
Published as a conference paper at ICLR 2023

THE POWER OF REGULARIZATION IN SOLVING
EXTENSIVE-FORM GAMES

Mingyang Liu♮ 1, Asuman Ozdaglar 2, Tiancheng Yu 2, Kaiqing Zhang 3

1Institute for Interdisciplinary Information Sciences, Tsinghua University
2LIDS, EECS, Massachusetts Institute of Technology
3University of Maryland, College Park
1liumy19@mails.tsinghua.edu.cn
2{asuman,yutc}@mit.edu
3kaiqing@umd.edu

ABSTRACT

In this paper, we investigate the power of regularization, a common technique
in reinforcement learning and optimization, in solving extensive-form games
(EFGs). We propose a series of new algorithms based on regularizing the pay-
off functions of the game, and establish a set of convergence results that strictly
improve over the existing ones, with either weaker assumptions or stronger con-
vergence guarantees. In particular, we first show that dilated optimistic mirror
descent (DOMD), an efficient variant of OMD for solving EFGs, with adaptive
regularization can achieve a fast Õ(1/T ) last-iterate convergence in terms of du-
ality gap and distance to the set of Nash equilibrium (NE) without uniqueness
assumption of the NE. Second, we show that regularized counterfactual regret
minimization (Reg-CFR), with a variant of optimistic mirror descent algorithm
as regret-minimizer, can achieveO(1/T 1/4) best-iterate, andO(1/T 3/4) average-
iterate convergence rate for finding NE in EFGs. Finally, we show that Reg-CFR
can achieve asymptotic last-iterate convergence, and optimal O(1/T ) average-
iterate convergence rate, for finding the NE of perturbed EFGs, which is useful
for finding approximate extensive-form perfect equilibria (EFPE). To the best of
our knowledge, they constitute the first last-iterate convergence results for CFR-
type algorithms, while matching the state-of-the-art average-iterate convergence
rate in finding NE for non-perturbed EFGs. We also provide numerical results to
corroborate the advantages of our algorithms.

1 INTRODUCTION

Extensive-form games (EFGs) are widely used in modeling sequential decision-making of multiple
agents with imperfect information. Many popular real-world multi-agent learning problems can be
modeled as EFGs, including Poker (Brown and Sandholm, 2018; 2019b), Scotland Yard (Schmid
et al., 2021), Bridge (Tian et al., 2020), cloud computing (Kakkad et al., 2019), and auctions (Shubik,
1971), etc. Despite the recent success of many of these applications, efficiently solving large-scale
EFGs is still challenging.

Solving EFGs typically refers to as finding a Nash equilibrium (NE) of the game, especially in
the two-player zero-sum setting. In the past decades, the most popular methods in solving EFGs
are arguably regret-minimization based methods, such as counterfactual regret minimization (CFR)
(Zinkevich et al., 2007) and its variants (Tammelin et al., 2015; Brown and Sandholm, 2019a). By
controlling the regret of each player, the average of strategies constitute an approximated NE in
two-player zero-sum games, which is called average-iterate convergence (Zinkevich et al., 2007;
Tammelin et al., 2015; Farina et al., 2019a).

However, averaging the strategies can be undesirable, which not only incurs more computation
(Bowling et al., 2015) (additional memory and computation for the average strategy), but also intro-
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duces additional representation and optimization errors when function approximation is used. For
example, when using neural networks to parameterize the strategies, the averaged strategy may not
be able to be represented properly and the optimization object can be highly non-convex. Therefore,
it is imperative to understand if (approximated) NE can be efficiently solved without average, which
motivates the study of last-iterate convergence. In fact, the popular CFR-type algorithms mentioned
above only enjoy average-iterate convergence guarantees so far (Zinkevich et al., 2007; Tammelin
et al., 2015; Farina et al., 2019a), and it is unclear if such a last-iterate convergence is achievable for
this type of algorithms.

The recent advances of Optimistic Mirror Descent (Rakhlin and Sridharan, 2013; Mertikopoulos
et al., 2019; Wei et al., 2021; Cai et al., 2022) shed lights on how to achieve last-iterate convergence
for solving normal-form games (NFGs), a strict sub-class of EFGs. The last-iterate convergence
in EFGs has not received attention until recently (Bowling et al., 2015; Farina et al., 2019c; Lee
et al., 2021). Specifically, Bowling et al. (2015) provided some empirical evidence of last-iterate
convergence for CFR-type algorithms, while Farina et al. (2019c) empirically proved that OMD
enjoyed last-iterate convergence in EFGs. Lee et al. (2021) proposed an OMD variant with the
first last-iterate convergence guarantees in EFGs, but the solution itself might have room for im-
provement: To make the update computationally efficient, the mirror map needs to be generated
through a dilated operation (see §2 for more details); and for this case, the analysis in Lee et al.
(2021) requires the NE to be unique. In particular, an important and arguably most well-studied in-
stance of OMD for no-regret learning over simplex, i.e., the optimistic multiplicative weights update
(OMWU) (Daskalakis and Panageas, 2019; Wei et al., 2021), cannot be shown to have explicit last-
iterate convergence rate so far , without such a uniqueness condition, even for normal-form games.
Anagnostides et al. (2022) can only guarantee an asymptotic last-iterate convergence rate without
uniqueness assumption1. Indeed, it is left as an open question in (Wei et al., 2021) if the uniqueness
condition is necessary for OMWU to converge with an explicit rate for this strict sub-class of EFGs,
when constant stepsize is used.

In this paper, we remove the uniqueness condition, while establishing the last-iterate convergence
for Dilated Optimistic Mirror Descent (DOMD) type methods. The solution relies on exploiting the
power of the regularization techniques in EFGs. Our last-iterate convergence guarantee is not only
for the convergence of duality gap, a common metric used in the literature, but also for the actual
iterate, i.e., the convergence of the distance to the set of NE. This matches the bona fide last-iterate
convergence studied in the literature, e.g., Daskalakis and Panageas (2019); Wei et al. (2021), and
such a kind of last-iterate guarantee is unknown when the mirror map is either dilated or entropy-
based. More importantly, the techniques we develop can also be applied to CFR, resulting in the first
last-iterate convergence guarantee for CFR-type algorithms. We detail our contributions as follows.

Contributions. Our contributions are mainly four-fold: (i) We develop a new type of dilated OMD
algorithms, an efficient variant of OMD that exploits the structure of EFGs, with adaptive regulariza-
tion (Reg-DOMD), and prove an explicit convergence rate of the duality gap, without the uniqueness
assumption of the NE. (ii) We further establish a last-iterate convergence rate for dilated optimistic
multiplicative weights update to the NE of EFGs (beyond the duality gap as in Cen et al. (2021b),
for the NFG setting), when constant stepsize is used. This also moves one step further towards
solving the open question for the NFG setting, about whether the uniqueness assumption can be re-
moved to prove last-iterate convergence of the authentic OMWU algorithms with constant stepsizes
(Daskalakis and Panageas, 2019; Wei et al., 2021). (iii) For CFR-type algorithms, using the reg-
ularization technique, we establish the first best-iterate convergence rate of O(1/T 1/4) for finding
the NE of non-perturbed EFGs, and last-iterate asymptotic convergence for finding the NE of per-
turbed EFGs in terms of duality gap, which is useful for finding approximate extensive-form perfect
equilibrium (EFPE) (Selten, 1975). (iv) As a by-product of our analysis, we also provide a faster
and optimal rate of O(1/T ) average-iterate convergence guarantee in finding NE of perturbed EFGs
(see formal definition in §4.1), while also matching the state-of-the-art guarantees for CFR-type
algorithms in finding NE for the non-perturbed EFGs in terms of duality gap (Farina et al., 2019a).

Technical challenges. We emphasize the technical challenges we address as follows. First, by
adding regularization to the original problem, Reg-DOMDwill converge to the NE of the regularized

1A recent result (Anagnostides et al., 2022, Theorem 3.4) also gave a best-iterate convergence result with
rate, but only asymptotic convergence result for the last iterate.
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Algorithm Games Duality Gap Iterate Require

NE Unique

Daskalakis and Panageas (2019) OMWU

NFGs

Asymptotic Yes

Wei et al. (2021) OMWU O(1/T ) (G)

Linear (L)OGDA No
Cen et al. (2021b) Reg-OMWU Õ(1/T ) No

Lee et al. (2021) DOMWU
EFGs

O(1/T ) (G)

Linear (L)
Yes

Reg-DOMD (Ours) Reg-DOMWU
Õ(1/T ) No

Reg-DOGDA

Table 1: Comparisons between our methods and previous last-iterate convergence methods.
(D)OMWU refers to (Dilated) Optimistic Multiplicative Weights Update (Daskalakis and Panageas,
2019) and (D)OGDA refers to (Dilated) Optimistic Gradient Descent Ascent (Daskalakis et al.,
2018; Liang and Stokes, 2019; Mokhtari et al., 2020). And Reg-DOMWU (Reg-DOGDA) refers to
DOMWU (DOGDA) with regularization. The fifth column Iterate refers to the Euclidean distance
to NE. (G), (L) refer to global convergence rate and local convergence rate, respectively.

Algorithm Regret Minimizer Last Average

NE

CFR
(Zinkevich et al., 2007)

RM
(Hart and Mas-Colell, 2000)

No

O(1/
√
T )

CFR+
(Tammelin et al., 2015)

RM+
(Tammelin et al., 2015)

Stable Predictive
CFR (Farina et al., 2019a)

Optimistic FTRL
(Syrgkanis et al., 2015) O(1/T 3/4)

Reg-CFR (Ours) Reg-DS-OptMD Best-Iterate

NE of
Perturbed EFG

CFR+
(Farina et al., 2017)

RM+
(Tammelin et al., 2015)

No O(1/
√
T )

Reg-CFR (Ours) Reg-DS-OptMD
Asymptotic
Last-Iterate

O(1/T )
Optimal

Table 2: We show the performance of CFR-type algorithms in finding NE and NE of perturbed EFG
(see §4.1). The fourth column Last and the fifth column Average represent last-iterate convergence
and average-iterate convergence individually. Note that we here view Best-Iterate as some conver-
gence guarantee similar to (but slightly weaker than) the last-iterate ones.

problem, instead of that of the original one. By controlling the regularization, one can readily obtain
a convergence guarantee of the regularized algorithm in terms of duality gap, as in Cen et al. (2021b)
for NFGs. However, it is highly non-trivial to connect back to the iterate convergence. We achieve
so by proving a relationship between the distance to the NE set and the duality gap (See Lemma D.6
for the complete proof).

Second, it is challenging to obtain last-iterate convergence guarantees in CFR-type algorithms, since
the regret minimizer in each information set cannot synchronize with the other regret minimizers,
and they operate independently. Hence, unlike OMD, the individual iterates (not the average) ob-
tained from these independent regret-minimizers may reach an NE of the game asynchronously. For
the same reason, it is also challenging to extend the fast-rate no-regret learning results from NFGs
(over simplex) to EFGs under the CFR framework.

We provide a detailed related work discussion in Appendix A. Here we provide Table 1 and Table 2
to compare our work with the literature.

2 PRELIMINARIES

Notation. We use xi to denote the i-th coordinate of vector x and ∥x∥p to denote its p-norm.
By default, we use ∥x∥ to denote the 2-norm ∥x∥2. We use ∆m to denote the m − 1 dimension
probability simplex {x ∈ [0, 1]m :

∑m
i=1 xi = 1}, and we sometimes omit the subscript m when

3



Published as a conference paper at ICLR 2023

it is clear from the context. For any convex and differentiable function ψ, its associated Bregman
divergence is defined as Dψ(u,v) := ψ(u) − ψ(v) − ⟨∇ψ(v),u− v⟩. Finally, we use

∏
C(u) to

denote the projection of u to a convex set C with respect to Euclidean distance.

Bilinear optimization problem. Strategies in two-player zero-sum extensive-form games with
perfect recall can be interpreted in sequence-form (Von Stengel, 1996). Thus, finding the Nash
equilibrium reduces to solving a bilinear saddle-point problem,

min
x∈X

max
y∈Y

x⊤Ay (2.1)

where X ⊂ RMT ,Y ⊂ RNT are the decision sets for min/max players called treeplexes (to be defined
next). In sequence-form representation, xi denotes the probability of reaching node i in the treeplex
when only counting the uncertainty incurred by the min-player, and yi can be interpreted similarly.
The matrix A ∈ [−1, 1]M×N , where Ai,j denotes the payoff of the max-player when the min-player
reaches i and max-player reaches j. Nash equilibria are just the solutions to Eq (2.1). We define
Z∗ = X ∗ × Y∗ to denote the set of NE, which is always convex for two player zero-sum game.

For convenience, we use P := M + N to denote the dimension of problem (2.1), and concatenate
the sequence form for both players by defining z := (x,y) ∈ Z := X × Y and the gradient of
the bilinear form (2.1) by defining F (z) := (Ay,−A⊤x). By re-normalizing A, we can assume
∥F (z)∥∞ ≤ 1 without loss of generality.

Treeplex and dilated regularizer. The structure of a sequence-form is enforced implicitly by the
treeplexes, which we define formally here:
Definition 2.1 ( Hoda et al. (2010)). Treeplex is recursively defined as follows:

1. Each probability simplex is a treeplex.

2. The Cartesian product of multiple treeplexes is a treeplex.

3. The branching of two treeplexes is a treeplex, where for integers m,n > 0, the branching
of two treeplexes Z1 ⊂ RmT ,Z2 ⊂ RnT on index i ∈ {1, 2, ...,m} is defined as

Z1 i Z2 = {(u, ui · v) : u ∈ Z1,v ∈ Z2}. (2.2)

See an illustration of treeplex in Figure 1 of Appendix A. The simplexes in the treeplex specify
the decision points for both players, which are also called information sets in the EFG literature
(Zinkevich et al., 2007; Tammelin et al., 2015; Farina et al., 2019a). The collection of information
sets in treeplex Z is denoted as HZ . For any h ∈ HZ , we use Ωh to denote the indices in Z
belonging to decision point h and h(i) to denote the information set that index i belongs to. That
is, h(i) = h if and only if i ∈ Ωh. We use σ(h) to denote the index of the parent variable of
h and Hi = {h ∈ HZ : σ(h) = i}. For a simplex Z , the parent of the only information set
h ∈ HZ does not exist and we use σ(h) = 0 to denote it. And when applying Cartesian product
on multiple treeplexes, it will not change the parent of any information set. When we branch two
treeplexes, that is Z1 i Z2, then the parent of all information set h ∈ HZ2 with σ(h) = 0 will
be updated to σ(h) = i. For convenience, we use zh to denote the slice of z with indices in Ωh.
Let CΩ := maxh∈HZ |Ωh| denote the maximum number of indices in each individual information
set. For convenience, we define vector q ∈ RP with qi := zi/zσ(h(i)) for any i. In the EFG
terminology, qh ∈ R|Ωh|, the slice of q in information set h, is the probability distribution of actions
in information set h.

The treeplex structure motivates a natural dilation operation to generate regularizers that leads to
efficient computation in EFGs (Hoda et al., 2010). For any strongly-convex base regularizer ψ∆

defined on a simplex, the dilated regularizer is defined by

ψZ(z) :=
∑
h∈HZ

αhzσ(h)ψ
∆
( zh
zσ(h)

)
, (2.3)

where zσ(h) is the probability of reaching the parent variable of information set h. And αh is

the hth element of vector α ∈ R|HZ |
+ which is some hyper-parameter set according to ψ∆ to
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guarantee that ψZ is 1-strongly convex with respect to 2-norm (Hoda et al., 2010; Kroer et al.,
2020), i.e., DψZ (z1, z2) ≥ 1

2∥z1 − z2∥2. Two common base regularizers are the negative entropy
ψ∆
Entropy(p) =

∑
i pi log pi and the Euclidean norm ψ∆

Euclidean(p) =
∑
i p

2
i , where p ∈ ∆ is a

probability distribution.

