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ABSTRACT

Deep neural networks have a wide range of applications across multiple domains
such as computer vision and medicine. In many cases, the input of a model at in-
ference time can consist of sensitive user data, which raises questions concerning
the level of privacy and trust guaranteed by such services. Much existing work
has leveraged homomorphic encryption (HE) schemes that enable computation on
encrypted data to achieve private inference for multilayer perceptrons and CNNs.
An early work along this direction was CryptoNets, which takes 250 seconds for
one MNIST inference. The main limitation of such approaches is that of com-
pute, which is due to the costly nature of the NTT (number theoretic transform)
operations that constitute HE operations. Others have proposed the use of model
pruning and efficient data representations to reduce the number of HE operations
required. In this paper, we focus on improving upon existing work by proposing
changes to the representations of intermediate tensors during CNN inference. We
construct and evaluate private CNNs on the MNIST and CIFAR-10 datasets, and
achieve over a two-fold reduction in the number of operations used for inferences
of the CryptoNets architecture.

1 INTRODUCTION

In recent years, deep neural networks have achieved state-of-the-art accuracy for tasks such as image
recognition. They have been deployed in a range of sectors, powering a wide variety of applications
such as recommendation systems, medical diagnosis, and content filtering. Machine Learning as a
Service (MLaaS) is a framework in which cloud services apply machine learning algorithms on user-
supplied data to produce an inference result which is then returned to the user. Cloud systems are an
attractive platform for deploying pretrained models due to the relatively low cost and the availability
of remote servers. However, the data has to be decrypted before inference, which allows a server-
side adversary to have access to the user’s information. Homomorphic encryption (HE), can be
applied to enable inference to be performed on encrypted data, enabling the result to be delivered to
the user without risk of the server accessing the original data or the inference result. CRYPTONETS
(Gilad-Bachrach et al., 2016) was the first application of HE to secure neural network inference, and
leveraged the YASHE’ scheme to perform MNIST classifications. CRYPTONETS suffers from a high
number of homomorphic operations (HOPs), with a single MNIST inference requiring ∼290, 000
homomorphic multiplications and ∼250 seconds of inference latency. Subsequent works such as
FASTER CRYPTONETS (Chou et al., 2018) used neural network surgery and a faster encryption
scheme to reduce the inference latency of CRYPTONETS.

Later works utilised ciphertext rotations as opposed to the SIMD packing scheme, enabling convo-
lutional and fully connected layers to be computed using much fewer HOPs (Juvekar et al., 2018;
Mishra et al., 2020). This has been shown to reduce the inference latency of MNIST models by
more than an order of magnitude, bringing confidence that private inference can be practical. LOLA
(Brutzkus et al., 2019) proposed novel representations for intermediate tensors and their MNIST
model requires only 2.2 seconds for one inference. One drawback of their representations is poorly
scalability to harder datasets such as CIFAR-10 due to the limited number of slots per ciphertext
acting as a barrier to the size of tensors that are practical.

The limitated set of operations supported by HE schemes prevents the secure computation of non-
polynomial activation functions which impedes model training due to the problem of exploding
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gradients (Chou et al., 2018). To address this, others have proposed the use of secure multi-party
computation to enable secure computation of non-polynomial activations using multiple parties (Ju-
vekar et al., 2018; Mishra et al., 2020). Despite enabling use of popular nonpolynomial activations
such as ReLU, relying on multiparty computation incurs large amounts of data transfer between
parties and the requirement for the parties involved to be online and have feasibly fast data transfer
rates. For example, GAZELLE (Juvekar et al., 2018) requires ∼1 GB of data transfer per inference
for their CIFAR-10 model, and DELPHI (Mishra et al., 2020) requires ∼2 GB per inference with a
ResNet-32 model. Single-party approaches often choose to approximate the ReLU activation using
a second-degree polynomial (Gilad-Bachrach et al., 2016; Chou et al., 2018; Brutzkus et al., 2019).

