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Summary
Offline reinforcement learning (RL) is vital in areas where active data collection is expen-

sive or infeasible, such as robotics or healthcare. In the real world, offline datasets often involve
multiple “domains” that share the same state and action spaces but have distinct dynamics, and
only a small fraction of samples are clearly labeled as belonging to the target domain we are
interested in. For example, in robotics, precise system identification may only have been per-
formed for part of the deployments. To address this challenge, we consider Positive-Unlabeled
Offline RL (PUORL), a novel offline RL setting in which we have a small amount of labeled
target-domain data and a large amount of domain-unlabeled data from multiple domains, in-
cluding the target domain. For PUORL, we propose a plug-and-play approach that leverages
positive-unlabeled (PU) learning to train a domain classifier. The classifier then extracts target-
domain samples from the domain-unlabeled data, augmenting the scarce target-domain data.
Empirical results on a modified version of the D4RL benchmark demonstrate the effectiveness
of our method: even when only 1%–3% of the dataset is domain-labeled, our approach accu-
rately identifies target-domain samples and achieves high performance, even under substantial
dynamics shift. Our plug-and-play algorithm seamlessly integrates PU learning with existing
offline RL pipelines, enabling effective multi-domain data utilization in scenarios where com-
prehensive domain labeling is prohibitive.

Contribution(s)
1. We introduce Positive-Unlabeled Offline RL (PUORL), a novel offline RL setting with a

small amount of data from a target domain and a large dataset containing data from multiple
domains without domain labels. The goal is to learn a policy for the target domain.
Context: Existing cross-domain offline RL methods (Liu et al., 2022; 2023; Wen et al.,
2024) assume knowledge of the original domain of each transition, which is not accessible
in our setting.

2. We propose a method that uses positive-unlabeled (PU) learning to filter the target-domain
data from domain-unlabeled data.
Context: Our approach uses PU learning (Li & Liu, 2003; Kiryo et al., 2017) to classify
domain-unlabeled samples as “positive” (target) or “negative” (other). We then augment the
labeled target-domain dataset with the domain-unlabeled samples predicted to be positive.
This filtering can be integrated with value-based offline RL algorithms.

3. We empirically demonstrate that our PU-based method accurately filters domain-unlabeled
data and achieves high performance in a modified version of D4RL.
Context: We tested our approach on a modified D4RL benchmark (Fu et al., 2020), where
only 1%–3% of samples contain domain labels, and the rest are domain-unlabeled, drawn
from both the target and other domains with different dynamics. Even with this limited
labeling, our method closely matches an oracle baseline (which has access to all target-
domain data) and overall achieves higher average returns than the other baselines, even
under substantial dynamics mismatch.
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Abstract
Offline reinforcement learning (RL) is vital in areas where active data collection is ex-1
pensive or infeasible, such as robotics or healthcare. In the real world, offline datasets2
often involve multiple “domains” that share the same state and action spaces but have3
distinct dynamics, and only a small fraction of samples are clearly labeled as belong-4
ing to the target domain we are interested in. For example, in robotics, precise system5
identification may only have been performed for part of the deployments. To address6
this challenge, we consider Positive-Unlabeled Offline RL (PUORL), a novel offline7
RL setting in which we have a small amount of labeled target-domain data and a large8
amount of domain-unlabeled data from multiple domains, including the target domain.9
For PUORL, we propose a plug-and-play approach that leverages positive-unlabeled10
(PU) learning to train a domain classifier. The classifier then extracts target-domain11
samples from the domain-unlabeled data, augmenting the scarce target-domain data.12
Empirical results on a modified version of the D4RL benchmark demonstrate the effec-13
tiveness of our method: even when only 1%–3% of the dataset is domain-labeled, our14
approach accurately identifies target-domain samples and achieves high performance,15
even under substantial dynamics shift. Our plug-and-play algorithm seamlessly inte-16
grates PU learning with existing offline RL pipelines, enabling effective multi-domain17
data utilization in scenarios where comprehensive domain labeling is prohibitive.18

1 Introduction19

Offline reinforcement learning (RL) (Levine et al., 2020) trains policies exclusively from pre-20
collected datasets without further environmental interaction. This paradigm has been applied to21
many real-world problems, including robotics (Kalashnikov et al., 2018; 2021) and healthcare (Guez22
et al., 2008; Killian et al., 2020), where live data collection is costly or infeasible. This paper ex-23
amines an offline RL setting where the dataset is collected in multiple domains, environments that24
share the same state and action spaces but have different dynamics—with the goal of training a pol-25
icy that performs well in a specific target domain. In practice, however, annotating domain labels26
is labor-intensive or impractical at scale, resulting in a small amount of domain-labeled target data27
alongside a large volume of domain-unlabeled samples drawn from various domains, including the28
target domain. One illustrative example arises in healthcare: if a specific disease significantly alters29
a patient’s response to treatment, it effectively changes the transition dynamics. Only a small subset30
of patients are tested for disease with high cost of testing, leading to limited domain-labeled data31
and a predominance of domain-unlabeled samples (Claesen et al., 2015).32

Since offline RL depends on large, diverse datasets (Kalashnikov et al., 2021; Padalkar et al., 2023),33
relying solely on the small domain-labeled subset may deteriorate policy performance. Conse-34
quently, there is a pressing need to incorporate domain-unlabeled data effectively. While recent35
studies have focused on enhancing target domain performance by utilizing data from a different36
domain (Liu et al., 2022; Wen et al., 2024; Xu et al., 2023b), these methods presuppose that clear37
domain labels are available for all samples, which does not hold in our setting.38
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To tackle this challenge, we propose a new offline RL setting called Positive-Unlabeled Offline39
RL (PUORL). In PUORL, we have two types of data: a small amount of target-domain (positive-40
domain) data and a large volume of domain-unlabeled data, a mixture of samples from the positive41
domain and other domains (negative domains). This setting is relevant in any setting where we aim42
to train agents based on a specific characteristic that significantly affects the dynamics. This includes43
cases where a particular disease influences medical outcomes, as noted above, and scenarios such as44
unique road conditions in autonomous driving or a standard actuator defect in robotics (Kiran et al.,45
2021; Padakandla, 2021; Shi et al., 2021).46

For PUORL, we propose a general approach that uses positive-unlabeled (PU) learning (Li & Liu,47
2003; Bekker & Davis, 2020; Sugiyama et al., 2022) to train a classifier to distinguish positive-48
domain data from other domains (Sec. 3.2). Using the trained classifier, we filter out negative-49
domain data from a large, domain-unlabeled dataset, thereby augmenting the small domain-labeled50
data with additional positive-domain samples. Then, we apply off-the-shelf offline RL algorithms51
to this augmented dataset. Our framework functions as a plug-and-play module compatible with52
any value-based offline RL method, allowing users to adopt their preferred offline RL algorithm for53
PUORL. Experiments on the modified version of the D4RL (Fu et al., 2020), where only 1%–3% of54
the data are domain-labeled, demonstrate that our method accurately identifies positive-domain data55
and effectively leverages the abundant domain-unlabeled dataset for offline RL (Sec. 4).56

Related work. Cross-domain offline RL assumes fully domain-labeled datasets from two do-57
mains: a source domain with ample data and a target domain with fewer samples, where the goal is58
to effectively utilize the source domain data with different dynamics to improve the target domain59
performance (Liu et al., 2022; Xue et al., 2023; Xu et al., 2023b; Wen et al., 2024; Liu et al., 2023;60
Lyu et al., 2024). Some approaches fix the reward or filter transitions from a labeled source domain61
using discriminators (Liu et al., 2022; Wen et al., 2024), while others constrain policies to remain62
in regions aligned with target-domain data (Liu et al., 2023; Xue et al., 2023). Recently, Lyu et al.63
(2024) provided a benchmark for cross-domain offline RL. In contrast to most methods, which as-64
sume available domain labels for all samples, our work handles a large amount of domain-unlabeled65
data, which may include samples from both target and non-target domains. Please refer to App. A66
for the comprehensive related work.67

Contributions. Our contributions are threefold: 1) we propose a new offline RL setting, PUORL,68
to handle the domain-unlabeled data, 2) we propose a method that leverages PU learning to train a69
precise domain classifier, augmenting the limited domain-labeled data, and 3) we demonstrate the70
effectiveness of our method on the modified version of the D4RL benchmark with dynamics shift,71
where only 1%–3% of the data are domain-labeled.72

2 Preliminaries73

Reinforcement learning (RL). RL (Sutton & Barto, 2018) is characterized by a Markov decision74
process (MDP) (Puterman, 2014), defined by 6-tuple: M := (S,A, P, p0, R, γ). Here, S and A75
denote the continuous state and action spaces, respectively. P : S × A × S → [0, 1] defines the76
transition density, p0 : S → [0, 1] denotes the initial state distribution, R : S × A → R specifies77
the reward function, and γ ∈ [0, 1) represents the discount factor. In RL, the primary objective78
is to learn a policy π : S × A → [0, 1], maximizing the expected cumulative discounted reward79
Eπ,P [