Finding NE and regret minimization. Given a strategy z in sequence form, there are two criteria
to evaluate the performance:

• the Euclidean distance to the set of NE ∥
∏

Z∗(z)− z∥,
• the duality gap maxẑ∈Z F (z)

⊤(z − ẑ).

When one or both of the above quantities are close to zero, we find an approximate NE. A common
approach to minimize duality gap is by regret minimization, where we define the (external) regret of
the min-player as

RX
T :=

T∑
t=1

lt(xt)− min
x̂∈X

T∑
t=1

lt(x̂), (2.4)

where lt is the loss function at iteration t and xt is the output of the regret minimizer at iteration t.
Regret of the max-player can be defined similarly.

When regret is growing sublinearly with respect to T , the average regret is converging to zero (hence
the name no-regret). The following Nash folklore theorem implies that the average strategy will
converge to NE.

Lemma 2.2. For a bilinear zero-sum game where lXt (xt) = −lYt (yt) = x⊤
t Ayt, the duality gap of

the average strategy ( 1
T

∑T
t=1 xt,

1
T

∑T
t=1 yt) is bounded by (RX

T +RY
T )/T .

3 REGULARIZED DILATED OPTIMISTIC MIRROR DESCENT (REG-DOMD)

3.1 SOLVING A REGULARIZED PROBLEM

To obtain a faster convergence rate for OMD algorithms, we will solve the NE of the regularized
problem below (and thus strongly convex-concave) as an intermediate step. In the literature (McK-
elvey and Palfrey, 1995), the solution to the regularized problem is called the quantal-response
equilibrium (QRE), when the regularizer ψZ is entropy:

min
x∈X

max
y∈Y

x⊤Ay + τψZ(x)− τψZ(y) (3.1)

where τ ∈ (0, 1] is the weight of regularization and ψZ is a strongly-convex regularizer. Thanks to
the strong convexity of ψZ , Eq (3.1) has a unique NE, denoted by z∗τ . For t = 1, 2, ..., the update
rule of optimistic mirror descent for the regularized problem (3.1), which we refer to as Reg-DOMD,
can be written as

zt = argmin
z∈Z

〈
z, F (zt−1) + τ∇ψZ(ẑt)

〉
+

1

η
DψZ (z, ẑt)

ẑt+1 = argmin
z∈Z

〈
z, F (zt) + τ∇ψZ(ẑt)

〉
+

1

η
DψZ (z, ẑt)

(3.2)

where we set z0 = ẑ1 as uniform strategy, i.e., z0,h

z0,σ(h)
is uniform distribution in ∆|Ωh|, and η > 0

is the stepsize. The Dilated Optimistic Mirror Descent (DOMD) (Lee et al., 2021) now becomes a
special case when τ = 0. We call the update rule (3.2) Regularized Dilated Optimistic Multiplicative
Weights Update (Reg-DOMWU) when the base regularizer ψ∆ is negative entropy, and Regularized
Dilated Optimistic Gradient Descent Ascent (Reg-DOGDA) when ψ∆ is Euclidean norm.

As desired, ẑt+1 converges to z∗
τ at a linear rate for any fixed τ .

Theorem 3.1. With η ≤ 1
8P , τ ≤ 1 and ψZ being a 1-strongly convex function with respect to the

2-norm, Reg-DOMD guarantees that DψZ (z∗
τ , ẑt+1) ≤ (1− ητ)tDψZ (z∗

τ , ẑ1) for any t ≥ 1 when
we initialize z0 = ẑ1.
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The results in Theorem 3.1 are for general dilated regularizers, and apply to the regularized version
of two representative algorithms, Reg-DOMWU and Reg-DOGDA, as studied in Lee et al. (2021).
The detailed proof is postponed to Appendix C. We sketch the proof below.

Proof sketch of Theorem 3.1. When ψZ is a 1-strongly convex function with respect to 2-norm
and η ≤ 1

8P , then for any z ∈ Z and t ≥ 1, we have

ητψZ(z)− ητψZ(zt) + ηF (zt)
⊤(zt − z) (3.3)

≤ (1− ητ)DψZ (z, ẑt)−DψZ (z, ẑt+1)−DψZ (ẑt+1, zt)−
7

8
DψZ (zt, ẑt) +

1

8
DψZ (ẑt, zt−1),

which is adapted from the standard OMD analysis (Rakhlin and Sridharan, 2013), but for the regu-
larized problem. See Lemma C.2 for the proof.

Taking z = z∗
τ in Eq (3.3), we have

(1− ητ)DψZ (z∗
τ , ẑt)−DψZ (z∗

τ , ẑt+1)−DψZ (ẑt+1, zt)−
7

8
DψZ (zt, ẑt) +

1

8
DψZ (ẑt, zt−1)

≥ ητψZ(zt)− ητψZ(z∗
τ ) + ηF (zt)

⊤(zt − z∗
τ )

(i)

≥ 0, (3.4)

where (i) follows by definition of z∗
τ .

Letting Θt+1 = DψZ (z∗
τ , ẑt+1) +DψZ (ẑt+1, zt), inequality (3.4) can be written as

Θt+1 ≤ (1− ητ)Θt −
7

8
DψZ (zt, ẑt)− (

7

8
− ητ)DψZ (ẑt, zt−1) ≤ (1− ητ)Θt (3.5)

where the second inequality comes from ητ ≤ η ≤ 7
8 . This justifies the linear convergence.

In the existing work Wei et al. (2021); Lee et al. (2021) without regularization, i.e., when τ = 0,
the above argument cannot guarantee the linearly shrinking property of Θt. With the unique NE
assumption, one can prove some “slope” in the original bilinear objective which implies an explicit
convergence rate (Lee et al., 2021, Lemma 15). It was unclear if such an assumption can be removed.
Here, the regularization technique enables us to avoid such an assumption. See a more detailed and
technical discussion below Lemma D.5.

3.2 FROM THE REGULARIZED PROBLEM TO THE ORIGINAL PROBLEM

Intuitively, if the weight of regularization τ is sufficiently small, NE for the regularized problem
should be close to the NE of the original problem (2.1). In the following we formalize this intuition
and show how Theorem 3.1 implies a last-iterate guarantee.

We shrink the weight of regularization τ as follows: First initialize τ = τ0 for some hyper-parameter
τ0 at the beginning and run Reg-DOMD in episodes. In each episode, we update the parameters zt
and ẑt+1 for Θ̃(1/τ) iterations so that the duality gap of ẑt will be lower than O(τ) according to
Lemma D.1 and Theorem 3.1. Then, we will shrink τ by one half and start the next episode from
scratch. Notice that although τ is changing, the stepsize η keeps fixed/constant, which differs from
Hsieh et al. (2021), where the stepsize is adaptive.

Theorem 3.2. With the shrinking algorithm described above, the duality gap satisfies
maxz∈Z F (ẑt+1)

⊤(ẑt+1 − z) ≤ Õ( 1t ) for t = 1, 2, ..., T . Moreover, we have an iterate con-
vergence rate of ∥ẑt+1 −

∏
Z∗(ẑt+1)∥ ≤ Õ( 1t ).

In practice, we use an adaptive weight-shrinking rule proposed in Appendix A, which is motivated
by Yang et al. (2020).

Note that Theorem 3.2 applies for both Reg-DOMWU and Reg-DOGDA. To the best of our knowl-
edge, this is the first result to obtain convergence rate for duality gap and the distance to the NE set
in EFGs without the unique NE assumption, when the mirror map is generated through a dilated
operation (Lee et al., 2021).
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Technical overview. We briefly sketch the intuition behind the proof and defer the full details to
Appendix D. To prove the duality gap guarantee, first notice that in the regularized problem, ẑt has
a small duality gap thanks to the last-iterate guarantee in Theorem 3.1. So we only need to argue
that the duality gap of z∗

τ in the original problem is also small, which turns out to be O(τ).

However, this argument does not imply a small distance to the NE set, because the distance between
z∗
τ and z∗ is unknown. Instead, we need the result that the lower-bound of the “slope” of the

duality gap is strictly positive, i.e., for any z, we have maxz′∈Z F (z)
⊤(z− z′) ≥ c∥z−

∏
Z∗(z)∥

for some constant c > 0. Moreover, compared to existing “slope” results (Gilpin et al., 2008;
Wei et al., 2021), we provide a stronger one when the regularizer is entropy since we prove that
maxz′ F (z)⊤(z − z′) ≥ c∥z −

∏
Z∗(z)∥ when z′ is restricted to a subset of Z (see Lemma D.6).

Due to the regularization, our dependence on the EFG size P is quite mild. There’s only a P∥α∥∞
dependence on the EFG size for the duality gap convergence result (∥α∥∞ is usually O(P 2) regard-
ing the specific type of dilation (Hoda et al., 2010; Kroer et al., 2020; Farina et al., 2021)), which can
be found in Appendix D. The convergence rate of the distance to the NE set of the original problem
depends on the slope c, which also depends on the reward matrix.

4 REGULARIZED COUNTERFACTUAL REGRET MINIMIZATION (Reg-CFR)

Counterfactual regret minimization is the most widely used solution framework in EFGs in the past
decades, and has achieved many successes including defeating the professional human player in
Texas Hold’em (Brown and Sandholm, 2018; 2019b). Through the framework, the (global) regret of
the EFG in (2.4) can be minimized by minimizing the local regret in each information set separately.

To describe the regret decomposition framework in its full generality, we first introduce some addi-
tional notation. Wh(z) is the value at the treeplex rooted at information set h of the player h belongs
to when both players play according to z. For any h ∈ HX , Wh(z) can be recursively defined as

Wh(z) =
∑
i∈Ωh

qi
(
(Ay)i +

∑
h′∈Hi

Wh′
(z)

)
+ ταhψ

∆(qh)

where qi = zi/zσ(h(i)) ∈ ∆|Ωh(i)| is the (conditional-form) strategy on information set h(i) (it
lies in a simplex due to the definition of treeplex in Definition 2.1) and αh is the hyper-parameter
defined in Eq (2.3). For h ∈ HY , Wh(z) can be defined similarly.

The local loss lht (qh) : ∆|Ωh| → R at any information set h ∈ HZ can be defined by

lht (qh) :=
〈
V h(zt), qh

〉
+ ταhψ

∆(qh), where V h(z) :=
(
(Ay)i +

∑
h′∈Hi

Wh′
(z)

)
i∈Ωh

.

Notice thatWh(z) is a scalar while V h(z) is a vector. Furthermore, the two quantities can be related
to each other by Wh(z) =

〈
zh
zσ(h)

, V h(z)
〉
+ ταhψ

∆( zh
zσ(h)

).

The local difference at information set h is just GhT (qh) :=
∑T
t=1 l

h
t (qt,h) −

∑T
t=1 l

h
t (qh) and the

local regret RhT := maxq̂h∈∆|Ωh| G
h
T (q̂h). The following decomposition implies that the global

regret can be controlled by the sum of local regrets:
Lemma 4.1 (Laminar regret decomposition (Farina et al., 2019b)). For any z1, z2, ...,zT , z ∈ Z
and τ ≥ 0, we have

GZ
T (z) =

T∑
t=1

(F (zt)
⊤(zt − z) + τψZ(zt)− τψZ(z)) =

∑
h∈HZ

zσ(h)G
h
T (

zh
zσ(h)

)

RZ
T = max

ẑ∈Z
GZ
T (ẑ) ≤ max

ẑ∈Z

∑
h∈HZ

ẑσ(h)R
h
T

(4.1)

where RZ
T is the sum of the regret of min-player and max-player defined in Eq (2.4) instantiated

with lt(z) = ⟨F (zt), z⟩+ τψZ(z). The proof is postponed to Appendix E. Hence, by minimizing
RhT at each information set h ∈ HZ , RZ

T will also be minimized. By Lemma 2.2, the average
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strategy will converge to NE when τ = 0. In fact, when τ > 0, the average strategy will converge to
the corresponding NE of the regularized problem z∗

τ according to a stronger version of Lemma 2.2
(Theorem 3 ; Farina et al., 2019b). For completeness, we provide the formal version as Lemma F.3.

To describe our main results in full generality, we introduce the notion of perturbed EFGs before
diving into the algorithm and analysis.

4.1 PERTURBED EXTENSIVE-FORM GAME AND EXTENSIVE-FORM PERFECT NASH
EQUILIBRIUM

Although NE specifies a natural notion of optimality in EFGs, an NE strategy is not necessarily
behaving reasonably in information sets that it will not reach almost surely. To avoid this issue, a
stronger and refined notion of equilibirum, extensive-form perfect equilibria, has been proposed in
Selten (1975), which takes every information set into consideration by perturbing the EFG to force
the players to reach every information set. We formally introduce the definitions below.

Definition 4.2. For any γ ≥ 0, a γ-perturbed EFG is an EFG with a γ-perturbed treeplex Zγ :=
X γ × Yγ which restricts that qi = zi

zσ(h(i))
≥ γ for any z ∈ Zγ and index i. An extensive-form

perfect equilibrium is a limit point of {zγ,∗}γ→0 where zγ,∗ is the NE of the γ-perturbed EFG.

The simplest instance of γ-perturbed treeplex is a γ-perturbed probability simplex ∆γ where all
entries have a probability larger than γ. Since the standard EFG is just a perturbed EFG with γ = 0,
we will only describe our results in γ-perturbed EFG to keep the argument unified and general, and
only translate our result to the γ = 0 case when necessary. Correspondingly, we use zγ,∗τ to denote
the Nash equilibrium of the regularized game in Eq (3.1) when (x,y) ∈ Zγ . When γ > 0, zγ,∗ is
empirically used as an approximation to the EFPE (Kroer et al., 2017; Farina et al., 2017). We prove
that zγ,∗ could been seen as an approximation of EFPE in terms of duality gap (See Lemma F.4 for
more details about this approximation, which might be of independent interest).

4.2 MAIN RESULT

Given the regret decomposition in Lemma 4.1, we instantiate the regret minimizer in each informa-
tion set by the regularized version of the Dual Stabilized Optimistic Mirror Descent algorithm (Hsieh
et al., 2021), i.e., Reg-DS-OptMD. The DS-OptMD algorithm in (Hsieh et al., 2021) achieves con-
stant regret in two player zero-sum NFGs, which to the best of our knowledge, is the state-of-the-art
result that achieves this desired property. Hence, we develop our local regret minimizer based on
this algorithm. For any information set h ∈ HZ and t = 1, 2, ..., T , the full update rule of our
proposed algorithm, Regularized Counterfactual Regret Minimization (Reg-CFR), follows

qt,h = argmin
qh∈∆γ|Ωh|

〈
V h(zt− 1

2
) + ταh∇ψ∆(qt−1,h), qh

〉
+ λht−1Dψ∆(qh, qt−1,h)

+ (λht − λht−1)Dψ∆(qh, q1,h)

qt+ 1
2 ,h

= argmin
qh∈∆γ|Ωh|

〈
V h(zt− 1

2
) + ταh∇ψ∆(qt,h), qh

〉
+ λhtDψ∆(qh, qt,h),

(4.2)

where the adaptive stepsize is defined by λht :=
√
κ+

∑t−1
s=1 δ

h
s and κ ≥ 1 is a hyper-parameter.

δhs := ∥V h(zs+ 1
2
) − V h(zs− 1

2
)∥2 is the variation of value function and qt,h =

zt,h
zt,σ(h)

. Again, for

any h ∈ HZ , q0,h = q 1
2 ,h

are intialized as uniform distribution in ∆|Ωh|. With the adaptive stepsize
in Reg-DS-OptMD, we no longer need to tune the stepsize for each individual information set.

