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MoHI: Boosting Motion Generation via Human Intention Understanding
ANONYMOUS AUTHOR(S)
We propose MoHI, a motion generation framework that explicitly models
human intention as the underlying cause of motion. By explicitly disentan-
gling intention prediction from motion synthesis during training and jointly
optimizing the two objectives, MoHI captures the motivational logic under-
lying human actions and provides clearer semantic guidance for coherent
motion generation. Experiments on HumanML3D demonstrate state-of-the-
art performance, with +4.5% improvement in R-Precision Top-1 and 38.6%
lower FID over the state-of-the-art method. Fine-tuned on motion caption-
ing, MoHI also outperforms recent LLM-based approaches, highlighting its
unified strength in both motion understanding and generation.

Additional Key Words and Phrases: Motion Generation, Human Intention
Prediction, Motion Caption

ACM Reference Format:
Anonymous Author(s). 2018. MoHI: Boosting Motion Generation via Human
Intention Understanding. In Proceedings of Make sure to enter the correct
conference title from your rights confirmation email (Conference acronym ’XX).
ACM, New York, NY, USA, 4 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Human motion generation has become a central research focus
in artificial intelligence, with applications in animation, robotics,
and virtual reality [7]. Recent advances in generative modeling and
large language models have enabled the synthesis of motions that
appear plausible and semantically aligned with natural language
descriptions [10, 13, 16]. Despite these advances, existing systems
still face persistent challenges in achieving fine-grained spatiotem-
poral precision, ensuring controllability, and generalizing to diverse
scenarios.

A fundamental limitation lies in the absence of explicit modeling
of human intention. Current text-to-motion generation approaches
including recent instruction-tuned large languagemodels [5, 6, 8, 15]
treat motion and language as a surface-level mapping during train-
ing. Despite leveraging large-scale linguistic priors and impressive
generative capacity, these models fundamentally neglect the causal
structure of intention that governs how and why actions unfold. As
a result, while they can generate motions that appear lexically or se-
mantically aligned with input descriptions, they often fail to capture
the deeper motivational logic behind human behavior. This leads to
sequences that, though superficially plausible, lack internal coher-
ence, physical grounding, or purposeful progression—manifesting
as rigid, unnatural, or contextually implausible motions that fall
short of authentic human movement.
To address these challenges, we introduce MoHI, a motion gen-

eration framework that explicitly models human intention. In our
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design, fine-grained textual descriptions of incomplete motions are
leveraged as explicit intent cues, capturing not only the observed
action but also the latent goals that constrain what should follow.
MoHI is trained to simultaneously predict human intention and
generate motion, ensuring that synthesized sequences are both co-
herent and purpose-driven. Furthermore, by disentangling intent
prediction from motion synthesis, the model reduces semantic en-
tanglement and achieves substantial gains in generation quality.

Comprehensive experiments on HumanML3D demonstrate that
MoHI outperforms state-of-the-art approaches on Text-to-Motion
(T2M) tasks. By further fine-tuning MoHI on motion captioning, the
model also surpasses recent LLM-based captioning methods. More
importantly, MoHI highlights that understanding the core of motion
from the perspective of intention significantly facilitates motion
generation. This provides a unified perspective for advancing both
motion understanding and motion generation.

2 Method

2.1 Model Architecture
We introduce OmniMoGen, a unified framework designed for gen-
erating human motion and intention. Each input modality is first
mapped into a latent representation through dedicated encoders. To
encourage generative modeling, random masking is applied to the
motion tokens. These masked motion tokens are then modulated
by a Conditional Masked Transformer, which integrates condition-
ing signals from other modalities at both the semantic-level and
dynamic token-level. The resulting tokens act as a shared represen-
tation that is capable of producing both high-level intentions and
complete motion sequences. A motion decoder finally reconstructs
the output into the original motion domain.

2.1.1 Modality-Specific Encoder.

Motion Auto-Encoder. For a motion sequence x𝑚 ∈ R𝑙𝑚×𝑐𝑚 with
𝑙𝑚 frames and 𝑐𝑚 feature dimensions, we employ a temporal con-
volutional auto-encoder to compress it into a latent representation
z𝑚 = 𝑓𝑚 (x𝑚) ∈ R𝑙

′
𝑚×𝑑𝑚 , where 𝑑𝑚 is the embedding dimension. A

symmetric decoder reconstructs the motion as x̂𝑚 = 𝑔𝑚 (z𝑚). The
reconstruction objective is defined by a smooth L1 loss.

Language Encoder. Weadopt pretrained CLIP encoders [12], which
remain frozen during training, to extract language features. For text
input x𝑡 , the encoder produces contextual embeddings z𝑡 = 𝑓𝑡 (x𝑡 ) ∈
R𝑙𝑡×𝑑𝑡 , where the [CLS] token provides a global representation z𝑔𝑡 .