∑∞
t=1 γ

tR(st, at)], where Eπ,P [·] denotes the expectation over the sequence of states and80
actions (s1, a1, . . . ) generated by the policy π and the transition density P .81

In this paper, we assume that different domains correspond to distinct MDPs that differ only in their82
transition dynamics. For example, two domains, M1 andM2, have different transition dynamics83
(P1 and P2), with the other components being the same.84

Offline RL. To address the limitations on direct agent-environment interactions, offline RL85
(Levine et al., 2020) employs a fixed dataset, D := {(si, ai, ri, s′i)}Ni=1, collected by a behav-86
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Figure 1: Diagram of Positive-Unlabeled Offline RL (PUORL). PUORL has a positive domain we
target and negative domains, with different dynamics to the positive domain. We have two data
types: positive data and domain-unlabeled data, which are mixtures of samples from the positive
and negative domains. We train a policy to maximize the expected return in the positive domain.

ioral policy πβ : S × A → [0, 1]. Let µβ(s, a) be the stationary distribution over the state-action87
pair induced by the behavioral policy πβ . The dataset D is assumed to be generated as follows:88
(si, ai) ∼ µβ(s, a), ri = R(si, ai), and s′i ∼ P (·|si, ai).89

Positive-unlabeled (PU) learning. PU learning is a method that trains a binary classifier us-90
ing positive and unlabeled data (Li & Liu, 2003; Bekker & Davis, 2018; Sugiyama et al., 2022).91
Let X ∈ Rd and Y ∈ {−1,+1} be the random variables of the input and label in a binary92
classification problem. We denote the data-generating joint density over (X,Y ) by p(x, y). Let93
pp(x) := p(x|Y = +1) and pn(x) := p(x|Y = −1) be the densities of x conditioned on the94
positive and negative labels respectively and p(x) := αppp(x) + αnpn(x) be the marginal density95
of the unlabeled data. αp := p(Y = +1) denotes the class prior probability (mixture proportion)96
for the positive label and αn := p(Y = −1) = 1 − αp for the negative label. In PU learning,97

we assume that we have two types of data: Positively labeled data Xp := {xpi }
np

i=1
i.i.d.∼ pp(x) and98

unlabeled data Xu := {xui }nu
i=1

i.i.d.∼ p(x). The task of PU learning is to train a binary classifier99
f : X → {−1,+1} from positive data Xp and unlabeled data Xu. Generally, PU learning methods100
require information on the mixture proportion (αp), and there are a bunch of mixture proportion101
estimation (MPE) methods (du Plessis & Sugiyama, 2014; Scott, 2015; du Plessis et al., 2017; Garg102
et al., 2021). Among the methods of PU learning, certain approaches, notably nnPU (Kiryo et al.,103
2017) and (TED)n (Garg et al., 2021), demonstrate particular compatibility with neural networks.104

3 Method105

This section introduces a novel offline RL problem setting for leveraging domain-unlabeled data.106
We then propose a simple algorithm using PU learning to address this problem.107

3.1 Problem Formulation108

We introduce Positive-Unlabeled Offline RL (PUORL) where the dataset is generated within109
multiple domains, with a small amount of data from one domain of our interest labeled and the110
rest provided as domain-unlabeled (Figure 1). In PUORL, we have a positive domain Mp :=111
(S,A, Pp, ρ, R, γ), for which we aim to maximize the expected return and negative domains112
{Mk

n := (S,A, P kn , ρ, R, γ)}Nk=1, which share the same state and action spaces, initial state distri-113
bution, reward function and discount factor. For each domain, there exist fixed behavioral policies:114
πp for positive domain and πkn for negative domains, and they induce the stationary distributions115
over the state-action pair denoted as µp(s, a) and µkn(s, a) for all k ∈ {1, . . . , N}. We define116
µn(s, a) :=

∑N
k=1 ηkµ

k
n(s, a), where ηk ∈ [0, 1],

∑N
k=1 ηk = 1 is the domain-mixture proportion.117
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Figure 2: Diagram of our method. We first train a classifier f using PU learning to distinguish
positive domain data from negative domain data. Then, we filter the positive domain data from
domain-unlabeled data by applying classifier f to the domain-unlabeled dataset. Finally, we train a
policy using off-the-shelf offline RL methods with the augmented dataset.

We are given two datasets:118

• Positive data: explicitly labeled target-domain transitions, Dp := {(si, ai, ri, s′i)}
np

i=1. These119
transitions are i.i.d. samples from µp(s, a), R, and Pp.120

• Domain-unlabeled data: a mixture of positive and negative-domain transitions, Du :=121
{(si, ai, ri, s′i)}nu

i=1. These transitions are i.i.d. samples from µu(s, a) := αpµp(s, a) +122
αnµn(s, a), R, and corresponding transition densites. We assume that nu ≫ np.123

Henceforth, domain-unlabeled data will be referred to as unlabeled data when it is clear from the124
context. Although PUORL focuses on the difference in dynamics, we can generalize the problem set125
to encompass variations in the reward function. Refer to Appendix C for details. Here, the objective126
is to learn the optimal policy in the positive domain of our interest as127

π∗(a|s) := argmax
π

Eπ,Pp

[ ∞∑
t=1

γtR(st, at)

]
. (1)

The most naive approach in this setup involves applying conventional offline RL methods on only a128
small amount of positive data Dp. However, using a small dataset increases the risk of encountering129
out-of-distribution state-action pairs due to the limited coverage of the dataset (Levine et al., 2020).130
Conversely, utilizing all available data Dp ∪ Du to increase the dataset size can hinder the agent’s131
performance due to the different dynamics (Liu et al., 2022).132

3.2 Proposed Method133

The key idea of our method is to filter positive-domain data from unlabeled data by training a domain134
classifier that leverages the differences in transition dynamics. Specifically, we propose a two-staged135
offline RL algorithm as in Figure 2.136

Stage 1: Train a domain classifier by PU learning. We consider a binary classification problem137
where S × A × S ′ serves as the input space (X in Sec. 2). The label is defined as Y = +1 for the138
positive domain and Y = −1 for the negative domains. Since positive and negative domains differ139
in how they transition from (s, a) to s′, the tuple (s, a, s′) naturally captures these discrepancies,140
making it an effective signal for classification. Using positive data Dp and unlabeled data Du, we141
train a classifier f : S × A × S ′ → {+1,−1} by PU learning (Kiryo et al., 2017; Sugiyama142
et al., 2022; Plessis et al., 2015). Because αp is unknown in PUORL, we estimate it using mixture143
proportion estimation (MPE) (Garg et al., 2021; Sugiyama et al., 2022).144
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Stage 2: Data filtering and offline RL. We first filter the positive domain data from unlabeled145
data by applying classifier f to the unlabeled dataset to identify instances predicted as positive,146
denoted by Dfp := {(s, a, r, s′) ∈ Du : f(s, a, s′) = +1}, combining it with the positive data as147

D̃p := Dp ∪ Dfp . Then, we train the policy using off-the-shelf offline RL methods with D̃p.148

The methodology details are outlined in Algo. 1.149

Algorithm 1 Data filtering for the positive domain

1: Initialize classifier parameters ψ of classifier f
2: Initialize policy parameters θ and value function parameters ϕ
3: Initialize experience replay buffer Dp and Du

4: Specify epochs KPU, KRL

5: for iteration k ∈ [0, . . . ,KPU] do ▷ PU learning routine
6: Update ψ on Dp and Du by PU learning with MPE
7: end for
8: D̃p ← Dp ∪ {(s, a, r, s′) ∈ Du : fψ(s, a, s

′) = +1} ▷ Data filtering
9: for iteration k ∈ [0, . . . ,KRL] do ▷ Offline RL routine

10: Update θ and ϕ on D̃p by Offline RL method
11: end for
12: Output θ and ϕ

This algorithm exhibits considerable generality, accommodating a wide range of PU learning150
methodologies (Kiryo et al., 2017; Garg et al., 2021) and offline RL algorithm (Kumar et al., 2020;151
Kostrikov et al., 2022; Fujimoto & Gu, 2021; Fujimoto et al., 2023; Tarasov et al., 2023), allowing152
practitioners to choose the most suitable methods for their specific problem. An accurate classifier153
is necessary for the data filtering to work well. Conversely, less accurate classifiers result in the in-154
clusion of negative-domain data in the filtered data Dfp , potentially leading to a performance decline155
due to the different dynamics.156

4 Experiment157

We conduct experiments under various settings to investigate the following four questions: (i) Can158
the PU learning method accurately classify the domain from PU-formatted data? (ii) Can our method159
improve performance by augmenting positive data in various domain shift settings? (iii) How does160
the magnitude of the dynamics shift affect performance? (iv) How does the different quality of the161
negative-domain data affect the performance? We first explain the setup of our experiments and,162
subsequently, report the results.163

