 EPIC combines the strengths of PIC and ensemble methods to enhance policy learning by leveraging
 342 in-sample optimal action selection and the Coupling Effect. It constrains the policy through PIC
 343 by constructing a candidate action set from similar states, avoiding unreliable OOD actions and
 344 local optima. By utilizing the diversity of multiple critics, EPIC stabilizes value estimates and uses
 345 a maxmin-like approach to select the optimal action a^* , effectively reducing overestimation and
 346 improving action selection.

347 Unlike traditional policy constraint methods (e.g., TD3+BC), which often struggle to surpass the
 348 performance of the behavior policy, or value constraint methods, which may inadequately penalize
 349 OOD actions, EPIC achieves a better balance between generalization and conservatism. The Cou-
 350 pling Effect between PIC and uncertainty quantification ensures an optimal trade-off among gener-
 351 alization, conservatism, and computational efficiency, resulting in stronger overall performance.

352 4 EXPERIMENTS

353 In this section, we conduct several experiments to evaluate the empirical performance of the pro-
 354 posed method. Our goal is to answer five key questions: (1) Does our method outperform previous
 355 approaches on standard offline benchmarks? (2) Is our method efficient? (3) Can our method learn
 356 optimal policies from peer states to enhance generalization? (4) How do different ensemble sizes N
 357 and PIC strengths δ affect EPIC’s performance? (5) Is our method still effective in offline-to-online
 358 fine-tuning?

359 4.1 MAIN RESULTS ON BENCHMARKS

360 We evaluate the proposed method on three suites of D4RL tasks (Fu et al., 2020): Gym-MuJoCo,
 361 AntMaze, and Adroit. For each suite, we consider all available datasets. We compare our results
 362 to several ensemble-free baselines, including TD3+BC (Fujimoto & Gu, 2021), IQL (Kostrikov
 363 et al., 2021b), CQL (Kumar et al., 2020), SAC-RND (Nikulin et al., 2023), and PRDC (Ran et al.,
 364 2023). Given the effectiveness and efficiency of our approach, we also compare it to ensemble-
 365 based baselines, including SAC-N, EDAC (An et al., 2021), MSG (Ghasemipour et al., 2022) and
 366 SAC-BC-N (Beeson & Montana, 2024). Detailed implementation and baseline result sources are
 367 provided in Appendix D.

368 We train PIC-TD3 and EPIC for one million steps on each task within the Gym-MuJoCo, AntMaze,
 369 and Adroit benchmarks. The test results are presented in Tables 1, 2, and 3. In these tables, the
 370 mean-wise best results among algorithms are highlighted in bold, the second-best performance is
 371 underlined, and the symbol \pm represents the standard deviation across the seeds. Our method,
 372

378 Table 1: Average normalized score over final evaluations across five seeds on Gym-MuJoCo tasks.
379

380 Task Name	381 TD3+BC	382 IQL	383 CQL	384 SAC-RND	385 PRDC	386 SAC-N	387 EDAC	388 PIC-TD3 (ours)	389 EPIC (ours)
390 halfcheetah-random	391 30.9	392 19.5	393 31.1	394 27.6	395 26.9	396 28.0	397 28.4	398 25.3 ± 2.1	399 28.9 ± 1.4
390 halfcheetah-medium	391 54.7	392 50.0	393 46.9	394 66.4	395 63.5	396 67.5	397 65.9	398 68.4 ± 2.4	399 68.9 \pm 2.7
390 halfcheetah-expert	391 93.4	392 95.5	393 97.3	394 102.6	395 –	396 105.2	397 106.8	398 104.2 ± 3.2	399 107.9 \pm 6.4
390 halfcheetah-medium-expert	391 89.1	392 92.7	393 95.0	394 108.1	395 94.5	396 107.1	397 106.3	398 99.8 ± 1.6	399 103.8 ± 3.8
390 halfcheetah-medium-replay	391 45.0	392 42.1	393 45.3	394 51.2	395 55.0	396 63.9	397 61.3	398 63.1 ± 0.9	399 64.8 \pm 1.5
390 halfcheetah-full-replay	391 75.0	392 75.0	393 76.9	394 81.2	395 –	396 84.5	397 84.6	398 83.7 ± 1.1	399 87.3 \pm 1.0
395 hopper-random	396 8.5	397 10.1	398 5.3	399 19.6	400 26.8	401 31.3	402 25.3	403 25.4 ± 3.2	404 27.9 ± 4.2
395 hopper-medium	396 60.9	397 65.2	398 61.9	399 91.1	400 100.3	401 100.3	402 101.6	403 100.7 ± 1.5	404 102.2 \pm 0.5
395 hopper-expert	396 109.6	397 108.8	398 106.5	399 109.8	400 –	401 110.3	402 110.1	403 111.8 ± 2.1	404 112.2 \pm 1.5
395 hopper-medium-expert	396 87.8	397 85.5	398 96.9	399 109.8	400 109.2	401 110.1	402 110.7	403 105.6 ± 1.1	404 112.3 \pm 0.9
395 hopper-medium-replay	396 55.1	397 89.6	398 86.3	399 97.2	400 100.1	401 101.8	402 102.8	403 100.5 ± 1.3	404 102.0 ± 1.0
395 hopper-full-replay	396 97.9	397 104.4	398 101.9	399 107.4	400 –	401 102.9	402 105.4	403 105.8 ± 0.8	404 107.6 \pm 1.6
398 Average	399 70.4	400 72.9	401 73.7	402 82.6	403 –	404 84.4	405 85.2	406 85.1	407 87.8

394 Table 2: Average normalized score over the final evaluation and five seeds on the AntMaze tasks.
395

396 Task Name	397 TD3+BC	398 IQL	399 CQL	400 SAC-RND	401 PRDC	402 MSG	403 SAC-BC-N	404 PIC-TD3 (ours)	405 EPIC (ours)
397 antmaze-umaze	398 66.3	399 83.3	400 74.0	401 97.0	402 98.8	403 97.9	404 98.6	405 96.4 ± 3.5	406 98.6 ± 0.5
397 antmaze-umaze-diverse	398 53.8	399 70.6	400 84.0	401 66.0	402 90.0	403 79.3	404 91.2	405 91.1 ± 2.3	406 94.3 \pm 4.2
397 antmaze-medium-play	398 26.5	399 64.6	400 61.2	401 38.5	402 82.8	403 85.9	404 85.8	405 79.3 ± 5.4	406 88.1 \pm 3.3
397 antmaze-medium-diverse	398 25.9	399 61.7	400 53.7	401 74.7	402 78.8	403 84.6	404 73.8	405 77.9 ± 6.8	406 83.8 ± 4.0
397 antmaze-large-play	398 0.0	399 42.5	400 15.8	401 43.9	402 54.8	403 64.3	404 65.8	405 55.7 ± 7.7	406 65.9 \pm 2.3
397 antmaze-large-diverse	398 0.0	399 27.6	400 14.9	401 45.7	402 50.0	403 71.3	404 75.8	405 53.2 ± 4.7	406 66.9 ± 5.3
401 Average	402 28.8	403 58.4	404 50.6	405 61.0	406 75.9	407 80.6	408 81.8	409 75.6	410 82.9

403 EPIC, outperforms all baselines in the vast majority of tasks, demonstrating the effectiveness of the
404 PIC and Coupling Effect. Additionally, PIC-TD3 surpasses ensemble-free methods and achieves
405 performance comparable to ensemble-based methods.

406
407 Appendix F.2 reports the minimum Q-ensembles for the results in Tables 1, 2, and 3, showing that
408 our method achieves competitive performance with substantially fewer critics, thus highlighting its
409 efficiency and robustness. Appendix F.8 provides additional training curves, which highlight the
410 stability, convergence speed, and overall learning dynamics of our method. Appendix F.3 extends
411 the PIC framework to other RL algorithms, where consistent gains further confirm its effectiveness
412 in enhancing policy generalization and robustness.

413 4.2 COMPUTATIONAL EFFICIENCY COMPARISON

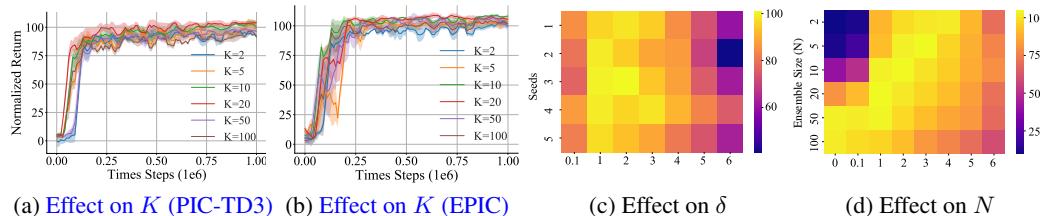
414 Time complexity plays a critical role in offline RL. We evaluate PIC-TD3, EPIC, and several baseline
415 methods on the hopper-medium dataset. Appendix F.4 shows training time (relative to TD3+BC)
416 and normalized scores. Ensemble methods are accurate but costly, BC-based methods efficient but
417 weaker, while EPIC and PIC-TD3 achieve a better balance of efficiency and performance.

420 4.3 GENERALIZATION

421 The advantage of PIC lies in its ability to leverage peer states and corresponding actions from the
422 dataset, allowing the learning of potentially optimal actions not present in the current state. This
423 gives PIC better generalization compared to traditional policy constraint methods. Inspired by (Ran
424 et al., 2023) and (Kumar, Aviral , 2019), we create a lineworld environment. The environment details
425 are in the Appendix E.2. We generate four datasets—*lineworld-easy*, *lineworld-random*, *lineworld-
426 medium*, and *lineworld-hard*—ordered by increasing difficulty. We train TD3+BC (Fujimoto & Gu,
427 2021), BEAR (Kumar et al., 2019), PRDC (Ran et al., 2023), and PIC-TD3 on the datasets, and the
428 results are presented in Appendix F.5.1. In easy and random datasets, all methods reach the optimal
429 policy. On medium and hard datasets, reward sparsity and conservative regularization hinder
430 TD3+BC and BEAR, while PRDC overlooks potential optimal actions. PIC generalizes by leverag-
431 ing peer states’ optimal actions, even unseen ones, to escape local optima.

432 Table 3: Average normalized score over the final evaluation and five seeds on the Adroit tasks.
433

Task Name	BC	TD3+BC	IQL	CQL	SAC-RND	EDAC	RORL	PIC-TD3 (ours)	EPIC (ours)
pen-human	34.4	81.8	81.5	37.5	5.6	51.2	33.7	84.7 ± 2.4	111.7 ± 5.5
pen-cloned	56.9	61.4	77.2	39.2	2.5	68.2	35.7	80.2 ± 1.1	94.6 ± 8.6
pen-expert	85.1	146.0	133.6	107.0	45.4	122.8	130.3	133.7 ± 4.7	150.9 ± 6.4
door-human	0.5	-0.1	3.1	9.9	0.0	10.7	3.7	3.7 ± 1.3	12.9 ± 6.2
door-cloned	-0.1	0.1	0.8	0.4	0.2	9.6	-0.1	2.1 ± 0.8	7.1 ± 3.3
door-expert	34.9	84.6	105.3	101.5	73.6	-0.3	104.9	105.6 ± 4.1	108.4 ± 1.4
hammer-human	1.5	0.4	2.5	4.4	-0.1	0.8	2.3	4.9 ± 2.1	9.2 ± 6.5
hammer-cloned	0.8	0.8	1.1	2.1	0.1	0.3	1.7	2.4 ± 1.2	12.7 ± 3.3
hammer-expert	125.6	117.0	129.6	86.7	24.8	0.2	132.2	121.7 ± 3.1	130.4 ± 3.8
relocate-human	0.0	-0.2	0.1	0.2	0.0	0.1	0.0	0.5 ± 0.7	2.7 ± 1.2
relocate-cloned	-0.1	-0.1	0.2	-0.1	0.0	0.0	0.0	0.3 ± 0.2	1.1 ± 0.5
relocate-expert	101.3	107.3	106.5	95.0	3.4	-0.3	47.8	105.7 ± 2.1	108.4 ± 1.4
Average	36.7	49.9	53.5	40.3	13.0	21.9	41.0	53.8	62.5

452 (a) Effect on K (PIC-TD3) (b) Effect on K (EPIC) (c) Effect on δ (d) Effect on N
453 Figure 4: The impact of peer states K , PIC strength δ , and ensemble size N on performance.
454