In this work, we introduce a framework for secure inference on secure CNNs, designed to reduce
the number of HOPs required per inference whilst preserving prediction accuracy. Our contributions
can be summarised as follows:

• We integrate the convolution-packing method from LOLA with the fast matrix-vector prod-
uct method introduced by Halevi and Shoup (Halevi & Shoup, 2019) and utilised by Ju-
vekar et al. (2018) in their multi-party computation framework. Intermediate convolutions
are converted into fully-connected layers and computed as matrix-vector products. We
show that utilising the Halevi-Shoup method allows the use of rotations and ciphertext
packing to scale better compared with the representations in LOLA, when applied to larger
convolutional layers. We perform a more detailed investigation on the scalability of the
methods used in LOLA to larger models and show that they are significantly outperformed
by our proposed method.

• We compare our framework against LOLA by constructing models for MNIST and CIFAR-
10. Our main evaluation criteria is the number of HOPs required per inference for a model.
With the same layer parameters as LOLA, we are able to obtain over a two-fold reduction
in the number of HOPs per inference. Our CIFAR-10 model achieves similar accuracy to
that of LOLA’s but uses far fewer operations.

2 BACKGROUND AND PREREQUISITES

2.1 THREAT MODEL

Our threat model concerns that of the machine learning as a service paradigm (MLaaS), in which the
user first sends data to a server, which then performs machine learning inference on the received data
using some model. The inference result is then delivered back to the user. For example, consider an
online machine learning service which claims to detect the probability of a person having COVID-19
from an audio recording of their cough. Suppose that Alice decides to send a recording of her cough
to this service, in the hopes of receiving a diagnosis. There are two key threats in this scenario:
(i) the risk of an adversary eavesdropping on the data transmission, and (ii) the risk of the MLaaS
provider performing unauthorised access on the user’s data – in this case, the recording produced by
Alice. The first threat can be mitigated using standard cryptographic protocols. However, the second
risk is harder to address, especially if the user data is decrypted before inference Bae et al. (2018).
The use of HE mitigates both risks. The data is encrypted using HE, which is sufficient to prevent
an adversary from eavesdropping. In addition, the provider is only able to perform computations on
the encrypted data and will output the inference result without being able to decrypt.

2.2 HOMOMORPHIC OPERATIONS

Several recent HE schemes such as BFV (Brakerski & Vaikuntanathan, 2011) and CKKS (Cheon
et al., 2017) are based on the RLWE problem and support SIMD ciphertext operations. On a high
level, such schemes establish a mapping between real vectors and a plaintext space. The plaintext
space is usually the polynomial ring R = Z[X]/(XN + 1). In particular, this is a cyclotomic
polynomial ring R = Z[X]/(ΦM (X)) where ΦM (X) is the M -th cyclotomic polynomial and
M = 2N is a power of two. The decoding operation maps an element in R to a vector that
is either real or complex, depending on the scheme used. The encoding operation performs the
reverse. Plaintext polynomials are encrypted into ciphertext polynomials using a public key. The
operations of addition and multiplication can be performed over ciphertexts using an evaluation key.
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Since each ciphertext corresponds to a vector of real (or complex) values, a single homomorphic
operation between two ciphertexts constitutes an element-wise operation between two vectors. In
addition, such schemes support rotations of the slots within a ciphertext, with the use of Galois
automorphisms.

2.3 FLATTENED CONVOLUTIONS

Consider the convolution of an image I with a filter f . For simplicity, assume that both the image
and filter are square, the vertical and horizontal strides of the filter are equal. Let I ∈ Rdin×din×cin ,
and f ∈ Rk×k×cin . Denote the stride as s and padding as p. Now, the output feature map J is such
that J ∈ Rdout×dout where

dout =

⌊
din − k + 2p

s

⌋
+ 1.