Reg-CFR enjoys a desirable last-iterate convergence guarantee of the actual iterate as follows:

Theorem 4.3. Consider the case when τ > 0. In γ-perturbed EFGs, if we use Euclidean norm
as the regularizer ψ∆ in Reg-CFR, then

∑T
t=1DψZ (zγ,∗τ , zt) ≤ Cγ

τ , where Cγ is some positive
variable depending on γ. As a result,

• When γ > 0 and τ ≤ 1
2∥α∥∞

, Cγ is a constant which implies asymptotic last-iterate
convergence to zγ,∗τ in terms of Bregman distance.
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• When γ = 0, Cγ ≤ O(T 1/4), implying a O(T−3/4) best-iterate convergence rate to z∗
τ in

terms of Bregman distance.

To the best of our knowledge, under the regret decomposition framework, although some CFR-type
algorithms, like CFR+ (Tammelin et al., 2015), have been empirically observed to have last-iterate
convergence (Bowling et al., 2015), there is no theoretical justifications for them in the literature
yet. Our results appear to be the first to establish the provable best- and last-iterate convergence
results under the regret decomposition framework of CFR. Even in terms of empirical performance,
our algorithm Reg-CFR can achieve faster last-iterate convergence rate comparing to previous ones.
More interestingly, by applying regularization to CFR (Zinkevich et al., 2007) and CFR+ (Tammelin
et al., 2015), we empirically show that regularization can improve the last-iterate performance. We
will discuss them in Appendix B.

Significance of last-iterate convergence for CFR. We believe that Theorem 4.3 paves the way
for more tractable CFR-type algorithms with function approximation in large-scale EFGs like Texas
Hold’em. Previously, although Brown and Sandholm (2018; 2019b) achieved super-human level
performance in Texas Hold’em, they utilized domain-specific abstraction techniques (Ganzfried and
Sandholm, 2014; Brown et al., 2015), which will merge the similar nodes in Texas Hold’em into
one to make the total number of nodes tractable. However, the existing abstraction methods are
highly restricted to the poker games. Therefore, it is crucial to design algorithms with function
approximation to do such abstraction in an end-to-end manner.

Currently, the average-iterate convergence of CFR is an obstacle to using function approximation.
In the seminal work Deep-CFR (Brown et al., 2019), the authors trained an additional network to
maintain the average policy, which caused additional approximation errors. In the subsequent work
(Steinberger, 2019; Steinberger et al., 2020), to get the average policy, they stored the networks at
every iteration on disk and sampled one randomly to follow. Though sampling successfully elim-
inates the additional approximation error, given that it takes at least 105 iterations to converge in
large poker games, storing all networks on disk is not tractable for large games like Texas Hold’em.

With Theorem 4.3, we can easily run CFR with function approximation since we only need to take
the best model during learning due to the best-iterate guarantee2.

A direct consequence of the theorem above is the following corollary.
Corollary 4.4. For any desired duality gap ϵ, we can set τ = Θ(ϵ). The best-iterate convergence to
the NE z∗ when γ = 0 would be O(T−1/4). When γ > 0, we will still have asymptotic last-iterate
convergence to z∗,γ , the NE of the γ-perturbed EFG, both in terms of duality gap.
Remark 4.5 (Technical challenges in showing best-iterate convergence for CFR-type algorithms).
Although OMD achieves last-iterate convergence (Daskalakis and Panageas, 2019; Wei et al., 2021)
and fast average-iterate convergence (Rakhlin and Sridharan, 2013; Syrgkanis et al., 2015), applying
OMD as local regret minimizer in the CFR framework does not enjoy those results since the loss
function for the regret minimizer depends on the global strategy in the treeplex which is not totally
controlled by the local regret minimizer as in the NFGs. Therefore, the local regret minimizer could
be seen as deployed in a changing environment where the previous results do not apply.

Moreover, as a by-product, we find that the average strategy produced by Reg-CFR is also superior
comparing to the previous variants of CFR algorithms to our best knowledge. Notice that when
picking τ = 0, the algorithm will converge to the NE z∗,γ of the γ-perturbed EFG.
Theorem 4.6. Consider the case when τ ≥ 0 and the regularizer is Euclidean norm. In γ-perturbed
EFGs with γ > 0 and τ ≤ 1

2∥α∥∞
, the average strategy output by Reg-CFR converges to zγ,∗τ with

convergence rate O(1/T ), which is the optimal rate. In the original EFG with γ = 0, the average
strategy output by Reg-CFR converges to z∗

τ with convergence rate O(1/T 3/4).

To the best of our knowledge, Reg-CFR is the first CFR-type algorithm that achieves the theoret-
ically optimal average-iterate convergence rate O(1/T ) when γ > 0 (for both τ > 0 and τ = 0).
Furthermore, it maintains the current state-of-the-art average-iterate O(1/T 3/4) convergence rate
established by Farina et al. (2019a) in the original EFG where γ = 0.

2In fact, we found that just taking the last iterate is good enough empirically. This part can be referred to
Figure 3 and Figure 5.

9



Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENT

T.Y. was supported by NSF CCF-2112665 (TILOS AI Research Institute). A.O and K.Z. were sup-
ported by MIT-DSTA grant 031017-00016. K.Z. also acknowledges support from Simons-Berkeley
Research Fellowship. The authors also thank Suvrit Sra for the valuable discussions.

REFERENCES

Ioannis Anagnostides, Ioannis Panageas, Gabriele Farina, and Tuomas Sandholm. On last-iterate
convergence beyond zero-sum games. arXiv preprint arXiv:2203.12056, 2022.

James P. Bailey and Georgios Piliouras. Multiplicative weights update in zero-sum games. In
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Supplementary Materials for
“The Power of Regularization in Solving Extensive-Form Games”

A OMITTED DETAILS

Here we present some details omitted in the maintext.

A.1 RELATED WORK

Regularization. In reinforcement learning, regularization has been widely used to accelerate con-
vergence and encourage exploration (Tuyls et al., 2003; Geist et al., 2019; Cen et al., 2021a; Mei
et al., 2020). In game theory, regularization can be used to turn the bilinear objective in normal-
form games into a strongly-convex-strongly-concave one (Hofbauer and Hopkins, 2005; Cen et al.,
2021b). However, Hofbauer and Hopkins (2005) only gave asymptotic convergence to the NE of
the regularized game under the best-response dynamics and Cen et al. (2021b) only provided con-
vergence of OMWU to the original NE in terms of duality gap. Similar ideas could be dated back
to the smoothing techniques led by Nesterov (2003). This way, the linear convergence rate to the
saddle point of the new objective can be guaranteed. Letting the regularization be small, the solution
to the regularized problem can be close to the NE of the original problem, in terms of duality gap
(Cen et al., 2021b). In contrast, we aim to show the convergence in terms of not only the duality
gap, but also the distance to the NE set (of the original problem), and for the more complicated
setting of EFGs. The idea of using regularization in learning in games has also been explored re-
cently in various different settings (Perolat et al., 2021; Leonardos et al., 2021). Specifically, Perolat
et al. (2021); Leonardos et al. (2021) study continuous-time dynamics and establish convergence to
NE, either only gave rate to the NE of the regularized game, or only guaranteed asymptotic con-
vergence to the NE of the original game, using techniques based on Lyapunov arguments. Instead,
our focus was on discrete-time optimistic mirror-descent algorithms with constant stepsizes, with
convergence rates for both duality gap and iterate-distance. Finally, we note that the framework of
CFR (for solving EFGs) was not investigated in these recent works.

Last-iterate convergence. Finding the NE in EFGs could be formulated as finding the saddle
point of a bilinear objective function. While mirror descent diverges in simple cases (in terms of the
last-iterate) (Mertikopoulos et al., 2018; Bailey and Piliouras, 2018), its optimistic version receives
great success in finding the saddle point, enabling both faster and last-iterate convergence guaran-
tees (Rakhlin and Sridharan, 2013; Mertikopoulos et al., 2019; Lei et al., 2021; Daskalakis et al.,
2018; Mokhtari et al., 2020). However, these previous works either only consider the case without
constraints (which do not apply to the NFG/EFG setting), or provide only asymptotic convergence
without explicit rate. Recently, with the unique NE assumption, Daskalakis and Panageas (2019)
gives an asymptotic last-iterate convergence result for OMWU in NFGs. Wei et al. (2021) further
improves the result by showing that both OMWU and OGDA converge to the NE with a global sub-
linear convergence rateO(1/T ) and a local linear convergence rate in NFGs. Among them, OMWU
requires the unique NE assumption. Very recently, Cai et al. (2022) provides a tight last-iterate con-
vergence for OGDA. Finally, Lee et al. (2021) extends the result of OMWU from NFGs in Wei et al.
(2021) to EFGs, and still requires the unique NE assumption. Concurrent to our submission, we
are aware of Piliouras et al. (2022), which studies network zero-sum EFGs with last-iterate conver-
gence rate guarantees, also without the unique NE assumption. However, the regularizer therein for
the OMD update rule is neither dilated nor entropy-based, which makes the algorithm less scalable
than the one we study, with dilated and entropy-based regularizer, see Lee et al. (2021) for a related
discussion.

Counterfactual regret minimization (CFR). CFR-type algorithms are based on the idea that the
regret in an EFG could be decomposed into the local regret of each information set. By minimizing
the local regret, the global regret will be minimized and the algorithms will achieve average-iterate
convergence thereby. Recent work Farina et al. (2019a) utilizes the progress in the aforementioned
optimistic methods, and achieves a faster average-iterate convergence rate of O(1/T 3/4) in EFGs.
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However, since CFR-type methods rely on the regret decomposition that breaks the structure of the
strategy, up to now no CFR (and variant) algorithms are able to inherit the optimal rate optimistic
algorithms have enjoyed in NFGs, to the best of our knowledge. Also, due to the decomposition,
although Bowling et al. (2015) has found that the last iterate of CFR+ (Tammelin et al., 2015),
a variant of CFR, converges empirically, no CFR-type algorithm have the last-iterate convergence
guarantee theoretically.

Extensive-form perfect equilibrium and perturbed EFGs. Nash equilibrium in EFGs does not
have any guarantee at the places with zero probability to reach when all players follow the NE.
Therefore, in reality when players make an error that leads to an impossible state in the NE, still
following the NE may be suboptimal. The concept of extensive-form perfect equilibria has thus
been proposed to resolve the issue (Selten, 1975). To find the EFPEs, Miltersen and Sørensen
(2010); Farina and Gatti (2017) formulate the problem as a linear programming (LP), which is not
tractable for large EFGs. Kroer et al. (2017) and Farina et al. (2017) extend the first-order method
(Nesterov, 2005) and CFR to the perturbed extensive-form game (Selten, 1975) (which can be used
for finding approximate EFPEs), where players have a small probability choosing to act randomly
at every information set. Both of the results do not have last-iterate convergence.

A.2 A GRAPHICAL ILLUSTRATION OF TREEPLEX

For better understanding of the structure of treeplex, we show the treeplex of the player who moves
first in Kuhn Poker in Figure 1.

FoldCheck

×
Jack Queen King

Check Raise

43

Ω!!

Ω!"

𝜎 ℎ"𝜎 ℎ# 21

0

0

1

Check Raise

0

1

Check Fold

Figure 1: Treeplex of the player who moves first in Kuhn Poker, say player x. The blue circle
denotes the chance node and the grey triangles denote the indices in x. This is the place where
Cartesian product is applied to. And the squares denote the information sets of player x, which are
the simplexes. The purple arrow is the place applied Branching once (i = 1). We omit the same
structure as Jack under Queen & King. The dotted square represented the indices belongs to
information set h1 and h2 and the red line represents the parent index of h1 and h2.

The treeplex is built up from 6 simplexes (2 each under different private card). Here’s how the
treeplex is built up.

• Branching: h1 1 h2.

• Cartesian Product: Cartesian product of 3 similar treeplexes under Jack, Queen &
King individually.

And the whole game tree of Kuhn Poker is shown in Figure 2.
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FoldCheck

×
Jack,
Queen

Jack,
King

Check Raise

Check Raise Check Fold

King,
Queen

Figure 2: The full game tree of Kuhn Poker. The yellow nodes belong to the player who moves first
and the purple nodes belong to the other player. The blue node is the chance node which dealt the
private cards for each player. The first line is the private card for the player moving first and the
second line is for the other player. The game tree under different private card composition are the
same so we only plot the first-move player get Jack and the second-move player get Queen.

A.3 PSEUDOCODE OF THE ADAPTIVE WEIGHT-SHRINKING ALGORITHM

Here’s the practical version of adaptively shrinking τ framework mentioned in §3.2.

Algorithm 1 Adaptive Weight-Shrinking
1: τ ← τ0
2: δτ0 ← maxz′ F (z0)

⊤(z0 − z′) + τ0ψ
Z(z0)− τ0ψZ(z′)

3: z0, ẑ1 ←Uniform Strategy
4: for t = 1, 2, ... do
5: zt, ẑt+1 ← Reg-DOMD(zt−1, ẑt)
6: if maxz′ F (ẑt)

⊤(zt − z′) + τψZ(ẑt)− τψZ(z′) ≤ δτ
4 then

7: τ ← τ
2

8: δτ ← maxz′ F (ẑt)
⊤(zt − z′) + τψZ(ẑt)− τψZ(z′)

9: zt ← ẑt+1

10: end if
11: end for

Notice that this framework can also be applied to Reg-CFR by simply changing Reg-DOMD to
Reg-CFR.

A.4 EXPERIMENT ENVIRONMENTS

Kuhn Poker (Kuhn, 1950). In Kuhn Poker, there are two players and three cards, Jack, Queen
and King. And at the beginning, each player should place 1 chip into the pot and then 1 private card
will be dealt to each player. And each player can call, raise or fold in each round. If a player call,
then she should ensure that each player contributes equally to the pot. If a player raise, she should
put 1 more chip in the pot than the other. If a player fold, then the other player takes all the chips in
the pot. There will be at most 1 raise in the game. And a betting round ends when both players call
or one of them fold.

After the game ends and nobody folds, the two players reveal their private cards and the one with
higher rank takes all the chips in the pot.
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Figure 3: The last-iterate convergence result in Kuhn Poker (left) and Leduc Poker (right). CFR
(Zinkevich et al., 2007), CFR+ (Tammelin et al., 2015) are tested as baselines. We can see that the
last-iterate performance of Reg-DOMWU and Reg-DOGDA is much better than their versions when
τ = 0.
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Figure 4: The regret upper-bound maxẑ∈Z
∑
h∈HZ ẑσ(h)R

h
T in Kuhn Poker (left) and Leduc Poker

(right). The regret of Reg-CFR is constant while that of CFR is increased in O(
√
T ). The regret

of CFR+ is much lower than O(
√
T ) but not constant, which matches previous empirical result

(Tammelin et al., 2015).

Leduc Poker (Southey et al., 2005) . Leduc Poker is similar to Kuhn Poker. It has 6 cards, three
ranks ({J,Q,K}) with two suits ({a, b}) each. There are two betting rounds in Leduc Poker, each
round admits two raises. The player who raises should place 1 more chip in the first round and 2
chips in the second. If the game ends and nobody folds, then the players reveal their private cards.
The one who has the same private card as the public card wins. If nobody has the same private
card as the public card, then the one with higher rank wins. Otherwise the game draws and the two
players share the pot equally.

B EXPERIMENT RESULTS

Beyond sharp theoretical guarantees, regularized algorithms in EFG also have superior performance
in practice, which we showcase in this section through numerical experiments in Kuhn Poker (Kuhn,
1950) and Leduc Poker (Southey et al., 2005). The details of the experiment setup are illustrated in
Appendix A.