4.1 Experimental Setup164

Dataset. We utilized the modified version of D4RL benchmark (Fu et al., 2020) with dynamics165
shift, focusing on three control tasks: Halfcheetah, Hopper, and Walker2d. D4RL provides four166
different data qualities for each task: medium-expert (ME), medium-replay (MR), medium (M), and167
random (R). To examine the impact of dynamics shift on performance, we considered three types of168
dynamics shifts between positive and negative domains: body mass shift, mixture shift, and entire169
body shift. In all scenarios, we set the total number of samples to 1 million and maintained a 3:7170
positive-to-negative ratio. We explored two labeled ratios: 0.03 and 0.01, where only 30K and 10K171
samples were labeled positive, respectively. In the main text, we report the results with the labeled172
ratio of 0.01 and put the results with the labeled ratio of 0.03 in App. D.173

We used the dataset provided by Liu et al. (2022) for the body mass shift and mixture shift. In body174
mass shift, the mass of specific body parts in the negative domain was modified. For the mixture175
shift, we mixed the data with body mass shift and data with joint noise with equal proportions to176
test whether our method can handle multiple negative domains. We prepared the entire body shift177
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Table 1: The results of the PU classifier in the body mass shift with labeled ratio = 0.01 and 0.03.
For each setting, we reported the average and standard deviation of the test accuracy over 5 seeds.

Env Ratio ME/ME ME/R M/M M/R

Hopper 0.01 99.54± 0.06 99.23± 0.08 99.77± 0.14 99.33± 0.07
0.03 99.72± 0.06 99.89± 0.03 99.90± 0.03 99.32± 0.05

Halfcheetah 0.01 99.48± 0.04 99.45± 0.11 99.38± 0.18 99.33± 0.06
0.03 99.63± 0.03 99.70± 0.10 99.66± 0.06 99.43± 0.07

Walker2d 0.01 99.00± 0.03 98.43± 0.04 98.36± 0.02 99.69± 0.10
0.03 99.64± 0.02 99.49± 0.11 98.41± 0.06 99.39± 0.08

with Halfcheetah and Walker2d to test the performance with a large dynamics shift. Halfcheetah and178
Walker2d were paired as positive and negative domains in the entire body shift due to their entirely179
different body structures, yet they have the same state space of 17 dimensions.180

To explore the effect of data quality on performance, we examined various combinations of data181
qualities, using abbreviations separated by a slash to denote pairs of positive and negative data with182
varying qualities, e.g., ME/ME, for medium-expert quality in both domains.183

Offline RL algorithms and PU learning methods. We selected TD3+BC (Fujimoto & Gu, 2021)184
and IQL (Kostrikov et al., 2022) as our offline RL methods due to their widespread use and compu-185
tational efficiency. We used the implementation of TD3+BC and IQL from JAX-CORL (Nishimori,186
2024) and used the default hyperparameters for all experiments. The main results presented below187
pertain to TD3+BC. The results for IQL are reported in App. D.2. We trained the agent for 1 million188
steps and reported the average and 95% confidence interval of averaged evaluation results over 10189
episodes and 10 different seeds for each setting.190

For PU learning, TEDn (Garg et al., 2021) was chosen owing to its effectiveness with neural net-191
works (App. B.1) and used the official implementation provided by the authors. We trained the192
classifier for 100 epochs and reported the average and standard deviation of the test accuracy over 5193
seeds. For more details, refer to App. B.194

Baselines. To evaluate our method’s efficacy, we established five baselines for comparison: Only-195
Labeled-Positive (OLP), Sharing-All, Dynamic-Aware Reward Augmentation (DARA) (Liu et al.,196
2022), Info-Gap Data Filtering (IGDF) (Wen et al., 2024) and Oracle. The OLP baseline, utilizing197
only labeled positive data (only 1%–3% of the entire dataset), avoided dynamics shifts’ issues at198
the expense of using a significantly reduced dataset size. This comparison assessed the benefit of199
augmenting data volume through our filtering method. The Sharing-All baseline employed positive200
and unlabeled data without preprocessing for offline RL, offering broader data coverage but posing201
the risk of performance degradation due to dynamics shifts. This comparison aimed to explore the202
impact of dynamics shifts and how our filtering technique can mitigate these effects. The Oracle203
baseline, training policy with positively labeled data, and all positive data within the unlabeled data204
provide the ideal performance our method strives to achieve.205

In addition to those naive baselines, we also compared our method with cross-domain adaptation206
methods designed to improve performance in the target domain by leveraging source domain data207
with different dynamics. For these methods, we used the positive data as the target data and the208
unlabeled data as the source domain data. We chose two methods, DARA and IGDF, which apply to209
any offline RL algorithms and are, thereby, good candidates for comparison with our plug-and-play210
method. This comparison aimed to examine whether PUORL, where we have domain-unlabeled211
data alongside a limited amount of labeled target data, negatively impacts the performance of cross-212
domain adaptation methods. If such a decline occurs, it highlights the need for specialized meth-213
ods, such as PU-based filtering, to handle this scenario effectively. For both algorithms, we re-214
implemented the algorithm in JAX (Bradbury et al., 2018) for parallelized training referring to the215
official implementations. For more details, refer to App. B.3.216
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Table 2: The average normalized score and 95% confidence interval calculated by the results from
10 different seeds in body mass shift (labeled ratio = 0.01) with TD3+BC. Of feasible methods (OLP,
Sharing-All, DARA, IGDF, Ours), the best average is in blue. Separated by the double vertical line,
we report Oracle as a reference.

Body mass shift
Env Quality OLP Sharing-All DARA IGDF Ours Oracle

Hopper

ME/ME 28.6± 7.1 45.7± 13.0 55.5± 11.9 50.4± 12.8 98.3± 5.9 98.2± 8.4
ME/R 36.5± 7.5 73.9± 12.7 51.0± 9.1 40.3± 8.2 100.8± 6.4 98.2± 8.4
M/M 37.9± 7.3 47.4± 3.4 56.6± 4.6 52.9± 2.4 48.3± 1.4 48.9± 2.8
M/R 43.3± 4.6 45.8± 4.0 52.1± 4.8 50.5± 4.7 52.1± 2.9 48.9± 2.8

Halfcheetah

ME/ME 17.6± 3.1 80.8± 2.1 27.2± 3.1 21.3± 5.0 75.3± 10.2 86.9± 4.4
ME/R 17.0± 2.7 72.5± 4.4 3.9± 2.7 7.4± 2.8 80.4± 8.7 86.9± 4.4
M/M 32.0± 2.7 42.1± 1.3 41.3± 1.0 42.3± 0.9 48.5± 0.2 48.8± 0.3
M/R 32.3± 3.0 37.8± 10.2 11.3± 5.3 8.6± 3.7 48.9± 0.2 48.8± 0.3

Walker2d

ME/ME 9.3± 4.4 88.5± 0.6 37.1± 14.8 59.6± 17.3 108.2± 0.4 108.5± 0.4
ME/R 15.9± 5.8 78.0± 24.1 2.6± 1.8 4.5± 2.2 108.1± 0.8 108.5± 0.4
M/M 16.4± 7.0 81.2± 0.8 37.0± 11.3 41.7± 7.6 83.2± 2.2 84.6± 0.6
M/R 21.3± 7.9 80.0± 2.1 1.2± 1.1 0.9± 1.4 84.0± 0.3 84.6± 0.6

Table 3: The average normalized score and 95% confidence interval from 10 seeds in mixture shift
(labeled ratio = 0.01) with TD3+BC. The format is the same as the table for body mass shift.