A full convolutional layer that outputs cout feature maps will require a convolution of the input image
with each of the cout filters. Consider the vector v obtained by flattening each output feature map
row-wise. This can be expressed as a matrix-vector product of the form v = A ·w ∈ Rd2

out·cout where
A ∈ Rd2

out·cout×d2
in·cin and w is the flattened representation of I.

2.4 FAST CONVOLUTION

The first convolutional layer in a CNN can be represented using convolution-packing (Brutzkus et
al., 2019). The convolution of an input image f with a filter g of width w, height h and depth d is

(f ∗ g)[i, j] =

w−1∑
x=0

h−1∑
y=0

d−1∑
z=0

g[x, y, z]f [i+ x, j + y, z]. (1)

Observe that the parallelism inherent in this computation enables it to be vectorized as

f ∗ g =

w−1∑
x=0

h−1∑
y=0

d−1∑
z=0

g[x, y, z] · F(x,y,z), (2)

where F(x,y,z) is a matrix such that F(x,y,z)
ij = f [i+x, j+y, z]. For an input image I ∈ Rcin×din×din

feature maps and kernel of window size k × k, the input image is represented as k2 · cin vectors
v1, . . . , vk2·cin , where vi contains all elements convolved with the i-th value in the filter. Denote
corresponding ciphertexts as ct1, . . . , ctk2·cin . The process of producing the j-th output feature map
is now reduced to ciphertext-plaintext multiplication of each cti with the i-th value in the j-th filter.
In total, the process requires k2 ·cin ciphertext-scalar multiplications per output feature map, leading
to a total of k2 · cin · cout multiplications.

2.5 MATRIX-VECTOR MULTIPLICATION

Multiplying a plaintext weight matrix of A ∈ Rm×n with a ciphertext vector can be achieved
naively by first performing m ciphertext multiplications of the vector with each row of A. Then
for each product ciphertext, we can compute the sum of all elements within it by applying a rotate-
and-sum procedure (Halevi & Shoup, 2019): we first rotate the ciphertext by N/2 slots and add
it to the original. Then the procedure is repeated for N/4 slots, N/8 and so on, until the sum of
the ciphertext resides within all slots of the ciphertext. The resulting dot products can be summed
together. This basic approach requires O(m log n) rotations.

Halevi & Shoup (2019) introduced a more efficient method of computing the encrypted matrix-
vector product A · v for square A. GAZELLE (Juvekar et al., 2018) extended the approach to
support rectangular A ∈ Rm×n. The method works by decomposing A into its m diagonals, de-
noted {d1, d2, . . . , dm} such that di = [Ai,0,Ai+1,1, . . . ,Ai+n−1,n−1]. Note that all row positions
are in modulo m. Then each di is rotated i positions to align values belonging to the same row of
A into the same column(s), and finally each rotated diagonal is multiplied with with corresponding
rotations of v. The ciphertexts are summed, and the last stage is to apply a rotate-and-sum procedure
to the resulting ciphertext. Overall, this procedure requiresO(m) multiplications andO(m+log2 n)
rotations. We propose an improved variant of this approach for our framework described in section
3.1.
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3 METHOD

In this section, we present our method for achieving privacy-preserving CNN inference with low
numbers of HOPs. In summary, we adopt the fast convolution method from LOLA but compute the
intermediate convolutional layers in a network using the Halevi-Shoup (HS) matrix-vector product
method instead. This enables large convolutions to be performed in far fewer ciphertext rotations
than LOLA’s approach of computing a rotate-and-sum procedure for each row in the weight matrix.
In section 3.1 we explain the approach we use. In section 3.2, we perform an analysis to show the
improvements made by our modifications compared with the approach from LOLA. In section 4,
we apply our approach to models for the MNIST and CIFAR-10 datasets.

3.1 PERFORMING INTERMEDIATE CONVOLUTIONS

In Section 2.3 we state that a convolution can be flattened and represented as a matrix-vector product
A ·w ∈ Rd2

out·cout where A ∈ Rd2
out·cout×d2

in·cin and w is the flattened input.