The results are shown in Figure 3 for the last-iterate convergence in duality gap. We used grid
search to find the best parameters for each algorithm. The algorithms Reg-DOMWU, Reg-DOGDA,
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Figure 5: The last-iterate convergence results of CFR and CFR+, in Kuhn Poker (left) and Leduc
Poker (right). We can see that with regularization, the last iterate produced by CFR and CFR+
significantly outperforms the original version without regularization.
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Figure 6: The average-iterate convergence results of CFR and CFR+, in Kuhn Poker (left) and Leduc
Poker (right). We can see that by adding additional regularization, the average-iterate convergence
is still competitive with the original version.

Reg-CFR all apply the adaptive weight-shrinking framework proposed as Algorithm 1 in Appendix
A.

As shown in Figure 4, we show the regret upper-bound maxẑ∈Z
∑
h∈HZ ẑσ(h)R

h
T . We can see that

Reg-CFR has constant regret even in a non-perturbed EFG in practice.

Moreover, we further empirically show that regularization is also helpful for CFR and CFR+. That
is, with RM and RM+ as local regret minimizers, adding regularization still helps the algorithm
enjoy last-iterate convergence. See Figure 5 for the details. To minimize the regret of a convex but
non-linear loss function lt(xt), we feed ⟨∇lt(xt),xt⟩ into RM and RM+ as the loss function. See
(Farina et al., 2019d, §2.1) for more details. Moreover, the average-iterate convergence rate of this
regularized version is still competitive with the original version. See Figure 6 for details.

Figure 7 illustrates the duality gap of average iterate. We can see that Reg-CFR is faster than CFR
in both environments and has a comparable performance with CFR+ in smaller environments like
Kuhn Poker.

Figure 8 illustrates the maximum cumulative regret across all information sets, conditioned on reach-
ing that information set. This is also used as metric in Farina et al. (2017); Kroer et al. (2017). This
metric can be used to measure the ”closeness” to EFPEs. We can see that with γ > 0, Reg-CFR
significantly outperforms CFR and CFR+ in finding EFPEs.
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Figure 7: The duality gap of average iterate in Kuhn Poker (left) and Leduc Poker (right).
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Figure 8: The maximum cumulative regret across all information sets, conditioned on reaching that
information set. We test our algorithm in both Kuhn Poker (left) and Leduc Poker (right).

C PROOF OF THEOREM 3.1

Lemma C.1. For any τ ≤ 1 and z ∈ Z , the NE of the regularized problem Eq (3.1) satisfies that

F (z)⊤(z − z∗
τ )− τψZ(z∗

τ ) + τψZ(z) ≥ 0. (C.1)

Lemma C.2. Consider the update rule in Eq (3.2). When ψZ satisfies Eq (C.6) with p = 2 and
η ≤ 1

8P , then for any z ∈ Z and t ≥ 1, we have

ητψZ(z)− ητψZ(zt) + ηF (zt)
⊤(zt − z) ≤(1− ητ)DψZ (z, ẑt)−DψZ (z, ẑt+1)

−DψZ (ẑt+1, zt)−
7

8
DψZ (zt, ẑt) +

1

8
DψZ (ẑt, zt−1).

Proof of Theorem 3.1. Taking z = z∗
τ in Lemma C.2, we have

(1− ητ)DψZ (z∗
τ , ẑt)−DψZ (z∗

τ , ẑt+1)−DψZ (ẑt+1, zt)−
7

8
DψZ (zt, ẑt) +

1

8
DψZ (ẑt, zt−1)

≥ητψZ(zt)− ητψZ(z∗
τ ) + ηF (zt)

⊤(zt − z∗
τ )

(i)

≥ 0,
(C.2)

where (i) is by Lemma C.1.
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Letting Θt+1 = DψZ (z∗
τ , ẑt+1) +DψZ (ẑt+1, zt), inequality (C.2) can be written as

Θt+1 ≤(1− ητ)Θt −
7

8
DψZ (zt, ẑt)− (

7

8
− ητ)DψZ (ẑt, zt−1)

≤(1− ητ)Θt
(C.3)

where the second inequality comes from ητ ≤ η ≤ 7
8 .

As a result,

DψZ (z∗
τ , ẑt+1) ≤ Θt+1 ≤ (1− ητ)tΘ1 = (1− ητ)tDψZ (z∗

τ , ẑ1) (C.4)

where the last equation is satisfied when we initialize z0 = ẑ1.

Lemma C.3. F (z) is P -Lipschitz for any z ∈ Z . That is, for any z, z′ ∈ Z , we have

∥F (z)− F (z′)∥ ≤ P∥z − z′∥. (C.5)

Proof.

∥F (z)− F (z′)∥ =
√
∥A⊤(x− x′)∥2 + ∥A(y − y′)∥2 ≤

√
P∥x− x′∥21 + P∥y − y′∥21

≤
√
P∥z − z′∥21

≤P∥z − z′∥.

Lemma C.4. Let C be a convex set and u1 = argminû1∈C{⟨û1, g + τ∇ψC(u)⟩+ 1
ηDψC (û1,u)}

where ψC is a strongly-convex function in C. Then for any u2 ∈ C, τ ∈ [0, 1], η > 0,

ητψC(u1)−ητψC(u2)+η⟨u1−u2, g⟩ ≤ (1−ητ)DψC (u2,u)−DψC (u2,u1)−(1−ητ)DψC (u1,u).

Proof. Plug in the definition of Bregman divergence DψC (u1,u) = ψC(u1) − ψC(u) −
⟨∇ψC(u),u1 − u⟩, the right-hand side of it is equal to,

(1− ητ)DψC (u2,u)−DψC (u2,u1)− (1− ητ)DψC (u1,u)

=(1− ητ)(ψC(u2)− ψC(u)− ⟨∇ψC(u),u2 − u⟩)
+ (−ψC(u2) + ψC(u1) + ⟨∇ψC(u1),u2 − u1⟩)
+ (1− ητ)(−ψC(u1) + ψC(u) + ⟨∇ψC(u),u1 − u⟩)

=ητψC(u1)− ητψC(u2) + ⟨∇ψC(u1)− (1− ητ)∇ψC(u),u2 − u1⟩
(i)

≥ητψC(u1)− ητψC(u2) + η⟨u1 − u2, g⟩,

where (i) is by the first order optimality of u1, i.e.,

(ηg +∇ψC(u1)− (1− ητ)∇ψC(u))⊤(u2 − u1) ≥ 0.

Lemma C.5. Suppose that ψC is a 1-strongly convex function with respect to p-norm in C such that

DψC (x,x′) ≥ 1

2
∥x− x′∥2p (C.6)

for some p ≥ 1, and u,u1,u2 are members of a convex set C such that,

u1 = argmin
u′∈C

{⟨u′, g1 + τ∇ψC(u)⟩+DψC (u′,u)},

u2 = argmin
u′∈C

{⟨u′, g2 + τ∇ψC(u)⟩+DψC (u′,u)}.
(C.7)

Then we have,
∥u1 − u2∥p ≤ ∥g1 − g2∥q, (C.8)

where q ≥ 1 and 1
p +

1
q = 1.
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Proof. By the first-order optimality of u1,u2, we have
(g1 +∇ψC(u1)− (1− τ)∇ψC(u))⊤(u2 − u1) ≥ 0,

(g2 +∇ψC(u2)− (1− τ)∇ψC(u))⊤(u1 − u2) ≥ 0.
(C.9)

Summing up and rearranging the terms,
⟨u2 − u1, g1 − g2⟩ ≥ ⟨∇ψC(u1)−∇ψC(u2),u1 − u2⟩. (C.10)

To bound the right-hand side of inequality (C.10), By the lower bound of Bregman divergence (C.6),
we have

⟨∇ψC(u1),u1 − u2⟩ ≥ ψC(u1)− ψC(u2) +
1

2
∥u1 − u2∥2p,

⟨∇ψC(u2),u2 − u1⟩ ≥ ψC(u2)− ψC(u1) +
1

2
∥u1 − u2∥2p.

Summing them up we have
⟨∇ψC(u1)−∇ψC(u2),u1 − u2⟩ ≥ ∥u1 − u2∥2p.

Combining with inequality (C.10),
⟨u2 − u1, g1 − g2⟩ ≥ ∥u1 − u2∥2p. (C.11)

Finally, by Hölder’s inequality,
⟨u2 − u1, g1 − g2⟩ ≤ ∥u1 − u2∥p · ∥g1 − g2∥q,

and as a result ∥u1 − u2∥p ≤ ∥g1 − g2∥q as claimed.

Proof of Lemma C.1 By definition of NE, we have
F (z)⊤(z − z∗

τ )

=(−x∗⊤
τ Ay + x⊤Ay∗

τ )

=
(
− x∗⊤

τ Ay + τψZ(y)
)
+

(
x⊤Ay∗

τ + τψZ(x)
)
− τ(ψZ(x) + ψZ(y))

≥− x∗⊤
τ Ay∗

τ + τψZ(y∗
τ ) + x∗⊤

τ Ay∗
τ + τψZ(x∗

τ )− τ(ψZ(x) + ψZ(y))

=τψZ(z∗
τ )− τψZ(z).

Proof of Lemma C.2. Plug u = ẑt,u1 = ẑt+1,u2 = z, g = F (zt), ψ
C = ψZ into Lemma C.4,

ητψZ(ẑt+1)−ητψZ(z)+η⟨ẑt+1−z, F (zt)⟩ ≤ (1−ητ)DψZ (z, ẑt)−DψZ (z, ẑt+1)−(1−ητ)DψZ (ẑt+1, ẑt).

Plug u = ẑt,u1 = zt,u2 = zt+1, g = F (zt−1) and ψC = ψZ into Lemma C.4,
ητψZ(zt)−ητψZ(ẑt+1)+η⟨zt−ẑt+1, F (zt−1)⟩ ≤ (1−ητ)DψZ (ẑt+1, ẑt)−DψZ (ẑt+1, zt)−(1−ητ)DψZ (zt, ẑt).

Summing them up and adding ⟨F (zt)− F (zt−1), zt − ẑt+1⟩ to both sides, we have
ητψZ(zt)− ητψZ(z) + η⟨F (zt), zt − z⟩ ≤(1− ητ)DψZ (z, ẑt)−DψZ (z, ẑt+1)−DψZ (ẑt+1, zt)

− (1− ητ)DψZ (zt, ẑt) + η⟨F (zt)− F (zt−1), zt − ẑt+1⟩.

It remains to bound the last term, which is
η⟨F (zt)− F (zt−1), zt − ẑt+1⟩

(i)

≤η∥xt − x̂t+1∥ · ∥ηAyt − ηAyt−1∥+ η∥yt − ŷt+1∥ · ∥ηAxt − ηAxt−1∥
(ii)

≤ η2(∥Ayt −Ayt−1∥2 + ∥Axt −Axt−1∥2)
(iii)

≤ 2η2P 2∥zt − zt−1∥2

(iv)

≤ 1

32
∥zt − zt−1∥2 ≤

1

16
(∥zt − ẑt∥2 + ∥ẑt − zt−1∥2) ≤

1

8
(DψZ (zt, ẑt) +DψZ (ẑt, zt−1))

where (i) is by Hölder’s inequality, (ii) is by Lemma C.5 with p = q = 2 , (iii) is by Lemma C.3,
and (iv) is by η ≤ 1

8P .

The proof of the claim is completed by putting everything together.
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D PROOF OF THEOREM 3.2

Firstly, we will prove that the approximate NE of the regularized problem is close to the NE of the
original problem in terms of duality gap.

Lemma D.1. For any τ > 0 and z ∈ Z , we have

max
ẑ∈Z

F (z)⊤(z − ẑ) ≤ 2τCB + 2P
√
DψZ (z∗

τ , z), (D.1)

where CB is the upper-bound of the regularizer ψZ .

Proof.

max
ẑ∈Z

F (z)⊤(z − ẑ) =max
ẑ∈Z
{x∗⊤

τ Aŷ − x̂⊤Ay∗
τ + τψZ(z∗

τ )− τψZ(ẑ)

− τψZ(z∗
τ ) + τψZ(ẑ) + (x− x∗

τ )
⊤Aŷ + x̂⊤A(y∗

τ − y)}
≤max

ẑ∈Z
{x∗⊤

τ Aŷ − x̂⊤Ay∗
τ + τψZ(z∗

τ )− τψZ(ẑ)}

+max
ẑ∈Z
{−τψZ(z∗

τ ) + τψZ(ẑ) + (x− x∗
τ )

⊤Aŷ + x̂⊤A(y∗
τ − y)}

(i)

≤0 + 2τCB + ∥x− x∗
τ∥1 + ∥y∗

τ − y∥1
(ii)

≤ 2τCB + 2P∥z − z∗
τ∥

≤2τCB + 2P
√
DψZ (z∗

τ , z)

(D.2)

where (i) is because of the definition of z∗
τ and ∥F (z)∥∞ ≤ 1 for any z ∈ Z . (ii) is by ∥x−x∗

τ∥1 ≤√
P∥x − x∗

τ∥, ∥y − y∗
τ∥1 ≤

√
P∥y − y∗

τ∥ and a + b ≤ 2
√
a2 + b2. CB is the upper-bound of

the regularizer ψZ . It would be P∥α∥∞ logCΩ for entropy regularizer and P∥α∥∞
CΩ

for Euclidean
regularizer, where CΩ = maxh∈HZ |Ωh|.

A direct consequence of the lemma is that for any ϵ > 0, we can set τ = ϵ
4CB

, then af-

ter
2(log ϵ−log 4P )−logDψZ (z∗

τ ,ẑ1)

log(1−τ) ≤ −2(log ϵ−log 4P )+logDψZ (z∗
τ ,ẑ1)

τ iterations, ẑt produced by
Reg-DOMD will satisfies that

max
z∈Z
{x̂⊤

t Ay − x⊤Aŷt} ≤
ϵ

2
+ 2P

√
ϵ2

16P 2DψZ (z∗
τ , ẑ1)

DψZ (z∗
τ , ẑ1) ≤ ϵ (D.3)

by Theorem 3.1.

Proof of Theorem 3.2. Sublinear convergence rate of duality gap.

For any ϵ, the number of iterations that the duality gap reach ϵ is no larger than
4CB

−2(log ϵ−log 4P )+logDψZ (ẑ∗
τ ,ẑ1)

ϵ by the discussion above. Therefore, while duality gap reach-
ing ϵ = ϵ0

2K
, the number of iterations performed so far is no larger than

K∑
k=0

4CB · 2k
−2 log ϵ0 + 2k log 2 + 2 log 4P + logDψZ (z∗

τ , ẑ1)

ϵ0

≤4CB2K+2− log ϵ0 +K log 2 + log 4P + logDψZ (z∗
τ , ẑ1)

ϵ0

=Õ(1/ϵ).

(D.4)

Iterate convergence.

From the proof of Theorem 5 in Wei et al. (2021), we have the following lemma.
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Lemma D.2 (Proved in Theorem 5 of Wei et al. (2021)). Consider a bilinear zero-sum game.
Let ρ := minx∈X maxy∈Y x⊤Ay be the game value. When X ,Y are polytopes, we have
maxŷ∈Y x⊤Aŷ − ρ ≥ c ∥x−

∏
X∗(x)∥ (ρ − minx̂∈X x̂⊤Ay ≥ c

∥∥y −∏
Y∗(y)

∥∥) for some
constant c > 0 where

∏
X∗(x) (

∏
Y∗(y)) is the projection of x (y) to the NE set X ∗ (Y∗) of the

min-player (max-player).

Then, since the treeplex is a polytope by definition, we have

max
z∈Z

F (ẑt)
⊤(ẑt − z) =max

y∈Y
x̂⊤
t Ay − min

x∈X
x⊤Aŷt

≥c(∥x̂t −
∏
X∗

(x̂t)∥+ ∥ŷt −
∏
Y∗

(ŷt)∥)

≥c∥ẑt −
∏
Z∗

(ẑt)∥

(D.5)

where the last inequality comes from
√
a+ b ≤

√
a +

√
b. Therefore, ∥ẑt −

∏
Z∗(ẑt)∥ ≤

1
c maxz∈Z F (ẑt)

⊤(zt − z) ≤ Õ( 1t ).