455 Further, we systematically evaluate the impact of different state-space distance metrics on EPIC. We
456 test multiple EPIC variants on both MuJoCo tasks and the high-dimensional quadruped benchmark
457 Walk These Ways (WTW) Margolis & Agrawal (2023). The details of the WTW environment, its
458 data collection procedure, and the complete results are provided in Appendix F.5.2. EPIC remains
459 robust across all distance metrics in MuJoCo and continues to achieve competitive performance
460 even in the high-dimensional WTW setting, demonstrating that its effectiveness stems from the
461 peer-induced constraint mechanism rather than reliance on specific state-space metric.
462

463 4.4 PARAMETER STUDY

464 In this section, we conduct a parameter study on EPIC, focusing on the number of peer states K
465 (which affects the candidate action set), PIC strength δ , and ensemble size N . We evaluate their
466 sensitivity across various Gym-MuJoCo tasks, running for one million steps with five random seeds.
467

468 **Number of Peer States K :** The number of peer states K is a key hyperparameter for PIC-TD3 and
469 EPIC, influencing action diversity. As shown in Figure 4 (a) and (b), larger K improves performance
470 and accelerates convergence, but when $K > 20$ the gains plateau; PIC-TD3 slightly declines due to
471 value estimation errors, while EPIC remains robust through ensemble regularization.
472

473 **PIC Strength δ :** The PIC strength δ controls the intensity of the peer constraint. Larger δ enforces
474 closeness to in-sample actions, limiting exploration, while smaller δ prioritizes Q-value fitting, risk-
475 ing deviation from the behavior policy. As shown in Figure 4 (c), performance on hopper-medium
476 degrades when $\delta < 1$ or $\delta > 4$, with the best results in the moderate range $\delta \in [1, 3]$. Similar trends
477 appear in AntMaze and Adroit (See Appendix F.6.1), indicating that proper tuning of δ ensures
478 robust performance across tasks.
479

480 **Ensemble Size N :** Ensemble size N improves OOD penalization but reduces efficiency. As shown
481 in Figure 4 (d), performance on hopper-medium-replay improves with N when $\delta = 0$, but declines
482 for $N \geq 50$ with small δ , and decreases further as N grows under larger δ . Similar trends are
483 observed in additional experiments, reported in Appendix F.6.2.

484 These results highlight the Coupling Effect: moderate δ enhances generalization, but excessive δ
485 amplifies uncertainty and weakens ensembles. A balanced choice ($\delta \in [1, 3], N \in [5, 20]$) achieves
486 robust performance.

486
487

4.5 PERFORMANCE ON OFFLINE-TO-ONLINE D4RL

488
489
490
491
492

Evaluating offline-to-online performance is a critical aspect of offline RL algorithms, especially in light of recent advancements. Based on this, we conduct additional tests on EPIC, as it demonstrates remarkable effectiveness in offline pretraining through PIC and the Coupling Effect. As shown in Appendix F.7, EPIC achieves competitive results, outperforming in three of six AntMaze datasets and reaching state-of-the-art final scores on Adroit tasks.

493
494
495

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

496
497
498
499
500
501
502
503

To address the limitations of existing offline RL methods in generalization and efficiency, we propose the Peer-Influenced Constraint (PIC) and its enhanced version, Ensemble Peer-Influenced Constraint (EPIC). PIC improves policy generalization by identifying potentially better actions from peer states. We also discover a direct relationship between PIC and uncertainty estimation, termed the Coupling Effect. Leveraging PIC and the Coupling Effect, EPIC achieves state-of-the-art performance with smaller ensemble sizes, reducing computational costs in offline RL. Extensive comparisons with strong baselines show that our method outperforms others across various tasks. We also validate its effectiveness during offline-to-online transitions.

504
505
506
507

We hope this work inspires further exploration of the interaction between constraint methods and uncertainty estimation, offering new insights to the community. A limitation of our approach is the inefficiency of peer state search in large-scale, high-dimensional datasets. We aim to develop more efficient offline RL methods for such datasets in future work.

508
509
510

ETHICS STATEMENT

511
512
513
514
515

This work focuses on developing reinforcement learning algorithms and does not involve human subjects, personal data, or sensitive information. The experiments are conducted on publicly available benchmark datasets and simulated environments. We believe our research raises no direct ethical concerns and may contribute positively by improving the safety and generalization of RL methods.

516
517
518

REPRODUCIBILITY STATEMENT

519
520
521

All implementation details, including source code, hyperparameters, and scripts, are provided in the appendix and supplementary material to enable full reproducibility of our results.

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline re-
543 inforcement learning with diversified q-ensemble. In *Proceedings of the Advances in Neural*
544 *Information Processing Systems*, pp. 7436–7447, 2021.

545 Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhi-Hong Deng, Animesh Garg, Peng Liu, and Zhao-
546 ran Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. In
547 *Proceedings of the International Conference on Learning Representations*, 2022.

548 Chenjia Bai, Lingxiao Wang, Jianye Hao, Zhuoran Yang, Bin Zhao, Zhen Wang, and Xuelong Li.
549 Pessimistic value iteration for multi-task data sharing in offline reinforcement learning. *Artificial*
550 *Intelligence*, 326:104048, 2024.

551 Michael Bain and Claude Sammut. A framework for behavioural cloning. In *Machine Intelligence*,
552 volume 15, pp. 103–129, 1995.

553 Alex Beeson and Giovanni Montana. Balancing policy constraint and ensemble size in uncertainty-
554 based offline reinforcement learning. *Machine Learning*, 113(1):443–488, 2024.

555 Jon Louis Bentley. Multidimensional binary search trees used for associative searching. *Communi-*
556 *cations of the ACM*, 18(9):509–517, 1975.

557 Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
558 Wojciech Zaremba. Openai gym. *arXiv preprint arXiv:1606.01540*, 2016.

559 Hongye Cao, Fan Feng, Jing Huo, and Yang Gao. Causal action empowerment for efficient re-
560 inforcement learning in embodied agents. *Science China Information Sciences*, 68(5):150201,
561 2025.

562 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
563 data-driven reinforcement learning. *arXiv preprint arXiv:2004.07219*, 2020.

564 Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
565 *Proceedings of the Advances in Neural Information Processing Systems*, pp. 20132–20145, 2021.

566 Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
567 exploration. In *Proceedings of the International Conference on Machine Learning*, pp. 2052–
568 2062, 2019.

569 Scott Fujimoto, Wei-Di Chang, Edward J Smith, Shixiang Shane Gu, Doina Precup, and David
570 Meger. For sale: state-action representation learning for deep reinforcement learning. In *Pro-*
571 *ceedings of the Advances in Neural Information Processing Systems*, pp. 61573–61624, 2023.

572 Kamyar Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic? estimating un-
573 certainties for offline rl through ensembles, and why their independence matters. In *Proceedings*
574 *of the Advances in Neural Information Processing Systems*, pp. 18267–18281, 2022.

575 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
576 maximum entropy deep reinforcement learning with a stochastic actor. In *Proceedings of the*
577 *International Conference on Machine Learning*, pp. 1861–1870, 2018.

578 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
579 *arXiv:1312.6114*, 2013.

580 Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
581 with fisher divergence critic regularization. In *Proceedings of the International Conference on*
582 *Machine Learning*, pp. 5774–5783, 2021a.

583 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
584 learning. *arXiv preprint arXiv:2110.06169*, 2021b.

585 Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via
586 bootstrapping error reduction. In *Proceedings of the Advances in Neural Information Processing*
587 *Systems*, pp. 11784–11794, 2019.

594 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for of-
 595 fine reinforcement learning. In *Proceedings of the Advances in Neural Information Processing*
 596 *Systems*, pp. 1179–1191, 2020.

597

598 Kumar, Aviral . Data-driven deep reinforcement learning. [https://bair.berkeley.edu/](https://bair.berkeley.edu/blog/2019/12/05/bear/)
 599 blog/2019/12/05/bear/, 2019. Accessed: 2019-12-05.

600 Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In *Reinforce-
 601 ment learning: State-of-the-art*, pp. 45–73. 2012.

602

603 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
 604 rial, review, and perspectives on open problems. *arXiv preprint arXiv:2005.01643*, 2020.

605

606 Zeyuan Liu, Kai Yang, and Xiu Li. Cds: Conservative denoising score-based algorithm for offline
 607 reinforcement learning. *arXiv preprint arXiv:2406.07541*, 2024.

608

609 Fan-Ming Luo, Tian Xu, Hang Lai, Xiong-Hui Chen, Weinan Zhang, and Yang Yu. A survey on
 610 model-based reinforcement learning. *Science China Information Sciences*, 67(2):121101, 2024.

611

612 Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative q-learning for offline rein-
 613 force learning. In *Proceedings of the Advances in Neural Information Processing Systems*, pp. 1711–1724, 2022.

614

615 Yi Ma, HAO Jianye, Xiaohan Hu, Yan Zheng, and Chenjun Xiao. Iteratively refined behavior
 616 regularization for offline reinforcement learning. In *Proceedings of the Advances in Neural Infor-
 617 mation Processing Systems*, pp. 56215–56243, 2024.

618

619 Liyuan Mao, Haoran Xu, Xianyuan Zhan, Weinan Zhang, and Amy Zhang. Diffusion-dice: In-
 620 sample diffusion guidance for offline reinforcement learning. *arXiv preprint arXiv:2407.20109*,
 621 2024.

622

623 Gabriel B Margolis and Pulkit Agrawal. Walk these ways: Tuning robot control for generalization
 624 with multiplicity of behavior. In *Proceedings of the Conference on Robot Learning*, pp. 22–31,
 625 2023.

626

627 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
 628 stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. *arXiv preprint
 629 arXiv:1312.5602*, 2013.

630

631 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
 632 mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
 633 control through deep reinforcement learning. *Nature*, 518(7540):529–533, 2015.

634

635 Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
 636 force learning with offline datasets. *arXiv preprint arXiv:2006.09359*, 2020.

637

638 Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
 639 Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
 640 tuning. In *Proceedings of the Advances in Neural Information Processing Systems*, pp. 62244–
 641 62269, 2024.

642

643 Tianwei Ni, Benjamin Eysenbach, Erfan SeyedSalehi, Michel Ma, Clement Gehring, Aditya Ma-
 644 hajan, and Pierre-Luc Bacon. Bridging state and history representations: understanding self-
 645 predictive rl. In *Proceedings of the International Conference on Learning Representations*, 2024.

646

647 Alexander Nikulin, Vladislav Kurenkov, Denis Tarasov, and Sergey Kolesnikov. Anti-exploration
 648 by random network distillation. In *Proceedings of the International Conference on Machine
 649 Learning*, pp. 26228–26244, 2023.

650

651 Parikshit Ram and Kaushik Sinha. Revisiting kd-tree for nearest neighbor search. In *Proceedings
 652 of the Sigkdd International Conference on Knowledge Discovery & Data Mining*, pp. 1378–1388,
 653 2019.

648 Yuhang Ran, Yi-Chen Li, Fuxiang Zhang, Zongzhang Zhang, and Yang Yu. Policy regularization
 649 with dataset constraint for offline reinforcement learning. In *Proceedings of the International*
 650 *Conference on Machine Learning*, pp. 28701–28717, 2023.

651 Naman Saxena, Subhjoyoti Khastagir, Shishir Kolathaya, and Shalabh Bhatnagar. Off-policy av-
 652 erage reward actor-critic with deterministic policy search. In *Proceedings of the International*
 653 *Conference on Machine Learning*, pp. 30130–30203, 2023.

654 Jiyuan Shi, Chenjia Bai, Haoran He, Lei Han, Dong Wang, Bin Zhao, Mingguo Zhao, Xiu Li, and
 655 Xuelong Li. Robust quadrupedal locomotion via risk-averse policy learning. In *Proceedings of*
 656 *the IEEE International Conference on Robotics and Automation*, pp. 11459–11466, 2024.

657 Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT Press, 2018.

658 Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
 659 minimalist approach to offline reinforcement learning. In *Proceedings of the Advances in Neural*
 660 *Information Processing Systems*, pp. 11592–11620, 2023a.

661 Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov.
 662 Corl: Research-oriented deep offline reinforcement learning library. In *Proceedings of the Ad-*
 663 *vances in Neural Information Processing Systems*, pp. 30997–31020, 2023b.