This product can be computed efficiently using the Halevi-Shoup method. However, neither the
original method (Halevi & Shoup, 2019) nor GAZELLE (Juvekar et al., 2018) discuss the con-
straints the ciphertext slot count N imposes in this context. In Proposition 1 we show that certain
constraints must be applied on the sizes of the input and output of the convolution. In particular, we
must have N ≥ d2in · cin + d2out · cout − 1, unless dout and cout are both powers of 2.

Proposition 1. LetN denote the ciphertext slot count, and n = d2in ·cin be the size of the convolution
input, and m = d2out · cout be the size of the output. The basic Halevi-Shoup method, which takes
m − 1 + dlog2

(
m+n−1

m

)
e rotations, requires the condition that N ≥ m + n − 1. If this does not

hold, but it is the case that m = 2l, 0 ≤ l ≤ log2N , then m− 1 + log2
N
m rotations are required.

Proof. Applying the Halevi-Shoup technique requires m ciphertext diagonals d(1), . . . ,d(m) of
length n to be extracted, rotated and summed. Note that d(i)

j = Ai+j,j . Now, ifN ≥ m+n−1 then
N is sufficiently large for all rotations to be performed without wrapping around the ciphertext. If
N < m+ n− 1, then wrap-around will occur for at least one of the diagonal ciphertexts during ro-
tation. For any slot d(i)

j , the rotation by i positions will shift the slot to position k = i+ j (mod N).

The slot d(i)
j is from the row of A with index r = i + j (mod m), and so must be shifted into an

index that is equivalent to r in modulo m, in order for the rotate-and-sum algorithm to be used. If
N is an integer multiple of m, then we see k ≡ r (mod m) indeed holds. Otherwise, wrap-around
will cause the diagonals to be misaligned when summed together. Since N is a power of 2, the
requirement that m divides N is satisfied whenever dout and cout are also powers of 2 such that
2 log2 dout + log2 cout ≤ log2N .

Based on Proposition 1, we utilise a procedure to ensure that the method can be applied for all
choices of (din, dout, cin, cout) where d2out · cout ≤ N : if the condition that N ≥ m + n − 1 does not
hold, then we ‘round’ m to the closest power of 2 not less than itself, and add corresponding rows
filled with 0’s to the weight matrix. This procedure is illustrated below for the simple case where
N = 4,m = 3 and n = 4. Notice that the padding allows the diagonals to align correctly after
rotation.

Figure 1: An illustration of our version of the Halevi-Shoup method that utilises a padding method.
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3.2 COMPARISON WITH LOLA

Firstly, we follow the terminology used by Brutzkus et al. (2019) and define dense, sparse, stacked
and interleaved representations for a vector v ∈ Rn.

• Sparse: v is represented with n ciphertexts, where the i-th ciphertext contains the i-th
element of v in all its slots.

• Dense: v is represented as a single ciphertext where the first n slots correspond to the
values in v.

• Stacked: v is represented as a single ciphertext that contains as many copies of v as the
ciphertext slot count permits.

• Interleaved: v is represented as a single ciphertext similar to the dense representation -
however, the slots are shuffled by some permutation.

LOLA proposes a dense-vector row-major matrix-vector product method (which we call LOLA-
dense) that maps the input vector in the dense representation to an output vector in the sparse rep-
resentation. Let A ∈ Rm×n. The dense-vector row-major method computes Av1 = v2 via a
multiplication per row of A and summing the elements inside each product vector using the rotate-
and-sum procedure. This is the basic approach described in Section 2.5, except the dot products are
not summed together.

