
TURBOATTENTION: EFFICIENT ATTENTION APPROXIMATION FOR HIGH
THROUGHPUTS LLMS

Hao Kang 1 2 Srikant Bharadwaj 1 James Hensman 1 Tushar Krishna 2 Victor Rühle 1 Saravan Rajmohan 1

ABSTRACT
Large language model (LLM) inference demands significant amount of computation and memory, especially in the
key attention mechanism. While techniques, such as quantization and acceleration algorithms, like FlashAttention,
have improved efficiency of the overall inference, they address different aspects of the problem: quantization
focuses on weight-activation operations, while FlashAttention improves execution but requires high-precision
formats. Recent Key-value (KV) cache quantization reduces memory bandwidth but still needs floating-point
dequantization for attention operation.

We present TurboAttention, a comprehensive approach to enable quantized execution of attention that simultane-
ously addresses both memory and computational efficiency. Our solution introduces two key innovations: FlashQ,
a headwise attention quantization technique that enables both compression of KV cache and quantized execution
of activation-activation multiplication, and Sparsity-based Softmax Approximation (SAS), which eliminates the
need for dequantization to FP32 during exponentiation operation in attention. Experimental results demonstrate
that TurboAttention achieves 1.2-1.8x speedup in attention, reduces the KV cache size by over 4.4x, and enables
up to 2.37x maximum throughput over the FP16 baseline while outperforming state-of-the-art quantization and
compression techniques across various datasets and models.

1 INTRODUCTION

Large language models (LLMs) (Touvron et al., 2023; Gu-
nasekar et al., 2023; Brown et al., 2020) have excelled
in tasks like natural language understanding (Joshi et al.,
2017; Dodge et al., 2021) and generative text production
(Hendrycks et al., 2021; Zhong et al., 2017). However, as
model size increases, computational and memory demands
scale correspondingly, particularly during inference. This
necessitates efficient strategies to reduce memory utilization
and computational complexity, thereby reducing inference
latency and improving throughput — critical requirements
for real-time applications that demand faster user experi-
ences.

Quantization is among the most commonly used optimiza-
tion techniques that simultaneously addresses both com-
putational and memory constraints in LLM inference. By
reducing the numerical precision of model parameters, KV
cache states, and activation values, this technique enables
low-precision forward pass computations while significantly
reducing memory footprint. This unified approach to pre-
cision reduction offers a systematic method for optimizing

*Equal contribution 1Microsoft 2Georgia Institute of
Technology. Correspondence to: Srikant Bharadwaj
<srikant.bharadwaj@microsoft.com>.

inference efficiency when applied to the computational and
memory intensive parts of the LLM inference.

The bottlenecks during LLM inference can be split into
three major sections: the linear projection operations (QKV
projection and FFN), the memory-intensive Key/Value (KV)
cache operations, and the attention mechanism’s square com-
putational and memory complexity with respect to context
length. As both context lengths and model sizes scale up, the
KV cache footprint expands substantially, while the atten-
tion computations become increasingly resource-intensive,
leading to reduced throughput and elevated latencies, which
ultimately results in degraded user experiences as well as in-
creased costs. Figure 1a shows the time spent in the attention
operation compared to others during inference as prompt
sizes increases. The attention mechanism contributes sig-
nificantly to the overall generation time, contributing up to
80% of the overall latency at large context lengths (>80k).

Previous quantization works, such as Atom (Zhao et al.,
2024), QuaRot(Ashkboos et al., 2024), and Qserve (Lin
et al., 2024), have primarily applied quantization techniques
to linear network components (such as QKV and FFN pro-
jections), converting floating-point parameters and activa-
tions to low-bit integers to enhance memory efficiency and
computational performance. On the other hand, approaches
such as KIVI (Zirui Liu et al., 2023), GEAR (Kang et al.,
2024), and Qserve (Lin et al., 2024) focus on compressing

TurboAttention: Efficient attention approximation for High Throughputs LLMs

(a) Prompt:Output Tokens = 8:1 (b) Timeshare in GPU attention kernel (c) End-to-end inference timeshare

Figure 1. Latency profile of Phi3-Medium on Nvidia A100 GPU. (a) KV cache compression techniques impose a dequantization overhead
in attention kernel latency. (b) TurboAttention significantly improves attention kernel latency compared to FlashAttention(FP16) baseline
while other work mainly focuses on reducing KV-cache memory footprint and bandwidth only.(c) TurboAttention reduces latency of
Matmul+KV-cache load by enabling quantized integer inference, dequantization by applying block progressive quantization, and faster
softmax by introducing sparse activated softmax.

the KV cache to 4-bit or even 2-bit formats but rely on
time-intensive floating-point decompression before execut-
ing the attention mechanism. This incurs decompression
overhead during the execution of attention leading to in-
creased overall latencies, as shown in Figure 1b. In general,
these approaches largely neglect the latency overhead of the
attention operation, which is a key bottleneck in terms of
latency overhead during inference.

On the other hand, attention execution acceleration meth-
ods, such as Flash Attention-1,2,3 (Dao et al., 2022; Dao,
2023; Shah et al., 2024), along with related optimizations
(Dao et al., 2023; Hong et al., 2024), have improved ef-
ficiency of the attention operation and have become the
commercial standard. However, they operate exclusively
on high-precision formats (FP16/32) which leads to high
attention latencies at longer context lengths, as shown in
Figure 1c. This leaves considerable scope for further opti-
mizations using quantization, which could yield substantial
benefits in memory usage and computational speed.

In this paper, we present, TurboAttention, a novel unified
technique for enabling quantized execution of attention
along with a cooperative KV cache compression mechanism
which reduces latency, memory footprint, incurs negligible
accuracy loss. First, to accelerate the matrix multiplications,
minimize decompression time, and ensure compatibility
with FlashAttention, we introduce FlashQ (section 3). Sec-
ond, for efficient GPU tensor core-friendly, softmax compu-
tation, we develop SAS (section 4). Third, to alleviate the
memory bottleneck posed by the KV cache, we design a
CUDA kernel-friendly headwise mixed precision quantiza-
tion method(section 3). Together, FlashQ and SAS form our
comprehensive solution, TurboAttention. To our knowledge,
this is the first work to bridge the state-of-the-art attention
acceleration method (FlashAttention) with a quantization al-
gorithm, and the first to apply lossy techniques to accelerate
the entire attention mechanism, encompassing both matrix

multiplication and softmax operations. A comparison of our
approach with concurrent works is provided in Table 1.

Our evaluations show that TurboAttention outperforms state-
of-the-art FlashAttention-3 on delivering up to 1.8x im-
provement in latency as well as up to 2.37× maximum
throughput. Further, our method delivers near-lossless accu-
racy across various tasks including mathematical reasoning
(GSM8k and AQuA), symbolic reasoning (BigBench-Hard)
and models (Llama3, Qwen2 and Phi-3), further validating
its effectiveness.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the key aspects of the atten-
tion mechanism and state-of-the-art quantization techniques
before discussing the motivation and challenges in enabling
a quantized execution of attention mechanism.

2.1 Attention Mechanism

Multi-head attention (MHA) is a core component of the
transformer architecture, with each transformer model con-
sisting of L stacked layers. Each layer comprises two sub-
modules: a multi-head attention mechanism (MHA) and
a feed-forward network (FFN). Given input token embed-
dings X ∈ Rn×d, the MHA computes attention in parallel
across H attention heads, defined as:

MHA (X) = Concat
(
H(1), ...,H(H)

)
W o,

H(h) = Softmax

(
Q(h)K(h)⊤

√
dH

)
V (h)

(1)

where Q(h) = XW qh ,K
(h) = XW kh

,V (h) = XW vh

are the Query, Key, and Value matrices for head h. The
projection matrices W qh ,W kh

,W vh ∈ Rd×dH map the

TurboAttention: Efficient attention approximation for High Throughputs LLMs

Table 1. TurboAttention enables quantized execution of attention operation as well as KV cache compression. Note that techniques such
as ATOM(Zhao et al., 2024), QuaRot(Ashkboos et al., 2024) are orthogonal to TurboAttention and can easily be applied in conjunction.

Target Technique QKV
Projection

KV Cache
Compression

Attention
Execution MLP Memory

Overhead
Inference
Latency

ATOM (Zhao et al., 2024) Quantized ✓ - Quantized ↓ ↓
QuaRot (Ashkboos et al., 2024) Quantized ✓ - Quantized ↓ ↓Linear Operation

(QKV, MLP, etc.) Qserve (Lin et al., 2024) Quantized ✓ - Quantized ↓↓ ↓↓
KIVI (Zirui Liu et al., 2023) - ✓ - - ↓ ↓
GEAR (Kang et al., 2024) - ✓ - - ↓ ↓

Attention Operation FlashAttention (Dao et al., 2022) - - Flash - × ↓
TurboAttention (This Work) - ✓ Flash + Quantized - ↓↓ ↓↓

FP
16

 F

P3
2

FP16 FP32

Ke
y

Va
lu

e

De
qu

an
t

à
FP

16

𝑸×𝑲𝑻 = 𝑺

Cast à FP16

Cast àFP16

QKV
Projection

Compressed
KV Cache

Exponentiation
(In CUDA Core)

(a) State-of-the-Art Attention Execution (KIVI/Gear + FlashAttention)

& 𝑷
×
𝑽
=
& 𝑶

Normalize

Attention
Output Ke

y
Va

lu
e

De
qu

an
t

à
IN

T8

Normalize

QKV
Projection

Compressed
KV Cache
(FlashQ)

(b) TurboAttention

④
。
& 𝑷
×
𝑽
=
& 𝑶

Dequant àFP32

Quant à INT8

⚡③ SAS
(Tensor Core)

Quant à INT8

②⚡

①⚡

Dequant à FP16

INT8 INT32

𝑸×𝑲𝑻 = 𝑺

IN
T8

 IN
T3

2

Figure 2. High-Level comparison of TurboAttention compared to state-of-the-art KV-cache compression technique combined with
FlashAttention. TurboAttention accelerates the attention mechanism by adapting (1) FlashQ which enables KV cache compression and
accelerated Matmuls ((2) and (3)) and (4) SAS which enables techniques which allow faster execution of attention by utilizing the tensor
cores of GPUs efficiently.

input embedding X to the respective attention components,
and dH is typically set to d/H to balance the dimensionality
across heads.