Mixture shift
Env Quality OLP Sharing-All DARA IGDF Ours Oracle

Hopper

ME/ME 26.8± 6.2 73.0± 18.6 53.4± 8.8 42.4± 8.9 92.6± 9.7 96.4± 8.2
ME/R 24.3± 7.0 84.9± 15.8 43.6± 7.6 42.5± 10.9 97.0± 7.5 96.4± 8.2
M/M 40.6± 3.1 56.8± 7.9 55.4± 4.6 55.4± 5.8 46.9± 1.6 45.9± 1.5
M/R 42.8± 2.2 43.7± 2.9 44.9± 4.6 49.3± 2.8 48.7± 1.5 45.9± 1.5

Halfcheetah

ME/ME 19.5± 5.2 78.6± 2.1 28.6± 3.6 29.9± 3.7 82.4± 6.8 81.3± 9.6
ME/R 19.0± 3.1 82.0± 4.8 11.1± 4.0 9.3± 1.9 78.6± 8.5 81.3± 9.6
M/M 35.8± 2.1 48.1± 1.3 39.8± 2.5 40.4± 2.9 48.7± 0.2 48.7± 0.2
M/R 32.5± 2.0 51.7± 1.4 14.7± 3.2 16.8± 4.4 48.8± 0.3 48.7± 0.2

Walker2d

ME/ME 7.0± 3.1 104.4± 3.5 49.1± 20.2 46.0± 11.9 107.6± 2.0 108.5± 0.4
ME/R 16.3± 6.3 107.2± 18.5 25.2± 4.9 37.6± 6.5 108.7± 0.3 108.5± 0.4
M/M 17.3± 7.2 79.8± 1.6 55.1± 13.5 56.4± 12.4 84.3± 1.5 84.8± 1.4
M/R 19.1± 7.3 78.7± 2.1 29.6± 11.8 41.6± 6.8 83.0± 3.5 84.8± 1.4

4.2 Results217

We now present the experimental findings, organized around the four key questions posed in Sec-218
tion 4. Unless stated otherwise, all offline RL experiments use TD3+BC with a labeled ratio of 0.01.219
Full results for additional settings and labeled ratios are provided in Appendix D.220

(i) PU classification performance. Table 1 reports the test accuracy of our PU classifier (based221
on TEDn; (Garg et al., 2021)) for Hopper, Halfcheetah, and Walker2d under body mass shift. The222
accuracy exceeds 98% in all cases, indicating that the classifier accurately distinguishes positive-223
domain data from unlabeled data. Similar performance appears under mixture shift and entire body224
shift, as detailed in Appendix D.3. These findings suggest that the data filtering employed by our225
method is highly reliable across various shift settings.226

(ii) Policy performance with augmented positive data. Tables 2–4 summarize the performance227
of all methods under body mass shift, mixture shift, and entire body shift. In nearly all settings, our228
method achieves the highest or near-highest average normalized score among the feasible baselines229
(OLP, Sharing-All, DARA, IGDF, Ours), often approaching the performance of the Oracle (which230
has access to all positive samples). These results confirm that our method is effective even when231
only a tiny fraction of labeled positive samples are available.232
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Table 4: The average normalized score and 95% confidence interval from 10 seeds in entire body
shift (labeled ratio = 0.01) with TD3+BC. The format is the same as the table for body mass shift.

Entire body shift
Env Quality OLP Sharing-All DARA IGDF Ours Oracle

Halfcheetah ME/ME 18.4± 3.0 54.0± 4.8 14.6± 4.7 15.2± 5.0 80.2± 10.6 84.7± 4.9
ME/R 21.3± 2.6 33.8± 10.2 9.9± 2.1 16.5± 4.0 89.1± 4.2 84.7± 4.9

(iii) Effect of dynamics shift magnitude. We examine performance across body mass shift, mix-233
ture shift, and entire body shift to analyze how outcomes change with increasing domain mismatch:234

• Robustness of our method. Our method’s performance remains consistently strong, showing235
minimal degradation under larger shifts (e.g., entire body shift in Table 4).236

• Sharing-All vs. large shift. For smaller shifts (body mass or mixture shift), Sharing-All can237
occasionally yield competitive or high scores by exploiting the broader coverage. However, per-238
formance falls sharply as the shift increases (entire body shift).239

• Domain adaptation baselines (DARA, IGDF). Although DARA (Liu et al., 2022) and240
IGDF (Wen et al., 2024) are designed to handle domain differences, both are worse than Sharing-241
All in most scenarios and degrade further with large shifts. A likely cause is their reliance on242
submodule training (e.g., domain classifiers or encoders) with very few labeled data, which can243
become unreliable when unlabeled data may also contain additional positive samples (App. D.1).244

These patterns highlight that large domain shifts require careful data selection; our PU-based fil-245
tering remains effective, whereas both the naive Sharing-All and the domain adaptation baselines246
experience performance drops due to the dynamics shift.247

(iv) Influence of negative-domain data quality. We analyze the influence of negative-domain248
data quality on the performance of our method and the baselines by comparing results with different249
negative-domain data quality. For example, compare ME/ME vs. ME/R or M/M vs.M/R with the250
same positive dataset quality. We observe:251

• Our method remains robust regardless of negative-domain quality. The PU filtering consistently252
prevents the inclusion of harmful transitions, resulting in stable performance gains.253

• Sharing-All and domain adaptation baselines degrade more significantly when the negative-254
domain quality is poor (e.g., R), suggesting that merging or adapting from such data can damage255
performance unless the shift and data mismatch is mild.256

These findings indicate that negative-domain data quality is a key factor in the methods used to share257
unlabeled data. By contrast, PU-based filtering appears less sensitive to variations in the quality.258

5 Conclusion and Future Work259

This study introduced a novel offline RL setting, positive-unlabeled offline RL (PUORL), incor-260
porating domain-unlabeled data. We then proposed a plug-and-play algorithmic framework for261
PUORL that uses PU learning to augment the positively labeled data with additional positive-domain262
samples from the unlabeled data. Experiments on the D4RL benchmark showed that our approach263
leverages large amounts of unlabeled data to train policies, achieving strong performance. Our264
method primarily focused on filtering positive data from unlabeled data and training a policy solely265
with the filtered samples, leaving efficient cross-domain sample sharing as a future direction. Since266
PU learning is a type of weakly supervised learning (WSL), we believe that extending this setting to267
other WSL problems could broaden offline RL’s practical applications.268

8



Offline Reinforcement Learning with Domain-Unlabeled Data

References269

Joshua Achiam, Harrison Edwards, Dario Amodei, and P. Abbeel. Variational Option Discovery270
Algorithms. arXiv preprint arXiv:1807.10299, 2018.271

Johannes Ackermann, Takayuki Osa, and Masashi Sugiyama. Offline reinforcement learning from272
datasets with structured non-stationarity. arXiv preprint arXiv:2405.14114, 2024.273

Jessa Bekker and Jesse Davis. Estimating the class prior in positive and unlabeled data through de-274
cision tree induction. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelli-275
gence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI276
Symposium on Educational Advances in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18.277
AAAI Press, 2018. ISBN 978-1-57735-800-8.278

Jessa Bekker and Jesse Davis. Learning from positive and unlabeled data: a survey. Machine279
Learning, 109(4):719–760, April 2020. ISSN 1573-0565. DOI: 10.1007/s10994-020-05877-5.280

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal281
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao282
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:283
//github.com/jax-ml/jax.284

Marc Claesen, Frank De Smet, Pieter Gillard, Chantal Mathieu, and Bart De Moor. Building clas-285
sifiers to predict the start of glucose-lowering pharmacotherapy using belgian health expenditure286
data. arXiv preprint arXiv:1504.07389, 2015.287

Ignasi Clavera, Anusha Nagabandi, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and288
Chelsea Finn. Learning to adapt: Meta-learning for model-based control. arXiv preprint289
arXiv:1803.11347, 3:3, 2018.290

Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline Meta Reinforcement Learning – Identi-291
fiability Challenges and Effective Data Collection Strategies. In M. Ranzato, A. Beygelzimer,292
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Pro-293
cessing Systems, volume 34, pp. 4607–4618. Curran Associates, Inc., 2021.294

Finale Doshi-Velez and George Konidaris. Hidden parameter markov decision processes: a semi-295
parametric regression approach for discovering latent task parametrizations. In Proceedings of the296
Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI’16, pp. 1432–1440.297
AAAI Press, 2016. ISBN 9781577357704.298

M. C. du Plessis and M. Sugiyama. Class prior estimation from positive and unlabeled data. IEICE299
Transactions on Information and Systems, E97-D(5):1358–1362, 2014.300

M. C. du Plessis, G. Niu, and M. Sugiyama. Class-prior estimation for learning from positive and301
unlabeled data. Machine Learning, 106(4):463–492, 2017.302

Benjamin Eysenbach, Shreyas Chaudhari, Swapnil Asawa, Sergey Levine, and Ruslan Salakhutdi-303
nov. Off-Dynamics Reinforcement Learning: Training for Transfer with Domain Classifiers. In304
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,305
May 3-7, 2021. OpenReview.net, 2021.306

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for307
Deep Data-Driven Reinforcement Learning. arXiv preprint arXiv:2004.07219, 2020.308

Scott Fujimoto and Shixiang (Shane) Gu. A Minimalist Approach to Offline Reinforcement Learn-309
ing. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.),310
Advances in Neural Information Processing Systems, volume 34, pp. 20132–20145. Curran As-311
sociates, Inc., 2021.312

9

http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
http://github.com/jax-ml/jax


Under review for RLC 2025, to be published in RLJ 2025

Scott Fujimoto, Wei-Di Chang, Edward J. Smith, Shixiang Shane Gu, Doina Precup, and David313
Meger. For SALE: State-Action Representation Learning for Deep Reinforcement Learning.314
2023.315

