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Abstract

Recent advances in deep generative methods have allowed antibody sequence
and structure co-design. This study addresses the challenge of tailoring the
highly variable complementarity-determining regions (CDRs) in antibodies to
fulfill developability requirements. We introduce a novel approach that integrates
property guidance into the antibody design process using diffusion probabilistic
models. This approach allows us to simultaneously design CDRs conditioned on
antigen structures while considering critical properties like solubility and fold-
ing stability. Our property-conditioned diffusion model offers versatility by ac-
commodating diverse property constraints, presenting a promising avenue for
computational antibody design in therapeutic applications. Code is available at
https://github.com/amelvim/antibody-diffusion-properties.

1 Introduction

Antibodies are Y-shaped proteins produced by the immune system in response to pathogens called
antigens [1]. Antibody engineering involves the refinement of the highly variable complementarity-
determining region (CDR) loops to enhance its function or certain properties (Figure 1a). From
a therapeutic perspective, there is a significant interest in the in silico design of CDRs capable of
binding to specific antigens. Traditional approaches rely on energy-based optimization [2], which is
computationally intensive and time-consuming. Recent advancements in deep generative methods
offer enhanced performance by co-designing both the sequence and structure of CDRs simultaneously
[3–5]. One notable advantage of these methods over sequence-based approaches (such as [6, 7]) is
their capability to condition on both the antigen epitope and antibody framework structures during
generation, which has proven useful for affinity optimization.

Next to the antigen-targeting performance of antibodies, their developability properties are essential
for therapeutic developments. These include factors such as solubility, aggregation propensity,
thermal stability, and immunogenicity [8, 9]. These properties are vital to ensure that the antibody
can be manufactured and is suitable for clinical applications [10]. While existing methods partially
optimize for antigen-targeting properties, the integration of developability parameters remains an
open and crucial challenge.

Consequently, in this study, we employ deep generative models for antibody design to generate de
novo sequences and structures for the CDR loops. Beyond conditioning on the antigen structure, our
approach involves guiding the model to produce candidate antibodies with favorable developability
attributes. We propose a property-conditioned diffusion probabilistic model (DPM). DPMs [11, 12]
have demonstrated their capability to generate realistic protein sequences and structures [13, 14],
including antibodies [4]. In contrast to [15], where the diffusion process is guided with gradients
from a classifier, we adopt gradient-free approaches for integrating property information. Specifically,
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Figure 1: (a) Illustration of an antibody, featuring the two heavy (in blue) and two light (in pink)
chains. The variable regions in the enlarged area encompass the antigen-binding site including the six
CDR loops. (b-d) Visualization of the generative diffusion process, showcasing the prior distributions
for each modality and the designed CDR, for the (b) property-unconditioned mode, (c) property-aware
prior approach, and (d) sampling by property approach. (Note: The neural network parameterization
is omitted from the figures but is present before sampling at each generation timestep t.)

we guide the generative diffusion process in two distinct manners: one involves incorporating a
property-aware prior, while the other entails sampling by property. Notably, these approaches do
not require retraining the diffusion models. Moreover, our proposed solutions are adaptable to any
property or set of properties that can be computed or predicted based on the intermediate designs at
the sequence or structure level. We observe that by imposing property constraints, our model yields
antibodies with more favorable developability profiles while preserving their structural integrity
compared to the reference antibodies.

2 Methods
2.1 Diffusion model for antibody design
Our work builds upon an existing method for antibody sequence and structure co-design using
diffusion models. Specifically, we used the DiffAb model [4], which enables the joint generation of
CDR sequences and structures while conditioning on the antibody framework and bound antigen.
The model requires three inputs: amino acid types denoted as si ∈ {ACDEFGHIKLMNPQRSTVWY}, Cα

atom positions as xi ∈ R3, and amino acid orientations as Oi ∈ SO(3), where i is the position of the
amino acid in the sequence. We generate one CDR loop at a time, denoted as R = {(sj ,xj ,Oj)|j =
l + 1, . . . , l +m}, given the rest of antibody-antigen complex C = {(si,xi,Oi)|i ̸= j}.