2.1.2 Conditional Masked Transformer. The Conditional Masked
Transformer fuses text signals into the motion tokens through two
mechanisms: 1) semantic-level modulation, which injects global
multimodal context into the motion representation using adaptive
normalization; 2) mixture-of-attention with adaptive scope, which
aligns motion tokens with the most relevant segments of text con-
texts through an adaptive Top-𝑘 attention strategy.
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Fig. 1. Model architecture of MoHI. The framework first encodes motion and text inputs through modality-specific encoders, including a motion auto-encoder
and frozen CLIP text encoder. Subsequently, textual conditioning signals are injected into masked motion tokens via a Conditional Masked Transformer with
semantic modulation and adaptive Top-𝑘 cross-attention. The final outputs are generated through disentangled heads: a diffusion-based Motion Generation
Head for human motion sequences and a T5-style Intention Prediction Head for predicting human intention.

Semantic-level Modulation. We compute a global context vector
c𝑔 = z𝑔𝑡 + z

𝑔
𝑣 , which is mapped to modulation coefficients (𝛼𝑐 , 𝛽𝑐 , 𝛾𝑐 )

by a small MLP. For a normalized motion token z̄𝑚 = LN(z𝑚),
modulation is applied as:

z𝑚 ← z𝑚 + 𝛾𝑐 ⊙ ℎ(𝛼𝑐 ⊙ z̄𝑚 + 𝛽𝑐 ), (1)

where ℎ(·) denotes the sub-layer in the Transformer block, sequen-
tially consisting of a self-attention module, a mixture-of-attention
module with Adaptive Scope, and a bottleneck MLP layer.

Mixture-of-Attention with Adaptive Scope. We construct token-
level embeddings c𝑡𝑜𝑘 = [z𝑣 ; z𝑡 ] ∈ R(𝑝+𝑙 )×𝑑 , with missing modal-
ities replaced by learnable embeddings. For query motion tokens
z𝑚 ∈ R𝑙

′
𝑚×𝑑 , each expert computes queries, keys, and values, and

produces an attention score matrix A𝑒 . To restrict the effective
scope, we sort A𝑒 in descending order and accumulate the atten-
tion weights until the cumulative mass exceeds a threshold 𝜏 . The
attention is then normalized only over this selected subset of en-
tries, whose size is adaptively determined by the threshold. Finally,
contributions from all experts are summed.

2.1.3 Disentangled Generation Heads. Since motion and intention
correspond to different semantic levels, we design two separate
heads. The Intention Prediction Head (IPH) is responsible for pro-
ducing textual descriptions of intentions, using a T5-style decoder
conditioned on the output of the conditional masked transformer,

denoted as z. The Motion Generation Head (MGH) instead models
continuous motion dynamics with a diffusion-based MLP model.

2.2 Training Strategy
We train the framework on two tasks: motion generation from full
text using a diffusion-based velocity matching objective [9] with
masked motion inputs, and intention prediction from partial motion
using an autoregressive cross-entropy loss. After training, the model
is further fine-tuned on the motion captioning task, where complete
motion sequences are provided as input and the model generates
descriptive text outputs.

3 Experiment

3.1 Dataset and Motion Representation
We conduct experiments on the HumanML3D dataset [3]. To ensure
compact and effective motion encoding, we follow prior work [10]
and remove redundant features (e.g., 6D rotations) to reduce dis-
tribution mismatch and generation errors. Each motion frame is
represented as:

x𝑖𝑚 = [ ¤𝑟𝑎, ¤𝑟𝑥𝑧 , ¤𝑟ℎ, 𝑗𝑝 ] (2)

where ¤𝑟𝑎 denotes root angular velocity, ¤𝑟𝑥𝑧 the root linear velocities
in the XZ-plane, ¤𝑟ℎ the root height, and 𝑗𝑝 ∈ R3(𝑁 𝑗−1) the local
joint positions.
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Table 1. The quantitative results of text-to-motion generation on the HumanML3D dataset. The best results are displayed in bold.