664 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
 665 In *Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems*, pp.
 666 5026–5033, 2012.

667 Wei Wei, Yujia Zhang, Jiye Liang, Lin Li, and Yyuze Li. Controlling underestimation bias in
 668 reinforcement learning via quasi-median operation. In *Proceedings of the AAAI Conference on*
 669 *Artificial Intelligence*, volume 36, pp. 8621–8628, 2022.

670 Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy opti-
 671 mization for offline reinforcement learning. In *Proceedings of the Advances in Neural Information*
 672 *Processing Systems*, pp. 31278–31291, 2022.

673 Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
 674 *arXiv preprint arXiv:1911.11361*, 2019.

675 Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua M Susskind, Jian Zhang, Ruslan Salakhutdi-
 676 nov, and Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. In
 677 *Proceedings of the International Conference on Machine Learning*, pp. 11319–11328, 2021.

678 Chenjun Xiao, Han Wang, Yangchen Pan, Adam White, and Martha White. The in-sample softmax
 679 for offline reinforcement learning. In *Proceedings of the International Conference on Learning*
 680 *Representations*, 2023.

681 Huaqing Xiong, Tengyu Xu, Lin Zhao, Yingbin Liang, and Wei Zhang. Deterministic policy gra-
 682 dient: Convergence analysis. In *Proceedings of the Uncertainty in Artificial Intelligence*, pp.
 683 2159–2169, 2022.

684 Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized q-learning for safe offline rein-
 685 forcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36,
 686 pp. 8753–8760, 2022.

687 Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and Xi-
 688 anyuan Zhan. Offline rl with no ood actions: in-sample learning via implicit value regularization.
 689 In *Proceedings of the International Conference on Learning Representations*, 2023a.

690 Kang Xu, Chenjia Bai, Xiaoteng Ma, Dong Wang, Bin Zhao, Zhen Wang, Xuelong Li, and Wei Li.
 691 Cross-domain policy adaptation via value-guided data filtering. In *Proceedings of the Advances*
 692 *in Neural Information Processing Systems*, pp. 73395–73421, 2023b.

693 Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, and Lei Han. Rorl: Robust
 694 offline reinforcement learning via conservative smoothing. In *Proceedings of the Advances in*
 695 *Neural Information Processing Systems*, pp. 23851–23866, 2022.

702 Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare:
703 A survey. *ACM Computing Surveys (CSUR)*, 55(1):1–36, 2021a.

704
705 Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
706 Combo: Conservative offline model-based policy optimization. In *Proceedings of the Advances
707 in Neural Information Processing Systems*, pp. 28954–28967, 2021b.

708 Xinyi Yuan, Zhiwei Shang, Zifan Wang, Chenkai Wang, Zhao Shan, Meixin Zhu, Chenjia Bai, Xue-
709 long Li, Weiwei Wan, and Kensuke Harada. Preference aligned diffusion planner for quadrupedal
710 locomotion control. *arXiv preprint arXiv:2410.13586*, 2024.

711
712 Hongchang Zhang, Jianzhun Shao, Shuncheng He, Yuhang Jiang, and Xiangyang Ji. Darl: distance-
713 aware uncertainty estimation for offline reinforcement learning. In *Proceedings of the AAAI Con-
714 ference on Artificial Intelligence*, volume 37, pp. 11210–11218, 2023.

715 Junjie Zhang, Chenjia Bai, Haoran He, Zhigang Wang, Bin Zhao, Xiu Li, and Xuelong Li. Sam-
716 e: Leveraging visual foundation model with sequence imitation for embodied manipulation. In
717 *Proceedings of the International Conference on Machine Learning*, pp. 58579–58598, 2024a.

718 Yujia Zhang, Lin Li, Wei Wei, Yunpeng Lv, and Jiye Liang. A unified framework to control estima-
719 tion error in reinforcement learning. *Neural Networks*, 178:106483, 2024b.

720 Yujia Zhang, Lin Li, Wei Wei, Jianguo Wu, and Jiye Liang. Pseudo-distribution elite critics: En-
721 hancing accuracy in reinforcement learning value estimation. *Neural Networks*, pp. 108018, 2025.

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A RELATED WORKS
757

758 Behavior Cloning (BC) (Bain & Sammut, 1995) is a common approach in policy-constrained off-
759 line RL. BCQ (Fujimoto et al., 2019) uses a Variational Autoencoder (Kingma & Welling, 2013)
760 to model the behavior policy but is prone to fitting errors. TD3+BC (Fujimoto & Gu, 2021) integrates
761 BC directly into policy loss, achieving competitive results without explicit behavior policy
762 modeling. However, the distribution constraint of BCQ and TD3+BC often struggles to distinguish
763 between optimal and suboptimal actions. BEAR (Kumar et al., 2019) and BRAC (Wu et al., 2019)
764 constrain policy divergence via Kullback-Leibler or Wasserstein metrics. IQL (Kostrikov et al.,
765 2021b) employs expectile regression and advantage-weighted BC without evaluating OOD actions.
766 While these methods are efficient with limited networks, they often underperform ensemble-based
767 approaches and are overly conservative. PRDC (Ran et al., 2023) enforces distance constraints using
768 KD-Tree (Bentley, 1975) for neighbor search but faces challenges in balancing state-action priori-
769 ties, manual parameter tuning, and large search spaces. Diffusion-DICE (Mao et al., 2024) trans-
770 forms the behavior distribution into the optimal policy distribution using score decomposition and
771 a guide-then-select strategy to avoid value exploitation errors. InAC (Xiao et al., 2023), SQL (Xu
772 et al., 2023a), CDSA (Liu et al., 2024), and CPQ (Xu et al., 2022) incorporate in-sample constraints
773 to avoid OOD actions, enhancing policy stability and generalization. These insights motivate our
774 exploration of richer dataset utilization for precise behavior policy modeling and generalized policy
775 learning.

776 In online RL, ensembles are used to build robust value estimates and enhance exploration (Wei et al.,
777 2022; Zhang et al., 2024b). In offline RL, SAC-N (An et al., 2021) penalizes OOD actions via min-
778 imum ensemble values but requires up to 500 networks and 3M training steps. EDAC (An et al.,
779 2021) reduces uncertainty and ensemble size by minimizing pairwise cosine similarity, promoting
780 diversity among networks. RORL (Yang et al., 2022) smooths OOD action Q-values by learning un-
781 certainties for different state-action pairs. MSG (Ghasemipour et al., 2022) strengthens pessimistic
782 estimates by replacing shared targets with independent ones. PBRL (Bai et al., 2022) and MTDS
783 (Bai et al., 2024) penalize value estimates based on action deviations from the mean. Though effec-
784 tive in uncertainty quantification, these methods often need large ensembles. SAC-RND (Nikulin
785 et al., 2023) employs random network distillation with two Q-networks yet still incurs heavy training
786 costs. Our method leverages the Coupling Effect to penalize OOD actions effectively with a smaller
787 ensemble size, preserving data relationships and enabling generalized, efficient policy learning.

788 B THEORETICAL PROOFS
789

790 *Proof.* Since $P(s'|s, a)$ and μ are Lipschitz continuous, we have the following equations:
791

$$792 \quad \|P(s'|s, a_1) - P(s'|s, a_2)\| \leq L_P \|a_1 - a_2\|, \quad (13)$$

$$793 \quad \|\mu(s_1) - \mu(s_2)\| \leq L_s \|s_1 - s_2\|, \quad (14)$$

794 for all $s \in \mathcal{S}, a \in \mathcal{A}$. L_P and L_s represent the Lipschitz constants. The above equations have
795 received significant attention in theoretical RL research (Ran et al., 2023; Saxena et al., 2023).
796 Then, we have:

$$797 \quad |J(\pi^*) - J(\pi)| = |J(\pi^*) - J(\mu) + J(\mu) - J(\pi)| \leq |J(\pi^*) - J(\mu)| + |J(\pi) - J(\mu)|. \quad (15)$$

800 Firstly, considering $|J(\pi) - J(\mu)|$, we define the occupancy measure:
801

$$802 \quad d_{\pi_\phi}(s') = (1 - \gamma) \int_S \sum_{t=0}^{\infty} \gamma^t p_0(s) p(s \rightarrow s', t, \pi) ds, \quad (16)$$

803 where $p(s \rightarrow s', t, \pi)$ represents the probability density of reaching state s' from state s after t steps
804 under policy π . Consequently, Equation (16) can be rewritten as:
805

$$806 \quad J(\pi) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{\pi_\phi}(s)} [r(s)]. \quad (17)$$

810 Then, we have

$$\begin{aligned}
812 \quad |J(\pi) - J(\mu)| &= \left| \frac{1}{1-\gamma} \mathbb{E}_{s \sim d_{\pi_\phi}(s)}[r(s)] - \frac{1}{1-\gamma} \mathbb{E}_{s \sim d_\mu(s)}[r(s)] \right| \\
813 \\
814 &= \frac{1}{1-\gamma} \left| \int_{\mathcal{S}} (d_{\pi_\phi}(s) - d_\mu(s)) r(s) ds \right| \\
815 \\
816 &\leq \frac{1}{1-\gamma} \int_{\mathcal{S}} |d_{\pi_\phi}(s) - d_\mu(s)| |r(s)| ds \\
817 \\
818 &\leq \frac{R_{\max}}{1-\gamma} \int_{\mathcal{S}} |d_{\pi_\phi}(s) - d_\mu(s)| ds \\
819 \\
820 &\stackrel{(i)}{\leq} \frac{CL_P R_{\max}}{1-\gamma} \max_{s \in \mathcal{S}} \|\pi(s) - \mu(s)\| \\
821 \\
822 &= \frac{CL_P R_{\max}}{1-\gamma} \max_{s \in \mathcal{S}} \|\pi(s) - \mu(\hat{s}_j) + \mu(\hat{s}_j) - \mu(s)\| \\
823 \\
824 &\leq \frac{CL_P R_{\max}}{1-\gamma} \max_{s \in \mathcal{S}} \|\pi(s) - \mu(\hat{s}_j)\| + \max_{s \in \mathcal{S}} \|\mu(\hat{s}_j) - \mu(s)\| \\
825 \\
826 &\leq \frac{CL_P R_{\max}}{1-\gamma} (\epsilon_a + L_s \epsilon_s). \tag{18}
827 \\
828 \\
829
\end{aligned}$$

Here, (i) is due to $\int_{\mathcal{S}} |d_{\pi_\phi}(s) - d_\mu(s)| ds \leq CL_P \max_{s \in \mathcal{S}} \|\pi(s) - \mu(s)\|$, the proof of this inequality can be found in the appendix of (Xiong et al., 2022).

832 Then, considering $|J(\pi^*) - J(\mu)|$, we have

$$\begin{aligned}
833 \quad |J(\pi^*) - J(\mu)| &= \left| \frac{1}{1-\gamma} \mathbb{E}_{s \sim d_{\pi_\phi^*}(s)}[r(s)] - \frac{1}{1-\gamma} \mathbb{E}_{s \sim d_\mu(s)}[r(s)] \right| \\
834 \\
835 &= \frac{1}{1-\gamma} \left| \int_{\mathcal{S}} (d_{\pi_\phi^*}(s) - d_\mu(s)) r(s) ds \right| \\
836 \\
837 &\leq \frac{1}{1-\gamma} \int_{\mathcal{S}} |d_{\pi_\phi^*}(s) - d_\mu(s)| |r(s)| ds \\
838 \\
839 &\leq \frac{R_{\max}}{1-\gamma} \int_{\mathcal{S}} |d_{\pi_\phi^*}(s) - d_\mu(s)| ds \\
840 \\
841 &\leq \frac{CL_P R_{\max}}{1-\gamma} \max_{s \in \mathcal{S}} \|\pi^*(s) - \mu(s)\| \\
842 \\
843 &\leq \frac{CL_P R_{\max}}{1-\gamma} \epsilon_*. \tag{19}
844 \\
845 \\
846
\end{aligned}$$

847 Finally, combining Equation (18) and Equation (19), we have

$$\begin{aligned}
848 \quad |J(\pi^*) - J(\pi)| &= |J(\pi^*) - J(\mu) + J(\mu) - J(\pi)| \\
849 \\
850 &\leq |J(\pi^*) - J(\mu)| + |J(\pi) - J(\mu)| \\
851 \\
852 &\leq \frac{CL_P R_{\max}}{1-\gamma} (\epsilon_a + L_s \epsilon_s + \epsilon_*). \tag{20}
853 \\
854
\end{aligned}$$

□

854 The proof of Theorem 1 is finished. From Theorem 1, the performance gap is influenced by ϵ_a , ϵ_s ,
855 and ϵ_* . EPIC reduces ϵ_s by selecting peer states \hat{s}_j that are close to the given state s , ensuring that
856 the state space of the learned policy is well-aligned with the in-sample states. This minimizes the
857 risk of state distribution shift. EPIC reduces ϵ_a by selecting actions a^* that are close to both the
858 behavior policy $\mu(s)$ and the optimal policy $\pi^*(s)$, using a combination of in-sample actions and
859 the optimal policy. This ensures that the learned policy adheres to both the behavior and optimal
860 policies, preventing large deviations in action selection. Finally, EPIC reduces ϵ_* by leveraging
861 the structure of the dataset and using peer-influenced constraints to enforce the learned policy's
862 alignment with the optimal policy. By effectively using peer states and action selections, EPIC
863 narrows the performance gap and significantly enhances policy generalization, avoiding overfitting
864 to the behavior policy and ensuring robust performance.