The forward diffusion process (t = 0, ..., T ) gradually introduces noise into each modality through
different distributions q towards the prior distributions. For the amino acid types, q(stj |s0j ) follows
a multinomial distribution; for the Cα positions, q(xt

j |x0
j ) is modeled as Gaussian; and for the

amino acid orientations, q(Ot
j |O0

j ) is an isotropic Gaussian. Starting from the prior distributions,
the generative diffusion process (t = T, ..., 0) transforms each modality toward the data distribution,
as depicted in Figure 1b. In this process, parametric models pθ are employed to approximate the
posterior distributions at each generation timestep. Different neural networks are used for the three
modalities, with a shared encoder and separate decoders. For an in-depth understanding of the
diffusion process, neural network architectures, and training of the models, we refer readers to [4].

2.2 Antibody design guided on properties

Property-aware prior The prior distribution for the amino acid types follows a uniform distribution
across the 20 classes. In this approach, we propose sampling from a property-aware prior in the form:

sTj ∼ Multinomial(p̄) = (1− b) ·Uniform(20) + b ·Multinomial(p). (1)
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Here, p = [p1, ..., p20], where pk represents the probability of the amino acid type k given a property
of interest. The uniform and multinomial components are weighted by a constant b that can be
adjusted based on the application requirements. This approach is depicted in Figure 1c. The posterior
probabilities at each generation timestep t are defined as:

q
(
st−1
j |stj , s0j

)
= Multinomial

([
αt · onehot(stj) + (1− αt)p̄

]
⊙

[
ᾱt−1 · onehot(s0j ) + (1− ᾱt−1)p̄

])
.

(2)

Here, ᾱt =
∏t

τ=1 α
τ =

∏t
τ=1(1 − βτ ) with βt denoting the cosine variance schedule. s0j is the

amino acid type approximated by the neural network model during the generative diffusion process.
This posterior enforces resampling to rely more on the property-aware prior at the start of the process
(t → T ), and more on the previously sampled amino acid stj towards the end of the process (t → 0).
Note that we need to divide the posterior probabilities by their sum to ensure that they add up to one.

Although this approach can accommodate any amino acid-related property, in this study, we focused
on the hydropathy score [16] as a proxy for solubility and aggregation. Figure 4 presents this score for
each amino acid type and its translation to probabilities (for different values of b). Here, hydrophilic
amino acids (i.e. with low hydropathy scores) are assigned higher probabilities, and vice-versa.

Sampling by property For properties related to sequence and structure, we developed a general
guidance approach. At each generation timestep, we sample N times and then select the sample with
the most favorable property value, as shown in Figure 1d. For instance, we choose the minimum, if
our aim is to minimize the value of the property. When multiple properties are considered, we opt for
the sample with the minimum sum of all property values (known as the Pareto optimal solution [17]).
In a more flexible version, we convert the N property values into probabilities through the softmax
function and then sample the next timestep from this distribution. Here, the assumption is that all R
samples generated at the same step in the process are equally valid in terms of (s,x,O).

For the sampling by property approach, we conditioned our model on both the hydropathy score
and the folding energy (∆G). To compute the difference in folding energy, we employed the ∆∆G
predictor from [18], which relies on a graph convolutional network (GCN) model to predict the
energy difference between the reference and generated antibodies. To obtain predicted ∆∆G values
for the n-sampled CDR, we feed the model with the amino acid sequence and Cα atom positions at
the current generation timestep (st−1,xt−1), as well as those from the previous timestep (st,xt).