Notice that comparing to the results in Gilpin et al. (2008); Wei et al. (2021), our slope result (Lemma
D.6) is based on different techniques. In Lemma D.6, we prove that maxŷ∈V ∗(

∏
X∗ (x)) x

⊤Aŷ−ρ ≥
cx ∥x−

∏
X∗(x)∥ where V ∗(

∏
X∗(x)) ⊆ Y when x ∈ Fx and Fx ⊆ X contains all possible iter-

ates generated by DOMWU. That is, our result is stronger than the existing results, when the algorithm
is DOMWU3. Moreover, our result can be viewed as an extension of (Lee et al., 2021, Lemma 14) to
the non-unique NE cases. Given that (Lee et al., 2021, Lemma 14) plays an critical role in proving
the last-iterate convergence with unique NE assumption, Lemma D.6 may be useful when proving
last-iterate convergence in EFGs without unique NE assumption and regularization.

D.1 COMPLEMENTARY SLACKNESS

This part of discussion is similar to the one in Lee et al. (2021). From Definition 2.1, we have

∀h ∈ HY ,
∑
i∈Ωh

yi = yσ(h), y0 = 1 (D.6)

which can be written compactly as EYy = eY where EY ∈ R(|HY |+1)×N and eY =

(1, 0, 0, ..., 0) ∈ R|HY |+1. Except the first row of EY where there’s 1 on index 0 and 0 other-
wise, all other rows have 1 on index σ(h) and −1 on all i ∈ Ωh. Therefore, for any fixed x, the
objective of y can be written as

max
y∈Y

x⊤Ay

s.t. EYy = eY , y ≥ 0
(D.7)

whose dual problem is

min
g

e⊤Yg

s.t. E⊤
Y g ≥ A⊤x

(D.8)

where e⊤Yg = g0 since eY = (1, 0, 0, ..., 0).

Remind that the primal formulation of the original problem is

min
x∈X

max
y∈Y

x⊤Ay

s.t. EXx = eX , x ≥ 0

EYy = eY , y ≥ 0.

(D.9)

3In fact, here we only require that the regularization is entropy to make Lemma D.7 hold.
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Therefore, every solution y∗ of the original problem would be a solution of the following problem.

min
x∈X ,g

g0

s.t. E⊤
Y g ≥ A⊤x EXx = eX x ≥ 0.

(D.10)

The dual of this one is
max
y∈Y,f

f0

s.t. E⊤
Xf ≤ Ay EYy = eY y ≥ 0.

(D.11)

Note thatX ∗,Y∗ are the optimal solution of Eq (D.10) and Eq (D.11). By complementary slackness,
for any optimal solution pair (x∗, g∗), (y∗,f∗), we have slackness variables w∗ ∈ RM , s∗ ∈ RN
so that

E⊤
Xf +w∗ = Ay E⊤

Y g − s∗ = A⊤x

x∗ ⊙w∗ = 0 y∗ ⊙ s∗ = 0 w∗ ≥ 0 s∗ ≥ 0
(D.12)

where ⊙ denotes the element-wise product.

As a direct consequence, we have the following lemma.
Lemma D.3. For any optimal solution pair (x∗, g∗), (y∗,f∗) of Eq (D.10) and Eq (D.11), we have∑

h∈Hi

f∗h + (Ay∗)i = f∗h(i) ∀i ∈ supp(X ∗)

∑
h∈Hi

f∗h + (Ay∗)i ≥ f∗h(i) ∀i ̸∈ supp(X ∗)

∑
h∈Hi

g∗h + (A⊤x∗)i = g∗h(i) ∀i ∈ supp(Y∗)

∑
h∈Hi

g∗h + (A⊤x∗)i ≤ g∗h(i) ∀i ̸∈ supp(Y∗)

(D.13)

where supp(x) denotes the support set of vector x and supp(C) =
⋃

x∈C supp(x) denotes the
support set of a convex set C.

Proof. Since (E⊤
Xf)i = f∗h(i) −

∑
h∈Hi

f∗h by definition of E, from Eq (D.12), we have∑
h∈Hi

f∗h + (Ay∗)i = w∗
i + f∗h(i) ≥ f

∗
h(i). (D.14)

For any i where there’s x∗ ∈ X ∗ and x∗i > 0, from x∗ ⊙ w∗ = 0, we have w∗
i = 0. Thus, the

above inequality takes the equality. So the first two lines of Lemma D.3 are proved. Similarly, we
can prove the last two lines.

We further introduce the following definitions.
Definition D.4.

ρ = x∗⊤Ay∗

PS(x∗) = {y : y is a pure strategy, x∗⊤Ay = ρ}
PS(y∗) = {x : x is a pure strategy, x⊤Ay∗ = ρ}
V ∗(x∗) = C(PS(x∗))

V ∗(y∗) = C(PS(y∗))

supp(x) = {i : xi > 0}
supp(C) = {i : ∃x ∈ C, xi > 0}

(D.15)

where C(S) denotes the minimum convex set covering all points in S.

A fact from the definition is that ∀y ∈ V ∗(x∗), x∗⊤Ay = ρ and ∀x ∈ V ∗(y∗), x⊤Ay∗ = ρ.
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Lemma D.5. V ∗(x∗), V ∗(y∗) are not empty for any x∗ ∈ X ∗,y∗ ∈ Y∗.

Proof. For any x ∈ X ,y∗ ∈ Y∗,f∗ so that supp(x) ⊆ supp(X ∗) and (f∗,y∗) is a pair of optimal
solution of Eq (D.11), we have

x⊤Ay∗ =
∑
i

xi(Ay∗)i

=
∑
i

xi(f
∗
h(i) −

∑
h∈Hi

f∗h)

=
∑
h∈HX

f∗h
∑
i∈Ωh

xi −
∑

h∈HX ,h̸=0

f∗hxσ(h)

=
∑
h∈HX

f∗hxσ(h) −
∑

h∈HX ,h ̸=0

f∗hxσ(h)

=f∗0 = ρ

(D.16)

where the second equality is because supp(x) ⊆ supp(X ∗) and Lemma D.3. The fourth equality
comes from the fact that

∑
i∈Ωh

xi = xσ(h). Therefore, V ∗(y∗) is not empty for any y∗ ∈ Y∗.
Similarly, V ∗(x∗) is not empty for any x∗ ∈ X ∗.

When assuming unique NE as in Lee et al. (2021), the second line and the fourth line in Lemma D.3
will be strictly larger than and strictly less than by strict complementary slackness. The discussion
in Lemma D.5 turns out to be if and only if supp(x) ⊆ supp(X ∗), we have x⊤Ay∗ = ρ which
strengthen our conclusion here.

D.2 CONNECTION BETWEEN DUALITY GAP AND ITERATE DISTANCE

Lemma D.6. The constants cx, cy defined below satisfy that cx, cy > 0.

cx = inf
x∈Fx\X∗

max
y∈V∗(

∏
X∗ (x))

(x−
∏

X∗(x))⊤Ay

∥x−
∏

X∗(x)∥

cy = inf
y∈Fy\Y∗

max
x∈V∗(

∏
Y∗ (y))

x⊤A(
∏

Y∗(y)− y)

∥y −
∏

Y∗(y)∥

(D.17)

where

Fx = {x|x ∈ X ,∀i ∈ supp(X ∗) xi ≥ ϵdil}
Fy = {y|y ∈ Y,∀i ∈ supp(Y∗) yi ≥ ϵdil},

(D.18)

and ϵdil is some game dependent constant defined in Lemma D.7.

Proof. Define the set X ′ = {x|x ∈ X , ∥x −
∏

X∗(x)∥ ≥ ϵdil}. In the following, we will show
that we only need to consider x ∈ X ′ instead of Fx \ X ∗. Formally we will prove that for any
x ∈ Fx \ X ∗, we have x′ ∈ X ′ so that

∀y,
(x−

∏
X∗(x))⊤Ay

∥x−
∏

X∗(x)∥
=

(x′ −
∏

X∗(x′))⊤Ay

∥x′ −
∏

X∗(x′)∥
. (D.19)

The claim trivially holds if x ∈ X ′. Otherwise, let x′ =
∏

X∗(x) +
ϵdil

∥x−
∏

X∗ (x)∥ (x −
∏

X∗(x)).
For any element that xi ≥

∏
X∗(x)i ≥ 0, we know that x′i ≥ 0.

For elements that
∏

X∗(x)i > xi ≥ 0, we can ensure that i ∈ supp(X ∗), which means that∏
X∗(x)i > xi ≥ ϵdil since x ∈ Fx \ X ∗. Therefore, we have x′i ≥

∏
X∗(x)i − |xi −

∏
X∗(x)i| ·

ϵdil

∥x−
∏

X∗ (x)∥ ≥
∏

X∗(x)i − ϵdil ≥ 0. Also, for any h ∈ HX ,
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∑
i∈Ωh

x′i =
ϵdil

∥x−
∏

X∗(x)∥
∑
i∈Ωh

xi + (1− ϵdil
∥x−

∏
X∗(x)∥

)
∑
i∈Ωh

∏
X∗

(x)i

=
ϵdil

∥x−
∏

X∗(x)∥
xσ(h) + (1− ϵdil

∥x−
∏

X∗(x)∥
)
∏
X∗

(x)σ(h)

=x′σ(h).

(D.20)

Therefore, x′ ∈ X and we can conclude that x′ ∈ X ′ since
∏

X∗(x) =
∏

X∗(x′).

Moreover, since x′ −
∏

X∗(x) and x −
∏

X∗(x) are parallel and
∏

X∗(x) =
∏

X∗(x′), we can
conclude that Eq (D.19) is satisfied. Because X ′ is closed, we can define

c′x = min
x∈X ′

max
y∈V∗(

∏
X∗ (x))

(x−
∏

X∗(x))⊤Ay

∥x−
∏

X∗(x)∥

c′y = min
y∈Y′

max
x∈V∗(

∏
Y∗ (y))

x⊤A(
∏

Y∗(y)− y)

∥y −
∏

Y∗(y)∥

(D.21)

with the inequality that cx ≥ c′x and cy ≥ c′y by the discussion above. Then, we will prove that
c′x, c

′
y > 0.

Firstly, we will prove that c′y ≥ 0. If c′y < 0, then it says that there’s some y so that

min
x∈V∗(

∏
Y∗ (y))

x⊤Ay > ρ (D.22)

which implies that for any x∗ ∈ X ∗, x∗⊤Ay > ρ. And it contradicts with the definition of X ∗.

If c′y = 0, then for some y ̸∈ Y∗,

max
x∈V ∗(

∏
Y∗ (y))

x⊤A(
∏
Y∗

(y)− y) = 0. (D.23)

Let PSX denote all pure strategies of x. If PS(y∗) = PSX , then V ∗(
∏

Y∗(y)) = X . Eq (D.23)
implies that minx∈X x⊤Ay = ρ so that y ∈ Y∗. But this contradicts with the definition that
y ̸∈ Y∗.

If PS(y∗) ̸= PSX , we define
ξ(y∗) = min

x∈PSX \PS(y∗)
{x⊤Ay∗ − ρ}. (D.24)

And we can prove that ξ(y∗) ∈ (0, 2M ]. The lower bound is directly from Lemma D.3 and the
upperbound is from the assumption on A that ∀y ∈ Y, ∥Ay∥∞ ≤ 1.

Let y′ =
∏

Y∗(y) +
ξ(

∏
Y∗ (y))

2N ·M (y −
∏

Y∗(y)) ∈ Y . For any pure strategy x ∈ PSX \ PS(y∗), we
have

x⊤Ay′ =x⊤A
∏
Y∗

(y)− x⊤(A(
∏
Y∗

(y)− y′)
)

≥x⊤A
∏
Y∗

(y)− ∥x∥∞ · ∥
∏
Y∗

(y)− y′∥1

≥x⊤A
∏
Y∗

(y)−
ξ(
∏

Y∗(y))

M

≥ρ

(D.25)

where the last inequality comes from the definition of ξ(
∏

Y∗(y)) in Eq (D.24).

For any pure strategy x ∈ PS(y∗), we have

x⊤Ay′ =x⊤A
∏
Y∗

(y) +
ξ(
∏

Y∗(y))

2N ·M
x⊤A(y −

∏
Y∗

(y))

≥x⊤A
∏
Y∗

(y)

=ρ.

(D.26)
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Therefore, minx∈X x⊤Ay′ ≥ ρ since any x ∈ X is a linear combination of pure strategies. And it
implies that y′ ̸∈ Y∗ is also a maximin point, contradicting with the definition of Y∗.

So, c′y > 0 and so does c′x. And further we have that cx, cy > 0.

Lemma D.7. For any t = 1, 2, ..., and i ∈ supp(Z∗), and η ≤ 1
8P , Reg-DOMWU ensures that

ẑt,i ≥ ϵdil where ϵdil is some game-dependent constant.

Proof. By Lemma C.2, Reg-DOMD satisfies

ητψZ(z)− ητψZ(zt) + ηF (zt)
⊤(zt − z) ≤(1− ητ)DψZ (z, ẑt)−DψZ (z, ẑt+1)

−DψZ (ẑt+1, zt)−
7

8
DψZ (zt, ẑt) +

1

8
DψZ (ẑt, zt−1).

(D.27)

Pick z = z∗ such that supp(z∗) = supp(Z∗) (note that such a z∗ ∈ Z∗ must exist since Z∗ is
convex). Then, we have

ητψZ(z∗)− ητψZ(zt) ≤ητψZ(z∗)− ητψZ(zt) + ηF (zt)
⊤(zt − z∗)

≤(1− ητ)DψZ (z∗, ẑt)−DψZ (z∗, ẑt+1)

−DψZ (ẑt+1, zt)−
7

8
DψZ (zt, ẑt) +

1

8
DψZ (ẑt, zt−1)

(D.28)

where the first inequality comes from F (zt)
⊤(zt − z∗) = x⊤

t Ay∗ −x∗⊤Ayt ≥ 0 by definition of
NE. And it further implies that

DψZ (z∗, ẑt+1) +DψZ (ẑt+1, zt) ≤(1− ητ)
(
DψZ (z∗, ẑt) +DψZ (ẑt, zt−1)

)
− 1

2

(
DψZ (zt, ẑt) +DψZ (ẑt, zt−1)

)
− ητψZ(z∗) + ητψZ(zt)

≤(1− ητ)
(
DψZ (z∗, ẑt) +DψZ (ẑt, zt−1)

)
− 1

2

(
DψZ (zt, ẑt) +DψZ (ẑt, zt−1)

)
− ητψZ(z∗)

(D.29)

when ητ ≤ η ≤ 3
8 .

When τ = 0, we have

DψZ (z∗, ẑt+1) ≤ DψZ (z∗, ẑ1) +DψZ (ẑ1, z0) = DψZ (z∗, ẑ1). (D.30)

And when τ > 0, we have

DψZ (z∗, ẑt+1) ≤ (1− ητ)tDψZ (z∗, ẑ1)− ψZ(z∗) ≤ DψZ (z∗, ẑ1)− ψZ(z∗). (D.31)

Therefore, for any i ∈ supp(Z∗) = supp(z∗),

z∗i log
1

q̂t+1,i
≤

∑
j

αh(j)z
∗
j log

1

q̂t+1,j
=DψZ (z∗, ẑt+1)−

∑
j

αh(j)z
∗
j log q

∗
j

≤DψZ (z∗, ẑ1)− ψZ(z∗)−
∑
j

αh(j)z
∗
j log q

∗
j

=
∑
j

αh(j)z
∗
j log

1

q̂1,j
− ψZ(z∗)

≤2P∥α∥∞ logCΩ

(D.32)

where the last inequality comes from the fact that ẑ1 is initialized as a uniform strategy. Therefore,

q̂t+1,i ≥ exp
(
− 2P∥α∥∞

logCΩ

mini∈supp(Z∗) z
∗
i

)
(D.33)

28



Published as a conference paper at ICLR 2023

for any i ∈ supp(Z∗).