864 C PSEUDOCODE OF PIC-TD3
865866

867 **Algorithm 2** TD3 Algorithm with Peer-Influenced Constraint (PIC-TD3)

868 **Input:** Observation state \mathcal{S} , offline dataset \mathcal{D}
 869 **Output:** Learned policy π
 870 Initialize: Critic networks $Q_{\theta_1}, Q_{\theta_2}$, actor network π_ϕ , target networks $\theta'_1 \leftarrow \theta_1, \theta'_2 \leftarrow \theta_2, \phi' \leftarrow \phi$, and peer number K
 871 **for** $t = 1$ to T **do**
 872 Sample a mini-batch $\mathcal{B} = \{(s, a, r, s')\}$ from \mathcal{D}
 873 Find peer states in \mathcal{D} of sample state by $\hat{s}_j = \arg \min_{\hat{s} \in \mathcal{D} \setminus \mathcal{D}_{j-1}} \|s - \hat{s}\|$
 874 Construct candidate action set \mathcal{A}'
 875 Find optimal action from \mathcal{A}' by $a^* = \arg \max_{a \in \mathcal{A}'} \min_{i=1,2} Q_{\theta_i}(s, a)$
 876 Calculate PIC distance of sample state by $d_{\mathcal{D}}^{\text{PIC}}(s) = \|\pi_\phi(s) - a^*\|$
 877 Update θ_i by minimizing $L(\theta_i) = \mathbb{E}_{(s, a, r, s') \sim \mathcal{B}} [(y - Q_{\theta_i}(s, a))^2]$
 878 **if** $t \bmod d$ **then**
 879 Update ϕ using gradient descent with $L_{\text{PT}}(\phi) = \mathbb{E}_{s \sim \mathcal{B}} [-\beta Q_{\theta_1}(s, a)] + \delta \mathbb{E}_{s \sim \mathcal{B}} [d_{\mathcal{D}}^{\text{PIC}}(s)]$
 880 $\theta'_i \leftarrow \tau \theta_i + (1 - \tau) \theta'_i, \phi' \leftarrow \tau \phi + (1 - \tau) \phi'$
 881 **end if**
 882 **end for**
 883

884 D IMPLEMENTATION DETAILS
885

886 PIC-TD3 is implemented using PyTorch based on the TD3 implementation ¹, and EPIC is imple-
887 mented based on the author-provided implementation of EDAC².

888 The v2 version of D4RL benchmark datasets is utilized in Gym-MuJoCo and AntMaze tasks. For
889 Adroit tasks, we use v1 version. The Gym-MuJoCo comparison results for CQL, SAC-N, and EDAC
890 are sourced from (An et al., 2021), while the scores for other methods are taken from (Tarasov et al.,
891 2023a). The AntMaze comparison results for CQL are taken from (Ghasemipour et al., 2022), while
892 the scores for other methods are taken from (Tarasov et al., 2023a). The Adroit comparison results
893 for BC, CQL, EDAC and RORL are taken from (Yang et al., 2022), while the scores for other
894 methods are taken from (Tarasov et al., 2023a).
895

896 D.1 SOFTWARE

897 We use the following hardware:
898

- 901 • Python 3.8
- 902 • D4RL 1.1 (Fu et al., 2020)
- 903 • MuJoCo 2.1.0 (Todorov et al., 2012)
- 904 • Gym 0.23.1 (Brockman et al., 2016)
- 905 • MuJoCo-py 2.1.2.14 (Todorov et al., 2012)
- 906 • PyTorch 2.1.2
- 907 • CUDA 11.8

911 D.2 HARDWARE

- 913 • NVIDIA RTX 4090 $\times 4$
- 914 • 14th Gen Intel(R) Core(TM) i9-14900K

915 ¹<https://github.com/sfujim/TD3>

916 ²<https://github.com/snu-mllab/EDAC>

918 D.3 HYPERPARAMETERS
919920 The hyperparameters of the PIC and EPIC are detailed in Table 4 and Table 5.
921922 Table 4: General hyperparameters of EPIC and PIC-TD3.
923

924 Parameter	924 Value
925 Shared	
926 Optimizer	Adam
927 Learning rate	3×10^{-4}
928 Discount	0.99
929 Batch size	256
930 Size of hidden layers in critic and actor	256
931 Target network update rate τ	5×10^{-3}
932 Update-To-Data ratio	1
933 Nonlinearity	ReLU
934 α	2.5
935 PIC-TD3	
936 Target network update frequency d	2
937 Action noise	$\mathcal{N}(0, 0.1)$
938 Target policy smooth ϵ	$\text{clip}(\mathcal{N}(0, 0.2), -0.5, 0.5)$
939 Critic number M	2

940
941 Table 5: Special EPIC hyperparameters on D4RL benchmark.
942

943 Task Name	943 N	943 K	943 η	943 δ	943 Task Name	943 N	943 K	943 η	943 δ
945 halfcheetah-random-v2	2	10	1	1	945 antmaze-umaze-v2	10	20	1	2
946 halfcheetah-medium-v2	2	10	1	1	946 antmaze-umaze-diverse-v2	10	20	1	2
947 halfcheetah-expert-v2	2	10	1	2	947 antmaze-medium-play-v2	10	20	1	2
948 halfcheetah-medium-expert-v2	5	10	1	1	948 antmaze-medium-diverse-v2	10	20	1	2
949 halfcheetah-medium-replay-v2	5	10	1	1	949 antmaze-large-play-v2	10	20	1	2
950 halfcheetah-full-replay-v2	5	10	1	1	950 antmaze-large-diverse-v2	10	20	1	2
951 hopper-random-v2	10	10	1	1	951 pen-human-v1	10	10	200	1
952 hopper-medium-v2	10	10	1	1	952 pen-cloned-v1	10	10	200	1
953 hopper-expert-v2	10	10	1	2	953 pen-expert-v1	10	10	200	1
954 hopper-medium-expert-v2	10	10	1	2	954 door-human-v1	10	10	200	3
955 hopper-medium-replay-v2	10	10	1	1	955 door-cloned-v1	10	10	200	3
956 hopper-full-replay-v2	10	10	1	1	956 door-expert-v1	10	10	200	3
957 walker2d-random-v2	5	10	1	2	957 hammer-human-v1	10	10	200	3
958 walker2d-medium-v2	5	10	1	1	958 hammer-cloned-v1	10	10	200	3
959 walker2d-expert-v2	5	10	1	2	959 hammer-expert-v1	10	10	200	3
960 walker2d-medium-expert-v2	5	10	1	2	960 relocate-human-v1	10	10	200	3
961 walker2d-medium-replay-v2	5	10	1	2	961 relocate-cloned-v1	10	10	200	3
962 walker2d-full-replay-v2	5	10	1	1	962 relocate-expert-v1	10	10	200	3

963
964 E DETAILED ENVIRONMENT SETTING
965966 E.1 GRIDWORLD
967968 In the gridworld environment, the agent’s state is represented by its X-Y coordinates, and at each
969 time step, it selects one of four possible actions: Up, Down, Left, or Right, with equal initial prob-
970 abilities for each action. The agent only receives a reward of 1.0 when it successfully reaches the
971 goal. Each episode terminates when the goal is reached or when the maximum episode length of
256 steps is reached. The layout of the grid world is shown in Figure 5.

972 The agent interacts with the environment for a total of 3×10^5 time steps, from which the last 2×10^5
 973 transitions are used to form the offline dataset. Notably, we remove any experiences where the agent
 974 attempts to move right at the green triangle location. This exclusion is intentional, allowing us to
 975 test whether different methods can escape local optima and identify potentially better actions beyond
 976 those seen in the initial data.

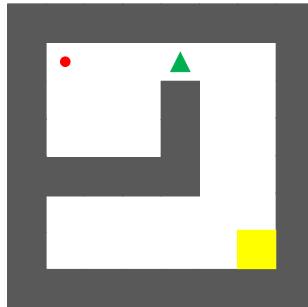


Figure 5: Visualization of gridworld.

E.2 LINeworld

As shown in Figure 6, our lineworld environment consists of four task variations:

- lineworld-easy: In the dataset, the ratio of -1 to $+1$ actions for each state is $1 : 9$.
- lineworld-random: In the dataset, the ratio of -1 to $+1$ actions for each state is $1 : 1$.
- lineworld-medium: In the dataset, the ratio of -1 to $+1$ actions for each state is $9 : 1$.
- lineworld-hard: In the dataset, except for state 99, the ratio of -1 to $+1$ actions for each state is $99 : 1$. In state 99, only the action to move left is available.

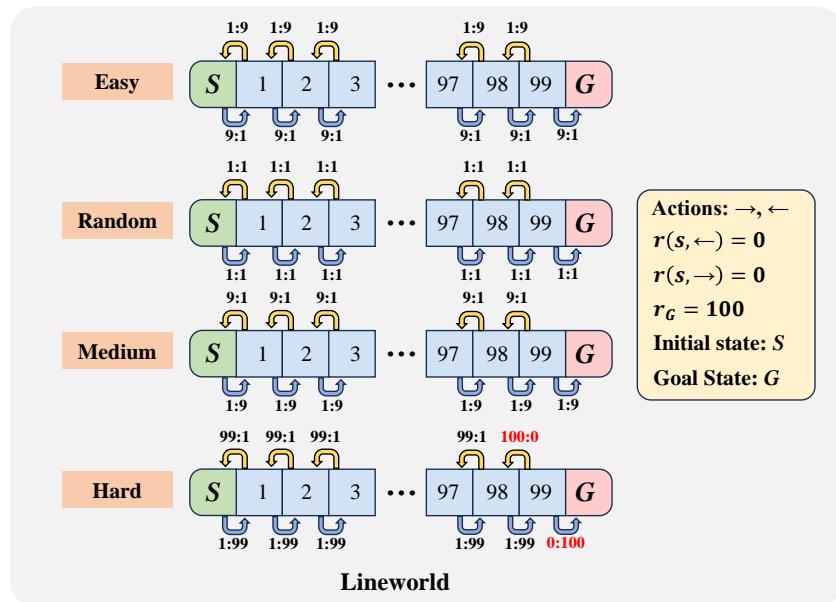
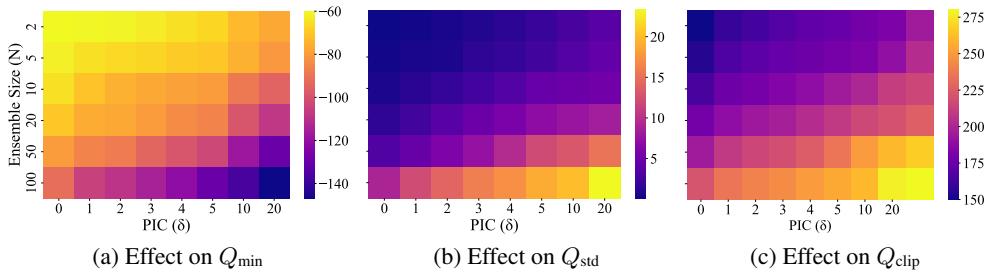


Figure 6: In the lineworld environment, the agent starts at position S and aims to reach the goal at G . The action space consists of $[-1, +1]$, where -1 represents a move to the left, and $+1$ represents a move to the right. Reaching the goal ends the episode with a reward of $+100$, while all other actions result in a reward of 0.