2.3 Benchmark dataset and trained model

To benchmark our guided approaches, we employed the test set described in [4], which comprises 19
antibody-antigen complexes sourced from the SabDab database [19]. The CDR-H3 sequences of the
test antibodies share a maximum of 50% sequence identity with each other and with the training data.
The test set includes protein antigens from various pathogens, including influenza and SARS-CoV-2.
To guide the generation diffusion process, we leveraged the codesign_single model from DiffAb,
which has been trained to generate all CDRs, one at a time randomly selected for each training sample.
Using this model, we designed single CDRs from random values provided the rest of the complex.

2.4 Evaluation

For each test complex, we generate 100 designs for each of the six CDRs through T = 100 timesteps
of generation, each one maintaining the same length as the reference test CDR. We evaluate the
designs using the following metrics: (i) the AAR (amino acid recovery) measures the sequence
identity between the reference and generated CDR sequences, (ii) the RMSD (root mean square
deviation) computes the Cα atom distance between the reference and generated CDR structures, (iii)
the hydropathy score averages the hydropathy values over the generated CDR sequences, and (iv)
the predicted ∆∆G [18] measures the difference in folding energy (∆G) between the reference and
generated CDRs, considering atoms (N, Cα, C, O) after reconstructing the backbone structure from
Cα atom positions and orientations (see [4]). We use predicted ∆∆G as it is computationally more
efficient and has moderate to high correlation with experimental measures of antibody energy upon
mutations [18]. For AAR, higher values are preferable, while lower values are desired for RMSD,
hydropathy score, and predicted ∆∆G. Note that we aim to generate CDRs with improved property
values (low hydropathy score and predicted ∆∆G) without deteriorating the structural integrity (we
expect slight deviations in AAR and RMSD to the reference).
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3 Results
3.1 Guidance on properties is effective
We assess our property-aware prior approach using the hydropathy score, with b = 0.8 (see Figure 5
for the impact of b on the hydropathy score of the final designs). The sampling by property approach
is tested for both, the hydropathy score and ∆∆G. We select the sample with minimum ∆∆G in
N = 20 samples at each generation timestep, as suggested by Figure 6. Additionally, we test the
combination of both properties in two ways: sampling by ∆∆G with a hydropathy-aware prior, and
jointly sampling by ∆∆G and hydropathy score.

Figure 2 illustrates the performance metrics for intermediate CDR-H3 designs at every 10 timesteps of
generation. As observed, sampling by hydropathy results in a bigger change in the hydropathy score
and the AAR compared to using a hydropathy-aware prior, even with a high value of b. This indicates
that the generated CDR sequences differ more substantially from the reference when sampling by
hydropathy. Furthermore, we note that in comparison to the unconditioned mode, exclusive sampling
by ∆∆G improves the hydropathy score, whereas exclusive sampling by hydropathy does the same
for the predicted ∆∆G. When both properties are combined, the most favorable outcomes are
achieved, with the majority of designs exhibiting hydropathy scores and predicted ∆∆G values below
zero. This is supported by Mann-Whitney statistical tests, revealing significant differences in the final
metric distributions (at t = 0) across different models for the entire test set (see Figure 7). Meanwhile,
the values of AAR and RMSD are consistent across models, which is desirable to avoid significant
deviations from the reference CDR. While the sequence similarities within guided designs deviate
from the unconditioned ones (as expected, Figure 8), the RMSD values remain close (Figure 9).

These observations apply to all other CDRs as well. Figure 10 displays per-timestep metrics and
Table 1 includes the performance metrics for the final designs of all CDRs. We can see that AAR
decreases and RMSD increases slightly after guidance, which is expected. Furthermore, each CDR
exhibits some variations in response to the guidance. For CDR-H2 and L2, sampling by hydropathy
results in significantly lower AAR, leading to better predicted ∆∆G compared to sampling by ∆∆G.