They also propose a stacked-vector row-major method (which we call LOLA-stacked) that requires
input vector in the stacked representation and provides the output in the interleaved representation.
To obtain the stacked representation, they first pack k copies of v into a single ciphertext where
k = N/δ(n) and δ(n) = 2dlog2 ne is the smallest power of 2 greater than or equal to n. The
stacked vector is then multiplied with corresponding stacked rows of A, before rotate-and-sum is
applied. The main drawback of this method is its reliance on the ability to pack many copies of v
into a ciphertext, which requires N to be much larger than n. For large convolutions, this is hard to
achieve. We derive the number of operations this method takes.
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Figure 2: Comparison of LOLA’s matrix-vector product methods with the Halevi-Shoup approach,
in terms of the number of rotations required for computing a fully-connected layer from n inputs to
m outputs.

Remark 1. The stacked-vector row-major method proposed by Brutzkus et al. (2019) requires
dmk e (k + dlog2 ne − 1) + dmk e − 1 rotations and dmk e multiplications.

Proof. The stacking in Brutzkus et al. (2019) is done is using k − 1 rotations and additions. Then
the point-wise multiplication requires a single SIMD multiplication between the ciphertext and k
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(stacked) rows of A. Finally, dlog2 ne rotations and additions are performed to compute the k
elements of the product vector. Since N is not always sufficiently large to pack m copies of n,
this procedure has to be performed dmk e times. To produce all elements of the product vector,
dmk e (k + dlog2 ne − 1) rotations and dmk e multiplications are performed, before dmk e− 1 rotations
are performed to bring the dmk e ciphertexts into a single one. Note that the produced ciphertext(s)
contain the product elements in an interleaved format, i.e. a permutation.

Suppose we are passing a 4096-length representation into a fully connected layer to map to a 64-
length embedding, and let N = 16384. LOLA-dense would require 64 · log2 4096 = 768 rotations
and 64 multiplications; LOLA-stacked would require 1023 rotations and 64 multiplications. Now,
the Halevi-Shoup product approach would require only 64 + log2 8192 = 77 rotations and 64 mul-
tiplications. Since rotations are the most expensive operation, we compare the number of rotations
required by each of the three methods in Figure 2.

It can be shown that for any n > 1, LOLA-stacked uses fewer rotations than LOLA-dense. However,
LOLA-dense can be used to compute two layers instead of one. For large inputs and output layers
(relative to N ), however, both methods require significantly more rotations than HS. LOLA-stacked
relies on m · δ(n)/N being small whereas LOLA-dense relies on log2 n being small. With HS, even
if n = N , log2 n is insignificant compared to m.

In general, we believe that having the number of rotations be linear to only m is beneficial since
neural networks typically down-sample or pool the data to produce denser, higher-level represen-
tations, and so can expect n ≥ m generally. It should be noted that there are exceptions - such as
bottleneck layers.

4 EXPERIMENTS

We conduct experiments on the MNIST and CIFAR-10 datasets. We first apply our approach to the
CRYPTONETS architecture used in LOLA, to create a model CRYPTONETS-HS. The same architec-
ture was shown to achieve close 98.95% accuracy by Gilad-Bachrach et al. (2016), and we observe
similar performance using their training parameters. Training is conducted using TensorFlow (Abadi
et al., 2015). The architecture is then converted into a sequence of homomorphic operations. We use
the SEAL library (Chen et al., 2017) for this. For reference, the original CRYPTONETS architecture
is shown in Figure 3.

Figure 3: The architecture used in LoLa. k indicates the kernel size and s indicates the stride of
convolution and pooling. Note that the original 28× 28 input is padded.

LOLA uses a combination of their stacked and interleaved representations for their intermediate
convolutions. We opt to use the efficient approach instead. To reduce consumption of instruction
depth, linear layers without activations between them are composed together. For instance, each
convolution-pooling block of CRYPTONETS-HS is a single linear layer. This is done to enable
our baseline to match the architecture in LOLA. It should be noted that omitting activations can
reduce representational power and made not be ideal in practice. The models are implemented
using operations provided by the SEAL library, and inference is performed on a standard desktop
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processor. We utilise only a single thread. We measure the number of homomorphic operations
required per single inference, as well as model test accuracy.