Saurabh Garg, Yifan Wu, Alexander J Smola, Sivaraman Balakrishnan, and Zachary Lipton. Mix-316
ture Proportion Estimation and PU Learning:A Modern Approach. In M. Ranzato, A. Beygelz-317
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information318
Processing Systems, volume 34, pp. 8532–8544. Curran Associates, Inc., 2021.319

Arthur Guez, Robert D. Vincent, Massimo Avoli, and Joelle Pineau. Adaptive Treatment of Epilepsy320
via Batch-mode Reinforcement Learning. In AAAI Conference on Artificial Intelligence, 2008.321

Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual Markov Decision Processes. arXiv322
preprint arXiv:1502.02259, 2015.323

Donald Hejna, Lerrel Pinto, and Pieter Abbeel. Hierarchically decoupled imitation for morphologi-324
cal transfer. In International Conference on Machine Learning, pp. 4159–4171. PMLR, 2020.325

Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A. Ortega, Yee Whye Teh, and326
Nicolas Heess. Meta reinforcement learning as task inference. arXiv preprint arXiv:1905.06424,327
2019.328

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre329
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Scalable330
Deep Reinforcement Learning for Vision-Based Robotic Manipulation. In Aude Billard, Anca331
Dragan, Jan Peters, and Jun Morimoto (eds.), Proceedings of The 2nd Conference on Robot Learn-332
ing, volume 87 of Proceedings of Machine Learning Research, pp. 651–673. PMLR, 29–31 Oct333
2018.334

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,335
Chelsea Finn, Sergey Levine, and Karol Hausman. MT-Opt: Continuous Multi-Task Robotic336
Reinforcement Learning at Scale. arXiv preprint arXiv:2104.08212, 2021.337

Taylor W. Killian, Haoran Zhang, Jayakumar Subramanian, Mehdi Fatemi, and Marzyeh Ghassemi.338
An Empirical Study of Representation Learning for Reinforcement Learning in Healthcare. 2020.339

Kuno Kim, Yihong Gu, Jiaming Song, Shengjia Zhao, and Stefano Ermon. Domain adaptive imita-340
tion learning. In International Conference on Machine Learning, pp. 5286–5295. PMLR, 2020.341

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-342
mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE343
transactions on intelligent transportation systems, 23(6):4909–4926, 2021.344

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A Survey of Zero-shot345
Generalisation in Deep Reinforcement Learning. Journal of Artificial Intelligence Research, 76:346
201–264, January 2023. ISSN 1076-9757. DOI: 10.1613/jair.1.14174.347

Ryuichi Kiryo, Gang Niu, Marthinus C du Plessis, and Masashi Sugiyama. Positive-Unlabeled348
Learning with Non-Negative Risk Estimator. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,349
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing350
Systems, volume 30. Curran Associates, Inc., 2017.351

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline Reinforcement Learning with Implicit352
Q-Learning. In The Tenth International Conference on Learning Representations, ICLR 2022,353
Virtual Event, April 25-29, 2022. OpenReview.net, 2022.354

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-Learning for Of-355
fline Reinforcement Learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin356
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 1179–1191. Curran357
Associates, Inc., 2020.358

10



Offline Reinforcement Learning with Domain-Unlabeled Data

Sergey Levine, Aviral Kumar, G. Tucker, and Justin Fu. Offline Reinforcement Learning: Tutorial,359
Review, and Perspectives on Open Problems. arXiv preprint arXiv:2005.01643, 2020.360

Jiachen Li, Quan Vuong, Shuang Liu, Minghua Liu, Kamil Ciosek, Henrik Christensen, and Hao Su.361
Multi-task Batch Reinforcement Learning with Metric Learning. In H. Larochelle, M. Ranzato,362
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,363
volume 33, pp. 6197–6210. Curran Associates, Inc., 2020.364

Xiaoli Li and Bing Liu. Learning to classify texts using positive and unlabeled data. In IJCAI,365
volume 3, pp. 587–592. Citeseer, 2003.366

Jinxin Liu, Hongyin Zhang, and Donglin Wang. DARA: Dynamics-Aware Reward Augmentation367
in Offline Reinforcement Learning. In The Tenth International Conference on Learning Repre-368
sentations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.369

Jinxin Liu, Ziqi Zhang, Zhenyu Wei, Zifeng Zhuang, Yachen Kang, Sibo Gai, and Donglin Wang.370
Beyond OOD State Actions: Supported Cross-Domain Offline Reinforcement Learning. arXiv371
preprint arXiv:2306.12755, 2023.372

Jiafei Lyu, Kang Xu, Jiacheng Xu, Mengbei Yan, Jingwen Yang, Zongzhang Zhang, Chenjia Bai,373
Zongqing Lu, and Xiu Li. Odrl: A benchmark for off-dynamics reinforcement learning. arXiv374
preprint arXiv:2410.20750, 2024.375

Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam Paull. Active domain376
randomization. In Conference on Robot Learning, pp. 1162–1176. PMLR, 2020.377

Soichiro Nishimori. Jax-corl: Clean sigle-file implementations of offline rl algorithms in jax. 2024.378
URL https://github.com/nissymori/JAX-CORL.379

Sindhu Padakandla. A survey of reinforcement learning algorithms for dynamically varying envi-380
ronments. ACM Computing Surveys (CSUR), 54(6):1–25, 2021.381

Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan, Alexander382
Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, et al. Open x-embodiment: Robotic383
learning datasets and rt-x models. arXiv preprint arXiv:2310.08864, 2023.384

Christian F. Perez, Felipe Petroski Such, and Theofanis Karaletsos. Generalized Hidden Param-385
eter MDPs: Transferable Model-Based RL in a Handful of Trials. In The Thirty-Fourth AAAI386
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications387
of Artificial Intelligence Conference, IAAI 2020, pp. 5403–5411. AAAI Press, 2020. DOI:388
10.1609/AAAI.V34I04.5989.389

Marthinus Du Plessis, Gang Niu, and Masashi Sugiyama. Convex Formulation for Learning from390
Positive and Unlabeled Data. In Francis Bach and David Blei (eds.), Proceedings of the 32nd391
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning392
Research, pp. 1386–1394, Lille, France, 07–09 Jul 2015. PMLR.393

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John394
Wiley & Sons, August 2014. ISBN 978-1-118-62587-3. Google-Books-ID: VvBjBAAAQBAJ.395

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient Off-396
Policy Meta-Reinforcement Learning via Probabilistic Context Variables. In Kamalika Chaudhuri397
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine398
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 5331–5340. PMLR,399
09–15 Jun 2019.400

Clayton Scott. A Rate of Convergence for Mixture Proportion Estimation, with Application to401
Learning from Noisy Labels. In Guy Lebanon and S. V. N. Vishwanathan (eds.), Proceedings402
of the Eighteenth International Conference on Artificial Intelligence and Statistics, volume 38 of403

11

https://github.com/nissymori/JAX-CORL


Under review for RLC 2025, to be published in RLJ 2025

Proceedings of Machine Learning Research, pp. 838–846, San Diego, California, USA, 09–12404
May 2015. PMLR.405

Tianyu Shi, Dong Chen, Kaian Chen, and Zhaojian Li. Offline reinforcement learning for au-406
tonomous driving with safety and exploration enhancement. arXiv preprint arXiv:2110.07067,407
2021.408

Reda Bahi Slaoui, William R Clements, Jakob N Foerster, and Sébastien Toth. Robust visual domain409
randomization for reinforcement learning. arXiv preprint arXiv:1910.10537, 2019.410

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-Task Reinforcement Learning with Context-411
based Representations. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th Inter-412
national Conference on Machine Learning, volume 139 of Proceedings of Machine Learning413
Research, pp. 9767–9779. PMLR, 18–24 Jul 2021.414

Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, and Tomoya Sakai. Machine learning from415
weak supervision: An empirical risk minimization approach. MIT Press, 2022.416

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning, second edition: An Introduction.417
MIT Press, November 2018. ISBN 978-0-262-35270-3. Google-Books-ID: uWV0DwAAQBAJ.418

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the min-419
imalist approach to offline reinforcement learning. Advances in Neural Information Processing420
Systems, 36:11592–11620, 2023.421

Qiang Wang, Robert McCarthy, David Cordova Bulens, Kevin McGuinness, Noel E. O’Connor,422
Francisco Roldan Sanchez, Nico Gürtler, Felix Widmaier, and Stephen J. Redmond. Improving423
Behavioural Cloning with Positive Unlabeled Learning. In 7th Annual Conference on Robot424
Learning, 2023.425

Xiaoyu Wen, Chenjia Bai, Kang Xu, Xudong Yu, Yang Zhang, Xuelong Li, and Zhen Wang. Con-426
trastive representation for data filtering in cross-domain offline reinforcement learning. arXiv427
preprint arXiv:2405.06192, 2024.428