Methods R Precision↑ FID↓ Matching↓ MModality↑ CLIP-score ↓Top 1 Top 2 Top 3

T2M-GPT [17] 0.470±.003 0.659±.002 0.758±.002 0.335±.003 3.505±.017 2.018±.053 0.607±.005

ReMoDiffuse [19] 0.468±.003 0.653±.003 0.754±.005 0.883±.021 3.414±.020 2.703±.154 0.621±.003

MDM-50Step [14] 0.440±.007 0.636±.006 0.742±.004 0.518±.032 3.640±.028 3.604±.031 0.578±.003

MLD [1] 0.461±.004 0.651±.004 0.750±.003 0.431±.014 3.445±.019 3.506±.031 0.610±.003

MMM [11] 0.487±.003 0.683±.002 0.782±.001 0.132±.004 3.359±.009 1.241±.073 0.635±.003

MoMask [2] 0.469±.004 0.687±.003 0.786±.003 0.116±.006 3.353±.010 1.263±.079 0.637±.003

MotionDiffuse [18] 0.450±.006 0.641±.005 0.753±.005 0.778±.005 3.490±.023 3.179±.046 0.606±.004

MARDM-DDPM [10] 0.492±.006 0.690±.005 0.790±.005 0.116±.004 3.349±.010 2.470±.053 0.637±.005

MARDM-SiT [10] 0.500±.004 0.695±.003 0.795±.003 0.114±.007 3.270±.009 2.231±.071 0.642±.002

MotionAgent [16] 0.485±.003 0.680±.003 0.780±.002 0.202±.009 3.327±.009 − 0.634±.003

MoGIC w/o Int. (ours) 0.533±0.012 0.731±0.010 0.826±0.010 0.108±0.023 3.078±0.037 2.455±.062 0.658±0.001

MoGIC (ours) 0.545±0.003 0.741±0.003 0.835±0.002 0.070±0.004 2.999±0.011 2.448±.055 0.669±0.001

Table 2. Quantitative comparison with state-of-the-art methods on the
motion captioning task

Methods BLEU@1↑ BLEU@4↑ ROUGE↑ BERTScore↑

TM2T [4] 48.90 8.27 38.1 32.2
MotionGPT [5] 48.20 12.47 37.4 32.4
MotionChain [6] 48.10 12.56 33.9 36.9
MG-MotionLLM [15] − 8.06 − 36.7
OmniMoGen 53.13 10.36 40.6 40.7

3.2 Experiment Settings
All experiments are conducted on an NVIDIA RTX 4090 GPU with
a batch size of 64 using the Adam optimizer for 500 epochs. The mo-
tion generation loss is optimized every epoch, while the intention
prediction loss is updated every 4 epochs. The conditional masked
transformer consists of a single layer, with cross-attention imple-
mented by two parallel modules: one with 𝑘 ∈ [1, 6] and threshold
0.8, and the other with 𝑘 ∈ [0,∞] and threshold 1 (all condition
tokens). The intention prediction head (IPH) adopts a 3-layer T5-
style decoder, and the motion generation head (MGH) is a diffusion
model built on a 10-layer MLP.

3.3 Comparisons on Text-to-Motion
We evaluate our proposed MoHI framework against a broad set
of state-of-the-art (SOTA) methods on the HumanML3D bench-
mark, including diffusion-based models (e.g., MDM [14], MotionDif-
fuse [18]), autoregressive models (e.g., T2M-GPT [17]), and recent
masked or multimodal approaches (e.g., MoMask [2], MARDM [10],
MotionAgent [16]).
As shown in Table 1, MoHI achieves substantial improvements

across all evaluation metrics. In particular, it sets new state-of-the-
art performance in R-Precision, with notable gains of +4.5% Top-1
and +4.0% Top-3 over the strongest baseline. This indicates that
motions generated by MoHI are more semantically aligned with the

textual description. Additionally, MoHI attains the lowest FID score
(0.070), demonstrating superior realism and distributional fidelity
compared to reference motion data.

3.4 Comparisons on Motion Captioning
We further fine-tuneMoHI on themotion captioning task to evaluate
its ability in understanding and verbalizing human motion. Bene-
fiting from the joint training of motion generation and intention
prediction, MoHI learns to capture the latent causes driving actions,
thereby producing captions that not only describe surface-level
dynamics but also reflect the underlying intent and purpose.
Despite using only a 3-layer Transformer decoder as the Inten-

tion Prediction Head (IPH) and without relying on pretrained LLM
weights, MoHI surpasses recent LLM-based approaches (Table 2).

3.5 Ablation Study on Intention Prediction
Results are summarized in Table 1. Compared to the variant without
intention prediction (MoHI w/o Int.), the full MoHI model achieves
consistent gains across most metrics, including a notable reduc-
tion in FID and improvements in R-Precision. This confirms that
the disentangled optimization of intention prediction and motion
generation is mutually reinforcing, enabling the model to synthe-
size motions that are both semantically aligned and contextually
purposeful.

4 Conclusion
In this paper, we present MoHI, a framework that enhances hu-
man motion generation by explicitly modeling intention. Experi-
ments on HumanML3D show that MoHI achieves state-of-the-art
performance in the T2M task and, when fine-tuned, outperforms
recent LLM-based models in motion captioning, demonstrating that
intention-aware training benefits both motion synthesis and under-
standing.
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