Using the proposed improvements, we also construct models ME and CE, for MNIST and CIFAR-
10, respectively. The proposed architectures have reduced memory requirements and layer parame-
ters that are better suited towards the HS method:

• Model ME has similar test accuracy to CRYPTONETS-HS but is designed in consideration
of the way we are computing the layers. We note that applying the HS method in computing
layer 6 of CRYPTONETS-HS requires setting m = 100 and n = 845. Specifically, we
reduce the kernel size of the first convolution from 5 × 5 to 3 × 3, and the size of the first
dense layer from 100 to 32. To account for the reduced representational power of the first
convolution, the stride is reduced from 2 to 1. This notably does not add any homomorphic
operations to the computation. We are able to achieve 98.7% test accuracy using ME after
100 epochs of training with the Adam optimiser.

• Model CE is larger, and requires more operations to compute. We initially construct a
model with a second convolutional layer with an output tensor of size 8× 8 with 64 chan-
nels, and then follow the approach from Lu et al. (2021) and use SVD to factorise this layer
into a smaller sub-convolution followed by a 1×1 convolution which is efficient to compute
using the convolution-packing method described in LOLA. The smaller sub-convolution is
computed using the HS method. The final trained model has a test accuracy of 73.1%.

Layer Description Parameters Input
1 Convolution k = 3, s = 1 (1, 30, 30)
- Square - (5, 28, 28)
2 Avg. Pool k = 3, s = 2 (5, 28, 28)
3 Convolution k = 3, s = 1 (50, 14, 14)
4 Avg. Pool k = 3, s = 2 (50, 12, 12)
5 Flatten - (50, 12, 12)
6 Dense m = 32 (1250)
- Square - (32)
7 Dense m = 10 (32)
- Softmax - (100)

(a) ME layer parameters.
Layer Description Parameters Input

1 Convolution k = 3, s = 1 (1, 32, 32)
- Square (18, 30, 30)
2 Average Pooling k = 2, s = 2 (18, 30, 30)
3 Sub-convolution k = 3, s = 1 (18, 10, 10)
4 Sub-convolution k = 1, s = 1 (13, 8, 8)
- Square (18, 30, 30)
5 Average Pooling k = 2, s = 2 (64, 8, 8)
6 Convolution k = 3, s = 1 (64, 4, 4)
7 Flatten - (256, 2, 2)
8 Dense m = 512 (1024)
- Square (18, 30, 30)
9 Dense m = 10 (256)
- Softmax - (10)

(b) CE layer parameters.

Table 1: Layer parameters for ME (left) and CE (bottom). k and s indicate the kernel width and
stride respectively. m indicates the number of output nodes of a fully-connected layer.

5 RESULTS AND DISCUSSION

Table 2 shows a breakdown of the operations for the models discussed so far. In homomorphic
encryption applied to neural networks, the most expensive homomorphic operation is rotation, with
a worst case time complexity of performing both a number theoretic transform (NTT) and an inverse
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NTT on vectors of length N . We observe that CRYPTONETS-HS requires a total of 122 rotations,
as shown in Table 2a. LOLA-MNIST requires a total of 380 rotations1 for the same architecture.
We notice that at both the convolution-pooling blocks in the CRYPTONETS architecture, the HS
implementation has fewer rotations than LOLA. The reduction in rotations is a direct result of
applying the HS method to compute flattened convolutions, in which the number of rotations scales
with the size of the output tensor, rather than the size of the input. LOLA uses the stacked-vector
row-major method for the first convolution, and the dense-vector row-major method for the second
convolution. In Section 3.2 we discussed that both of these scale poorly compared to the HS method.