Prefill and decoding. During generation, let the model
generate ng tokens. In the initial step, the input to-
kens X0 ∈ Rn×d are prefilled, and the Keys and Val-
ues (K,V) for each head and each layer are cached
for future use. This prefill stage results in the KV
caches: K0 = Concat(K(1), . . . ,K(H)) and V 0 =

Concat(V (1), . . . ,V (H)), where K0,V 0 ∈ Rn×d.

At each step t (1 ≤ t ≤ ng) of autoregressive decod-
ing, the model generates a new token xt, conditioned on
the input and previously generated tokens. For the subse-
quent steps, multi-head attention (MHA) only computes the
Query/Key/Value vectors (qt,kt,vt ∈ Rd) for the newly
generated token xt. These vectors are then appended to
the KV cache: Kt = Kt−1|kt and V t = V t−1|vt. The
attention mechanism is then performed between qt and the
updated KV cache, i.e., Kt and V t.

2.2 Attention Acceleration Techniques

The query matrix Q ∈ RNq×d and key and value matrices
K, V ∈ RNk×d are inputs to the following equation which
is computed independently for each head and batch instance.
The output matrix H ∈ RNq×d is obtained in essentially
three steps as shown in Equation 2.

S = QK⊤, P = softmax

(
S√
d

)
, H = PV . (2)

These intermediate activations S and P are large and thus
place a significant demand on memory bandwidth. FlashAt-
tention (Dao et al., 2022) addresses this by chunking the
Query, Key, and Value matrices along the token dimension
and tiling the attention mechanism to accelerate the process
as described below.

Softmax approximation. Softmax approximation poses a
significant challenge for large language model (LLM) in-
ference due to its computational complexity, particularly
involving exponential calculations and normalization. Sev-
eral approximation methods (Kim et al., 2021; Xia & Zhang,
2024) have been proposed and applied to vision-language
models (VLMs) and convolutional neural networks (CNNs).
However, these approaches experience substantial perfor-
mance degradation when directly applied to LLMs due to
pure integer approximation and lack of coherent algorithm
design.

Flash Attention. FlashAttention integrates the online soft-
max algorithm (Milakov & Gimelshein, 2018) to fuse the
three operations illustrated in Equation 2. It requires only a
single pass over an entire row of tokens to compute attention.
This method partitions the attention output matrix H into
independent output tiles, with each tile’s computation being
independent of the others. This approach eliminates the need
for intermediate global memory reads and writes of S and
P tensors. FlashAttention employs a tiling strategy, where
small chunks of query, key, and value are transferred to
the compute cores to first perform “partial attention” for
each pair of chunks. This is followed by normalization at

TurboAttention: Efficient attention approximation for High Throughputs LLMs

the end with the help of additional values (sum and max).

Additionally, optimization techniques such as Ring Atten-
tion (Liu et al., 2023a), Striped Attention (Brandon et al.,
2023), and Lean Attention (Sanovar et al., 2024) aim to
balance computation across GPU resources while using
FlashAttention’s core algorithm. These techniques signif-
icantly reduce the memory bandwidth overhead during in-
ference, especially for long-context generations. However,
the tiled dataflow of FlashAttention’s core algorithm, as
shown in Figure 2, involving three activation tensors, makes
it unsuitable for direct application of state-of-the-art quan-
tization techniques. The quantization techniques do not
address the tiled nature of query, key, and value tensors,
thus, techniques which utilize token-wise or channel-wise
quantization scale and min cannot be implemented directly
without loss of efficiency. On the other hand, these quantiza-
tion techniques can be applied ot vanilla attention algorithm,
but they have the overhead of storing the large intermediate
tensors resulting in high memory bandwidth demand.

Further, to avoid overflow, the exponentiation (in partial-
attention calculation) in FlashAttention is performed in
FP32 data format (exponentiation in Figure 2(a)), while the
matrix multiplications are performed in FP16 using GPU
tensor cores. Current generation GPUs are inefficient in han-
dling FP32 and do not make use of tensor cores, resulting
in higher latency and inefficiency in the attention operation
(FP32 CUDA cores deliver only ∼3% of the performance of
FP16 Tensor Cores). The usage of FP16 and FP32 also adds
pressure to the scratchpad and register file on the compute
units of GPU.

2.3 Progressive Quantization

Progressive quantization (PQ) uses a combination of INT8
and INT4 representations progressively, combining the com-
putational efficiency of symmetric quantization with the
ability of asymmetric quantization to represent values accu-
rately at INT4. An overview of PQ follows.

Quantization maps high-precision floating-point values (x)
into discrete levels (Q(x)), expressed as:

Q(x) =

⌈
x− z

s

⌋
, x̂ = Q(x) · s+ z , (3)

where s is a scaling factor and z is a zero-point. These
depend on the quantization type, symmetric (sym.) or asym-
metric (asym.):

s =


xmax − xmin

2bit − 1
, sym.

max |x|
2bit−1 − 2

, asym.
, z =

{
0, sym.
xmin, asym.

(4)

For two quantized matrices Â and B̂, the low-bit integer

matrix multiplication is:

Oij ≈
∑
k

ÂikB̂kj = sasb
∑
k

Q(Aik)Q(Bkj)

+ sazb
∑
k

Q(Aik) + sbza
∑
k

Q(Bkj) + zazb .
(5)

We see that asymmetric quantization introduces computa-
tion (the last three terms) that are not necessary in sym-
metric computation (where z = 0). In general, asymetric
quantization leads to lower error rates but results in higher
computational overhead.

Progressive quantization proposes two stage of quantization
to solve this problem. First, symmetric quantization is used
to build INT8 representations for computational efficiency,
avoiding the extra overhead of asymmetric quantization
(the three non-zero terms above). Then, for better memory
efficiency, 8-bit integers are further compressed to INT4
using asymmetric quantization.

The integer inference formula for PQ is:

Oij = sasb
∑
k

Q̂(Aik)Q̂(Bkj) , (6)

where Q̂(A) and Q̂(B) denote:

Q̂(A) = Q(Q(x)) · sinta + zinta , (7)

Q̂(B) = Q(Q(x)) · sintb + zintb . (8)

Here, sa and sb are the (FP16) scales from the first INT8
quantization step. Equations 7 and 8 represent dequantiza-
tion from asymmetric INT4 quantization into INT8. The
scales sint and zero points zint are stored in INT8, but the
majority of the data Q(Q(x)) are stored in INT4.

This approach, proposed in Qserve (Lin et al., 2024) for
weight quantization, is more hardware-friendly compared
to decompression or other low-bit integer inference meth-
ods, such as those in Atom (Zhao et al., 2024), LLM.int8
(Dettmers et al., 2022), or TensorRT-LLM . In our work, we
extend the design of PQ to represent KV cache, with the
objective of making the dequantization into the attention
computations faster while keeping it compatible to attention
acceleration mechanisms (such as FlashAttention).

2.4 Challenges in Efficient Attention Mechanism

As we saw in Figure 1a, the attention operation can consti-
tute up to 80% of the overall inference execution time when
combined with state-of-the-art quantization techniques for
other parts of transformer. This is majorly due to the high-
precision execution of attention operation in state-of-the-art
techniques, such as FlashAttention. As we saw in subsec-
tion 2.2, the usage of FP16 and FP32 not only adds pressure
to the scratchpad and register file on the compute units of

TurboAttention: Efficient attention approximation for High Throughputs LLMs

Figure 3. Dataflow of TurboAttention in pre-fill and decode. At pre-fill (left) we first compress QKV block-wise into INT8(Step1), and
compute the attention matrix (on-line) using SAS (see section 4, Step2). Next, we compress the INT8 KV blocks into asymmetric
INT4/INT2, channel-wise, in integer arithmetic: these are stored in the cache(Step3). At decoding (right), we first compress generated
qkv to INT8(Step1) and decompress the KV cache to INT8 for integer inference(Step2). Again, we use SAS to compute attention(Step3).

GPU, but slows down the matrix multiplications and soft-
max operation inside the attention operation because of the
higher precision. For example, the peak performance of
FP32 CUDA cores used in FlashAttention’s exponentiation
operation is only ∼3% of the FP16 tensor performance deliv-
ered by Nvidia’s A100-SXM. Thus, there is a need to enable
quantized execution of the attention operation to leverage
the faster low-precision tensor cores in modern GPUs. How-
ever, a naive quantization of the attention operation could
lead to a loss of the model’s generative performance (accu-
racy).

On the other hand, compression techniques such as KIVI
(Zirui Liu et al., 2023), GEAR (Kang et al., 2024), and
Qserve (Lin et al., 2024) have proposed techniques to com-
press the KV cache to 4-bit or even 2-bit formats. However,
these techniques aim to reduce the memory footprint of KV
cache, but rely on time-intensive decompression to FP16
before executing the attention mechanism using acceleration
mechanisms such as FlashAttention.