1026 F MORE RESULTS

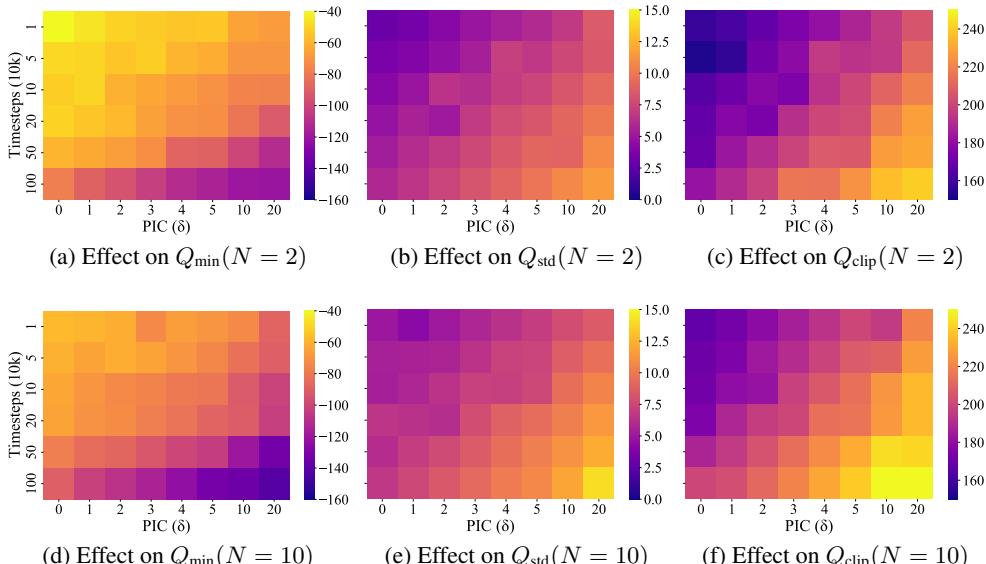
1027 F.1 COUPLING EFFECT

1030 We measure and analyze the relationship between various uncertainty metrics, ensemble size N ,
 1031 and PIC strength δ on the hopper-medium-expert dataset. We sample 10,000 state-action pairs and
 1032 compute the uncertainty metrics Q_{\min} , Q_{std} , and $Q_{\text{clip}} = Q_{\text{mean}} - Q_{\min}$ at the same time step under
 1033 different values of N and δ . We then calculate their average values and generate heatmaps, as
 1034 shown in Figure 7. We find that, with a fixed N , increasing δ leads to higher uncertainty. Similarly,
 1035 when δ is fixed, increasing N also results in greater uncertainty. Considering that an excessively
 1036 large N can reduce computational efficiency, we can achieve effective uncertainty estimation with a
 1037 moderate level of PIC strength.



1047 Figure 7: The impact of ensemble size N and PIC strength δ on uncertainty metrics.

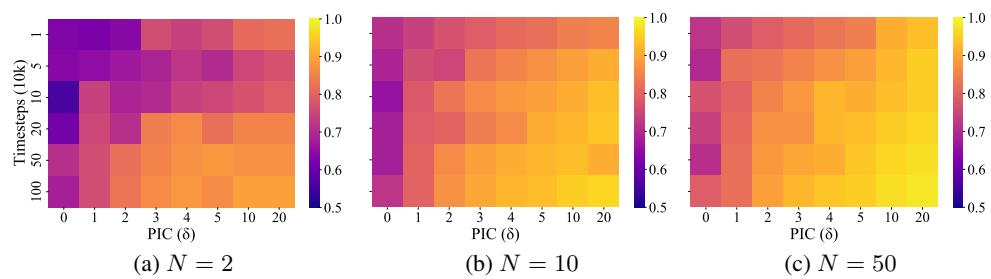
1049 To further examine the influence of PIC strength on uncertainty modeling, we measure the evolution
 1050 of Q_{\min} , Q_{std} , and Q_{clip} across different training steps (10k–1M) and various values of δ . The results
 1051 are summarized in Figure 8. We observe that as δ and training progress increase, Q_{\min} becomes
 1052 increasingly pessimistic, while Q_{std} and Q_{clip} tend to rise on potential OOD action candidates, indicating
 1053 stronger penalization on high-risk actions. These dynamics corroborate the proposed Coupling
 1054 Effect: larger δ amplifies OOD penalties and yields more robust value estimation without requiring
 1055 large ensemble sizes.



1078 Figure 8: Uncertainty metric dynamics over training steps and PIC strengths δ for different ensemble
 1079 sizes N .

1080
 1081 In continuous action spaces, a policy action almost never matches a dataset action exactly. We there-
 1082 fore adopt a simple threshold-based criterion. We first estimate a global action-distance threshold
 1083 τ_a from the offline dataset: for each dataset state, we retrieve its 5 nearest neighbor states, collect
 1084 their behavior actions, and record the minimum action difference between the current action and
 1085 these neighbor actions. The 90th percentile of these local minimum differences is taken as τ_a , rep-
 1086 resenting the typical scale of action variation in the dataset. During evaluation, we randomly sample
 1087 10,000 states from the policy’s state distribution. For each sampled state, we directly compute the
 1088 minimum distance between the policy action and all dataset actions. If this distance is below τ_a ,
 1089 the action is classified as in-distribution; otherwise it is treated as OOD. The in-distribution ratio is
 1090 defined as the fraction of sampled states satisfying this condition.

1091 Using this criterion, we observe from Figure 9 that PIC significantly increases the in-distribution
 1092 ratio compared to the no-PIC baseline, and this ratio continues to rise with larger PIC strength δ ,
 1093 longer training horizons, and larger ensemble sizes N . This demonstrates that PIC progressively
 1094 steers the learned policy back toward the dataset support, providing an additional perspective on the
 1095 Coupling Effect discussed in the main text.



1106 Figure 9: In-distribution action ratio over training steps and PIC strengths δ for different ensemble
 1107 sizes N .

1110 F.2 MINIMUM NUMBER OF Q-ENSEMBLES

1112 The minimum number of Q-ensembles for the results in Tables 1, 2, and 3 are in Figure 10. As
 1113 δ increases, the required number of Q-ensembles decreases further. Notably, our method achieves
 1114 competitive results with significantly fewer critics, demonstrating its efficiency and robustness. In
 1115 Gym-MuJoCo tasks, m-e = medium-expert, m-r = medium-replay, and f-r = full-replay. In Adroit
 1116 tasks, h = human, c = cloned, e = expert, ham = hammer, rel = relocate.

1117 To further assess the robustness and fairness of our method, we additionally evaluate EPIC under
 1118 a single shared hyperparameter configuration across all Gym-MuJoCo tasks. Specifically, we test
 1119 two unified settings: EPIC-I with $N = 10$, $K = 10$, $\delta = 1$ and EPIC-II with $N = 10$, $K = 10$,
 1120 $\delta = 2$. As shown in Table 6, EPIC under these unified hyperparameters still outperforms traditional
 1121 baselines on most tasks, and its performance remains very close to the results reported in the main
 1122 table, with only minimal differences. These results demonstrate that EPIC maintains stable and
 1123 consistent performance even without task-specific adjustments, further supporting the robustness
 1124 and practical usability of the proposed method.

1125 F.3 EXTENSION OF PIC TO IQL AND SAC

1128 In addition to its application in TD3, we further extend the PIC framework to other RL algorithms,
 1129 specifically IQL (Kostrikov et al., 2021b) and SAC (Haarnoja et al., 2018). This allows us to evaluate
 1130 the versatility and scalability of PIC.

1131 The results, shown in Table 7, demonstrate that PIC maintains its effectiveness in enhancing the gen-
 1132 eralization and robustness of the learned policies across a variety of environments. These findings
 1133 highlight the scalability of the PIC framework, confirming its utility beyond TD3 and suggesting
 that it can be effectively applied to a wide range of RL algorithms.

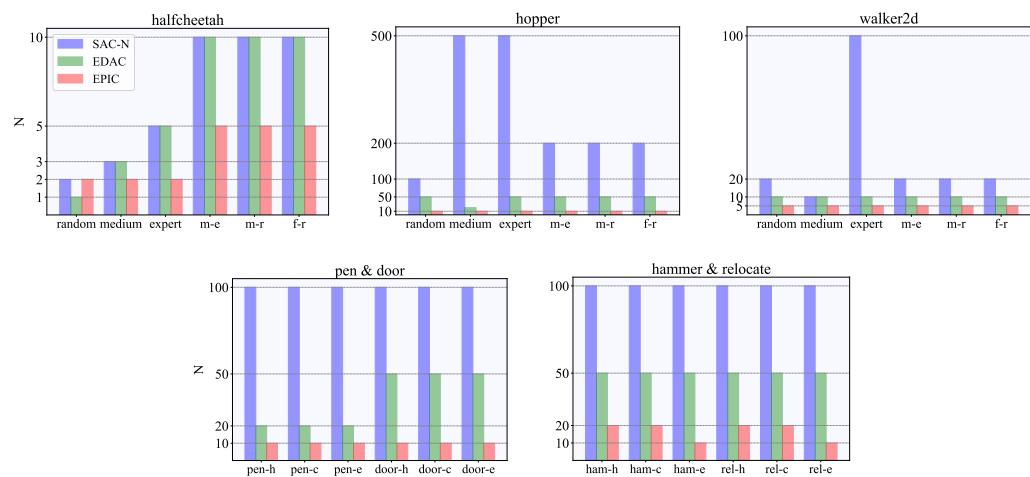


Figure 10: With $\delta = 1$, the minimum number of Q-ensembles required to attain comparable performance in Tables 1, 2, and 3.

Table 6: Average normalized score over final evaluations across five seeds on Gym-MuJoCo tasks.

Task Name	SAC-RND	PRDC	SAC-N	EDAC	PIC-TD3 (ours)	EPIC (ours)	EPIC-I	EPIC-II
halfcheetah-random	27.6	26.9	28.0	28.4	25.3 ± 2.1	28.9 ± 1.4	27.6 ± 3.2	25.0 ± 4.1
halfcheetah-medium	66.4	63.5	67.5	65.9	68.4 ± 2.4	68.9 ± 2.7	67.7 ± 2.1	65.2 ± 2.4
halfcheetah-expert	102.6	—	105.2	106.8	104.2 ± 3.2	107.7 ± 6.4	107.7 ± 3.1	108.5 ± 4.8
halfcheetah-medium-expert	108.1	94.5	107.1	106.3	99.8 ± 1.6	103.8 ± 3.8	102.4 ± 3.2	104.6 ± 4.5
halfcheetah-medium-replay	51.2	55.0	63.9	61.3	63.1 ± 0.9	64.8 ± 1.5	62.9 ± 2.4	63.3 ± 2.1
halfcheetah-full-replay	81.2	—	84.5	84.6	83.7 ± 1.1	87.3 ± 1.0	87.5 ± 1.9	85.5 ± 2.3
hopper-random	19.6	26.8	31.3	25.3	25.4 ± 3.2	27.9 ± 4.2	27.9 ± 4.2	28.3 ± 3.1
hopper-medium	91.1	100.3	100.3	101.6	100.7 ± 1.5	102.2 ± 0.5	101.3 ± 1.2	—
hopper-expert	109.8	—	110.3	110.1	111.8 ± 2.1	112.2 ± 1.5	108.7 ± 3.2	112.2 ± 1.5
hopper-medium-expert	109.8	109.2	110.1	110.7	105.6 ± 1.1	112.3 ± 0.9	113.7 ± 0.8	112.3 ± 0.9
hopper-medium-replay	97.2	100.1	101.8	102.8	100.5 ± 1.3	102.0 ± 1.0	102.0 ± 1.0	103.5 ± 1.8
hopper-full-replay	107.4	—	102.9	105.4	105.8 ± 0.8	107.6 ± 1.6	107.6 ± 1.6	106.8 ± 2.0
walker2d-random	18.7	5.0	21.7	16.6	14.6 ± 4.1	22.4 ± 1.6	15.4 ± 3.8	23.7 ± 2.1
walker2d-medium	92.7	85.2	87.9	92.5	94.9 ± 2.2	95.9 ± 3.2	97.7 ± 2.7	96.7 ± 4.3
walker2d-expert	104.5	—	107.4	115.1	114.6 ± 1.5	117.7 ± 2.1	115.3 ± 2.2	116.4 ± 0.9
walker2d-medium-expert	104.6	111.2	116.7	114.7	114.4 ± 0.9	116.4 ± 1.7	117.3 ± 1.4	116.8 ± 2.2
walker2d-medium-replay	89.4	92.0	78.7	87.1	95.5 ± 2.4	95.2 ± 2.2	93.1 ± 2.6	95.5 ± 3.3
walker2d-full-replay	105.3	—	94.6	99.8	103.0 ± 1.9	107.4 ± 2.2	105.5 ± 2.2	105.4 ± 1.8
Average	82.6	—	84.4	85.2	85.1	87.8	86.8	87.3

F.4 PERFORMANCE AND EFFICIENCY COMPARISON

Time complexity plays a critical role in offline RL. We evaluate PIC-TD3, EPIC, and several baseline methods on the hopper-medium dataset. Figure 11 shows both the average training time (proportional to TD3+BC) and the corresponding normalized scores. Ensemble-based methods demonstrate strong performance but incur substantial computational overhead. In contrast, non-ensemble baselines such as TD3+BC, IQL, and CQL offer superior computational efficiency, though often at the cost of lower performance. EPIC successfully balances this trade-off, achieving both efficiency and robustness in policy learning. PIC-TD3, with its straightforward implementation and efficient search process, achieves performance comparable to ensemble methods while requiring significantly less training time.