Jinwei Xing, Takashi Nagata, Kexin Chen, Xinyun Zou, Emre Neftci, and Jeffrey L Krichmar. Do-429
main adaptation in reinforcement learning via latent unified state representation. In Proceedings430
of the AAAI Conference on Artificial Intelligence, volume 35, pp. 10452–10459, 2021.431

Danfei Xu and Misha Denil. Positive-Unlabeled Reward Learning. In Jens Kober, Fabio Ramos,432
and Claire Tomlin (eds.), Proceedings of the 2020 Conference on Robot Learning, volume 155 of433
Proceedings of Machine Learning Research, pp. 205–219. PMLR, 16–18 Nov 2021.434

Kang Xu, Chenjia Bai, Xiaoteng Ma, Dong Wang, Bin Zhao, Zhen Wang, Xuelong Li, and Wei Li.435
Cross-domain policy adaptation via value-guided data filtering. Advances in Neural Information436
Processing Systems, 36:73395–73421, 2023a.437

Kang Xu, Chenjia Bai, Xiaoteng Ma, Dong Wang, Bin Zhao, Zhen Wang, Xuelong Li, and438
Wei Li. Cross-Domain Policy Adaptation via Value-Guided Data Filtering, October 2023b.439
arXiv:2305.17625 [cs].440

Zhenghai Xue, Qingpeng Cai, Shuchang Liu, Dong Zheng, Peng Jiang, Kun Gai, and Bo An. State441
Regularized Policy Optimization on Data with Dynamics Shift. In Thirty-seventh Conference on442
Neural Information Processing Systems, 2023.443

Kai Yan, Alexander G. Schwing, and Yu-Xiong Wang. A Simple Solution for Offline Imitation from444
Observations and Examples with Possibly Incomplete Trajectories, 2023.445

12



Offline Reinforcement Learning with Domain-Unlabeled Data

Minjong Yoo, Sangwoo Cho, and Honguk Woo. Skills Regularized Task Decomposition for Multi-446
task Offline Reinforcement Learning. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle447
Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems 35: An-448
nual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans,449
LA, USA, November 28 - December 9, 2022, 2022.450

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, and Sergey Levine.451
How to Leverage Unlabeled Data in Offline Reinforcement Learning. In Kamalika Chaudhuri,452
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of453
the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine454
Learning Research, pp. 25611–25635. PMLR, 17–23 Jul 2022.455

Amy Zhang, Shagun Sodhani, Khimya Khetarpal, and Joelle Pineau. Multi-Task Reinforcement456
Learning as a Hidden-Parameter Block MDP. arXiv preprint arXiv:2007.07206, 2020.457

Luisa Zintgraf, Sebastian Schulze, Cong Lu, Leo Feng, Maximilian Igl, Kyriacos Shiarlis, Yarin458
Gal, Katja Hofmann, and Shimon Whiteson. VariBAD: Variational Bayes-Adaptive Deep RL via459
Meta-Learning. Journal of Machine Learning Research, 22(289):1–39, 2021.460

Konrad Zolna, Alexander Novikov, Ksenia Konyushkova, Caglar Gulcehre, Ziyun Wang, Yusuf461
Aytar, Misha Denil, Nando de Freitas, and Scott E. Reed. Offline Learning from Demonstrations462
and Unlabeled Experience. arXiv preprint arXiv:2011.13885, 2020.463

13



Under review for RLC 2025, to be published in RLJ 2025

Supplementary Materials464

The following content was not necessarily subject to peer review.465
466

A Related Work467

In this section, we provide a comprehensive overview of the related work.468

Domain-adaptation in online RL. Various approaches have been proposed to tackle domain469
adaptation in online reinforcement learning, each leveraging different techniques to handle vari-470
ations in environment dynamics. Imitation learning strategies (Kim et al., 2020; Hejna et al.,471
2020) utilize expert demonstrations or hierarchical policies to guide the agent in the target do-472
main, while domain randomization methods (Slaoui et al., 2019; Mehta et al., 2020) train agents473
across diverse simulated environments to build robustness against variations. Representation learn-474
ing (Xing et al., 2021) extracts domain-invariant features to facilitate transfer, and system identifi-475
cation approaches (Clavera et al., 2018) learn latent parameters of the environment’s dynamics to476
adapt policies online. Data-filtering techniques (Xu et al., 2023a) selectively incorporate experience477
from different domains to reduce negative transfer, and reward modification based on learned classi-478
fiers (Eysenbach et al., 2021) helps align rewards when discrepancies in dynamics lead to misaligned479
feedback signals.480

RL with multiple MDPs. Contextual MDPs (CMDPs) formalize the RL problem with multiple481
environments as MDPs controlled by a variable known as a “context” (Hallak et al., 2015). Different482
contexts define different types of problems (Kirk et al., 2023). We focus on the case where the483
context is a binary task ID determining the dynamics. Thanks to its generality, the CMDP can484
encapsulate a wide range of RL problems, such as multi-task RL (Zhang et al., 2020; Li et al., 2020;485
Sodhani et al., 2021) and meta-RL (Zintgraf et al., 2021; Dorfman et al., 2021). Depending on the486
observability of the context, the solution to the RL problem within CMDPs differs. We can utilize the487
information in policy training if the context is observable. For example, acquiring a representation of488
the environment using self-supervised learning (Sodhani et al., 2021; Humplik et al., 2019; Achiam489
et al., 2018; Li et al., 2020) is common in addressing this objective. In offline RL, MBML (Multi-490
task Batch RL with Metric Learning) employed metric learning to acquire a robust representation491
of discrete contexts in an offline setting (Li et al., 2020). Unlike these approaches, our method492
considers settings where only a subset of the data has observable contexts.493

CMDPs with unobservable contexts are also known as Hidden-Parameter (HiP)-MDPs (Doshi-Velez494
& Konidaris, 2016; Perez et al., 2020). In HiP-MDPs, previous works typically focused on training495
an inference model for the context from histories of multiple time steps (Rakelly et al., 2019; Zintgraf496
et al., 2021; Yoo et al., 2022; Dorfman et al., 2021; Ackermann et al., 2024). Since we consider497
transition-based datasets without trajectory information, such methods are not applicable in our498
setting.499

Unlabeled data in RL. In previous work, “unlabeled data” refers to two settings: reward-500
unlabeled data and data with the quality of the behavioral policy unknown. In the first case, the501
unlabeled data consist of transitions without rewards (Xu & Denil, 2021; Zolna et al., 2020; Yu502
et al., 2022). Several studies have attempted to learn the reward function from reward-unlabeled503
data using the PU learning technique and then utilize this learned reward function in subsequent RL504
routines (Xu & Denil, 2021; Zolna et al., 2020). In the offline multi-task RL literature, Yu et al.505
(2022) explored conservatively using reward-unlabeled data, i.e., setting the reward of the unlabeled506
transitions to zero. In our study, the label corresponds to a specific domain, while they regard the507
reward as a label. In the second case, the unlabeled data is a mixture of transitions from policies of508
unknown quality. In offline RL, previous works attempted to extract high-quality data from unla-509
beled data using PU learning (Wang et al., 2023; Yan et al., 2023). In our setting, labels correspond510
to specific domains, not the quality of the behavioral policy.511
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B Details of Experimental Setup512

TD3+BC
Critic Learning Rate 3× 10−4

Actor Learning Rate 3× 10−4

Discount Factor 0.99
Target Update Rate 5× 10−3

Policy Noise 0.2
Policy Noise Clipping (-0.5, 0.5)
Policy Update Frequency Variable
TD3+BC Hyperparameter α 2.5
Actor Hidden Dims (256, 256)
Critic Hidden Dims (256, 256)

IQL
Critic Learning Rate 3× 10−4

Actor Learning Rate 3× 10−4

Discount Factor 0.99
Expectile 0.7
Temperature 3.0
Target Update Rate 5× 10−3

Actor Hidden Dims (256, 256)
Critic Hidden Dims (256, 256)

Table 5: Hyperparameters for TD3+BC and IQL.