Additionally, these methods frequently employ dynamic re-
ordering of outlier channels or smooth attention (Lin et al.,
2024) techniques to adjust key-query interactions, aiming
to mitigate outliers (Dettmers et al., 2022). However, these
strategies introduce additional latency, hindering the adop-
tion of integer inference within the attention mechanism.
Specifically, the smoothing factor(Xiao et al., 2024b) that
transfers outliers from key to query is not applicable in cases
where both tensors are quantized activations. Similarly, dy-
namic reordering requires synchronized reordering of query,
key, and value components, reducing its overall effective-

ness. Thus, there is a huge need to develop a quantization
technique that will enable a quantized execution of the atten-
tion operation in a FlashAttention compatible manner and
reduce the memory footprint of KV cache while not losing
the accuracy of LLMs.

TurboAttention thus presents a novel unified technique for
enabling quantized execution of attention along with a co-
operative KV cache compression mechanism which reduces
latency, memory footprint, incurs negligible accuracy loss.
We present the in two parts; FlashQ (section 3), which
enables quantization of Key, Value, and Query in a FlashAt-
tention compatible manner and SAS, which enables efficient
GPU tensor core-friendly, softmax computation (section 4).

3 FLASHQ: HEADWISE MIX-PRECISION
PROGRESSIVE QUANTIZATION

FlashQ involves three key components that enable and sig-
nificantly accelerate the quantized attention mechanism:

1. Blockwise Progressive Quantization. FlashAttention-
compatible quantization of Key and Value for quan-
tized execution of MatMuls.

2. Head-wise Mixed Precision. Compress different
heads to different formats (2-bit and 4-bit) for max-
imum compression.

3. Enhanced KV cache Buffer. For dynamic manage-
ment of the quantized KV cache during the decode
phase, eliminating the need for recompression of KV
cache.

Figure 3 illustrates the overall flow of FlashQ along with

TurboAttention: Efficient attention approximation for High Throughputs LLMs

SAS (discussed later in section 4), integrated with the flash
attention mechanism. Our method can be deployed to any
hardware that has int8 accelerators from RTX4090 to H100.

3.1 Blockwise Progressive Quantization (BPQ)

As we saw in subsection 2.1, multi-head attention generates
large intermediate activations, which place a significant
demand on memory bandwidth. FlashAttention (Dao et al.,
2022) addresses this by chunking the Query, Key, and Value
matrices along the token dimension and tiling the attention
mechanism to accelerate the process. FlashAttention divides
the h-th head’s query, key, and value matrices (Q(h), K(h),
and V (h)) into sub-blocks of size Tc and Tr, denoted as
Q(h)

c , K(h)
r , and V (h)

r , for efficient tiled computation.

To enable a FlashAttention-compatible quantized execution
of attention we propose Blockwise Progressive Quantization
(BPQ). In BPQ, each of the sub-block is first compressed
using 8-bit symmetric quantization. Unlike Qserve, which
applies per-channel PQ to weights, we apply BPQ at a sub-
block granularity via the function:

Xq1 = Quant8sym(X) (9)

where X ∈ Q(h)
c ,K(h)

r ,V (h)
r represents a sub-block, and

Quant8sym denotes symmetric 8-bit quantization. Given the
critical memory bottleneck posed by the KV cache, as de-
scribed in subsection 2.4, we apply progressive quantization
after computation to further compress the Key and Value
tensors for storage.

Further, building on the techniques from KIVI (Liu et al.,
2024) and informed by our own analysis (Figure 4), we
further reduce quantization errors by compressing the Key
and Value 8-bit tensors in a channel-wise manner using
asymmetric quantization:

Kq2
g = Quant4 / 2

asym(Kq1
g), V q2

g = Quant4 / 2
asym(V q1

g)
(10)

where K̂q1
g and V̂ q1

g are groups in each channel of the key
and value 8-bit tensors. This minimizes the errors caused by
outliers in certain channels while keeping the tiled nature
needed to make it compatible with FlashAttention’s core
algorithm. Since a new query vector is generated at each
decoding step, compressing it further beyond the initial 8-bit
quantization is unnecessary.

3.2 Head-wise Mixed Precision

To further enhance progressive quantization and achieve
substantial memory savings in the KV cache, we explore re-
ducing the bit-width to 2-bit. Although 4-bit KV cache quan-
tization has shown near-lossless performance across vari-
ous models, as demonstrated by Atom (Zhao et al., 2024),
QuaRot (Ashkboos et al., 2024), and Qserve (Lin et al.,
2024), uniformly applying 2-bit compression to all attention

Figure 4. Query, key and value channels min-max distribution of
Phi3-mini and LLaMA3-8B Models. We observe that certain heads
in query and key have a number of large-magnitude channels. For
value, there is no obvious outlier pattern.

heads often leads to significant model performance degra-
dation. Approaches like smooth factors (Lin et al., 2024;
Xiao et al., 2024a) and offline reordering (e.g., Qserve and
Atom) can improve compression accuracy but introduce
additional latency overhead, making them challenging to
integrate with dynamically expanding KV caches. While
token-wise mixed precision could further enhance accuracy,
it incurs dynamic execution overhead in CUDA kernels and
is not FlashAttention-compatible, thus severely reducing
hardware efficiency.

Inspired by recent work on head pruning in multi-head at-
tention (Ge et al., 2024; Liu et al., 2023b; Rajput et al.,
2024), we propose a headwise mixed-precision approach.
This approach combines 2-bit and 4-bit compression, and
thus achieves a favorable trade-off between accuracy and
memory savings. It applies 2-bit and 4-bit BPQ for different
heads based on their priority. The priority is calculated by:

priority(h) = gap(h) × std(h) (11)
Here, gap(h) represents the difference between the maxi-
mum and minimum values across all channels for head h,
which captures the range of values in the attention mech-
anism. A larger gap indicates that compressing this head
may introduce a larger quantization error, thus making it
more important to preserve precision. std(h) is the standard
deviation of the channel-wise gaps within each head. This
measures the variability of the gaps, where higher variabil-
ity (i.e., a larger standard deviation) implies that the head’s
distribution is more uneven. Heads with a higher std(h) are
more sensitive to quantization, and thus require higher bit
precision to minimize performance degradation.

Using this metric, we rank all heads in terms of their priority
scores. Instead of using a fixed threshold, we compress the
lowest-priority nh heads in each layer to 2-bit, while the
remaining heads are quantized to 4-bit. The quantization

TurboAttention: Efficient attention approximation for High Throughputs LLMs

strategy is thus defined as:

Quantization strategy =

{
2-bit, if rank(priority(h)) ≤ nh

4-bit, if rank(priority(h)) > nh

(12)

Here, nh is the number of heads to be compressed to 2-
bit, determined per layer. By ranking the heads based on
their priority and applying lower-bit quantization to the
least critical heads (i.e., those with the smallest priority),
we achieve a balanced trade-off between memory savings
and model performance. Figure 3 illustrates the head-wise
quantization dataflow of FlashQ, where the second head
is block-wise progressively quantized to INT2. As we will
see later, this technique presents a robust way to compress
the KV-cache and can be employed in a majority of models
easily.

3.3 Enhanced KV cache Buffer

FlashQ introduces an efficient decoding buffer to acceler-
ate inference during long-context generation. To support
integer inference in the attention mechanism, newly gener-
ated tokens are temporarily stored in a buffer B of size nb

(e.g., nb = 64) and quantized using 8-bit symmetric quanti-
zation (Equation 9). This avoids the need for compression at
every decoding iteration. Once the buffer reaches its capac-
ity, FlashQ applies progressive quantization (Equation 10)
to further compress the keys and values from 8 bits to lower
bit-widths for improved memory efficiency.

To ensure stability, we employ a universal scale for 8-bit
quantization and clamp outliers that exceed this range, pre-
venting the need to re-compress previously stored tokens
in the buffer when new tokens with larger values are added.
This approach contrasts with previous methods like KIVI
(Liu et al., 2024) and GEAR (Kang et al., 2024), which keep
buffers in full precision, introducing significant memory
overhead and preventing the use of integer inference in the
attention mechanism. We summarize the detailed algorithm
of TurboAttention in Appendix A.

4 SAS: SPARSE ACTIVATED SOFTMAX

Softmax is a key bottleneck in the attention mechanism,
particularly in flash attention workflows, where tiling opera-
tions introduce additional overhead. From our experiments,
we observe that softmax computation costs over 30% of the
attention execution time both in prefill and decoding stages.
The primary performance issue stems from frequent data
type conversions between FP16 and FP32 for performing
the exponentiation operation. Current GPUs are limited
to single-precision floating-point (FP32) operations for ex-
ponentiation, which exacerbates this bottleneck. Previous
methods, such as (Vasyltsov & Chang, 2021) and (Shim
et al., 2017), either introduce significant errors that degrade

Figure 5. Polynomial-fit for the decimal part of value in exponenti-
ation operation.

performance or are unsuitable for modern large language
models.

To mitigate these issues, we propose a softmax approxima-
tion technique based on polynomial approximation(POLY)
and lookup tables(LUT), called Sparse Activated Softmax
(SAS). This method divides the exponential computation
into two parts: the integer and decimal components. For
example, an exponent computation can be separated into
integer xint and decimal xdec parts which lie in [0,1) (De-
tailed algorithm in Appendix B). For the integer part, we
use a lookup table, which remains compact because large
values in the exponential function decay quickly, allowing
us to skip larger integers. For the decimal part, we employ
a simple polynomial approximation.

e−x = e−xint × e−xdec ≈ LUT (−xint)× POLY (−xdec)
(13)

As such, the approximation algorithm of SAS goes:

SAS(x) =

{
0, x < nr

LUT (xint)× POLY (xdec), x ≥ nr

(14)

To optimize the computation of the exponential function
e−x, we limit the approximation range to [0, 1] and reduce
the polynomial degree to less than 3 to enhance computa-
tional efficiency. Using the least squares method to deter-
mine the coefficients, our 3-degree polynomial approxima-
tion of e−x within this range is as follows:

POLY (x) = −0.1025x3 + 0.4626x2 − 0.9922x+ 0.9996
(15)

This polynomial captures the essential behavior of e−x over
[0, 1] with minimal computational overhead, as shown in
Figure 5. This hybrid approach reduces computational and
data type conversion overhead while preserving accuracy,
effectively alleviating the exponentiation bottleneck in flash
attention algorithm. The overall exponentiation operation is
accelerated, as the polynomial operation can be done solely
in GPU Tensor Cores in FP16 dataformat.