3.2 Amino acid composition changes with hydropathy guidance
Hydropathy guidance aims to design CDR sequences containing hydrophilic amino acid types without
deteriorating the target binding affinities. This effect is illustrated in the amino acid compositions
in Figure 11. We note that sampling by hydropathy causes the most significant shift in the final
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Figure 2: Per-timestep metrics on the 19 test complexes (design CDR-H3). The boxplots represent the
distribution of metric values (AAR, RMSD, hydropathy score, and predicted ∆∆G) over 100 designed
CDRs for each test complex. Here we compare the unconditioned mode with different property-
guided models: hydropathy-aware prior, sampling by hydropathy or ∆∆G, and combinations of both.
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Figure 3: Distribution of hydropathy scores and predicted ∆∆G for test complex 7chf_A_B_R
(design CDR-H3), (a) before and (b) after Rosetta relaxation. The highlighted points (diamond
markers) correspond to the Pareto optimal solutions.

amino acid distribution toward arginine (R) and aspartic acid (D), two of the most hydrophilic amino
acids. Furthermore, this approach eliminates most of the hydrophobic amino acids. Using the
hydropathy-aware prior, the effect is not as strong, primarily because the model relies less on the
prior towards the end of the generation process. Sampling by ∆∆G, whether alone or in combination
with hydropathy, also increases the number of hydrophilic amino acids, such as tyrosine (Y). These
results, along with Table 1, indicate a correlation between both properties. Improved hydropathy
profiles lead to larger exposed surface areas, which are necessary for the antibody-antigen interaction.

3.3 Energy distributions shift with ∆∆G guidance, even after relaxation
The objective of ∆∆G guidance is to generate CDR loops with enhanced folding stability, leading
to potential improvement in antibody-antigen binding. Figure 3a shows the relationship between
predicted ∆∆G and hydropathy score for the final CDR-H3 designs, revealing the positive correlation
between these two properties. Considering that lower values are desirable for both properties, we
calculated the Pareto frontiers for the three approaches. Notably, we observe that the three frontiers
are clearly separated, with the guided approaches exhibiting a trend towards the lowest values.
Thus, they outperform a naive filter on top-scoring samples from the unconditioned model. The
most favorable Pareto solutions are obtained when jointly sampling by ∆∆G and hydropathy. The
empirical run-time comparisons for this test complex are in Table 2.

We then reconstruct the side-chain atoms using Rosetta [20], resulting in a refined structure. Figure 3b
shows that even though the three Pareto frontiers become closer after relaxation, the distributions of
the guided models are still nearer to the lower-left part than the unconditioned mode. Furthermore,
compared to pre-relaxation, we attain a larger number of Pareto optimal solutions for the combined
sampling by ∆∆G and hydropathy. The performance metrics for both the pre- and post-relaxed
designs are in Table 3. For this example, we also visualize the resulting CDR-H3 structures in relation
to the antigen epitope. We select those designs that are present in both Pareto frontiers, before
and after relaxation. As observed in Figure 12, different CDR sequences lead to similar structures
compared to the reference, but exhibiting improved hydropathy and predicted ∆∆G values.

4 Discussion
We successfully developed two methodologically distinct strategies for conditioning diffusion models
in the field of antibody design. Most notably, we can guide the generative process toward novel
CDR designs with desired properties. An advantage of our approaches is their pure integration into
the generative diffusion process, eliminating the need for retraining the models. While we assess
our approaches using two specific properties, hydropathy and folding energy, our methodological
framework can seamlessly accommodate any desired property derived from either the amino acid
sequence, the structure, or both. We also demonstrate that our guided approaches enable the
optimization of multiple properties at once, leading to a better set of Pareto optimal solutions.
Empirical results support our modeling choices, and exploring a mathematical foundation remains
of interest to better understand the validity and biases in the designs introduced by our sampling
approaches. Moreover, it is crucial to note that the guided designs require experimental validation in
a wet lab to confirm enhancements in solubility, aggregation, and folding/binding energy values.
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A Effect of b in hydropathy prior