B.1 PU Learning513

Explanation of TEDn (Garg et al., 2021). Here, we briefly explain the TEDn (Garg et al., 2021)514
we used in our experiments. TEDn consists of two subroutines for the mixture proportion estima-515
tion, Best Bin Estimation (BBE), and for PU learning, Conditional Value Ignoring Risk (CVIR).516
They iterate these subroutines. Given the estimated mixture proportion α̂ by BBE, CVIR first dis-517
cards α̂ samples from unlabeled data based on the output probability of being positive from the518
current classifier f . The discarded samples are seemingly positive data. The classifier is then trained519
using the labeled positive data and the remaining unlabeled data. On the other hand, in BBE, we520
estimate the mixture proportion using the output of the classifier f with the samples in the validation521
dataset as inputs.522

Training and evaluation. The PU learning method TEDn involved two phases: warm-up and523
main training. We assigned 10 epochs for the warm-up step and 100 epochs for the main training524
step. We utilized a 3-layer MLP with ReLU for the classifier’s network architecture. In our method,525
the trained classifier was then frozen and shared across different random seeds of offline RL training526
with identical data generation configurations, such as the positive-to-negative and unlabeled ratios.527
We reported the average and standard deviation of the test accuracy over 5 random seeds.528

B.2 Offline RL529

For offline RL, we learned a policy with 1 million update steps. For both TD3+BC (Fujimoto &530
Gu, 2021) and IQL (Kostrikov et al., 2022) we used the same hyperparameters for all baselines531
and settings (Table 5). We evaluated the offline RL agent using the normalized score provided by532
D4RL (Fu et al., 2020). To evaluate the offline RL routine’s algorithmic stability, we trained with 10533
different random seeds. For each seed, we calculated the average normalized score over 10 episodes.534
We reported the overall mean and 95% confidence interval from these averaged scores.535

B.3 Baselines536

Here, we provide a detailed explanation of the Domain-Adaptation baselines.537
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Algorithm 2 DARA

Require: Target offline data Dt and source offline data Ds and η.
1: Learn classifier qsas : S ×A× S → [0, 1] and qsa : S ×A → [0, 1] from Dt and Ds.
2: For all (s, a, r, s′) in Ds:

∆r(s, a, s′) = log
qsas(source|s, a, s′)
qsas(target|s, a, s′)

+ log
qsa(source|s, a)
qsa(target|s, a)

(2)

r ← r − η∆r (3)

3: Learn policy with Dt ∪ Ds.

Algorithm 3 IGDF: Info-Gap Data Filtering Algorithm

Require: Source offline data Ds, target offline data Dt,
1: Initialize policy π, value function Q, encoders ϕ(s, a), ψ(s′),
2: data filter ratio ξ, importance ratio α, batch size B.

3: // Contrastive Representation Learning
4: Optimize the contrastive objective in Eq. (6) to train the encoder networks ϕ(s, a) and ψ(s′).

5: // Data Filtering algorithm
6: for each gradient step do
7: Sample a batch bsrc := {(s, a, r, s′)}

B
2 ξ from Ds

8: Sample a batch btar := {(s, a, r, s′)}
B
2 from Dt

9: Select the top-ξ samples from bsrc ranked by h(s, a, s′) == exp(ϕ(s, a)⊤ψ(s′))
10: Combine the top-ξ samples from bsrc with all samples from btar
11: Optimize the value function Qθ via Eq. (8)
12: Learn the policy π(a | s) via offline RL algorithms
13: end for
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DARA. Here, we explain the Domain-Adaptation (DA) baseline used in Section 4. For domain538
adaptation in offline RL, we utilized the Dynamics-Aware Reward Augmentation (DARA) (Liu539
et al., 2022). In domain adaptation in offline RL, we focus on the performance in a target domain540
Mt with a limited amount of target domain data Dt. To address this scarcity, domain adaptation541
uses data Ds from the source domainMs. DARA modifies the source domain data’s reward using a542
trained domain classifier and then utilizes this data with the modified reward for offline RL. Lacking543
full domain labels in PUORL, we treated the positive dataDp as target domain data and the domain-544
unlabeled dataDu as source domain data, training the classifier with 5000 steps with batch size 256.545
We set η = 0.1 following original paper (Liu et al., 2022).546

IGDF. IGDF (Liu et al., 2022) is a method that uses the information of the source domain to547
improve the performance of the target domain. IGDF filters the source domain data using encoder548
networks trained with contrastive learning with target domain data as positive samples and source549
domain data as negative samples. Similar to DARA, this method is also plug-and-play. We set the550
representation dimension to 64 and trained the encoder with 7000 steps with batch size 256. The551
data filter ratio ξ is set to 0.75 following the original paper (Wen et al., 2024).552
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C Extention to Reward Shift553

To extend PUORL in for reward shift, we define the positive and negative MDPs as follows:554
positive MDP Mp := (S,A, P, ρ, rp, γ), which we target for and negative MDPs {Mk

n :=555
(S,A, P, ρ, rkn, γ)}Nk=1, which share the same state and action spaces and dynamics. For each MDP,556
there exist fixed behavioral policies: πp for positive MDP and πkn for negative MDPs. They in-557
duce the stationary distributions over the state-action pair denoted as µp(s, a) and µkn(s, a) for all558
k ∈ {1, . . . , N}. We define µn(s, a) :=

∑N
k=1 ηkµ

k
n(s, a), where ηk ∈ [0, 1],

∑N
k=1 ηk = 1 is the559

MDP-mixture proportion.560

We are given two datasets:561

• Positive data: explicitly labeled target-domain transitions, Dp := {(si, ai, ri, s′i,+1)}np

i=1. These562
transitions are i.i.d. samples from µp(s, a), rp, and P .563

• Domain-unlabeled data: a mixture of positive and negative-domain transitions, Du :=564
{(si, ai, ri, s′i)}nu

i=1. These transitions are i.i.d. samples from µu(s, a) := αpµp(s, a) +565
αnµn(s, a), rn, and P .566

Instead of taking transition, (s, a, s′), we take (s, a, r) to train the classifier with PU learning based567
on the reward shift.568

Algorithm 4 Data filtering for the positive domain with reward shift

1: Initialize classifier parameters ψ of classifier f
2: Initialize policy parameters θ and value function parameters ϕ
3: Initialize experience replay buffer Dp and Du

4: Specify epochs KPU, KRL

5: for iteration k ∈ [0, . . . ,KPU] do ▷ PU learning routine
6: Update ψ on Dp and Du by PU learning with MPE
7: end for
8: D̃p ← Dp ∪ {(s, a, r, s′) ∈ Du : fψ(s, a, r) = +1} ▷ Data filtering
9: for iteration k ∈ [0, . . . ,KRL] do ▷ Offline RL routine

10: Update θ and ϕ on D̃p by Offline RL method
11: end for
12: Output θ and ϕ
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Table 6: The average normalized score and 95% confidence interval from 10 seeds in body mass
shift (labeled ratio = 0.03) with TD3+BC. Of feasible methods (OLP, Sharing-All, DARA, IGDF,
Ours), the best average is in blue. The last column (Oracle) is for reference (ratio=0.05).

Body mass shift (0.03)
Env Quality OLP Sharing-All DARA IGDF Ours Oracle

Hopper

ME/ME 50.0± 10.1 52.3± 8.1 89.9± 13.8 71.1± 10.1 90.4± 9.2 98.2± 8.4
ME/R 46.6± 8.9 86.8± 12.6 73.8± 9.6 77.2± 6.9 90.0± 10.9 98.2± 8.4
M/M 57.4± 13.0 48.1± 3.3 59.8± 3.0 56.3± 5.1 49.7± 3.5 48.9± 2.8
M/R 44.7± 6.0 45.4± 2.1 55.0± 4.7 59.3± 3.8 47.4± 2.6 48.9± 2.8

Halfcheetah

ME/ME 24.4± 1.9 78.6± 3.6 48.3± 4.2 45.5± 4.7 75.6± 8.3 86.9± 4.4
ME/R 25.3± 2.5 70.3± 7.7 23.6± 2.1 22.5± 4.2 82.2± 6.9 86.9± 4.4
M/M 43.4± 1.6 41.0± 0.7 45.9± 0.3 46.0± 0.3 48.7± 0.2 48.8± 0.3
M/R 45.4± 0.5 39.6± 8.1 46.7± 1.7 45.2± 1.9 48.5± 0.2 48.8± 0.3

Walker2d

ME/ME 71.7± 26.1 87.9± 0.9 101.8± 8.7 103.9± 4.0 108.7± 0.2 108.5± 0.4
ME/R 87.0± 13.5 89.2± 23.7 45.2± 16.6 26.5± 15.8 108.8± 0.3 108.5± 0.4
M/M 57.3± 11.5 80.9± 0.9 67.0± 8.6 61.5± 12.8 83.8± 1.1 84.6± 0.6
M/R 64.3± 6.0 77.2± 5.2 47.6± 15.8 51.5± 10.6 84.5± 0.6 84.6± 0.6

Table 7: The average normalized score and 95% confidence interval from 10 seeds in mixture shift
(labeled ratio = 0.03) with TD3+BC. Of feasible methods (OLP, Sharing-All, DARA, IGDF, Ours),
the best average is in blue. The last column (Oracle) is for reference (ratio=0.05).