Further, from our observations, the large negative values

TurboAttention: Efficient attention approximation for High Throughputs LLMs

of the attention scores (resulting from the query-key mul-
tiplication) become extremely small after softmax due to
the nature of the exponential function. As such, we apply
a sparsification strategy, retaining only the larger attention
scores within a certain range nr(e.g., 0 to -5) and setting the
rest to zero after the sparse activated softmax computation
to keep the look-up table small enough. This further reduces
the computational cost, making SAS a practical and efficient
solution for large-scale language models.

5 EVALUATIONS

5.1 Experiment Setup

Models and dataset We conducted an extensive evaluation
of TurboAttention for generative inference using a variety
of open-source pre-trained and instruction-tuned models,
including LLaMA3-8B-inst (Dubey et al., 2024), Phi3-mini-
inst (Abdin et al., 2024), and Qwen2.5-7B (Yang et al.,
2024), on multiple generative tasks. These tasks included
mathematical reasoning datasets such as GSM8k (Cobbe
et al., 2021) and AQuA (Ling et al., 2017), symbolic rea-
soning tasks from BigBench Hard (BBH) (Suzgun et al.,
2022). Given the complexity of these tasks, we use the
chain-of-thought prompts created by (Fu et al., 2023) to
improve reasoning, which contains 8-shot demonstrations
of multi-step reasoning. With the CoT demonstrations, we
have the average prefill length of GSM8k, AQuA, and BBH
as 900, 1304, 1021 respectively. We then prompt the model
to generate 256 tokens and extract answers from them.

5.2 TurboAttention Implementation

To minimize overheads, we implemented and optimized Tur-
boAttention with OpenAI Triton(Tillet et al., 2019) kernel
support as follows. First, to address the memory bottlenecks
caused by frequent quantization and dequantization, we
fused the QKV projection with quantization (Equation 9).
Additionally, efficient dequantization from progressive quan-
tization was integrated directly into the attention mechanism
to reduce decoding latency (Equation 10).

Second, we implement a KV cache buffer (subsection 3.3
for the newly generated Key and Value vectors during de-
code. These Key/Value vectors are further compressed to
INT4 and INT2 (depending on the head) every nb steps.
To avoid recompression when newly generated KV tokens
exceed the previous cache value range maximum, we clamp
outliers to ensure only newly generated tokens are com-
pressed to INT8. This further improves decoding efficiency
by reducing unnecessary recompression.

Third, we leveraged the Triton framework to implement
INT8 matrix multiplications for the attention mechanism,
thereby reducing both memory and computation bottlenecks.
Finally, we implemented an efficient polynomial approxi-

mation and lookup table for SAS, significantly enhancing
the overall performance of the softmax operation. For Tur-
boAttention, we fix block size Bc, Br, and nb to 64, SAS
threshold nr to -6, and set half of the heads’ KV cache to
2-bit quantization for head-wise mixed precision. Further
optimization can be achieved by implementing CUDA ker-
nels, as they can deliver higher efficiency and substantial
speedup.

Framework. For our experiments, we applied TurboAt-
tention and the baseline methods to models available on
Huggingface (Wolf et al., 2019), with our inference frame-
work implemented in PyTorch (Paszke et al., 2019). Since
our focus is on attention acceleration, all other parts of the
model are maintained in FP16 unless otherwise stated.

Precision. In our experiments, we explore ultra-low preci-
sion quantization techniques, reporting performance results
for 4-bit, 3-bit, and mixed headwise 2/4-bit quantization of
the KV cache. Our findings indicate that TurboAttention
achieves near-lossless performance with 4-bit KV cache
compression across various tasks and models. However,
consistent with findings in other KV cache compression
methods, compressing to 2-bit can led to accuracy degrada-
tion. To balance accuracy and memory savings, we applied
2-bit precision to 50% of model heads, achieving a practical
trade-off. Consequently, we benchmark TurboAttention with
mixed precision quantization against other 3-bit baseline
methods for a comprehensive comparison in 2.

Additional ablation studies examining the impact of the
number of 2-bit heads and block size variations are provided
in subsection 5.6, while the results for pure 2-bit KV cache
quantization are included in the Appendix.

5.3 Baseline Techniques

We compare TurboAttention against the following state-of-
the-art techniques:

• FP16 A dense model where both activations and weights
are represented as 16-bit floating-point numbers. This serves
as our base dense model without any attention optimizations.

• FlashAttention An attention algorithm applying FlashAt-
tention (Shah et al., 2024) with FP16 computation (and FP32
for exponentiation). This method is "exact" and does not
alter accuracy but improves system efficiency by optimizing
the attention mechanism.

• KIVI (Liu et al., 2024) A near-lossless KV cache quanti-
zation method that compresses the key cache per-channel
and the value cache per-token using fine-grained grouping.
It stores residual tokens of length nb in full precision, and
achieving 4-bit KV cache compression at its best accuracy
mode.

• GEAR(Kang et al., 2024) A concurrent KV cache quanti-

TurboAttention: Efficient attention approximation for High Throughputs LLMs

Model LLaMA3-8B-inst Qwen2-7B-inst Phi3-3.8B-inst All

Method
Bit GSM8k AQuA BBH GSM8k AQuA BBH GSM8k AQuA BBH Ave.
b Acc Acc Acc Acc Acc Acc Acc Acc Acc Acc

FP16 16 78.24 50.79 58.71 71.87 45.67 50.71 84.53 58.66 57.83 61.89

KIVIg = 64, nb = 64 4 61.18 46.46 53.20 52.16 45.28 45.33 57.09 54.72 51.24 51.85
GEAR-L(KCVT)

r=4 4 64.94 47.09 57.14 54.46 46.06 46.41 79.86 54.36 53.40 55.97

TurboAttentionnb = 64 4 78.31 48.03 58.63 66.19 46.06 46.86 84.00 55.91 58.43 60.27

KIVIg = 64, nb = 64 3 59.43 44.88 51.40 52.38 41.73 46.47 55.57 47.24 50.98 50.01
GEAR-L(KIVI)

r=4 3 62.06 46.12 52.72 53.15 42.03 46.65 56.18 49.60 51.39 51.10

TurboAttention(mixed)
nb=64 2/4 77.53 47.94 54.36 66.56 41.91 45.13 63.53 31.49 51.32 53.31

Table 2. Results on CoT reasoning tasks, which are hard generative tasks. Here, Bit represents the average compressed bit of KV cache for
different methods. The best results are shown in bold. Mixed precision results have same KV cache size with 3-bit simulated benchmark.

zation method that achieves 2-bit near-lossless compression
by leveraging low-rank approximations to reduce quanti-
zation errors. Residual tokens of length nb are stored in
full precision for error compensation. Here we use the effi-
ciency version GEAR-L, that deploy quantiations and low
rank approximation together to compress KV cache.

It is important to note that TurboAttention is not just a KV
cache compression algorithm but rather a unified approxi-
mation algorithm for the attention mechanism. However, we
compare it with KV cache compression algorithms to high-
light its ability to preserve both performance and efficiency
in large language models (LLMs).

5.4 Evaluation Results

Generative performance on reasoning tasks. Table 2
demonstrate that TurboAttention achieves comparable or
superior performance to recent KV cache compression algo-
rithms across different models and the challenging reasoning
tasks, in both 4-bit and lower-bit compression settings. De-
spite further compressing the query and approximating the
softmax operation, TurboAttention maintains near lossless
accuracy, achieving an average accuracy of 60.27% across
three models and datasets, which is closely aligned with
the FP16 baseline average accuracy of 61.89%. Notably,
TurboAttention also delivers outstanding 3-bit performance,
surpassing baseline methods while providing reduced KV
cache size, and enhanced inference efficiency.

5.5 Efficiency Comparison

In this section, we evaluate latency(wall clock time) and
maximum throughputs of TurboAttention on a single A100
GPU(80GB). We measure the attention mechanism of the
model under varying batch sizes with a fixed context length
of 1k, as well as under different context lengths (ranging
from 4k to 32k) with a fixed batch size of 4. We sepa-
rately assess the prefill and decoding phases and report the

speedup ratio compared to the FlashAttention FP16/32 base-
line. Figure 6 shows the latency comparison across various
input settings and methods, all using the same attention
mechanism configuration.

Our results indicate that, across batch sizes from 1 to 64
and context lengths from 4k to 32k, TurboAttention con-
sistently outperforms both FlashAttention FP16 and other
KV cache compression techniques combined with Flash
Attention baselines. Specifically, TurboAttention achieves a
speedup of up to 1.8× for prefill and up to 1.7× for decoding,
highlighting significant improvements in softmax, matrix
multiplication, and dequantization efficiency. Additionally,
by compressing the KV cache to int-4/2, TurboAttention
enables long-context generation up to 32k with a batch size
of 4, whereas the FP16 baseline encounters out-of-memory
(OOM) issues beyond a 4k context length. We also observe
that due to the dequantization overhead in other KV cache
compression methods, such as KIVI, these methods exhibit
worse latency relative to the FP16 baseline.