And we further have

ẑt+1,i =ẑt+1,σ(h(i)) · q̂t+1,i

=ẑt+1,σ(h(σ(h(i)))) · q̂t+1,σ(h(i)) · q̂t+1,i

=...

≥ exp
(
− 2P 2∥α∥∞

logCΩ

mini∈supp(Z∗) z
∗
i

)
=:ϵdil > 0,

(D.34)

completing the proof.

E PROOF OF LEMMA 4.1

Our regret decomposition framework follows the laminar regret decomposition (Farina et al.,
2019b), which is a more general case of the original counterfactual regret minimization (Zinke-
vich et al., 2007). The second part of Lemma 4.1, the boundedness of regret, also appears in (Farina
et al., 2019b, Theorem 2). But here we use Lemma E.1 to prove it which is more concise.

Lemma E.1 (First part of Lemma 4.1). The difference satisfies thatGZ
T (z) =

∑
h∈HZ zσ(h)G

h
T (z)

for any z ∈ Zγ and γ ≥ 0.

Proof. We define the scalar subtree value Sht (z) recursively,

Sht (z) :=
∑
i∈Ωh

qi
(
(Ayt)i +

∑
h′∈Hi

Sh
′

t (z)
)
+ ταhψ

∆(qh). (E.1)

For terminal nodes,Hi will be empty set and thus Sht (z) =
∑
i∈Ωh

qi(Ayt)i + ταhψ
∆(qh).

By definition, for any z ∈ Zγ , we have

GZ
T (z) =

T∑
t=1

(⟨F (zt), zt⟩+ τψZ(zt))−
T∑
t=1

(⟨F (zt), z⟩+ τψZ(z))

=

T∑
t=1

∑
h∈H0

Sht (zt)−
T∑
t=1

∑
h∈H0

Sht (z)

=
∑
h∈H0

( T∑
t=1

Sht (zt)−
T∑
t=1

Sht (z)
)

(E.2)

where H0 = {h : h ∈ HZ , σ(h) = 0} is the set of information set at the root of treeplex. Note that
Zγ = Zγh1

×Zγh2
× ...×Zhm whereH0 = {h1, h2, ..., hm}. Then, the inequality in the second line

is simply by expanding the definition of Sht (z) from the recursive manner.
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We further define GhT,sub :=
∑T
t=1 S

h
t (zt)−

∑T
t=1 S

h
t (z). Then,

GhT,sub(z)

=

T∑
t=1

Sht (zt)−
T∑
t=1

Sht (z)

=

T∑
t=1

Sht (zt)−
( T∑
t=1

( ∑
i∈Ωh

qi(Ayt)i + ταhψ
∆(qh)

)
+

∑
i∈Ωh

qi
∑
h′∈Hi

T∑
t=1

Sh
′

t (z)
)

(i)
=

T∑
t=1

Sht (zt)−
( T∑
t=1

( ∑
i∈Ωh

qi(Ayt)i + ταhψ
∆(qh)

)
+

∑
i∈Ωh

qi
∑
h′∈Hi

( T∑
t=1

Sh
′

t (zt)−Gh
′

sub(z)
))

=

T∑
t=1

Sht (zt)−
( T∑
t=1

( ∑
i∈Ωh

qi
(
(Ayt)i +

∑
h′∈Hi

Sh
′

t (zt)
)
+ ταhψ

∆(qh)
))
−

( ∑
i∈Ωh

qi
∑
h′∈Hi

−Gh
′

sub(z)
)

=GhT (qh) +
∑
i∈Ωh

qi
∑
h′∈Hi

Gh
′

sub(z)

(E.3)

where (i) comes from
∑T
t=1 S

h′

t (z) =
∑T
t=1 S

h′

t (zt)−Gh
′

sub(z).

By applying it recursively, we will get for any z ∈ Zγ ,

GZ
T (z) =

∑
h∈HZ

zσ(h)G
h
T (qh), (E.4)

which completes the proof.

Lemma E.2 (Second part of Lemma 4.1). The regret satisfies that RZ
T ≤

maxẑ∈Zγ
∑
h∈HZ ẑσ(h)R

h
T for any γ ≥ 0.

Proof. By Lemma E.1, we have

RZ
T = max

ẑ∈Zγ
GZ
T (ẑ) = max

ẑ∈Zγ

∑
h∈HZ

ẑσ(h)G
h
T (

ẑh
ẑσ(h)

)

≤ max
ẑ∈Zγ

∑
h∈HZ

ẑσ(h) max
qh∈∆γ|Ωh|

GhT (qh)

= max
ẑ∈Zγ

∑
h∈HZ

ẑσ(h)R
h
T

which completes the proof.

F PROOF OF THEOREM 4.3 AND THEOREM 4.6

F.1 PROOF OF LEMMA F.1

Lemma F.1. For any information set h ∈ HZ , qh ∈ ∆γ
|Ωh| and τ ≤ 1

2∥α∥∞
, Reg-CFR guarantees

GhT (qh) ≤λhT+1Dψ∆(qh, q1,h) + ∥V h(z 3
2
)− V h(z 1

2
)∥2 − αhτ

T∑
t=2

Dψ∆(qh, qt,h)

+

T∑
t=2

(∥V h(zt+ 1
2
)− V h(zt− 1

2
)∥2

λht
−
λht−1

8
∥qt+ 1

2 ,h
− qt− 1

2 ,h
∥2
)
.

(F.1)
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Proof. By Lemma F.6,

GhT (qh) =

T∑
t=1

[ 〈
V h(zt+ 1

2
), qt+ 1

2 ,h
− qh

〉
+ ταhψ

∆(qt+ 1
2 ,h

)− ταhψ∆(qh)
]

≤(λh1 − ταh)Dψ∆(qh, q1,h)− λhT+1Dψ∆(qh, qT+1,h) + (λhT+1 − λh1 )Dψ∆(qh, q1,h)

− (λh1 − ταh)Dψ∆(q 3
2 ,h
, q1,h)−

λhT
2
Dψ∆(qT+1,h, qT+ 1

2 ,h
)

−
T∑
t=2

(λht−1

2
Dψ∆(qt,h, qt− 1

2 ,h
) + (λht − ταh)Dψ∆(qt+ 1

2 ,h
, qt,h)

)
+

T∑
t=1

(〈
V h(zt+ 1

2
)− V h(zt− 1

2
), qt+ 1

2 ,h
− qt+1,h

〉
− λht

2
Dψ∆(qt+1,h, qt+ 1

2 ,h
)
)

− ταh
T∑
t=2

Dψ∆(qh, qt,h).

(F.2)

By the strong convexity of ψ∆,

∥qt+ 1
2 ,h
− qt− 1

2 ,h
∥2 ≤2∥qt+ 1

2 ,h
− qt,h∥2 + 2∥qt,h − qt− 1

2 ,h
∥2

≤4Dψ∆(qt+ 1
2 ,h
, qt,h) + 4Dψ∆(qt,h, qt− 1

2 ,h
).

(F.3)

Also, 〈
V h(zt+ 1

2
)− V h(zt− 1

2
), qt+ 1

2 ,h
− qt+1,h

〉
− λht

2
Dψ∆(qt+1,h, qt+ 1

2 ,h
)

≤
∥V h(zt+ 1

2
)− V h(zt− 1

2
)∥2

2λht
+
λht
2
∥qt+ 1

2 ,h
− qt+1,h∥2 −

λht
2
Dψ∆(qt+1,h, qt+ 1

2 ,h
)

≤
∥V h(zt+ 1

2
)− V h(zt− 1

2
)∥2

2λht

≤
∥V h(zt+ 1

2
)− V h(zt− 1

2
)∥2

λht

(F.4)

where the second inequality is by Young’s inequality.

Therefore, with ταh ≤ 1
2 ≤

λht−1

2 ,

GhT (qh)

=

T∑
t=1

[ 〈
V h(zt+ 1

2
), qt+ 1

2 ,h
− qh

〉
+ ταhψ

∆(qt+ 1
2 ,h

)− ταhψ∆(qh)
]

≤(λhT+1 − ταh)Dψ∆(qh, q1,h)

+

T∑
t=1

∥V h(zt+ 1
2
)− V h(zt− 1

2
)∥2

λht
− 1

8

T∑
t=2

λht−1∥qt+ 1
2 ,h
− qt− 1

2 ,h
∥2 − ταh

T∑
t=2

Dψ∆(qh, qt,h)

≤λhT+1Dψ∆(qh, q1,h) + ∥V h(z 3
2
)− V h(z 1

2
)∥2

+

T∑
t=2

(∥V h(zt+ 1
2
)− V h(zt− 1

2
)∥2

λht
−
λht−1

8
∥qt+ 1

2 ,h
− qt− 1

2 ,h
∥2
)
− ταh

T∑
t=2

Dψ∆(qh, qt,h),

(F.5)

which completes the proof.

For simplicity, we use constant Mh as the maximum value of Dψ∆(qh, q1,h) in information set h.
Dψ∆(qh, q1,h) is upper-bounded since q1,h is initialized as uniform distribution in ∆|Ωh|.

31



Published as a conference paper at ICLR 2023

F.2 PROOF OF THEOREM 4.3

By Lemma E.1, we have

0 ≤ GZ
T (z

γ,∗
τ ) =

∑
h∈H

z∗τ,σ(h)G
h
T (

zγ,∗τ,h
zγ,∗τ,σ(h)

)

where the first inequality is by definition of zγ,∗τ .

Now by Lemma F.1 taking qh = qγ,∗τ,h =
zγ,∗τ,h

zγ,∗
τ,σ(h)

,

0 ≤
∑
h∈HZ

zγ,∗τ,σ(h)

(
λhT+1M

h + ∥V h(z 3
2
)− V h(z 1

2
)∥2 +

T∑
t=2

(∥V h(zt+ 1
2
)− V h(zt− 1

2
)∥2

λht

−
λht−1

8
∥qt+ 1

2 ,h
− qt− 1

2 ,h
∥2
)
− ταh

T∑
t=2

Dψ∆(qγ,∗τ,h , qt,h)
)

where constant Mh is the maximum value of Dψ∆(qh, q1,h) in information set h. Dψ∆(qh, q1,h) is
upper-bounded since q1,h is initialized as uniform distribution in ∆|Ωh|.

By rearranging the terms, we have

τ

T∑
t=2

DψZ (zγ,∗τ , zt)
(i)
= τ

T∑
t=2

∑
h∈HZ

αhz
γ,∗
τ,σ(h)Dψ∆(qγ,∗τ,h , qt,h) ≤ Cγ (F.6)

where (i) is by the expanded form of the (dilated) Bregman divergence DψZ (see Lemma F.8 for a
detailed proof) and the constant Cγ is defined by

Cγ :=
∑
h∈HZ

zγ,∗τ,σ(h)

(
λhT+1M

h + ∥V h(z 3
2
)− V h(z 1

2
)∥2 +

T∑
t=2

(∥V h(zt+ 1
2
)− V h(zt− 1

2
)∥2

λht

−
λht−1

8
∥qt+ 1

2 ,h
− qt− 1

2 ,h
∥2
)
.

(F.7)

Non-perturbed EFG best-iterate convergence. To bound the quantity λhT+1M
h +∑T

t=2

∥V h(z
t+1

2
)−V h(z

t− 1
2
)∥2

λht
in Cγ (other parts of Cγ have been already bounded by con-

stant), we introduce the following Lemma, whose proof is postponed to F.5.

Lemma F.2. Consider update-rule in Eq (4.2). For any h ∈ HZ , by taking κ = T
1
2 , Reg-CFR

satisfies that

λhT+1M
h +

T∑
t=2

∥V h(zt+ 1
2
)− V h(zt− 1

2
)∥2

λht
≤ O(T

1
4 ) (F.8)

where constant Mh is the maximum value of Dψ∆(qh, q1,h) in information set h.

By Lemma F.2, we know that Cγ ≤ O(T
1
4 ), which is

τ

T∑
t=2

DψZ (z∗
τ , zt) ≤ O(T

1
4 ). (F.9)

Therefore, there exists t′ ∈ {2, 3, ..., T},

DψZ (z∗
τ , zt′) ≤

1

τ
O(T− 3

4 ). (F.10)

So, zt′ converges to z∗
τ with convergence rate O(T− 3

4 ).
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Perturbed EFG asymptotic last-iterate convergence. From the form of constant Cγ Eq (F.7)
and λht−1 ≥ κ ≥ 1, we have

Cγ ≤
∑
h∈HZ

zγ,∗τ,σ(h)

(
λhT+1M

h + ∥V h(z 3
2
)− V h(z 1

2
)∥2 +

T∑
t=2

(∥V h(zt+ 1
2
)− V h(zt− 1

2
)∥2

λht

− 1

8
∥qt+ 1

2 ,h
− qt− 1

2 ,h
∥2
)

(F.11)

where constant Mh is the maximum value of Dψ∆(qh, q1,h) in information set h.

We will prove that Cγ ≤ O(1) when γ > 0. By the Lipschitz property of V h(z) (see Lemma F.10
for a full proof), we have

∥V h(zt+ 1
2
)− V h(zt− 1

2
)∥2 ≤(L2

∑
h∈HZ

∥qt+ 1
2 ,h
− qt− 1

2 ,h
∥)2

≤PL2
2

∑
h∈HZ

∥qt+ 1
2 ,h
− qt− 1

2 ,h
∥2

≤P L
2
2

γP

∑
h∈HZ

zγ,∗τ,σ(h)∥qt+ 1
2 ,h
− qt− 1

2 ,h
∥2

(F.12)

where the last inequality is because
zγ,∗τ,i

zγ,∗
τ,σ(h(i))

≥ γ for any i by definition of γ-perturbed EFG so that

zγ,∗τ,i ≥ γP . Since zγ,∗τ,σ(h) ≤ 1,∑
h∈HZ

zγ,∗τ,σ(h)∥qt+ 1
2 ,h
− qt− 1

2 ,h
∥2 ≥ γP

PL2
2

zγ,∗τ,σ(h)∥V
h(zt+ 1

2
)− V h(zt− 1

2 )
∥2. (F.13)

for any h ∈ HZ .

Plugging inequality (F.13) to equation (F.11), we have

Cγ ≤
∑
h∈HZ

zγ,∗τ,σ(h)∥V
h(z 3

2
)− V h(z 1

2
)∥2

+
∑
h∈HZ

zγ,∗τ,σ(h)

(
λhT+1M

h − γP

16P 2L2
2

∥V h(zt+ 1
2
)− V h(zt− 1

2 )
∥2
)

+
∑
h∈HZ

zγ,∗τ,σ(h)

T∑
t=2

(∥V h(zt+ 1
2
)− V h(zt− 1

2
)∥2

λht
− γP

16P 2L2
2

∥V h(zt+ 1
2
)− V h(zt− 1

2 )
∥2
)
.

(F.14)

As a result, it remains to bound the following two quantities in Eq (F.15) and Eq (F.16) separately
by some constant:

λhT+1M
h − ι

T∑
t=2

∥V h(zt+ 1
2
)− V h(zt− 1

2 )
∥2. (F.15)

T∑
t=2

(∥V h(zt+ 1
2
)− V h(zt− 1

2 )
∥2

λht
− ι∥V h(zt+ 1

2
)− V h(zt− 1

2 )
∥2
)
, (F.16)

where we use ι := γP

16P 2L2
2

for convenience.