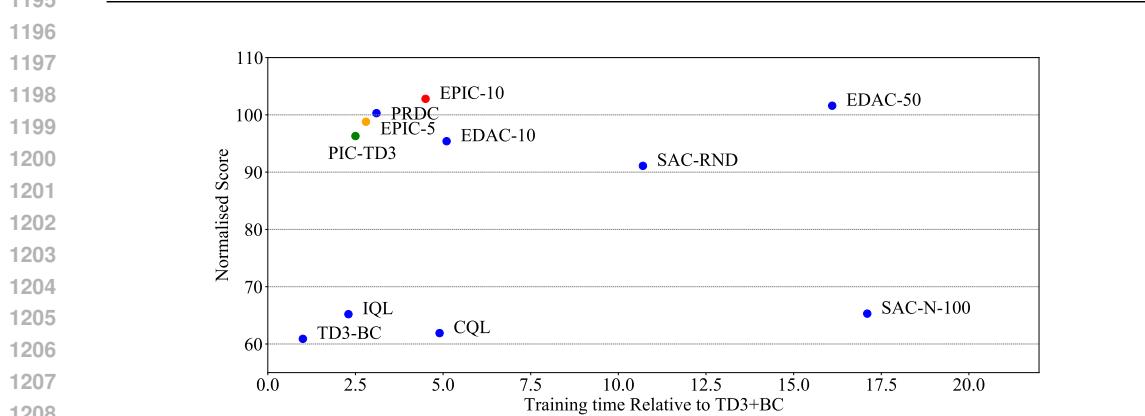
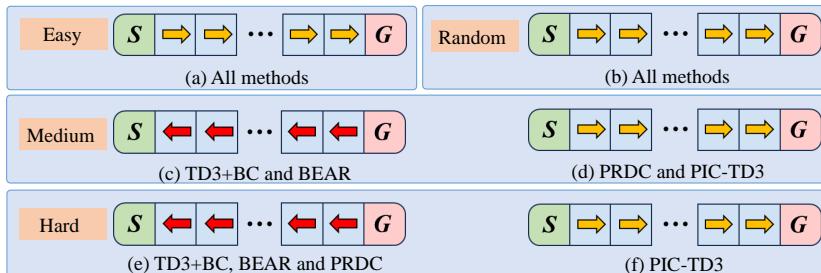
F.5 GENERALIZATION RESULTS

F.5.1 LINEWORLD

We generate four datasets—*lineworld-easy*, *lineworld-random*, *lineworld-medium*, and *lineworld-hard*—ordered by increasing difficulty. In *lineworld-easy*, the ratio of -1 to $+1$ actions is $1 : 9$. In *lineworld-random*, the ratio is balanced at $1 : 1$. In *lineworld-medium*, the ratio skews to $9 : 1$ for -1 actions. Finally, *lineworld-hard* has a $99 : 1$ ratio of -1 to $+1$ actions, except for state 99, where

1188 Table 7: Average normalized score over the final evaluation and five seeds on the AntMaze tasks.
1189

Task Name	CQL	SAC-RND	PRDC	MSG	SAC-BC-N	PIC-SAC (ours)	PIC-IQL (ours)	PIC-TD3 (ours)	EPIC (ours)
antmaze-umaze	74.0	97.0	98.8	97.9	98.6	95.4 \pm 2.2	97.9 \pm 1.5	96.4 \pm 3.5	98.6 \pm 0.5
antmaze-umaze-diverse	84.0	66.0	90.0	79.3	91.2	93.2 \pm 2.1	87.6 \pm 3.6	91.1 \pm 2.3	94.3 \pm 4.2
antmaze-medium-play	61.2	38.5	82.8	85.9	85.8	82.4 \pm 3.7	84.5 \pm 2.8	79.3 \pm 5.4	88.1 \pm 3.3
antmaze-medium-diverse	53.7	74.7	78.8	84.6	73.8	75.5 \pm 4.9	80.2 \pm 3.3	77.9 \pm 6.8	83.8 \pm 4.0
antmaze-large-play	15.8	43.9	54.8	64.3	65.8	62.3 \pm 3.9	62.3 \pm 2.1	55.7 \pm 7.7	65.9 \pm 2.3
antmaze-large-diverse	14.9	45.7	50.0	71.3	75.8	47.6 \pm 4.2	59.6 \pm 3.1	53.2 \pm 4.7	66.9 \pm 5.3
Average	50.6	61.0	75.9	80.6	81.8	76.1	78.7	75.6	82.9

1209 Figure 11: Comparison of performance and efficiency across different methods on hopper-medium.
1210 Here, method names such as EPIC-5, EPIC-10, EDAC-10, and EDAC-50 indicate the number of
1211 critics used in each ensemble.1214 only the -1 action is available. These datasets vary in difficulty based on the action distributions,
1215 offering a diverse set of challenges for the agent.1216 We train TD3+BC, BEAR, PRDC, and PIC-TD3 on the datasets, as shown in Figure 12. In easy and
1217 random datasets, all methods learn the optimal policy. However, with medium and hard datasets,
1218 reward sparsity and conservative policy regularization prevent TD3+BC and BEAR from achieving
1219 the optimal policy. While PRDC leverages dataset state-action pairs, it ignores potential optimal
1220 actions. PIC uniquely generalizes by exploiting optimal actions of peer states, even those unseen in
1221 current states, escaping local optima.1233 Figure 12: Visualization of the learned policy of different methods on four lineworld datasets.
1234
12351236 F.5.2 ANALYSIS OF STATE-SPACE DISTANCE METRICS
12371238 To comprehensively examine the influence of state-space distance metrics and representation meth-
1239 ods on EPIC, we conduct extensive experiments on six MuJoCo tasks (hopper-medium, hopper-
1240 expert, hopper-medium-expert, walker2d-medium, walker2d-expert, walker2d-medium-expert) and
1241 on the high-dimensional quadruped locomotion benchmark Walk These Ways (WTW) (Margolis &
Agrawal, 2023).

WTW is a realistic, high-dimensional, and strongly multimodal quadruped control platform built upon the Multiplicity of Behavior framework. Following the reference implementation,³ we set the state dimension to 70 to balance realism and computational tractability. WTW provides a behavior-conditioned interface that enables a single controller to generate diverse locomotion behaviors, including pacing, trotting, bounding, pronking, and crouching.

We construct a velocity-tracking task using three representative gaits: pacing, trotting, and bounding. For each gait, we collect 4096 episodes of 250 time steps each, forming a large-scale, high-dimensional, and multimodal offline dataset Yuan et al. (2024). Performance is evaluated using the following metrics:

- **Stability:** fraction of episodes without falling within 250 steps;
- **Average x-axis speed:** average forward velocity.

To analyze the effect of distance metrics and state representations on nearest-neighbor retrieval, we evaluate several EPIC variants:

- **CQL** (Kumar et al., 2020) and **EDAC** (An et al., 2021) as strong value-regularization baselines;
- **EPIC-Raw:** KD-tree built on raw states using Euclidean distance;
- **EPIC-Norm:** per-dimension min–max normalization before KD-tree construction;
- **EPIC-PCA:** PCA applied to standardized states, retaining principal components that explain at least 99% of the cumulative variance;
- **EPIC-Embed:** a two-layer MLP autoencoder trained to map states into a 64-dimensional latent space, where the KD-tree is built (all other EPIC components remain unchanged).

As shown in Tables 8 and 9, EPIC achieves highly consistent performance across Raw, Norm, PCA, and Embed variants on MuJoCo tasks. In these medium-dimensional and well-structured state spaces, PCA and normalization introduce only mild transformations, and the autoencoder typically learns an almost linear embedding. As a result, the neighborhood structure is largely preserved, making EPIC insensitive to the particular choice of distance metric.

In the high-dimensional and multimodal WTW environment, EPIC’s overall performance decreases because raw Euclidean distance can be dominated by a few high-variance dimensions, reducing neighbor quality. Nonetheless, EPIC still outperforms CQL and remains comparable to EDAC (3M steps). Among the variants, EPIC-Norm provides limited improvements through scale alignment; EPIC-PCA produces more reliable neighborhoods by capturing dominant variation directions; and EPIC-Embed performs best, as its learned latent space clusters states with similar gait and forward-velocity characteristics.

Overall, the benefits of EPIC arise primarily from the peer-induced constraint mechanism rather than dependence on a specific metric. While raw Euclidean distance is already effective on standard MuJoCo benchmarks, introducing mild representation learning can further improve neighbor quality and policy performance in high-dimensional or strongly multimodal environments.

Table 8: Effect of state similarity metrics on EPIC across MuJoCo tasks (five seeds).

Task Name	CQL	EDAC	EPIC-Raw	EPIC-Norm	EPIC-PCA	EPIC-Embed
hopper-medium	61.9	101.6	102.2 ± 0.5	101.4 ± 0.8	101.5 ± 2.7	103.1 ± 1.6
hopper-expert	106.5	110.1	112.2 ± 1.5	113.1 ± 1.2	113.4 ± 1.3	111.0 ± 1.4
hopper-medium-expert	96.9	110.7	112.3 ± 0.9	112.5 ± 3.1	111.8 ± 1.0	108.5 ± 2.8
walker2d-medium	79.5	92.5	95.9 ± 3.2	96.5 ± 2.7	96.8 ± 2.0	93.2 ± 1.9
walker2d-expert	109.3	115.1	117.7 ± 2.1	116.9 ± 3.1	114.9 ± 2.9	116.3 ± 1.8
walker2d-medium-expert	109.1	114.7	116.4 ± 1.7	117.7 ± 1.4	115.1 ± 1.6	117.2 ± 0.9
Average	93.9	107.5	109.5	109.7	108.9	108.2

³<https://github.com/Improbable-AI/walk-these-ways>

1296 Table 9: Average speed (m/s) and stability (%) comparison of different state-similarity metrics for
 1297 EPIC in quadruped locomotion velocity-tracking (WTW) tasks (three seeds).