Figure 7a shows the throughputs comparison across vari-
ous batch sizes with fixed context length 1k and generation
length 125 tokens. It demonstrats that, compared to the
Flash-FP16 baseline, TurboAttention significantly improves
maximum throughputs by up to 2.37×. Meanwhile, Tur-
boAttention achieves better throughputs compared to KIVI
or GEAR due to our efficient progressive dequantization,
compressed KV cache, and SAS which improves the latency.

5.6 Ablation Study

Ablation study on head wise selection methodology In this
study, we aim to validate the effectiveness of our priority-
based head selection strategy as detailed in subsection 3.2.
We compare our approach against several baseline meth-
ods that use simpler, less adaptive metrics to drive head
selection. As explored in subsection 3.2 and illustrated in
Figure 4, channelwise outliers critically impact quantization

TurboAttention: Efficient attention approximation for High Throughputs LLMs

Figure 6. Speedup of the attention mechanism of Phi3-medium on 1xA100-80GB-SXM GPU. TurboAttention achieves up to 1.8× latency
improvement for prefill under various scenarios. For decoding, TurboAttention delivers up to 1.7× improvement over FlashAttention
in the FP16 data format. Other methods, such as KIVI, may exhibit higher latency than the FP16 baseline due to the time-consuming
dequantization process required before computation. OOM denotes out of memory for Phi3-medium model.

(a) Delivered throughput (b) Priority technique vs. Acc.

Figure 7. (a) Throughput comparison running Phi3-Medium on a
1xA100-SXM-80GB GPU. (b) Comparison of different priority
methods with different number of 2-bit heads in LLaMA3-8B-inst
on AQua dataset
error. To address this, we examine head selection strategies
that incorporate channelwise value ranges as the basis for
selection.

Baseline methods include: Entropy: Selecting 2-bit heads
based on the entropy of each head. Min-Max: Using the
range between minimum and maximum values within heads.
Variation: Evaluating variation in channelwise value ranges.
The benchmarks are run on the LLaMA-3-8B-inst model
with 8-shot COT prompts on the AQua dataset. Given
LLaMA-3-8B-inst’s 8-head configuration per key/value
cache, we perform head selection across a range of 0 to
16 heads. Results, as shown in Figure 7b, indicate that our
prioritized strategy significantly surpasses other selection
approaches in minimizing quantization error, supporting its
efficiency and robustness in managing outliers.

Ablation study on block size We evaluate the sensitivity

Table 3. TurboAttention on Phi3-mini with different block size of
query, key, and value.

Block size(Br,Bc) Dataset Acc

(32,32) GSM8K 78.01
(32,64) GSM8K 78.01
(64,32) GSM8K 78.31
(64,64) GSM8K 78.31
(64,128) GSM8K 78.16
(128,64) GSM8K 78.01
(128,128) GSM8K 77.83

of TurboAttention to varying block sizes (Bc and Br) for
the query, key, and value matrices. These block sizes are
closely related to the device’s SRAM capacity and have a
substantial impact on system efficiency. Consequently, as-
sessing TurboAttention’s performance across different block
sizes is essential to confirm its robustness and adaptabil-
ity across configurations. As shown in Table 3 , we tested
Phi3-mini with various block sizes on the GSM8K-COT
dataset using an 8-shot setup. The results demonstrate that
TurboAttention maintains robustness across different block
sizes, underscoring its ability to integrate seamlessly with
Flash Attention across various systems while preserving
model accuracy.

Ablation study of SAS and FlashQ Separately To further
demonstrate what are accruacy degradation caused by SAS
and FlashQ separately, we have provided more experiments
in Table 5. It demonstrated that both FlashQ and SAS can

TurboAttention: Efficient attention approximation for High Throughputs LLMs

achieve near lossless performance on complex dataset. More
ablation results about SAS are in appendix.

6 CONCLUSIONS

This paper introduces TurboAttention, a highly efficient
compression algorithm for attention mechanisms that inte-
grates seamlessly with attention acceleration methods like
FlashAttention, achieving near loss-less performance. Tur-
boAttention demonstrates state-of-the-art results in handling
complex generative tasks, including mathematical and rea-
soning challenges, using 4-bit and 2-bit KV cache com-
pression. Additionally, it provides significant performance
gains, with up to 1.8x latency speedup and a 2.37x increase
in maximum throughput over the FP16 baseline, marking
a substantial advancement in efficient attention mechanism
execution.

7 ACKKNOWLEDGEMENT

We are deeply grateful to Qingyang Chen (a Ph.D. alumnus
from Georgia Tech) for his guidance on Triton and CUDA
kernels. We also thank Akshat Ramachandran(PhD student
at Georgia Tech), Shang Yang, and Han Guo(both PhD
student at MIT) for their valuable suggestions on refining
the paper.

REFERENCES

Abdin, M., Aneja, J., Awadalla, H., Awadallah, A., Awan,
A. A., Bach, N., Bahree, A., Bakhtiari, A., Bao, J., Behl,
H., Benhaim, A., Bilenko, M., Bjorck, J., Bubeck, S., Cai,
M., Cai, Q., Chaudhary, V., Chen, D., Chen, D., Chen, W.,
Chen, Y.-C., Chen, Y.-L., Cheng, H., Chopra, P., Dai, X.,
Dixon, M., Eldan, R., Fragoso, V., Gao, J., Gao, M., Gao,
M., Garg, A., Giorno, A. D., Goswami, A., Gunasekar, S.,
Haider, E., Hao, J., Hewett, R. J., Hu, W., Huynh, J., Iter,
D., Jacobs, S. A., Javaheripi, M., Jin, X., Karampatziakis,
N., Kauffmann, P., Khademi, M., Kim, D., Kim, Y. J.,
Kurilenko, L., Lee, J. R., Lee, Y. T., Li, Y., Li, Y., Liang,
C., Liden, L., Lin, X., Lin, Z., Liu, C., Liu, L., Liu, M.,
Liu, W., Liu, X., Luo, C., Madan, P., Mahmoudzadeh,
A., Majercak, D., Mazzola, M., Mendes, C. C. T., Mitra,
A., Modi, H., Nguyen, A., Norick, B., Patra, B., Perez-
Becker, D., Portet, T., Pryzant, R., Qin, H., Radmilac, M.,
Ren, L., de Rosa, G., Rosset, C., Roy, S., Ruwase, O.,
Saarikivi, O., Saied, A., Salim, A., Santacroce, M., Shah,
S., Shang, N., Sharma, H., Shen, Y., Shukla, S., Song, X.,
Tanaka, M., Tupini, A., Vaddamanu, P., Wang, C., Wang,
G., Wang, L., Wang, S., Wang, X., Wang, Y., Ward, R.,
Wen, W., Witte, P., Wu, H., Wu, X., Wyatt, M., Xiao,
B., Xu, C., Xu, J., Xu, W., Xue, J., Yadav, S., Yang, F.,
Yang, J., Yang, Y., Yang, Z., Yu, D., Yuan, L., Zhang, C.,
Zhang, C., Zhang, J., Zhang, L. L., Zhang, Y., Zhang, Y.,

Zhang, Y., and Zhou, X. Phi-3 technical report: A highly
capable language model locally on your phone, 2024.
URL https://arxiv.org/abs/2404.14219.

Ashkboos, S., Mohtashami, A., Croci, M. L., Li, B., Jaggi,
M., Alistarh, D., Hoefler, T., and Hensman, J. Quarot:
Outlier-free 4-bit inference in rotated llms, 2024. URL
https://arxiv.org/abs/2404.00456.

Brandon, W., Nrusimha, A., Qian, K., Ankner, Z., Jin, T.,
Song, Z., and Ragan-Kelley, J. Striped attention: Faster
ring attention for causal transformers. arXiv preprint
arXiv:2311.09431, 2023.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners, 2020. URL https://
arxiv.org/abs/2005.14165.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems, 2021.

Dao, T. Flashattention-2: Faster attention with better par-
allelism and work partitioning, 2023. URL https:
//arxiv.org/abs/2307.08691.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with io-
awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

Dao, T., Haziza, D., Massa, F., and Sizov, G. Flashde-
coding: Stanford CRFM — crfm.stanford.edu.
https://crfm.stanford.edu/2023/10/
12/flashdecoding.html, 2023. [Accessed
22-04-2024].

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Llm.int8(): 8-bit matrix multiplication for transformers
at scale, 2022. URL https://arxiv.org/abs/
2208.07339.