For Eq (F.15), since λhT+1 =
√
κ+

∑T
t=1 δ

h
t where δht = ∥V h(zt+ 1

2
)− V h(zt− 1

2 )
∥2, we can get

Mh

√√√√κ+

T∑
t=1

δht − ι
T∑
t=2

δht ≤Mh
√
κ+ δh1 +Mh

√√√√ T∑
t=2

δht − ι
T∑
t=2

δht = fh(

√√√√ T∑
t=2

δht ) (F.17)
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where the second inequality comes from
√
a+ b ≤

√
a +
√
b and f is a quadratic function with

negative coefficient on the quadratic term. Therefore, it is upper-bounded by a constant.

As for Eq (F.16), we discuss the two possible cases separately.

When limt→∞ λht < +∞, then
∑∞
t=1 ∥V h(zt+ 1

2
) − V h(zt− 1

2 )
∥2 < +∞ from definition of λht so

that Eq (F.16) is bounded by a constant.

When limt→∞ λht = +∞, then we must have t′ = mint{t : 1/λht ≤ ι}. Therefore, Eq (F.16) is
bounded by

∑t′

t=1 ∥V h(zt+ 1
2
)− V h(zt− 1

2 )
∥2 < +∞.

Therefore,
T∑
t=2

DψZ (zγ,∗τ , zt) ≤
O(1)

τ
(F.18)

so that zt converges asymptotically to zγ,∗τ .

Proof of Corollary 4.4. By Lemma D.1, we know that when τ = ϵ
4CB

, we will get

max
ẑ∈Z

F (zt)
⊤(zt − ẑ) ≤ O(ϵ) + 2P

√
DψZ (z∗

τ , zt). (F.19)

Using Theorem 4.3, the proof is done.

F.3 PROOF OF THEOREM 4.6

We first state a stronger version of the folklore theorem here (Theorem 3 ; Farina et al., 2019b), to
provide gurantees for average iterate below.

Lemma F.3. For a EFG where lXt (xt) = x⊤Ayt + τψZ(x), lYt (y) = −x⊤
t Ay + τψZ(y),

the saddle point residual maxẑ∈Z F (z)
⊤(z − ẑ) + τψ(z) − τψ(ẑ) of the average strategy

( 1
T

∑T
t=1 xt,

1
T

∑T
t=1 yt) is bounded by RX+RY

T .

Non-perturbed EFG average-iterate convergence. From Lemma E.2 and Lemma F.1, by taking
ẑ = argmaxz∈Z

∑
h∈HZ zσ(h)R

h
T , we have

RZ
T ≤

∑
h∈HZ

ẑσ(h)R
h
T

≤
∑
h∈H

ẑσ(h)

(
λhT+1M

h + ∥V h(z 3
2
)− V h(z 1

2
)∥2 +

T∑
t=2

(∥V h(zt+ 1
2
)− V h(zt− 1

2
)∥2

λht

−
λht−1

8
∥qht+ 1

2
− qt− 1

2 ,h
∥2
))
≤ O(T 1/4)

(F.20)

where the last inequality is by Lemma F.2 and constantMh is the maximum value ofDψ∆(qh, q1,h)

in information set h. Therefore, by Lemma F.3, the average iterate enjoysO(T− 3
4 ) convergence rate

in terms of duality gap.

Perturbed EFG average-iterate convergence. By taking qh = ẑh
ẑσ(h)

where ẑ =

argmaxz∈Zγ
∑
h∈HZ zσ(h)R

h
T , from Lemma F.1, we have

RZ
T ≤

∑
h∈HZ

ẑσ(h)R
h
T

≤
∑
h∈HZ

ẑσ(h)

(
λhT+1M

h + ∥V h(z 3
2
)− V h(z 1

2
)∥2

)

+
∑
h∈HZ

ẑσ(h)

T∑
t=2

(∥V h(zt+ 1
2
)− V h(zt− 1

2
)∥2

λht
− 1

8
∥qt+ 1

2 ,h
− qt− 1

2 ,h
∥2
) (F.21)
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where constant Mh is the maximum value of Dψ∆(qh, q1,h) in information set h.

Follow the same analysis in F.2, we will get RZ
T ≤ O(1) which means the duality gap converges

with convergence rate O( 1
T ) by Lemma F.3.

F.4 APPROXIMATE EXTENSIVE-FORM PERFECT EQUILIBRIA

To illustrate why the NE of Zγ for some fixed γ > 0 is a good approximation to the extensive-form
perfect equilibria, we propose the following lemma.
Lemma F.4. The approximate NE zγ of a γ-perturbed EFG is an approximation of the EFPE in
terms of duality gap. That is,

max
ẑ∈Z0

F (zγ)⊤(zγ − ẑ) ≤ max
ẑ∈Zγ

F (zγ)⊤(zγ − ẑ) + γP 2 (F.22)

where Z0 is an infinitely small perturbed treeplex whose NE is exactly EFPE.

Proof. For any z ∈ Z0, we can define z′ ∈ Zγ as

z′i
z′σ(h(i))

= (1− γ|Ωh(i)|)
zi

zσ(h(i))
+ γ. (F.23)

Then, we will use induction to prove that ∥z − z′∥∞ ≤ γP . Note that we will use anc(i) :=
{i, σ(h(i)), σ(h(σ(h(i)))), ..., i′} where σ(h(i′)) = 0 to denote the set of ancestors of index i in the
treeplex. Firstly, for index i which satisfies that σ(h(i)) = 0, we have

|
∏

j∈anc(i)

(
(1− γ|Ωh(j)|)qj + γ

)
−

∏
j∈anc(i)

qj | = | − γ|Ωh(i)|qi + γ| ≤ γ|Ωh(i)|. (F.24)

Then, assume that we already prove that |
∏
j∈anc(σ(h(i)))

(
(1 − γ|Ωh(j)|)qj + γ

)
−∏

j∈anc(σ(h(i))) qj | ≤ γCσ(h(i)) for an index i where Cσ(h(i)) =
∑
j∈anc(σ(h(i))) |Ωh(j)|, then∏

j∈anc(i)

(
(1− γ|Ωh(j)|)qj + γ

)
−

∏
j∈anc(i)

qj

≥
(
(1− γ|Ωh(i)|)qi + γ

)( ∏
j∈anc(σ(h(i)))

qj − γCσ(h(i))
)
−

∏
j∈anc(i)

qj

=− γ|Ωh(i)|
∏

j∈anc(i)

qj + γ
∏

j∈anc(i)

qj − γCσ(h(i))
(
(1− γ|Ωh(i)|)qi + γ

)
≥− γ(|Ωh(i)|+ Cσ(h(i)))

and similarly, we have the upperbound γ(1 + Cσ(h(i))). Therefore, we have ∥z − z′∥∞ ≤ γP .

Therefore, for y = argmaxŷ∈Y0 xγ⊤Aŷ where zγ = (xγ ,yγ) is an approximate NE in a γ-
perturbed EFG, we have

xγ⊤Ay =xγ⊤A
(
y′ + (y − y′)

)
=xγ⊤Ay′ + xγ⊤A(y − y′)

≤ max
ŷ∈Yγ

xγ⊤Aŷ + ∥A⊤xγ∥1 · ∥y − y′∥∞

(F.25)

which implies that

max
ẑ∈Z0

F (zγ)⊤(zγ − ẑ)

≤ max
ẑ∈Zγ

F (zγ)⊤(zγ − ẑ) + ∥A⊤xγ∥1 · ∥y − y′∥∞ + ∥Ayγ∥1 · ∥x− x′∥∞

≤ max
ẑ∈Zγ

F (zγ)⊤(zγ − ẑ) + γP 2

where the last inequality comes from ∥F (z)∥∞ ≤ 1 for any z ∈ Z .
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F.5 PROPERTIES OF Reg-DS-OptMD (4.2)

We first prove some standard results in DS-OptMD (Hsieh et al., 2021) when adding regularization.

Lemma F.5. For any convex set C and u0,u ∈ C, consider the update rule

u1 = argmin
û1∈C

{⟨û1, g + τ∇ψC(u)⟩+ λ1DψC (û1,u) + (λ2 − λ1)DψC (û1,u0)}

where ψC is a strongly convex function in C. Then for any u2 ∈ C,

τψC(u1)− τψC(u2) + ⟨g,u1 − u2⟩

≤λ1((1−
τ

λ1
)DψC (u2,u)−DψC (u2,u1)− (1− τ

λ1
)DψC (u1,u))

+ (λ2 − λ1)(DψC (u2,u0)−DψC (u2,u1)−DψC (u1,u0)).

(F.26)

Proof. Since

u1 = argmin
û1∈C

{〈
g − λ1(1−

τ

λ1
)∇ψC(u)− (λ2 − λ1)∇ψC(u0), û1

〉
+ λ2ψ

C(û1)
}
, (F.27)

by first-order optimality condition,(
g + λ2∇ψC(u1)− λ1(1−

τ

λ1
)∇ψC(u)− (λ2 − λ1)∇ψC(u0)

)⊤
(u2 − u1) ≥ 0. (F.28)

Notice that

λ1((1−
τ

λ1
)DψC (u2,u)−DψC (u2,u1)− (1− τ

λ1
)DψC (u1,u))

=λ1

〈
∇ψC(u1)− (1− τ

λt
)∇ψC(u),u2 − u1

〉
− τψC(u2) + τψC(u1),

(F.29)

and

(λ2 − λ1)(DψC (u2,u0)−DψC (u2,u1)−DψC (u1,u0))

=(λ2 − λ1)
〈
∇ψC(u1)−∇ψC(u0),u2 − u1

〉
.

(F.30)

Sum them up,

λ1((1−
τ

λ1
)DψC (u2,u)−DψC (u2,u1)− (1− τ

λ1
)DψC (u1,u))

+ (λ2 − λ1)(DψC (u2,u0)−DψC (u2,u1)−DψC (u1,u0))

=

〈
λ2∇ψC(u1)− λ1(1−

τ

λt
)∇ψC(u)− (λ2 − λ1)∇ψC(u0),u2 − u1

〉
− τψC(u2) + τψC(u1)

≥⟨g,u1 − u2⟩ − τψC(u2) + τψC(u1)

(F.31)

where the last equation comes from Eq (F.28).

Lemma F.6. Consider the update rule Eq (4.2). For any information set h ∈ HZ , qh ∈ ∆γ
|Ωh| and

t = 1, 2, ..., T , we have

ταhψ
∆(qt+ 1

2 ,h
)− ταhψ∆(qh) +

〈
V h(zt+ 1

2
), qt+ 1

2 ,h
− qh

〉
≤(λht − ταh)Dψ∆(qh, qt,h)− λht+1Dψ∆(qh, qt+1,h) + (λht+1 − λht )Dψ∆(qh, q1,h)

+
〈
V h(zt+ 1

2
)− V h(zt− 1

2
), qt+ 1

2 ,h
− qt+1,h

〉
− λhtDψ∆(qt+1,h, qt+ 1

2 ,h
)

− (λht − ταh)Dψ∆(qt+ 1
2 ,h
, qt,h).

(F.32)
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Proof. Plug u1 = qt+ 1
2 ,h
,u2 = qt+1,h, g = V h(zt− 1

2
), ψC = αhψ

∆ into Lemma C.4,

ταhψ
∆(qt+ 1

2 ,h
)− ταhψ∆(qt+1,h) +

〈
V h(zt− 1

2
), qt+ 1

2 ,h
− qt+1,h

〉
≤λht

(
(1− ταh

λht
)Dψ∆(qt+1,h, qt,h)−Dψ∆(qt+1,h, qt+ 1

2 ,h
)− (1− ταh

λht
)Dψ∆(qt+ 1

2 ,h
, qt,h)

)
.

(F.33)

Plug u1 = qt+1,h,u2 = qh, g = V h(zt+ 1
2
), λ1 = λht , λ2 = λht+1, ψ

C = αhψ
∆ into Lemma F.5,

ταhψ
∆(qt+1,h)− ταhψ∆(qh) +

〈
V h(zt+ 1

2
), qt+1,h − qh

〉
≤λht ((1−

ταh
λht

)Dψ∆(qh, qt,h)−Dψ∆(qh, qt+1,h)− (1− ταh
λht

)Dψ∆(qt+1,h, qt,h))

+ (λht+1 − λht )(Dψ∆(qh, q1,h)−Dψ∆(qh, qt+1,h)−Dψ∆(qt+1,h, q1,h)).

(F.34)

By summing Eq (F.33) and Eq (F.34) up, then adding
〈
V h(zt+ 1

2
)− V h(zt− 1

2
), qt+ 1

2 ,h
− qt+1,h

〉
on both sides,

ταhψ
∆(qt+ 1

2 ,h
)− ταhψ∆(qh) +

〈
V h(zt+ 1

2
), qt+ 1

2 ,h
− qh

〉
≤
〈
V h(zt+ 1

2
)− V h(zt− 1

2
), qt+ 1

2 ,h
− qt+1,h

〉
+ λht

(
(1− ταh

λht
)Dψ∆(qt+1,h, qt,h)−Dψ∆(qt+1,h, qt+ 1

2 ,h
)− (1− ταh

λht
)Dψ∆(qt+ 1

2 ,h
, qt,h))

)
+ λht ((1−

ταh
λht

)Dψ∆(qh, qt,h)−Dψ∆(qh, qt+1,h)− (1− ταh
λht

)Dψ∆(qt+1,h, qt,h))

+ (λht+1 − λht )(Dψ∆(qh, q1,h)−Dψ∆(qh, qt+1,h)−Dψ∆(qt+1,h, q1,h))

≤
〈
V h(zt+ 1

2
)− V h(zt− 1

2
), qt+ 1

2 ,h
− qt+1,h

〉
+ (λht − ταh)Dψ∆(qh, qt,h)− λht+1Dψ∆(qh, qt+1,h) + (λht+1 − λht )Dψ∆(qh, q1,h)

− λhtDψ∆(qt+1,h, qt+ 1
2 ,h

)− (λht − ταh)Dψ∆(qt+ 1
2 ,h
, qt,h).

By the two lemmas above, we can prove that the update of Reg-DS-OptMD (4.2) is stable.

Lemma F.7 (Stability of Reg-DS-OptMD). For any t = 1, 2, ..., when ψ∆ is Euclidean norm,
Reg-CFR satisfies that

∥qt− 1
2 ,h
− qt,h∥ ≤

C1

λht−1

, ∥qt+ 1
2 ,h
− qt,h∥ ≤

C1

λht
, (F.35)

for some constant C1.

Proof. Consider the update rule Eq (4.2), by first-order optimality, for any h ∈ HZ , we have〈
V h(zt− 1

2
) + λht∇ψ∆(qt,h)− (λht−1 − τ)∇ψ∆(qt−1,h)− (λht − λht−1)∇ψ∆(q1,h),

qt− 1
2 ,h
− qt,h

〉
≥ 0〈

V h(zt− 3
2
) + λht−1∇ψ∆(qt− 1

2 ,h
)− (λht−1 − τ)∇ψ∆(qt−1,h), qt,h − qt− 1

2 ,h

〉
≥ 0.

(F.36)

Add them up,〈
λht−1∇ψ∆(qt− 1

2 ,h
)− λht∇ψ∆(qt,h) + (λht − λht−1)∇ψ∆(q1,h), qt− 1

2 ,h
− qt,h

〉
≤
〈
V h(zt− 1

2
)− V h(zt− 3

2
), qt− 1

2 ,h
− qt,h

〉
.

(F.37)
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Since ψ∆ 1-strong convex with respect to 2-norm, we have

ψ∆(qt− 1
2 ,h

)− ψ∆(qt,h) ≥
〈
∇ψ∆(qt,h), qt− 1

2 ,h
− qt,h

〉
+

1

2
∥qt− 1

2 ,h
− qt,h∥2

ψ∆(qt,h)− ψ∆(qt− 1
2 ,h

) ≥
〈
∇ψ∆(qt− 1

2 ,h
), qt,h − qt− 1

2 ,h

〉
+

1

2
∥qt− 1

2 ,h
− qt,h∥2.