	CQL		EDAC		EPIC-Raw		EPIC-Norm		EPIC-PCA		EPIC-Embed	
	Speed / Stability	Speed / Stability	Speed / Stability	Speed / Stability	Speed / Stability	Speed / Stability	Speed / Stability	Speed / Stability	Speed / Stability	Speed / Stability	Speed / Stability	Speed / Stability
Pacing (0.5 m/s)	0.31 / 37.21	0.38 / 41.52	0.33 / 40.28	0.41 / 64.35	0.36 / 61.62	0.37 / 67.35						
Trotting (0.5 m/s)	0.33 / 35.53	0.30 / 39.41	0.36 / 37.44	0.32 / 50.37	0.35 / 57.35	0.39 / 58.97						
Bounding (0.5 m/s)	0.24 / 21.66	0.36 / 47.65	0.32 / 30.57	0.44 / 50.12	0.39 / 53.67	0.45 / 52.45						
Pacing (1.0 m/s)	0.39 / 44.64	0.44 / 51.67	0.53 / 54.68	0.52 / 61.45	0.55 / 71.61	0.56 / 71.57						
Trotting (1.0 m/s)	0.33 / 47.37	0.31 / 40.34	0.41 / 50.76	0.47 / 46.66	0.43 / 54.63	0.46 / 55.54						
Bounding (1.0 m/s)	0.28 / 32.45	0.51 / 45.52	0.40 / 34.68	0.42 / 43.69	0.47 / 63.48	0.55 / 65.79						

F.6 PARAMETER STUDY

F.6.1 PIC STRENGTH δ

The PIC strength δ directly controls the intensity of the peer constraint. A larger δ places more emphasis on keeping the learned policy close to the in-sample optimal action, potentially reducing exploration. Conversely, a smaller δ focuses more on fitting Q-values, which may lead to greater deviations from the behavior policy. As shown in Figure 13, in the Gym-MuJoCo environments the algorithm’s performance degrades markedly when the peer-influenced constraint strength δ is set too low (< 1) or too high (> 4). In contrast, the best results are consistently observed within a moderate range ($\delta \in [1, 3]$). A similar trend holds for the AntMaze and Adroit benchmarks, indicating that appropriately tuning δ yields robust performance across diverse task types.

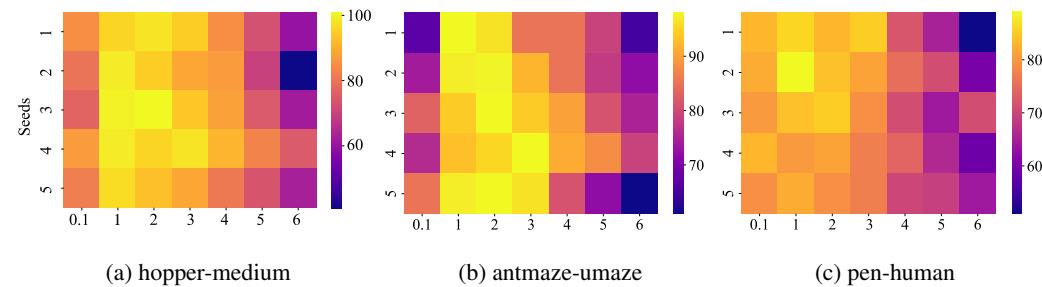


Figure 13: Impact of PIC strength δ on PIC-TD3 performance.

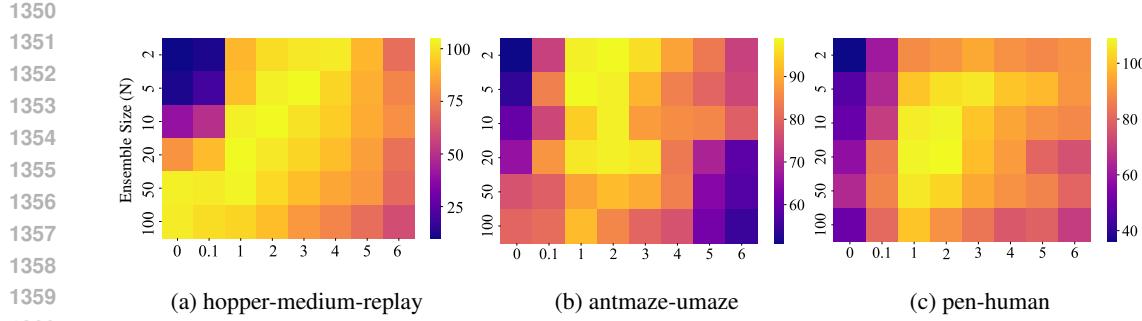
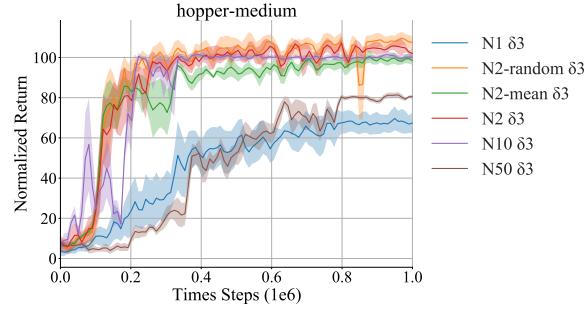
F.6.2 ENSEMBLE SIZE N

Ensemble size N controls uncertainty estimation strength. Larger N helps penalize OOD actions in ensemble methods, but too large a N reduces efficiency. As shown in Figure 14, without PIC ($\delta = 0$), performance improves with N , but for small δ , performance starts declining when $N \geq 50$. For larger δ , performance decreases as N increases.

To further assess the sensitivity of EPIC to different action-selection rules, we conduct an additional study on hopper-medium, comparing the standard min-over-critics, Random Double Q (sampling two critics from $N = 10$), and Mean-Q aggregation under varying ensemble sizes $N \in \{1, 2, 10, 50\}$. The results (Figure 15) show that once $N \geq 2$, all three variants exhibit similar performance with only minor deviations, suggesting that EPIC is largely insensitive to the specific critic aggregation rule. When N becomes very large (e.g., $N = 50$), learning slows down due to overly pessimistic value estimates, consistent across all variants. When $N = 1$, the performance degrades to some extent. However, under the peer-influenced constraint, the policy remains supported within the dataset distribution and can still learn a moderately good policy. In contrast, other single-critic networks typically fail in this setting Wei et al. (2022).

F.7 PERFORMANCE ON OFFLINE-TO-ONLINE D4RL

Evaluating offline-to-online performance is a critical aspect of offline RL algorithms, especially in light of recent advancements. Based on this, we conduct additional tests on EPIC, as it demonstrates

Figure 14: Impact of ensemble size N on EPIC performance.Figure 15: Performance of different action-selection strategies under varying ensemble sizes N .

remarkable effectiveness in offline pretraining through PIC and the Coupling Effect. We follow the methodology of (Tarasov et al., 2023b) to assess EPIC’s performance in offline-to-online transitions. We compare EPIC’s performance with TD3+BC (Fujimoto & Gu, 2021), IQL (Kostrikov et al., 2021b), and SPOT (Wu et al., 2022) during the transition from offline to online learning. Baselines scores are taken from (Tarasov et al., 2023a).

The results, including scores from the offline phase and after online fine-tuning, are presented in Table 10. EPIC demonstrates competitive performance, outperforming in three out of six AntMaze datasets and achieving state-of-the-art results in the final scores for the Adroit tasks.

Table 10: Normalized performance after offline pretraining and online fine-tuning on D4RL.

Task Name	TD3 + BC	IQL	SPOT	EPIC (ours)
antmaze-umaze	66.8 → 91.4	77.0 → 96.5	91.0 → 99.5	98.6 → 99.5
antmaze-umaze-diverse	59.1 → 48.4	59.5 → 63.8	36.3 → 95.0	94.3 → 98.3
antmaze-medium-play	59.2 → 49.4	71.8 → 89.8	71.8 → 97.5	88.1 → 95.4
antmaze-medium-diverse	62.6 → 49.4	64.3 → 92.3	73.8 → 94.5	83.8 → 93.1
antmaze-large-play	21.5 → 0.1	38.5 → 64.3	31.8 → 97.3	65.9 → 89.3
antmaze-large-diverse	9.5 → 0.4	26.8 → 64.3	17.5 → 81.0	66.9 → 74.8
AntMaze Average	46.5 → 40.0 (-6.5)	56.3 → 78.5 (+22.2)	53.7 → 94.1 (+40.4)	82.9 → 91.7 (+8.8)
pen-cloned	86.1 → 110.3	84.2 → 102.0	6.2 → 43.6	94.6 → 125.4
door-cloned	0.0 → 3.4	1.2 → 20.3	2.0 → 5.7	7.1 → 21.2
hammer-cloned	2.4 → 11.6	1.4 → 57.3	4.0 → 3.7	12.7 → 64.3
relocate-cloned	-0.1 → 0.1	-0.2 → -0.2	-0.2 → -0.2	1.1 → 2.0
Adroit Average	22.1 → 31.4 (+9.3)	21.7 → 44.9 (+23.2)	3.0 → 13.2 (+10.2)	28.9 → 53.2 (+24.4)
Total Average	36.7 → 36.5 (-0.2)	42.5 → 65.0 (+22.5)	33.4 → 61.8 (+28.4)	63.4 → 77.7 (+14.3)

F.8 TRAINING CURVES

We present the training curves of the algorithms in our experiments. The solid lines in the figure represent the average performance across five random seeds, while the shaded areas indicate the standard deviation, providing a measure of variability in the results.

1404
 1405 In Figure 16, we display the training curves of EPIC and EDAC (An et al., 2021) over three million
 1406 steps across 18 tasks in MuJoCo. EPIC is implemented based on the author-provided implementa-
 1407 tion of EDAC ⁴. In Figure 17, we further compare the Interquartile Mean (IQM) values of EPIC and
 1408 EDAC. IQM is a more reliable metric than simple averages, as it takes the distribution of outcomes
 1409 into account and better reflects the overall performance, especially in terms of risk and outlier han-
 1410 dling. Additionally, we plot the training curves for the AntMaze and Adroit environments, where
 1411 we compare EPIC against IQL (Kostrikov et al., 2021b), a stable baseline known for its robust
 1412 performance, as shown in Figures 18 and 19. IQL is implemented based on the CORL codebase ⁵.
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456

⁴<https://github.com/snu-mllab/EDAC>

⁵<https://github.com/tinkoff-ai/CORL>

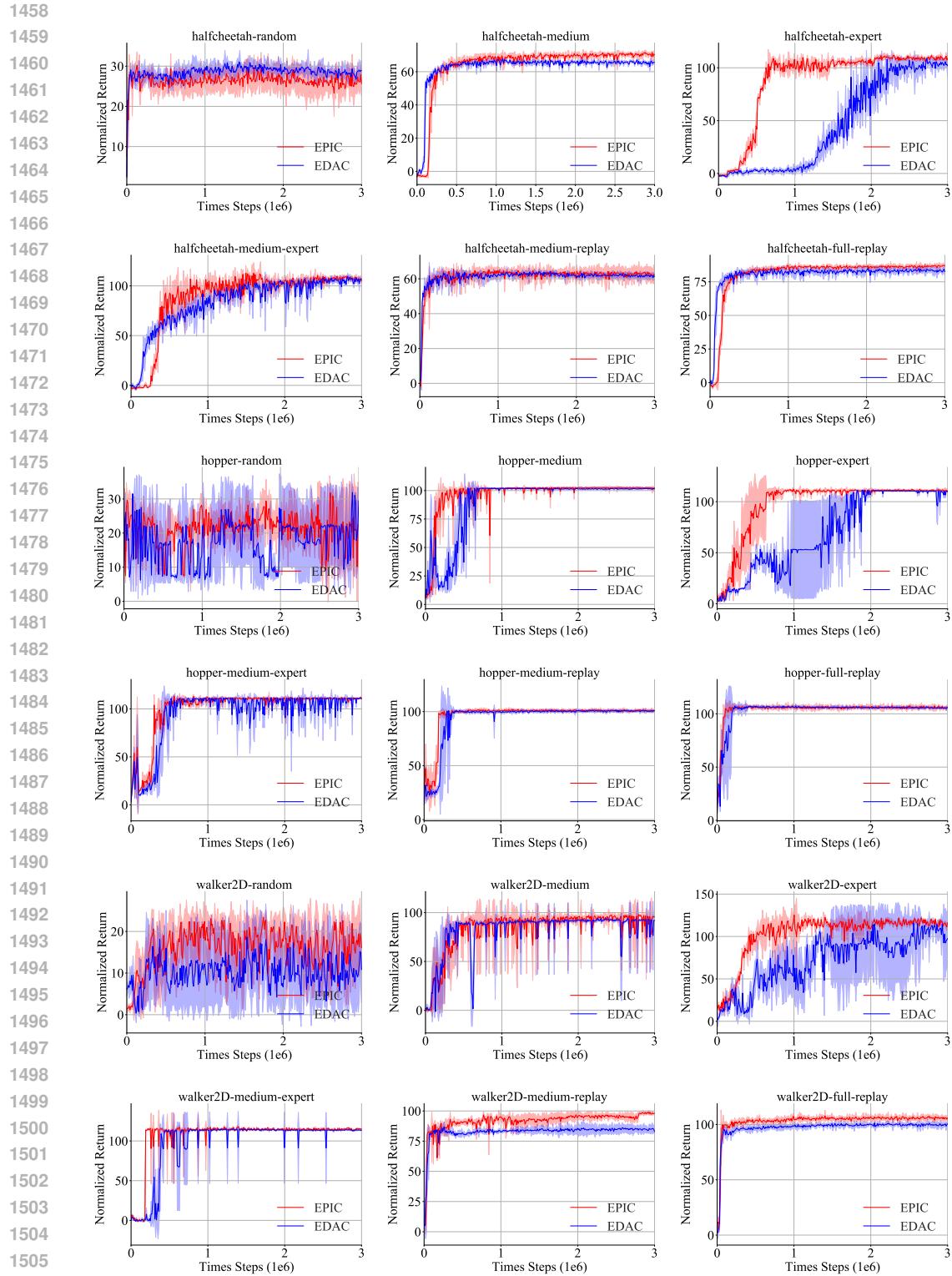


Figure 16: Comparative mean performance analysis of EPIC and EDAC across 18 MuJoCo tasks.