Dodge, J., Sap, M., Marasović, A., Agnew, W., Ilharco,
G., Groeneveld, D., Mitchell, M., and Gardner, M. Doc-
umenting large webtext corpora: A case study on the
colossal clean crawled corpus, 2021. URL https:
//arxiv.org/abs/2104.08758.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A.,
Letman, A., Mathur, A., Schelten, A., Yang, A., Fan, A.,

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.00456
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2104.08758
https://arxiv.org/abs/2104.08758

TurboAttention: Efficient attention approximation for High Throughputs LLMs

Goyal, A., Hartshorn, A., Yang, A., Mitra, A., Sravanku-
mar, A., Korenev, A., Hinsvark, A., Rao, A., Zhang, A.,
Rodriguez, A., Gregerson, A., Spataru, A., Roziere, B.,
Biron, B., Tang, B., Chern, B., Caucheteux, C., Nayak,
C., Bi, C., Marra, C., McConnell, C., Keller, C., Touret,
C., Wu, C., Wong, C., Ferrer, C. C., Nikolaidis, C., Al-
lonsius, D., Song, D., Pintz, D., Livshits, D., Esiobu, D.,
Choudhary, D., Mahajan, D., Garcia-Olano, D., Perino,
D., Hupkes, D., Lakomkin, E., AlBadawy, E., Lobanova,
E., Dinan, E., Smith, E. M., Radenovic, F., Zhang, F., Syn-
naeve, G., Lee, G., Anderson, G. L., Nail, G., Mialon, G.,
Pang, G., Cucurell, G., Nguyen, H., Korevaar, H., Xu, H.,
Touvron, H., Zarov, I., Ibarra, I. A., Kloumann, I., Misra,
I., Evtimov, I., Copet, J., Lee, J., Geffert, J., Vranes,
J., Park, J., Mahadeokar, J., Shah, J., van der Linde, J.,
Billock, J., Hong, J., Lee, J., Fu, J., Chi, J., Huang, J.,
Liu, J., Wang, J., Yu, J., Bitton, J., Spisak, J., Park, J.,
Rocca, J., Johnstun, J., Saxe, J., Jia, J., Alwala, K. V.,
Upasani, K., Plawiak, K., Li, K., Heafield, K., Stone, K.,
El-Arini, K., Iyer, K., Malik, K., Chiu, K., Bhalla, K.,
Rantala-Yeary, L., van der Maaten, L., Chen, L., Tan, L.,
Jenkins, L., Martin, L., Madaan, L., Malo, L., Blecher, L.,
Landzaat, L., de Oliveira, L., Muzzi, M., Pasupuleti, M.,
Singh, M., Paluri, M., Kardas, M., Oldham, M., Rita, M.,
Pavlova, M., Kambadur, M., Lewis, M., Si, M., Singh,
M. K., Hassan, M., Goyal, N., Torabi, N., Bashlykov, N.,
Bogoychev, N., Chatterji, N., Duchenne, O., Çelebi, O.,
Alrassy, P., Zhang, P., Li, P., Vasic, P., Weng, P., Bhargava,
P., Dubal, P., Krishnan, P., Koura, P. S., Xu, P., He, Q.,
Dong, Q., Srinivasan, R., Ganapathy, R., Calderer, R.,
Cabral, R. S., Stojnic, R., Raileanu, R., Girdhar, R., Patel,
R., Sauvestre, R., Polidoro, R., Sumbaly, R., Taylor, R.,
Silva, R., Hou, R., Wang, R., Hosseini, S., Chennabas-
appa, S., Singh, S., Bell, S., Kim, S. S., Edunov, S., Nie,
S., Narang, S., Raparthy, S., Shen, S., Wan, S., Bhosale,
S., Zhang, S., Vandenhende, S., Batra, S., Whitman, S.,
Sootla, S., Collot, S., Gururangan, S., Borodinsky, S., Her-
man, T., Fowler, T., Sheasha, T., Georgiou, T., Scialom,
T., Speckbacher, T., Mihaylov, T., Xiao, T., Karn, U.,
Goswami, V., Gupta, V., Ramanathan, V., Kerkez, V.,
Gonguet, V., Do, V., Vogeti, V., Petrovic, V., Chu, W.,
Xiong, W., Fu, W., Meers, W., Martinet, X., Wang, X.,
Tan, X. E., Xie, X., Jia, X., Wang, X., Goldschlag, Y.,
Gaur, Y., Babaei, Y., Wen, Y., Song, Y., Zhang, Y., Li, Y.,
Mao, Y., Coudert, Z. D., Yan, Z., Chen, Z., Papakipos, Z.,
Singh, A., Grattafiori, A., Jain, A., Kelsey, A., Shajnfeld,
A., Gangidi, A., Victoria, A., Goldstand, A., Menon, A.,
Sharma, A., Boesenberg, A., Vaughan, A., Baevski, A.,
Feinstein, A., Kallet, A., Sangani, A., Yunus, A., Lupu,
A., Alvarado, A., Caples, A., Gu, A., Ho, A., Poulton,
A., Ryan, A., Ramchandani, A., Franco, A., Saraf, A.,
Chowdhury, A., Gabriel, A., Bharambe, A., Eisenman, A.,
Yazdan, A., James, B., Maurer, B., Leonhardi, B., Huang,
B., Loyd, B., Paola, B. D., Paranjape, B., Liu, B., Wu, B.,

Ni, B., Hancock, B., Wasti, B., Spence, B., Stojkovic, B.,
Gamido, B., Montalvo, B., Parker, C., Burton, C., Mejia,
C., Wang, C., Kim, C., Zhou, C., Hu, C., Chu, C.-H.,
Cai, C., Tindal, C., Feichtenhofer, C., Civin, D., Beaty,
D., Kreymer, D., Li, D., Wyatt, D., Adkins, D., Xu, D.,
Testuggine, D., David, D., Parikh, D., Liskovich, D., Foss,
D., Wang, D., Le, D., Holland, D., Dowling, E., Jamil,
E., Montgomery, E., Presani, E., Hahn, E., Wood, E.,
Brinkman, E., Arcaute, E., Dunbar, E., Smothers, E., Sun,
F., Kreuk, F., Tian, F., Ozgenel, F., Caggioni, F., Guzmán,
F., Kanayet, F., Seide, F., Florez, G. M., Schwarz, G.,
Badeer, G., Swee, G., Halpern, G., Thattai, G., Herman,
G., Sizov, G., Guangyi, Zhang, Lakshminarayanan, G.,
Shojanazeri, H., Zou, H., Wang, H., Zha, H., Habeeb,
H., Rudolph, H., Suk, H., Aspegren, H., Goldman, H.,
Damlaj, I., Molybog, I., Tufanov, I., Veliche, I.-E., Gat,
I., Weissman, J., Geboski, J., Kohli, J., Asher, J., Gaya,
J.-B., Marcus, J., Tang, J., Chan, J., Zhen, J., Reizenstein,
J., Teboul, J., Zhong, J., Jin, J., Yang, J., Cummings, J.,
Carvill, J., Shepard, J., McPhie, J., Torres, J., Ginsburg,
J., Wang, J., Wu, K., U, K. H., Saxena, K., Prasad, K.,
Khandelwal, K., Zand, K., Matosich, K., Veeraragha-
van, K., Michelena, K., Li, K., Huang, K., Chawla, K.,
Lakhotia, K., Huang, K., Chen, L., Garg, L., A, L., Silva,
L., Bell, L., Zhang, L., Guo, L., Yu, L., Moshkovich,
L., Wehrstedt, L., Khabsa, M., Avalani, M., Bhatt, M.,
Tsimpoukelli, M., Mankus, M., Hasson, M., Lennie, M.,
Reso, M., Groshev, M., Naumov, M., Lathi, M., Ke-
neally, M., Seltzer, M. L., Valko, M., Restrepo, M., Patel,
M., Vyatskov, M., Samvelyan, M., Clark, M., Macey,
M., Wang, M., Hermoso, M. J., Metanat, M., Rastegari,
M., Bansal, M., Santhanam, N., Parks, N., White, N.,
Bawa, N., Singhal, N., Egebo, N., Usunier, N., Laptev,
N. P., Dong, N., Zhang, N., Cheng, N., Chernoguz, O.,
Hart, O., Salpekar, O., Kalinli, O., Kent, P., Parekh, P.,
Saab, P., Balaji, P., Rittner, P., Bontrager, P., Roux, P.,
Dollar, P., Zvyagina, P., Ratanchandani, P., Yuvraj, P.,
Liang, Q., Alao, R., Rodriguez, R., Ayub, R., Murthy,
R., Nayani, R., Mitra, R., Li, R., Hogan, R., Battey, R.,
Wang, R., Maheswari, R., Howes, R., Rinott, R., Bondu,
S. J., Datta, S., Chugh, S., Hunt, S., Dhillon, S., Sidorov,
S., Pan, S., Verma, S., Yamamoto, S., Ramaswamy, S.,
Lindsay, S., Lindsay, S., Feng, S., Lin, S., Zha, S. C.,
Shankar, S., Zhang, S., Zhang, S., Wang, S., Agarwal,
S., Sajuyigbe, S., Chintala, S., Max, S., Chen, S., Kehoe,
S., Satterfield, S., Govindaprasad, S., Gupta, S., Cho,
S., Virk, S., Subramanian, S., Choudhury, S., Goldman,
S., Remez, T., Glaser, T., Best, T., Kohler, T., Robinson,
T., Li, T., Zhang, T., Matthews, T., Chou, T., Shaked,
T., Vontimitta, V., Ajayi, V., Montanez, V., Mohan, V.,
Kumar, V. S., Mangla, V., Albiero, V., Ionescu, V., Poe-
naru, V., Mihailescu, V. T., Ivanov, V., Li, W., Wang, W.,
Jiang, W., Bouaziz, W., Constable, W., Tang, X., Wang,
X., Wu, X., Wang, X., Xia, X., Wu, X., Gao, X., Chen,

TurboAttention: Efficient attention approximation for High Throughputs LLMs

Y., Hu, Y., Jia, Y., Qi, Y., Li, Y., Zhang, Y., Zhang, Y.,
Adi, Y., Nam, Y., Yu, Wang, Hao, Y., Qian, Y., He, Y.,
Rait, Z., DeVito, Z., Rosnbrick, Z., Wen, Z., Yang, Z.,
and Zhao, Z. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Fu, Y., Ou, L., Chen, M., Wan, Y., Peng, H., and Khot, T.
Chain-of-thought hub: A continuous effort to measure
large language models’ reasoning performance, 2023.

Ge, S., Zhang, Y., Liu, L., Zhang, M., Han, J., and Gao,
J. Model tells you what to discard: Adaptive kv cache
compression for llms, 2024. URL https://arxiv.
org/abs/2310.01801.

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T.,
Giorno, A. D., Gopi, S., Javaheripi, M., Kauffmann, P.,
de Rosa, G., Saarikivi, O., Salim, A., Shah, S., Behl,
H. S., Wang, X., Bubeck, S., Eldan, R., Kalai, A. T., Lee,
Y. T., and Li, Y. Textbooks are all you need, 2023. URL
https://arxiv.org/abs/2306.11644.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset, 2021.
URL https://arxiv.org/abs/2103.03874.