(F.38)

Add them up then we will get,〈
∇ψ∆(qt− 1

2 ,h
)−∇ψ∆(qt,h), qt− 1

2 ,h
− qt,h

〉
≥ ∥qt− 1

2 ,h
− qt,h∥2. (F.39)

Therefore,

λht−1∥qt− 1
2 ,h
− qt,h∥2 + (λht − λht−1)

〈
∇ψ∆(q1,h)−∇ψ∆(qt,h), qt− 1

2 ,h
− qt,h

〉
≤
〈
λht−1∇ψ∆(qt− 1

2 ,h
)− λht∇ψ∆(qt,h) + (λht − λht−1)∇ψ∆(q1,h), qt− 1

2 ,h
− qt,h

〉
≤
〈
V h(zt− 1

2
)− V h(zt− 3

2
), qt− 1

2 ,h
− qt,h

〉
≤∥V h(zt− 1

2
)− V h(zt− 3

2
)∥ · ∥qt− 1

2 ,h
− qt,h∥.

(F.40)

And by definition,

λht−1 ≤ λht =
√
(λht−1)

2 + ∥V h(zt− 1
2
)− V h(zt− 3

2
)∥2 ≤ λht−1 + ∥V h(zt− 1

2
)− V h(zt− 3

2
)∥,
(F.41)

so that

λht−1∥qt− 1
2 ,h
−qt,h∥2 ≤ (∥∇ψ∆(q1,h)−∇ψ∆(qt,h)∥+1)·∥V h(zt− 1

2
)−V h(zt− 3

2
)∥·∥qt− 1

2 ,h
−qt,h∥
(F.42)

which implies that

∥qt− 1
2 ,h
− qt,h∥ ≤

O(1)

λht−1

, (F.43)

since ∇ψ∆ is bounded by constant when ψ∆ is Euclidean norm. And ∥V h(zt− 1
2
)− V h(zt− 3

2
)∥ is

also bounded by constant since both the regularizer and ∥F (z)∥∞ are bounded.

At the same time, directly from update rule Eq (4.2),〈
V h(zt− 1

2
) + τ∇ψ∆(qt,h), qt+ 1

2 ,h

〉
+λhtDψ∆(qt+ 1

2 ,h
, qt,h) ≤

〈
V h(zt− 1

2
) + τ∇ψ∆(qt,h), qt,h

〉
(F.44)

which implies that

λht
2
∥qt+ 1

2 ,h
− qt,h∥2 ≤ λhtDψ∆(qt+ 1

2 ,h
, qt,h) ≤

〈
V h(zt− 1

2
) + τ∇ψ∆(qt,h), qt,h − qt+ 1

2 ,h

〉
≤∥V h(zt− 1

2
) + τ∇ψ∆(qt,h)∥ · ∥qt,h − qt+ 1

2 ,h
∥

≤O(1)∥qt,h − qt+ 1
2 ,h
∥.

(F.45)

Hence, we have

∥qt+ 1
2 ,h
− qt,h∥ ≤

O(1)

λht
.

Proof of Lemma F.2. By Lemma F.10,

∥V h(zt+ 1
2
)− V h(zt− 1

2
)∥2 ≤ (L2

∑
h∈HZ

∥qt+ 1
2 ,h
− qt− 1

2 ,h
∥)2 ≤ P 2L2

2

C2
1

(λht−1)
2

where the last inequality is by and Lemma F.7 and

∥qt+ 1
2 ,h
− qt− 1

2 ,h
∥ ≤ ∥qt+ 1

2 ,h
− qt,h∥+ ∥qt,h − qt− 1

2 ,h
∥ ≤ C1

λht−1

.
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Then, by letting κ = T
1
2 , we have

λhT+1M
h +

T∑
t=2

∥V h(zt+ 1
2
)− V h(zt− 1

2
)∥2

λht

≤

√√√√T
1
2 +

T∑
t=1

P 2L2
2C

2
1

(λht−1)
2
Mh +

T∑
t=2

P 2L2
2C

2
1

λht (λ
h
t−1)

2

≤O(1) ·
√
T

1
2 + T · T− 1

2 +O(1) · T · T− 3
4

≤O(T
1
4 ),

which completes the proof.

F.6 AUXILIARY LEMMAS FOR Reg-CFR

In this section, we prove some auxiliary lemmas for Reg-CFR. We begin with the expanding form
of the Bregman divergence generated by the dilated Euclidean norm.
Lemma F.8. When ψ∆(q) = 1

2

∑
i q

2
i , we have

DψZ (z1, z2) =
∑
h∈HZ

αh
2
z1,σ(h)∥

z1,h
z1,σ(h)

− z2,h
z2,σ(h)

∥2 =
∑
h∈HZ

αhz1,σ(h)Dψ∆(q1,h, q2,h). (F.46)

Proof. Firstly, we can write ψZ in the form

ψZ(z) =
∑
i

αh(i)

2
· z2i∑

j∈Ωh(i)
zj
, (F.47)

then ∂ψZ(z)
∂zi

will be

∂ψZ(z)

∂zi
=
αh(i)

2

[ 2zi∑
j∈Ωh(i)

zj
−

∑
k∈Ωh(i)

z2k(∑
j∈Ωh(i)

zj
)2 ] =

αh(i)

2

[
2qi −

∑
k∈Ωh(i)

q2k

]
(F.48)

where qi = zi
zσ(h(i))

.

And by the definition of Bregman divergence, we have

DψZ (z1, z2) =ψ
Z(z1)− ψZ(z2)−

〈
∇ψZ(z2), z1 − z2

〉
=
∑
i

αh(i)

2
z1,i(q1,i − 2q2,i +

∑
k∈Ωh(i)

q22,k)

−
∑
i

αh(i)

2
z2,i(q2,i − 2q2,i +

∑
k∈Ωh(i)

q22,k)

(F.49)

Notice that∑
i∈Ωh

z1,i(q1,i − 2q2,i +
∑

k∈Ωh(i)

q22,k) =
∑
i∈Ωh

z1,i(q1,i − 2q2,i) +
∑
i∈Ωh

z1,i
∑

k∈Ωh(i)

q22,k

=
∑
i∈Ωh

z1,σ(h(i))(q
2
1,i − 2q1,iq2,i) + z1,σ(h(i))

∑
k∈Ωh(i)

q22,k

=
∑
i∈Ωh

z1,σ(h(i))(q1,i − q2,i)2.

(F.50)

Similarly, we will get
∑
i∈Ωh

z2,i(q2,i − 2q2,i +
∑
k∈Ωh(i)

q22,k) = 0. Therefore, DψZ (z1, z2) =∑
h∈HZ

αh
2 z1,σ(h)∥

z1,h

z1,σ(h)
− z2,h

z2,σ(h)
∥2.
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Lipschitz continuity of V h(z) Here we will show that V h(z) is Lipschitz continuous with respect
to q. We first show that z is in a Lipschitz continuous manner with respect to q.
Lemma F.9. In γ−perturbed treeplex Zγ with γ ≥ 0 , for any z, z′ ∈ Zγ , we have

∥z − z′∥ ≤ L1

∑
h∈HZ

∥qh − q′
h∥ (F.51)

for some game-dependent constant L1.

Proof. We first consider the base case whenZγ is a γ-perturbed simplex, where Eq (F.51) is satisfied
with L1 = 1 since q = z.

We consider the two basic operator, Cartesian product and branching, in the definition of treeplex
(see Definition 2.1 for details). We want to prove that both of them keep smoothness, that is, Eq
(F.51) remains satisfied after applying the operation to multiple treeplexes where Eq (F.51) is satis-
fied.

Firstly, for Cartesian product , if Eq (F.51) is satisfied for Zγ1 ,Z
γ
2 , ...,Zγm, then for any z =

(z1, z2, ...,zm), z′ = (z′
1, z

′
2, ...,z

′
m) ∈ Zγ = Zγ1 ×Z

γ
2 × ...×Zγm, we have

∥z − z′∥ ≤
m∑
i=1

∥zi − z′
i∥ ≤ L1

m∑
i=1

∑
h∈HZi

∥qh − q′
h∥ = L1

∑
h∈HZ

∥qh − q′
h∥. (F.52)

Notice that we abuse the notation HZi and HZ here to denote the set of all information sets in Zγi
and Zγ .

To be convenient, let define the branching of m γ−perturbed treeplexes Zγ1 ,Z
γ
2 , ...,Zγm and a γ-

perturbed simplex ∆γ
m be Zγ = {(p, p1z1, p2z2, ..., pmzm) : p ∈ ∆γ

m, zi ∈ Z
γ
i }. It’s easy to see

that it is equivalent to using the original branching operator for m times in a bottom-up manner.

Suppose for any zi, z
′
i ∈ Z

γ
i , ∥zi − z′

i∥ ≤ Li
∑
h∈HZi ∥qi,h − q′

i,h∥. For z = (p, p1z1, p2z2 +

..., pmzm), z′ = (p′, p′1z
′
1, p

′
2z

′
2, ..., p

′
mz′

m) ∈ Zγ ,

∥z − z′∥ ≤
m∑
i=1

∥pizi − p′iz′
i∥+ ∥p− p′∥ (F.53)

And we have
∥pizi − p′iz′

i∥ =∥(pizi − piz′
i) + (piz

′
i − p′iz′

i)∥
≤∥pi(zi − z′

i)∥+ ∥(pi − p′i)z′
i∥

=pi∥zi − z′
i∥+ |pi − p′i| · ∥z′

i∥
≤∥zi − z′

i∥+ |Z
γ
i | · ∥p− p′∥

(F.54)

where the fourth inequality is by Zγi ⊂ R|Zγi |.

Therefore,

∥(p1z1 + p2z2 + ...+ pmzm)− (p′1z
′
1 + p′2z

′
2 + ...+ p′mz′

m)∥

≤
m∑
i=1

∥zi − z′
i∥+ (

m∑
i=1

|Zγi |+ 1)∥p− p′∥

≤
m∑
i=1

Li
∑

h∈HZi

∥qi,h − q′
i,h∥+ (P + 1)∥p− p′∥

≤max{L1, L2, ..., Lm, P + 1}
∑
h∈HZ

∥qh − q′
h∥

(F.55)

where the third line is by the inductive assumption and the fourth line is by definition ofHZ and q.

Therefore, recursively applying Eq (F.52) and Eq (F.55), we will have for any z, z′ ∈ Zγ

∥z − z′∥ ≤ L1

∑
h∈HZ

∥qh − q′
h∥ (F.56)
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where we take L1 = P + 1.

Finally, since both operator keeps the smoothness, by induction, we know that for any treeplex Eq
(F.51) is satisfied.

Now we can prove that V h(z) is Lipschitz continuous with respect to q.

Lemma F.10. When ψ∆ is Lp-Lipschitz continuous, that is, |ψ∆(x)− ψ∆(x′)| ≤ Lp∥x−x′∥ for
any x,x′ ∈ ∆γ , and |ψ∆(x)| is upper-bounded by a constant C∆

B for any x ∈ ∆γ , then for any
z, z′ ∈ Zγ and h ∈ H, we have

∥V h(z)− V h(z′)∥ ≤ L2

∑
h∈HZ

∥qh − q′
h∥ (F.57)

where L2 is a game-dependent constant.

Proof. Here we consider h ∈ HX , and h ∈ HY can be addressed similarly.

∥V h(z)− V h(z′)∥ ≤
∑
i∈Ωh

(
|(A(y − y′))i|+

∑
h′∈Hi

|Wh′
(z)−Wh′

(z′)|
)

≤
∑
i∈Ωh

(
∥y − y′∥1 +

∑
h′∈Hi

|Wh′
(z)−Wh′

(z′)|
)

≤
∑
i∈Ωh

(
P∥y − y′∥+

∑
h′∈Hi

|Wh′
(z)−Wh′

(z′)|
) (F.58)

where the second inequality is because each entry of A is in [−1, 1] and the last inequality is by
∥y − y′∥1 ≤

√
P∥y − y′∥.

|Wh(z)−Wh(z′)|

=
∣∣∣(〈qh, V h(z)〉+ ταhψ

∆(qh))− (
〈
q′
h, V

h(z′)
〉
+ ταhψ

∆(q′
h))

∣∣∣
≤
∣∣∣ 〈qh, V h(z)〉− 〈

q′
h, V

h(z′)
〉 ∣∣∣+ ταh

∣∣∣ψ∆(qh)− ψ∆(q′
h)
∣∣∣

≤|
〈
qh, V

h(z)− V h(z′)
〉
|+ |

〈
qh − q′

h, V
h(z′)

〉
|+ τ∥α∥∞Lp∥qh − q′

h∥
(i)

≤∥qh∥1 · ∥V h(z)− V h(z′)∥∞ + ∥qh − q′
h∥ · ∥V h(z′)∥+ τ∥α∥∞Lp∥qh − q′

h∥
(ii)

≤
∑
i∈Ωh

|(A(y − y′))i|+
∑
i∈Ωh

∑
h′∈Hi

|Wh′
(z)−Wh′

(z′)|

+ P (1 + τ∥α∥∞C∆
B )∥qh − q′

h∥+ τ∥α∥∞Lp∥qh − q′
h∥.

(F.59)

Here (i) is by Hölder’s inequality. (ii) is by ∥qh∥1 = 1 and ∥V h(z)∥ ≤ ∥Ay∥1 + Pτ∥α∥∞C∆
B ≤

P (1 + τ∥α∥∞C∆
B ). By recursively applying this inequality, we have

|Wh(z)−Wh(z′)|

≤∥A(y − y′)∥1 + P (1 + τ∥α∥∞C∆
B )

∑
h∈HZ

∥qh − q′
h∥+ τ∥α∥∞Lp

∑
h∈HZ

∥qh − q′
h∥ (F.60)

Notice that

∥A(y − y′)∥1 ≤ P∥y − y′∥1 ≤ P 2∥y − y′∥ ≤ L1P
2

∑
h∈HZ

∥qh − q′
h∥ (F.61)

where the first inequality is because A ∈ [−1, 1]M×N and the third inequality is by Lemma F.9.
Therefore,
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|Wh(z)−Wh(z′)|

≤P 2L1

∑
h∈HZ

∥qh − q′
h∥+ P (1 + τ∥α∥∞C∆

B )
∑
h∈HZ

∥qh − q′
h∥+ τ∥α∥∞Lp

∑
h∈HZ

∥qh − q′
h∥

=L3

∑
h∈HZ

∥qh − q′
h∥ (F.62)

where L3 = P 2L1 + P (1 + τ∥α∥∞C∆
B ) + τ∥α∥∞Lp.

And back to Eq (F.58), we have

∥V h(z)− V h(z′)∥ ≤CΩ · P∥z − z′∥+ P · L3

∑
h∈HZ

∥qh − q′
h∥

≤P (L1CΩ + L3)
∑
h∈HZ

∥qh − q′
h∥

=L2

∑
h∈HZ

∥qh − q′
h∥,

(F.63)

where the second inequality comes from Lemma F.9.

G CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the regularization technique, a widely used one in reinforcement learn-
ing and optimization, in solving EFGs. Firstly, we prove that Reg-DOMD can achieve the first result
of last-iterate convergence rate to the NE without the unique NE assumption, for dilated OMD-type
algorithms with constant stepsizes, in terms of both duality gap and the distance to the set of NE. We
further prove that by solving the regularized problem, CFR with Reg-DS-OptMD as regret mini-
mizer, which we called Reg-CFR, can achieve best-iterate convergence result in finding NEs and
asymptotic last-iterate convergence in finding approximate extensive-form perfect equilibria. These
results constitute the first last-iterate convergence results for CFR-type algorithms. Furthermore, we
have shown empirically that for CFR and CFR+, solving the regularized problem can achieve better
last-iterate performance, further demonstrating the power of regularization in solving EFGs. We
leave it for future work to study its explicit convergence rate.
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