Now, the optimised ME architecture requires only 56 rotations per inference, but still achieves a
high test accuracy of 98.7%, which is close to the 98.95% test accuracy achieved by LOLA-MNIST,
suggesting that careful selection of layer sizes can lead to great reductions in inference latency. We
do note that CRYPTONETS-HS requires more multiplications than LOLA-MNIST (245 vs. 148).
This is due to the stacked-vector row-major approach reducing the number of multiplications needed.
However, the reduction in rotations exceeds the increase in multiplications.

Layer Total HOPs Add PC Add CC Mul PC Mul CC Rot
M L′ L M L′ L M L′ L M L′ L M L′ L M L′ L

Conv1 90 250 250 5 5 5 40 120 120 45 125 125 - - - - - -
Flat1 8 8 8 - - - 4 4 4 - - - - - - 4 4 4
Square1 1 1 1 - - - - - - - - - 1 1 1 - - -
Conv2-Dense1 110 308 492 1 1 - 38 103 246 32 100 13 - - - 39 104 246
Square2 1 1 1 - - - - - - - - - 1 1 1 - - -
Dense2 36 38 279 1 1 - 12 13 139 10 10 10 - - - 13 14 130
Total 246 606 1031 7 7 5 94 240 509 87 235 148 2 2 2 56 122 380

(a) Comparison of operations in three different privacy-preserving MNIST models. L indicates the original
LOLA-MNIST model, L′ indicates the CRYPTONETS-HS model, and M indicates the ME model. ‘CC’
indicates an operation between two ciphertexts and ‘PC’ indicates an operation between a plaintext and a
ciphertext.

Layer HOPs Add
PC

Add
CC

Mul
PC

Mul
CC

Rot

Conv1 972 18 468 486 - -
Flat1 30 - 15 - - 15
Square1 3 - - - 3 -
Pool1-Conv2 7506 1 2504 2496 - 2505
Conv3 1677 64 768 832 - 13
Flat2 126 - 63 - - 63
Square2 1 - - - 1 -
Pool2-Dense1 778 1 260 256 - 261
Square 1 - - - 1 -
Dense2 40 1 14 10 - 15
Total 11134 85 4092 4080 5 2872

(b) Break-down of operations in CE.

Table 2: Break-down of the types of operations performed by the low latency models. The notation
‘layer1-layer2’ denotes the layers between and including layer1 and layer2.

In terms of latency, the CRYPTONETS-HS model requires 2.7 seconds, whereas ME requires only
0.97 seconds. For reference, LOLA-MNIST requires 2.2 seconds per inference; however, they utilise
8 cores on a server CPU whereas our homomorphic operations are run on a single core of a desktop
processor.

For the CE model, we provide a model with sightly lower test accuracy (73.1% vs. 74.1%) but
requiring less than 10% the number of rotations than LoLa’s CIFAR-10 model. This due to both
ensuring that intermediate tensor sizes fit well into the number of available slots, and also the use of
the HS method. The number of operations for each layer is shown in 2b. It should be noted that a
sizeable portion of this reduction comes from using a smaller model. The exact model from LOLA

1Note that this is deduced to the best of our ability using the descriptions supplied in their paper.
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was not implemented due to its high memory requirements. However, we expect that utilising our
approach for LOLA’s CIFAR-10 architecture would still significantly reduce the inference latency.

The main takeaway from the results is that the application of the HS method to the framework
proposed by LOLA can significantly reduce the number of rotations, which are the most computa-
tionally expensive HE operation. In addition, our models ME and CE are more efficient than the
ones proposed by LOLA whilst achieving similar accuracy.

6 CONCLUSION

Privacy-preserving inference using homomorphic encryption is largely constrained by the compu-
tational requirements of the operations. We propose improvements over LOLA to achieve lower
latencies computing intermediate convolutions, resulting in over a two-fold reduction in the number
of rotations for the same MNIST architecture. It is clear that further improvements can made along
this direction, especially in the topic of automatically selecting suitable layer parameters to set the
trade-off between inference latency and model accuracy (Lou et al., 2020).

9



Under review as a conference paper at ICLR 2022

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
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