Hong, K., Dai, G., Xu, J., Mao, Q., Li, X., Liu, J., Dong,
Y., Wang, Y., et al. Flashdecoding++: Faster large lan-
guage model inference with asynchronization, flat gemm
optimization, and heuristics. Proceedings of Machine
Learning and Systems, 6:148–161, 2024.

Joshi, M., Choi, E., Weld, D. S., and Zettlemoyer, L.
Triviaqa: A large scale distantly supervised challenge
dataset for reading comprehension, 2017. URL https:
//arxiv.org/abs/1705.03551.

Kang, H., Zhang, Q., Kundu, S., Jeong, G., Liu, Z., Krishna,
T., and Zhao, T. Gear: An efficient kv cache compression
recipe for near-lossless generative inference of llm, 2024.

Kim, S., Gholami, A., Yao, Z., Mahoney, M. W., and
Keutzer, K. I-bert: Integer-only bert quantization, 2021.
URL https://arxiv.org/abs/2101.01321.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lin, Y., Tang, H., Yang, S., Zhang, Z., Xiao, G., Gan, C.,
and Han, S. Qserve: W4a8kv4 quantization and system
co-design for efficient llm serving, 2024. URL https:
//arxiv.org/abs/2405.04532.

Ling, W., Yogatama, D., Dyer, C., and Blunsom, P. Program
induction by rationale generation: Learning to solve and
explain algebraic word problems. ACL, 2017.

Liu, H., Zaharia, M., and Abbeel, P. Ring attention with
blockwise transformers for near-infinite context. arXiv
preprint arXiv:2310.01889, 2023a.

Liu, Z., Wang, J., Dao, T., Zhou, T., Yuan, B., Song, Z.,
Shrivastava, A., Zhang, C., Tian, Y., Re, C., and Chen,
B. Deja vu: Contextual sparsity for efficient llms at
inference time, 2023b. URL https://arxiv.org/
abs/2310.17157.

Liu, Z., Yuan, J., Jin, H., Zhong, S., Xu, Z., Braverman,
V., Chen, B., and Hu, X. Kivi: A tuning-free asym-
metric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024.

Milakov, M. and Gimelshein, N. Online normalizer cal-
culation for softmax. arXiv preprint arXiv:1805.02867,
2018.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Wallach,
H. M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F.,
Fox, E. B., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
8024–8035, 2019.

Rajput, S., Sheng, Y., Owen, S., and Chiley, V. Inference-
friendly models with mixattention, 2024. URL https:
//arxiv.org/abs/2409.15012.

Sanovar, R., Bharadwaj, S., Amant, R. S., Rühle, V., and
Rajmohan, S. Lean attention: Hardware-aware scalable
attention mechanism for the decode-phase of transform-
ers, 2024. URL https://arxiv.org/abs/2405.
10480.

Shah, J., Bikshandi, G., Zhang, Y., Thakkar, V., Ramani, P.,
and Dao, T. Flashattention-3: Fast and accurate attention
with asynchrony and low-precision, 2024. URL https:
//arxiv.org/abs/2407.08608.

Shim, K., Lee, M., Choi, I., Boo, Y., and Sung, W.
Svd-softmax: Fast softmax approximation on large
vocabulary neural networks. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.
cc/paper_files/paper/2017/file/
4e2a6330465c8ffcaa696a5a16639176-Paper.
pdf.

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2310.01801
https://arxiv.org/abs/2310.01801
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/2101.01321
https://arxiv.org/abs/2405.04532
https://arxiv.org/abs/2405.04532
https://arxiv.org/abs/2310.17157
https://arxiv.org/abs/2310.17157
https://arxiv.org/abs/2409.15012
https://arxiv.org/abs/2409.15012
https://arxiv.org/abs/2405.10480
https://arxiv.org/abs/2405.10480
https://arxiv.org/abs/2407.08608
https://arxiv.org/abs/2407.08608
https://proceedings.neurips.cc/paper_files/paper/2017/file/4e2a6330465c8ffcaa696a5a16639176-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/4e2a6330465c8ffcaa696a5a16639176-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/4e2a6330465c8ffcaa696a5a16639176-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/4e2a6330465c8ffcaa696a5a16639176-Paper.pdf

TurboAttention: Efficient attention approximation for High Throughputs LLMs

Suzgun, M., Scales, N., Schärli, N., Gehrmann, S., Tay,
Y., Chung, H. W., Chowdhery, A., Le, Q. V., Chi, E. H.,
Zhou, D., and Wei, J. Challenging big-bench tasks and
whether chain-of-thought can solve them, 2022.

Tillet, P., Kung, H.-T., and Cox, D. D. Tri-
ton: an intermediate language and compiler for
tiled neural network computations. Proceedings
of the 3rd ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages,
2019. URL https://api.semanticscholar.
org/CorpusID:184488182.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro,
E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and
Lample, G. Llama: Open and efficient foundation lan-
guage models, 2023. URL https://arxiv.org/
abs/2302.13971.

Vasyltsov, I. and Chang, W. Efficient softmax approximation
for deep neural networks with attention mechanism, 2021.
URL https://arxiv.org/abs/2111.10770.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
et al. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771,
2019.

Xia, T. and Zhang, S. Q. Hyft: A reconfigurable softmax
accelerator with hybrid numeric format for both training
and inference, 2024. URL https://arxiv.org/
abs/2311.13290.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models, 2024a. URL
https://arxiv.org/abs/2211.10438.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models, 2024b. URL
https://arxiv.org/abs/2211.10438.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C.,
Li, C., Li, C., Liu, D., Huang, F., Dong, G., Wei, H.,
Lin, H., Tang, J., Wang, J., Yang, J., Tu, J., Zhang, J.,
Ma, J., Yang, J., Xu, J., Zhou, J., Bai, J., He, J., Lin,
J., Dang, K., Lu, K., Chen, K., Yang, K., Li, M., Xue,
M., Ni, N., Zhang, P., Wang, P., Peng, R., Men, R., Gao,
R., Lin, R., Wang, S., Bai, S., Tan, S., Zhu, T., Li, T.,
Liu, T., Ge, W., Deng, X., Zhou, X., Ren, X., Zhang,
X., Wei, X., Ren, X., Liu, X., Fan, Y., Yao, Y., Zhang,
Y., Wan, Y., Chu, Y., Liu, Y., Cui, Z., Zhang, Z., Guo,
Z., and Fan, Z. Qwen2 technical report, 2024. URL
https://arxiv.org/abs/2407.10671.

Zhao, Y., Lin, C.-Y., Zhu, K., Ye, Z., Chen, L., Zheng,
S., Ceze, L., Krishnamurthy, A., Chen, T., and Kasikci,
B. Atom: Low-bit quantization for efficient and accu-
rate llm serving, 2024. URL https://arxiv.org/
abs/2310.19102.

Zhong, V., Xiong, C., and Socher, R. Seq2sql: Generating
structured queries from natural language using reinforce-
ment learning. CoRR, abs/1709.00103, 2017.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Braverman, V., Beidi Chen, and Hu, X.
Kivi : Plug-and-play 2bit kv cache quantization with
streaming asymmetric quantization. 2023. doi: 10.13140/
RG.2.2.28167.37282. URL https://rgdoi.net/
10.13140/RG.2.2.28167.37282.

https://api.semanticscholar.org/CorpusID:184488182
https://api.semanticscholar.org/CorpusID:184488182
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2111.10770
https://arxiv.org/abs/2311.13290
https://arxiv.org/abs/2311.13290
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2310.19102
https://arxiv.org/abs/2310.19102
https://rgdoi.net/10.13140/RG.2.2.28167.37282
https://rgdoi.net/10.13140/RG.2.2.28167.37282

TurboAttention: Efficient attention approximation for High Throughputs LLMs

A DETAILED ALGORITHM OF TurboAttention

Algorithm 1 TurboAttention Prefill

Require: Matrices Q,K,V ∈ RN×d in HBM, compressed KV cache Kq2,Vq2,integer scale of KV cache sintKq2 , floating
scale sK , sV , sintVq2 ,zero point of KV cache zintKq2 , zintVq2 , block sizes Bc, Br, Softmax approximate algorithm SAS.

Divide Q into Tr =
⌈

N
Br

⌉
blocks Q1, . . . ,QTr

of size Br × d each, and divide K,V in to Tc =
⌈

N
Bc

⌉
blocks

K1, . . . ,KTc and V1, . . . ,VTc , of size Bc × d each.
Divide the output O ∈ RN×d into Tr blocks Oi, . . . ,OTr of size Br × d each, and divide the logsumexp L into Tr

blocks Li, . . . , LTr
of size Br each.

for 1 ≤ i ≤ Tr do
Load Qi from HBM to on-chip SRAM.
On chip, initialize O

(0)
i = (0)Br×d ∈ RBr×d, ℓ

(0)
i = (0)Br ∈ RBr ,m

(0)
i = (−∞)Br ∈ RBr .

for 1 ≤ j ≤ Tc do
Load Kj ,Vj from HBM to on-chip SRAM.

On chip, compute sQi =
max(abs(Qi))

119 ,Qq1
i =

⌈
Qi

sQi

⌋
,sKj =

max(abs(Kj))
119 ,Kq1

j =
⌈

Kj

sKj

⌋
,

sVj
=

max(abs(Vj))
119 ,Vq1

j =
⌈

Vj

sVj

⌋
.

On chip, compute S
(j)
i = sQi · sKj ·Q

q1
i Kq1

j ∈ RBr×Bc .