The hydropathy scale has been proposed in [16] to take into consideration the hydrophilic (affinity to
water) and hydrophobic (repelled by water) properties of each of the 20 amino acid side-chains. The
hydropathy score typically ranges from −2 to +2 for most proteins, where positive values indicate
higher hydrophobicity and negative values indicate higher hydrophilicity.
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Figure 4: (a) Hydropathy scores per amino acid and conversion to probability distribution. (b-d)
Combined uniform-hydropathy distribution for different values of b. Amino acid types are ordered by
ascending hydropathy score.
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results in a shift of the sample distributions towards more negative values of hydropathy (i.e. more
hydrophilic amino acids), particularly for CDRs H3, L1, L2, and L3.
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B Options for sampling by ∆∆G
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Figure 6: Per-timestep metrics for test complex 5xku_C_B_A (design CDR-H3). The boxplots
represent the distribution of metric values (AAR, RMSD, hydropathy score, and predicted ∆∆G)
over 100 designed CDRs. Here we compare different options for sampling by ∆∆G, as the number
of samples N to obtain at every timestep, and the selection criteria (min., max., or softmax). As
we can see, the max. option has a negative effect on all metrics (particularly RMSD and predicted
∆∆G), whereas taking the min. over N = 20 samples improves the hydropathy score and predicted
∆∆G, without affecting the values of RMSD and AAR. Instead, using N = 100 samples, as well as
softmax-sampling are options that do not seem to help overall.
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Figure 7: Percentage of test complexes (total 19, design CDR-H3) with significantly different metric
distributions (hydropathy score or predicted ∆∆G) determined using the Mann-Whitney statistical
test for every pair of models (p-value < 0.05, Benjamini-Hochberg). For most test complexes, the
distributions of metrics from guided models are statistically different from those of the unconditioned
mode. One exception is the two combinations of properties and the predicted ∆∆G metric.
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Figure 8: Average intra- and inter-cluster sequence similarity (measured by amino acid recovery,
AAR) among the 100 CDR-H3 designs per test complex, comparing each of the guided approaches
to the unconditioned mode. For most guided approaches, we observe that intra-cluster similarities are
higher than inter-cluster similarities. This indicates that the conditionally-designed CDR sequences
cluster closely with the unconditioned designs, but do not fully overlap. Two exceptions are the
hydropathy-aware prior and sampling by hydropathy, where both clusters either overlap or are fully
separated, respectively.
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Figure 9: Average intra- and inter-cluster structure distance (measured by root mean square deviation,
RMSD) among the 100 CDR-H3 designs per test complex, comparing each of the guided approaches
to the unconditioned mode. For all guided approaches, we observe highly similar intra- and inter-
cluster distances, indicating that the conditionally-designed CDR structures cluster together with the
unconditioned designs.
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Figure 10: Per-timestep metrics on the 19 test complexes (design (a) CDR-H1 and (b) CDR-H2). The
boxplots represent the distribution of metric values (AAR, RMSD, hydropathy score, and predicted
∆∆G) over 100 designed CDRs for each test complex. Here we compare the unconditioned mode
with different property-guided models: hydropathy-aware prior, sampling by hydropathy or ∆∆G,
and combinations of both.
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(c) CDR-L1

100 80 60 40 20 00

20

40

60

80

100

AA
R 

(%
)

100 80 60 40 20 00

10

20

30

RM
SD

 (Å
)

100 80 60 40 20 0
Generation timestep

4

2

0

2

Hy
dr

op
at

hy
 sc

or
e

100 80 60 40 20 0
Generation timestep

5

0

5

10

15

Pr
ed

ict
ed

 
G

Unconditioned Hydro. (b = 0.8) Hydro. (20 Min) G (20 Min) G (20 Min) + Hydro. (b = 0.8) G + Hydro. (20 Min)

(d) CDR-L2
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Figure 10: (Cont.) Per-timestep metrics on the 19 test complexes (design (c) CDR-L1 and (d)
CDR-L2).
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(e) CDR-L3
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Figure 10: (Cont.) Per-timestep metrics on the 19 test complexes (design (e) CDR-L3).