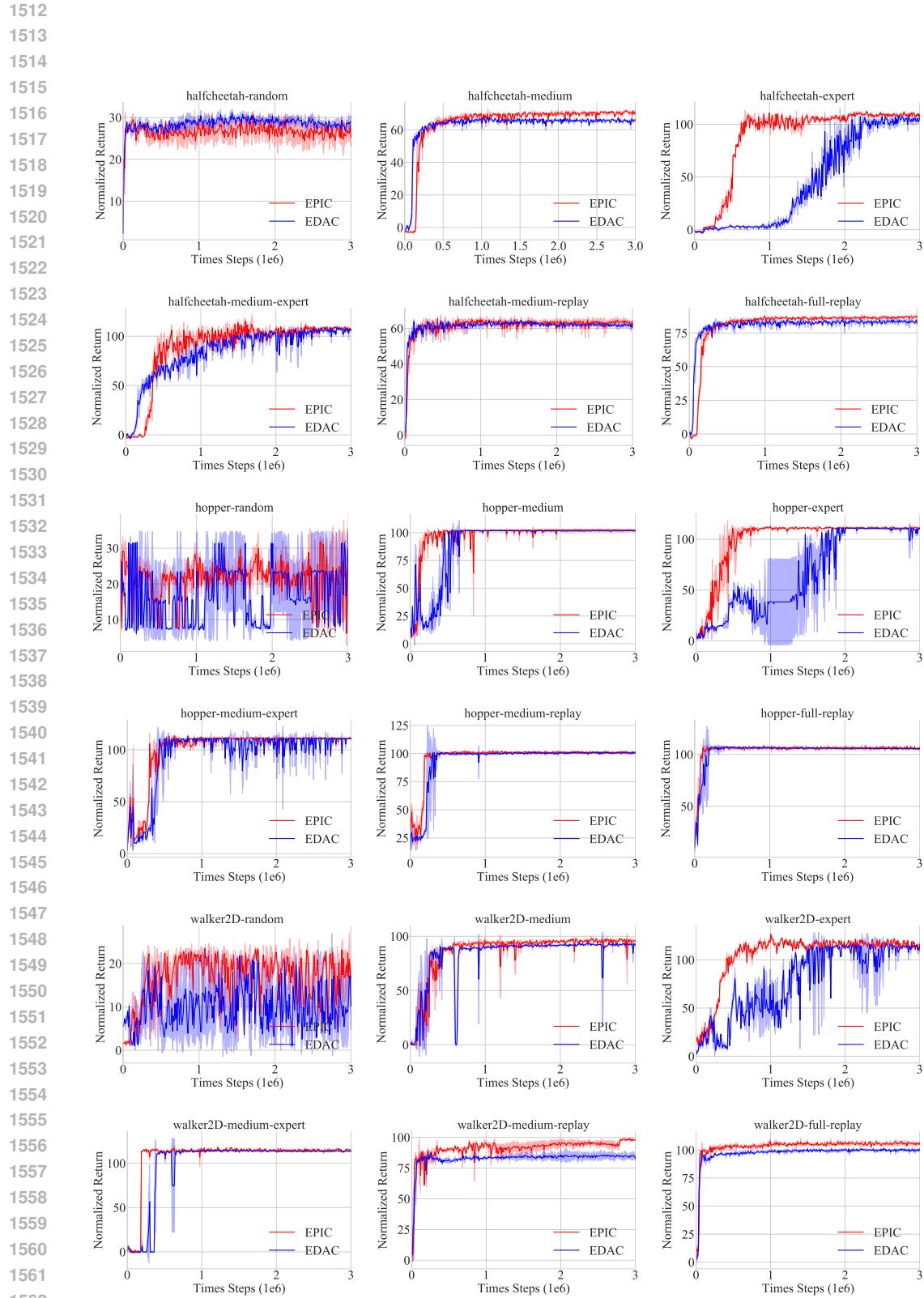


Figure 17: Comparative IQM performance analysis of EPIC and EDAC across 18 MuJoCo tasks.

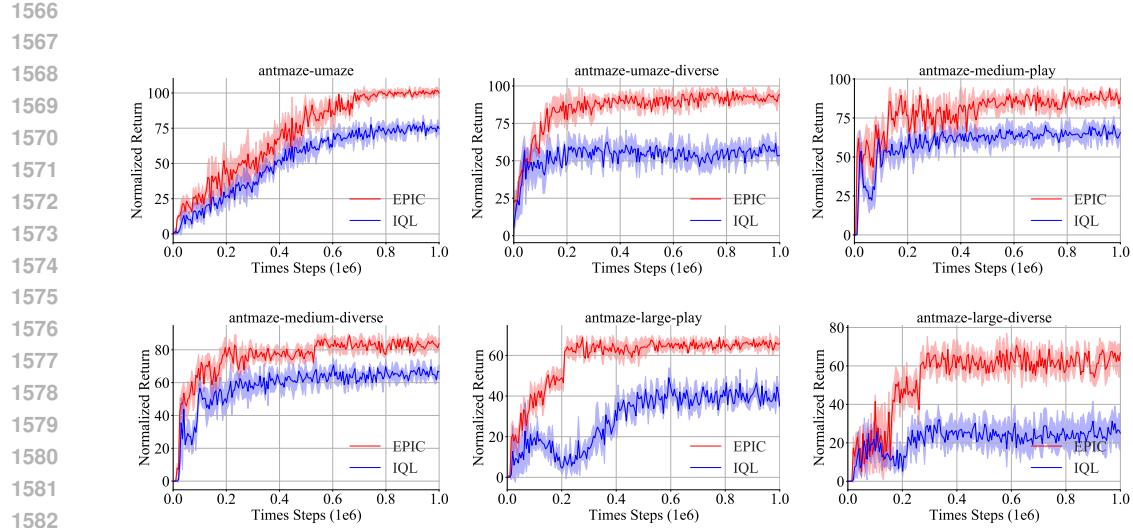


Figure 18: Comparative mean performance of EPIC and IQL across six AntMaze tasks.

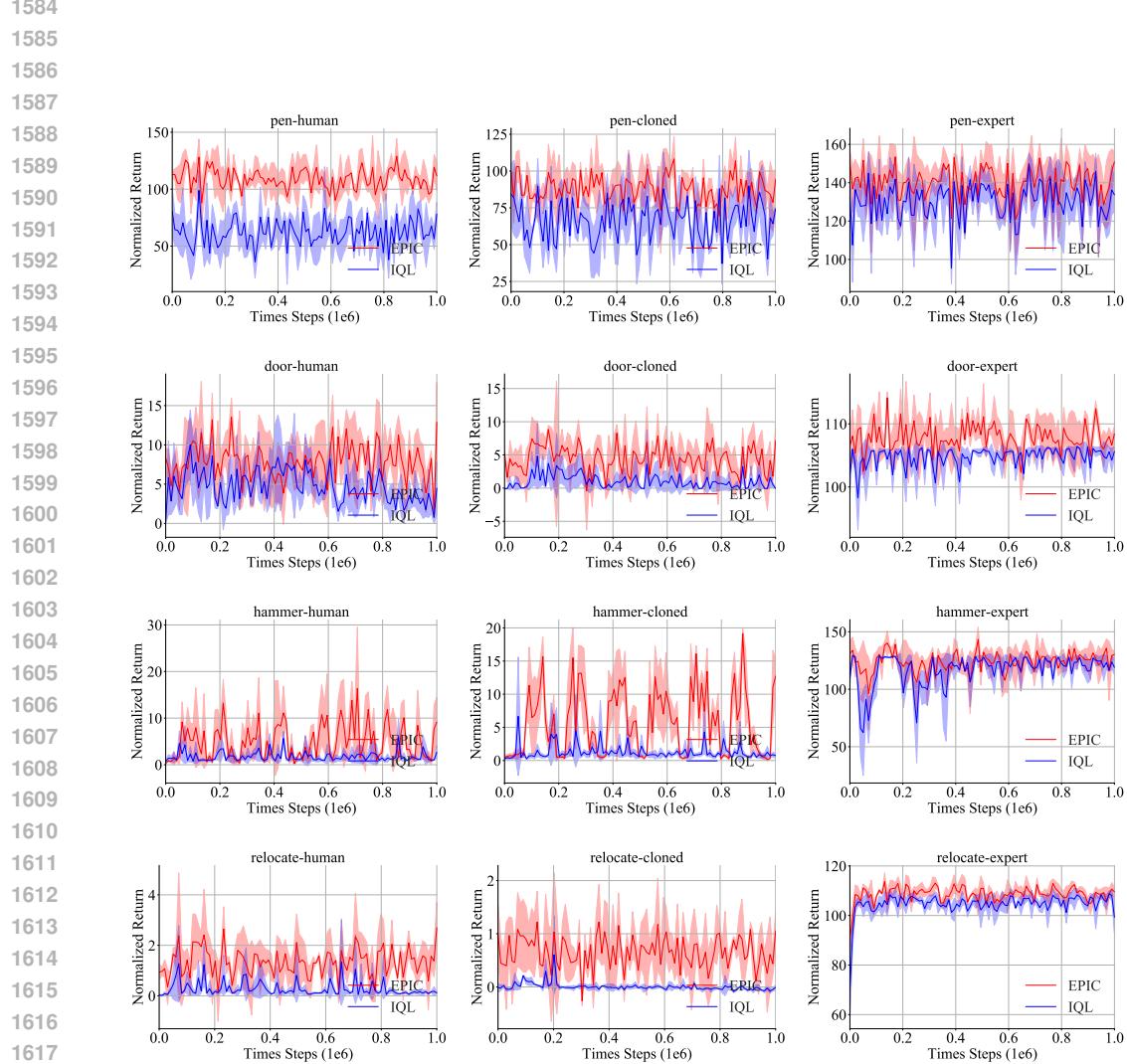


Figure 19: Comparative mean performance of EPIC and IQL across 12 Adroit tasks.

G LIMITATIONS AND FUTURE WORK

1620
1621
1622 Despite promising results, several limitations remain. (i) Peer selection currently relies on Euclidean
1623 nearest neighbors in the raw state space; in high-dimensional, highly nonlinear, or visual settings,
1624 Euclidean similarity may diverge from semantic similarity, yielding “pseudo” peers. (ii) Candidate
1625 actions are drawn from local neighborhoods of the dataset and thus are sensitive to data sparsity
1626 or distributional skew, which can expose coverage gaps. (iii) The best-performing hyperparameters
1627 (e.g., PIC strength δ) vary across tasks, making selection nontrivial and potentially brittle.

1628 Future work includes: (i) retrieving peers in a learned representation space via contrastive or met-
1629 metric learning (optionally action-conditioned), replacing raw Euclidean distance; and (ii) developing
1630 adaptive schemes for automatically tuning δ (e.g., uncertainty- or constraint-driven adjustment) to
1631 improve robustness across diverse environments.

H USE OF LARGE LANGUAGE MODELS

1633 Large Language Models were only used for minor language polishing. They were not involved in
1634 method design, theoretical analysis, or experiments, and therefore do not affect the originality of
1635 this work.

1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673