On chip, compute m(j)
i = max(m

(j−1)
i , rowmax(S

(j)
i)) ∈ RBr , P̃(j)

i = SAS(S
(j)
i −m

(j)
i) ∈ RBr×Bc (pointwise),

ℓ
(j)
i = SAS(mj−1

i −m
(j)
i)ℓ

(j−1)
i + rowsum(P̃

(j)
i) ∈ RBr .

On chip, compute s
P̃

(j)
i

=
max(abs(P̃

(j)
i)

119 , Q(P̃
(j)
i) =

⌈
P̃

(j)
i

s
P̃

(j)
i

⌋
,

On chip, compute O
(j)
i = diag(SAS(m

(j−1)
i −m

(j)
i))−1O

(j−1)
i + s

P̃
(j)
i

· sVj
·Q(P̃

(j)
i)Vq1

j .

On chip, compute sint
Kq2

j

=

⌈
max(Kq2

j)−min(Kq2
j)

2bit−1

⌋
, zint

Kq2
j

=

⌊
min(Kq2

j)

sint

K
q2
j

⌋
, Kq2

j =

⌈
Kq1

j

sint

K
q2
j

− zint
Kq2

j

⌋
(channelwise)

On chip, compute sint
Vq2

j

=

⌈
max(Vq2

j)−min(Vq2
j)

2bit−1

⌋
, zint

Vq2
j

=

⌊
min(Vq2

j)

sint

V
q2
j

⌋
, Vq2

j =

⌈
Vq1

j

sint

V
q2
j

− zint
Vq2

j

⌋
(channelwise)

Write Kq2
j to HBM as the j-th block of Kq2.

Write Vq2
j to HBM as the j-th block of Vq2.

Write sint
Kq2

j

,sint
Vq2

j

to HBM as the j-th block of sintKq2 , sintVq2 .

Write sKj ,sVj to HBM as the j-th block of sK, sV.
Write zint

Kq2
j

,zint
Vq2

j

to HBM as the j-th block of zintKq2 , zintVq2 .

end for
On chip, compute Oi = diag(ℓ

(Tc)
i)−1O

(Tc)
i .

On chip, compute Li = m
(Tc)
i + log(ℓ

(Tc)
i).

Write Oi to HBM as the i-th block of O.
Write Li to HBM as the i-th block of L.

end for
Return the output O and the logsumexp L.

TurboAttention: Efficient attention approximation for High Throughputs LLMs

Algorithm 2 TurboAttention Decode

Require: Matrices Q,∈ R1×d in HBM, compressed KV cache Kq2,Vq2 ∈ RN×d, integer scale of KV cache sintKq2 ,sintVq2 ,
floating scale sK , sV , zero point of KV cache zintKq2 , zintVq2 , block size Bc, Softmax approximate algorithm SAS.

Divide Kq2,Vq2 in to Tc =
⌈

N
Bc

⌉
blocks Kq2

1 , . . . ,Kq2
Tc

and Vq2
1 , . . . ,Vq2

Tc
, of size Bc × d each.

Divide sintKq2 ,sintVq2 ,zintVq2 , block size Bcinto Tc =
⌈

N
Bc

⌉
blocks accordingly .

Divide the output O ∈ R1×d into Tc blocks Oi, . . . ,OTc of size 1× d
Tc

each, and divide the logsumexp L into Tr blocks
Li, . . . , LTc

of size 1 each.
Load Q from HBM to on-chip SRAM.
On chip, initialize Oj = (0)1× d

Tc
∈ R1×d, ℓ

(0)
i = (0)Bc ∈ ⊮Bc ,m

(0)
i = (−∞)Bc ∈ RBc .

for 1 ≤ j ≤ Tc do
Load Kq2

j ,Vq2
j from HBM to on-chip SRAM.

On chip, compute sQ = max(abs(Q))
119 ,Qq1 =

⌈
Q
sQ

⌋
Kq1

j = Kq2
j · sint

Kq2
j

+ zKq2
j

, Vq1
j = Vq2

j · sint
Vq2

j

+ zVq2
j

On chip, compute Sj = sQ · sKj
·Qq1Kq1

j ∈ R1×Bc .
On chip, compute mj = max(m(j−1), rowmax(Sj)) ∈ R1, P̃(j) = SAS(Sj −mj) ∈ R1×Bc (pointwise), ℓ(j) =
SAS(mj−1 −m(j))ℓ(j−1) + rowsum(P̃(j)) ∈ R1.

On chip, compute sP̃(j) =
max(abs(P̃(j))

119 , Q(P̃(j)) =
⌈

P̃(j)

s
P̃(j)

⌋
,

On chip, compute O(j) = diag(SAS(m(j−1) −m(j)))−1O(j−1) + sP̃(j) · sVj ·Q(P̃(j))Vq1
j .

end for
On chip, compute O = diag(ℓ(Tc))−1O(Tc).
On chip, compute L = m(Tc) + log(ℓ(Tc)).
Write O to HBM.
Return the output O and the logsumexp L.

B DETAILED ALGORITHM OF SAS

Algorithm 3 Sparsity-based Softmax Approximation

Require: Input matrix X ∈ RN×d, integer threshold nr, look-up table T with T [nr + 1] set to 0, polynomial approximator
function POLY .
Step 1: Normalize input values
xmax = rowmax(X) // Max value per row
X = X − xmax

Step 2: Apply sparsity threshold
X[X < nr] = nr + 1
Step 3: Separate integer and decimal parts
X = Xint +Xdecimal

Step 4: Approximate exponential values
Xlut = T [Xint] // Lookup for integer part
Xapprox = POLY (Xdecimal) // Polynomial approx. for decimal part
X = Xlut ×Xapprox

Step 5: Normalize with row-wise sum
Xsum = rowsum(X)
X = X

Xsum

Return X

C DETAILED ILLUSTRATION OF FlashQ AND TurboAttention

In this section, we separately evaluate the accuracy degradation caused by FlashQ and SAS. Results are shown in Table 4. It
demonstrated that both techniques are near loss-less.

TurboAttention: Efficient attention approximation for High Throughputs LLMs

Table 4. Separate discussion about accuracy degradation of FlashQ and SAS

Model Dataset Method Acc

LLaMA3-8B-inst AQuA FP16 50.79
LLaMA3-8B-inst AQuA FlashQ-4bit 49.60
LLaMA3-8B-inst AQuA SAS 50.12
LLaMA3-8B-inst AQuA FlashQ-4bit + SAS(TurboAttn) 48.03

Table 5. Separate discussion about accuracy degradation of FlashQ and SAS

Model Dataset Method Acc

LLaMA3-8B-inst GSM8K FP16 78.24
LLaMA3-8B-inst GSM8K LLM.int8() 77.94
LLaMA3-8B-inst GSM8K LLM.int8() + TurboAttention 77.48
LLaMA2-2-7B PQ FP16 79.05
LLaMA2-2-7B PQ Qserve 78.07
LLaMA2-2-7B PQ Qserve + TurboAttention 77.64

D DISTRIBUTION DIFFERENCE OF MODELS

Different classes of models exhibit distinct query, key, and value (QKV) distributions, which can significantly influence the
effectiveness of compression algorithms. In Figure 4, we observe that the value cache of the Phi-3 model demonstrates a
more pronounced outlier distribution compared to LLaMA and other models. Furthermore, among LLaMA-3, Qwen-2, and
Phi-3, the Phi-3 value cache exhibits a stronger outlier distribution along the channel dimension than the token dimension.

Previous approaches, such as GEAR and KIVI, often suffer from performance degradation across these models due to
their suboptimal value cache quantization strategies, which primarily rely on groupwise or tokenwise quantization. These
methods fail to adequately account for the unique distributional characteristics of certain models, such as Phi-3.

As shown in Figure 8 and Figure 9, both LLaMA-3-8B-inst and Phi-3-mini-inst exhibit larger outlier distributions along
the channel dimension, with Phi-3 being particularly extreme. These findings suggest that tokenwise compression is
likely to perform worse than channelwise compression for models like Phi-3, where channel outliers dominate. Figure 10
shows a more direct result that channelwise group quantization has less quantization error compared with tokenwise group
quantization.

E INTEGRATION OF WITH OTHER COMPRESSION ALGORITHMS

We further test TurboAttention with weight and activation quantization algorithms. Combining with these algorithms will
exploit further memory and computation savings. Results are shown in Table 5.

F ADDITIONAL RESULT WITH LARGER MODEL AND HARDER DATASET.
Here we show ablation study with the larger model QWQ-32B and the Phi-4 14B model on GSM8K and Math500 dataset in
Table 6.

TurboAttention: Efficient attention approximation for High Throughputs LLMs

Table 6. Accuracy and pass1 on GSM8K and Math500 dataset.

Model Dataset Method Acc/Pass1

Phi-4 GSM8K FP16 90.59
Phi-4 GSM8K GEAR-L(KIVI) 87.29
Phi-4 GSM8K TurboAttention-4bit 89.37
Phi-4 GSM8K GEAR-L(KIVI) 78.73
Phi-4 GSM8K TurboAttention-4bit 80.01
QWQ MATH500 FP16 90.59
QWQ MATH500 GEAR-L(KIVI) 84.00
QWQ MATH500 TurboAttention-4bit 87.80
QWQ MATH500 GEAR-L(KIVI) 74.40
QWQ MATH500 TurboAttention-4bit 76.60

Figure 8. LLaMA-3-8B-inst Value Channel/Tokenwise Min-Max Gap Distribution. This illustrates the distribution of value cache min-max
gaps across tokenwise and channelwise dimensions.

Figure 9. Phi-3-mini-inst Value Channel/Tokenwise Min-Max Gap Distribution. This figure highlights the more significant outlier
distribution in the Phi-3 value cache, especially along the channel dimension.

Figure 10. Quantization error of two method