Table 1: Average performance metrics over 100 designs for the 19 test complexes (for each CDR).
The metrics are AAR, RMSD, hydropathy score, and predicted ∆∆G. For the hydropathy score and
predicted ∆∆G, we also show the percentage of samples with negative values. Here we compare the
unconditioned mode with different property-guided models: hydropathy-aware prior, sampling by
hydropathy or ∆∆G, and combinations of both.

Model CDR AAR RMSD Hydropathy Pred. ∆∆G CDR AAR RMSD Hydropathy Pred. ∆∆G
(%) (Å) Avg. % Neg. Avg. % Neg. (%) (Å) Avg. % Neg. Avg. % Neg.

Unconditioned

H1

65.8 0.88 -0.23 71.7 -0.04 58.9

L1

56.4 1.22 -0.54 91.4 -0.57 66.7
Hydro.∗ 65.0 1.03 -0.33 79.6 -0.11 60.3 56.1 1.23 -0.84 97.4 -0.67 70.2
Hydro.† 24.0 0.91 -2.93 100.0 -0.07 55.1 37.4 1.45 -2.78 100.0 -1.14 78.9
∆∆G† 65.1 1.14 -0.31 77.0 -0.38 66.3 56.5 1.34 -0.65 96.6 -1.28 82.6
∆∆G† + Hydro.∗ 63.0 1.13 -0.46 86.7 -0.45 67.3 54.8 1.23 -0.94 98.7 -1.38 85.9
(∆∆G + Hydro.)† 58.4 1.05 -0.78 96.3 -0.56 68.7 55.2 1.24 -0.99 99.4 -1.32 84.1

Unconditioned

H2

49.0 0.77 -1.18 97.4 0.45 46.8

L2

58.2 1.06 -0.46 66.0 -0.02 49.1
Hydro.∗ 48.1 0.76 -1.40 99.6 0.42 45.5 55.7 1.46 -1.14 90.8 -0.09 51.2
Hydro.† 6.1 0.76 -4.07 100.0 -0.24 65.4 22.9 1.05 -3.77 100.0 -0.46 68.3
∆∆G† 47.6 1.59 -1.31 98.4 0.02 55.6 55.6 1.76 -0.65 75.8 -0.36 64.8
∆∆G† + Hydro.∗ 45.6 1.25 -1.55 99.8 -0.01 57.7 53.9 1.31 -1.29 94.5 -0.41 64.5
(∆∆G + Hydro.)† 37.6 1.24 -2.17 100.0 -0.05 58.3 52.2 1.30 -1.83 99.1 -0.41 62.6

Unconditioned

H3

26.3 3.35 -0.73 90.5 0.14 51.6

L3

46.5 1.07 -1.31 97.5 -2.19 95.9
Hydro.∗ 27.3 3.39 -1.34 99.5 -0.26 58.8 47.1 1.14 -1.72 99.8 -2.22 95.2
Hydro.† 11.7 3.39 -3.87 100.0 -1.06 68.0 32.2 1.10 -3.63 100.0 -2.04 93.7
∆∆G† 25.8 3.41 -1.03 96.7 -1.99 76.0 44.5 1.16 -1.39 98.7 -2.94 98.3
∆∆G† + Hydro.∗ 26.0 3.42 -1.49 99.8 -2.20 77.5 44.7 1.40 -1.74 99.8 -2.92 97.8
(∆∆G + Hydro.)† 26.0 3.63 -1.62 99.9 -2.20 77.6 45.3 1.16 -1.93 99.9 -2.84 97.7
∗ Property-aware prior (b = 0.8) † Sample by property (minimum over N = 20 samples)
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Figure 11: Amino acid composition for the 19 test complexes (100 CDR-H3 designs each). Amino
acid types are ordered by ascending hydropathy score, while counts are colored by negative (blue) or
positive (pink) hydropathy.

Table 2: Empirical run-time comparisons for test complex 7chf_A_B_R (design CDR-H3). While
modifications to the prior incur no time overhead, the speed of the sampling approach depends on the
predictor. Hydropathy computation is fast, but the ∆∆G predictor has a much slower execution time.

Model Full (100 designs, 100 timesteps) One batch (16 designs), one timestep

Get predictions Denoise (and sample†)

Unconditioned and Hydro.∗ 360.21 sec (6 min)

0.6304 sec

0.0063 sec
Hydro.† 436.29 sec (7.3 min) 0.1248 sec
∆∆G† and ∆∆G† + Hydro.∗ 3275.72 sec (54.6 min) 4.5499 sec
(∆∆G + Hydro.)† 3280.60 sec (54.7 min) 4.6691 sec
∗ Property-aware prior (b = 0.8) † Sample by property (minimum over N = 20 samples)

Table 3: Average performance metrics over 100 designs for test complex 7chf_A_B_R (design
CDR-H3). The metrics are AAR, RMSD, hydropathy score, and predicted ∆∆G. For the hydropathy
score and predicted ∆∆G, we also show the percentage of samples with negative values. Here
we compare the unconditioned mode with two property-guided models (sampling by ∆∆G, and
combined sampling by ∆∆G and hydropathy), before and after Rosetta relaxation.

Model AAR RMSD Hydropathy Pred. ∆∆G
(%) (Å) Avg. % Neg. Avg. % Neg.

Unconditioned 22.7 5.11 -0.77 92.0 -0.99 67.0
Unconditioned – Relaxed 5.18 -1.05 72.0

∆∆G†
21.7 5.04 -1.07 97.0 -4.23 98.0

∆∆G† – Relaxed 4.85 -2.72 94.0

(∆∆G + Hydro.)† 24.3 5.03 -1.67 100.0 -4.70 97.0
(∆∆G + Hydro.)† – Relaxed 4.88 -2.32 90.0
† Sample by property (minimum over N = 20 samples)
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D Analysis of generated structures

Figure 12: Sequence-structure designs from the Pareto frontier over hydropathy score and predicted
∆∆G after Rosetta relaxation (test complex 7chf_A_B_R, design CDR-H3). The antigen epitope is
displayed in red color.

We analyze the “designability” of the CDR-H3 generated structures for the unconditioned mode
and the two guided models in Figure 12. To do so, we predict 3D structures from the anti-
body sequences with designed CDR-H3 using ABodyBuilder2 (https://opig.stats.ox.ac.
uk/webapps/sabdab-sabpred/sabpred/abodybuilder2/) and tFold-Ab (https://drug.ai.
tencent.com/en). Table 4 contains the self-consistency RMSD (scRMSD) between the generated
CDR-H3 structures (from the diffusion models) and the predicted ones from the amino acid sequences.
Given that these methods have an inherent prediction error of approximately 3 Å for the CDR-H3,
it is challenging to assert the accuracy of the predictions. Nonetheless, we note that the scRMSD
values of the structures predicted by tFold-Ab are below 3 Å, which aligns closely with the inherent
prediction error. This suggests that the generated CDR-H3 samples are likely to be “designable”.

Table 4: Self-consistency RMSD of designs from the Pareto frontier (test complex 7chf_A_B_R,
design CDR-H3) given by predicted structures using ABodyBuilder2 and tFold-Ab. Here we compare
the unconditioned mode with two property-guided models (sampling by ∆∆G, and combined
sampling by ∆∆G and hydropathy).

Model scRMSD [ABodyBuilder2] scRMSD [tFold-Ab]

Unconditioned 3.591 Å 2.465 Å
∆∆G† 5.972 Å 2.755 Å
(∆∆G + Hydro.)† 4.536 Å 2.578 Å
† Sample by property (minimum over N = 20 samples)
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