Mixture shift (0.03)
Env Quality OLP Sharing-All DARA IGDF Ours Oracle

Hopper

ME/ME 55.9± 10.4 68.2± 19.1 71.7± 8.7 74.3± 10.1 98.1± 8.5 96.4± 8.2
ME/R 48.8± 7.7 84.6± 10.5 80.5± 4.3 69.2± 12.9 100.7± 4.1 96.4± 8.2
M/M 45.0± 8.1 50.4± 5.3 55.6± 2.6 52.9± 4.0 87.6± 8.7 45.9± 1.5
M/R 48.6± 1.9 49.6± 5.9 57.8± 3.2 55.1± 3.5 49.2± 2.0 45.9± 1.5

Halfcheetah

ME/ME 24.3± 4.4 82.1± 1.3 41.6± 5.4 43.1± 8.7 80.0± 9.0 81.3± 9.6
ME/R 21.6± 4.9 82.1± 6.8 22.6± 2.8 24.2± 7.1 67.1± 9.3 81.3± 9.6
M/M 35.8± 2.1 48.1± 1.3 39.8± 2.5 40.4± 2.9 48.7± 0.3 48.7± 0.2
M/R 32.5± 2.0 51.7± 1.4 14.7± 3.2 16.8± 4.4 48.8± 0.2 48.7± 0.2

Walker2d

ME/ME 80.3± 15.1 100.2± 6.7 86.5± 19.7 96.4± 12.7 108.3± 0.2 108.5± 0.4
ME/R 90.8± 14.4 101.8± 23.3 72.1± 14.4 89.4± 20.4 108.6± 0.3 108.5± 0.4
M/M 61.6± 8.0 81.8± 2.4 62.4± 11.3 71.0± 7.9 83.9± 0.8 84.8± 1.4
M/R 64.2± 7.8 79.1± 3.7 66.3± 16.7 65.7± 16.8 82.8± 1.7 84.8± 1.4

D Supplemental result569

In this section, we present the supplementary results and discussion to provide additional insights570
into the main findings.571

D.1 Results with TD3+BC with labeled ratio = 0.03572

Table 6– 8 show the results of TD3+BC with the labeled ratio = 0.03. For all the results, our method573
achieves the best performance in almost all the settings, indicating its efficacy in PUORL. Another574
point to note is that the performance of the domain adaptation baselines is improved compared with575
the labeled ratio of 0.01, indicating the severe influence of extremely limited labeled target domain576
data.577

D.2 Results with IQL578

Here, we provide the experimental results with IQL (Kostrikov et al., 2022). Table 9–11 show the579
results with the labeled ratio = 0.01. The results show that our method achieves the best performance580
in 17 out of 26 settings. Overall, the results with hopper are unstable and worse for all methods,581
indicating that the performance of IQL is sensitive in Hopper with limited data (30% in maximum).582
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Table 8: The average normalized score and 95% confidence interval from 10 seeds in entire body
shift (labeled ratio = 0.03) with TD3+BC. Of feasible methods (OLP, Sharing-All, DARA, IGDF,
Ours), the best average is in blue. The last column (Oracle) is for reference (ratio=0.05).

Entire body shift (0.03)
Env Quality OLP Sharing-All DARA IGDF Ours Oracle

Halfcheetah ME/ME 23.1± 3.9 51.8± 5.3 25.7± 4.8 28.2± 3.2 82.7± 5.8 84.7± 4.9
ME/R 25.6± 3.7 28.1± 8.1 13.6± 3.1 13.4± 3.2 82.1± 7.2 84.7± 4.9

Table 9: The average normalized score and 95% confidence interval from 10 seeds in body mass
shift (labeled ratio = 0.01) with IQL.

Body mass shift OLP Sharing-All DARA IGDF PU Oracle

Hopper

ME/ME 23.9± 5.9 38.99± 14.1 37.44± 7.6 29.75± 5.84 39.72± 8.64 54.3± 14.9
ME/R 23.35± 4.23 7.79± 0.16 7.74± 0.25 11.21± 5.02 42.04± 9.95 54.3± 14.9
M/M 37.37± 4.58 37.06± 1.28 35.73± 1.17 36.28± 7.38 56.37± 3.83 54.2± 3.3
M/R 33.56± 3.47 8.04± 0.16 21.68± 8.98 12.37± 5.4 18.66± 8.36 54.3± 14.9

Halfcheetah

ME/ME 0.7± 0.86 51.53± 3.96 54.41± 2.17 51.33± 3.18 82.72± 3.57 87.3± 2.7
ME/R −0.11± 0.47 26.95± 7.54 47.71± 7.73 38.39± 4.55 84.83± 4.06 87.3± 2.7
M/M 3.89± 1.62 37.3± 0.2 36.93± 0.22 36.43± 0.7 46.33± 0.46 46.5± 0.1
M/R 6.31± 3.66 41.64± 2.38 43.56± 0.5 41.18± 1.9 46.57± 0.13 46.5± 0.1

Walker2d

ME/ME 4.3± 2.75 90.68± 0.38 88.92± 6.82 96.73± 7.74 110.32± 0.78 109.1± 1.4
ME/R 6.64± 6.22 65.18± 12.23 62.04± 17.2 66.61± 10.58 88.57± 14.48 109.1± 1.4
M/M 14.42± 5.57 82.77± 0.45 82.42± 0.63 74.85± 6.35 73.49± 9.69 75.6± 5.2
M/R 4.79± 3.4 52.22± 7.44 47.96± 6.59 54.33± 10.88 50.34± 19.19 75.6± 5.2

D.3 Classifier Performance583

Here, we review the performance of the classifier under the mixture shift. Seeing Table 12–13, we584
can see that the PU classifier achieved higher than 98% accuracy, demonstrating the efficacy of PU585
learning under mixture shift and entire body shift.586
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Table 10: The average normalized score and 95% confidence interval from 10 seeds in mixture shift
(labeled ratio = 0.01) with IQL.

Mixture shift OLP Sharing-All DARA IGDF PU Oracle

Hopper

ME/ME 20.43± 6.53 24.58± 4.47 43.0± 10.54 43.08± 11.08 35.28± 8.5 54.3± 14.9
ME/R 19.1± 3.74 22.08± 3.58 36.36± 7.83 28.43± 8.29 29.03± 6.45 54.3± 14.9
M/M 29.96± 3.98 61.82± 8.82 54.86± 9.64 51.55± 6.13 50.1± 3.34 54.2± 3.3
M/R 33.98± 3.15 44.78± 7.52 50.47± 2.51 47.2± 2.13 45.86± 1.44 54.2± 3.3

Halfcheetah

ME/ME 0.26± 0.67 62.46± 1.43 56.73± 3.36 57.48± 4.63 69.5± 2.97 87.3± 2.7
ME/R 1.13± 1.09 57.94± 7.1 49.84± 9.63 51.46± 8.41 72.83± 4.74 87.3± 2.7
M/M 5.58± 2.32 48.05± 0.64 48.43± 0.42 46.36± 2.09 46.54± 0.19 46.5± 0.1
M/R 7.16± 4.39 44.97± 0.46 44.84± 1.45 43.16± 1.04 46.58± 0.21 46.5± 0.1

Walker2d

ME/ME 3.28± 2.08 93.95± 19.68 96.8± 13.09 93.13± 11.37 108.46± 2.65 109.1± 1.4
ME/R 6.33± 3.13 93.38± 8.08 89.98± 12.61 88.98± 13.59 98.96± 12.36 109.1± 1.4
M/M 3.55± 2.43 74.68± 2.73 72.85± 5.38 64.14± 8.58 64.45± 13.22 75.6± 5.2
M/R 11.84± 7.15 50.24± 6.64 60.78± 7.39 59.43± 7.88 62.15± 18.06 75.6± 5.2

Table 11: The average normalized score and 95% confidence interval from 10 seeds in halfcheetah
vs walker2d shift (labeled ratio = 0.01) with IQL.

Halfcheetah vs Walker2d OLP Sharing-All DARA IGDF PU Oracle

Halfcheetah
ME/ME 0.28± 0.37 40.78± 3.42 52.55± 4.95 53.96± 4.46 89.31± 1.92 87.3± 2.7
ME/R 0.07± 0.57 35.64± 3.58 36.93± 3.33 31.12± 4.52 86.73± 2.91 87.3± 2.7

Table 12: The results of the PU classifier in the mixture shift with labeled ratio = 0.01 and 0.03. For
each setting, we reported the average and standard deviation of the test accuracy over 5 seeds.

Env Ratio ME/ME ME/R M/M M/R

Hopper 0.01 98.92± 0.54 98.91± 0.14 99.33± 0.20 99.21± 0.08
0.03 99.44± 0.11 99.22± 0.09 99.79± 0.11 99.42± 0.05

Halfcheetah 0.01 99.43± 0.10 99.42± 0.10 99.38± 0.05 99.35± 0.03
0.03 99.63± 0.04 99.56± 0.03 99.39± 0.02 99.32± 0.19

Walker2d 0.01 98.49± 0.14 98.02± 0.16 98.63± 0.19 98.05± 0.12
0.03 99.00± 0.07 98.83± 0.10 99.26± 0.08 98.81± 0.25

Table 13: The results of the PU classifier in the entire body shift with labeled ratio = 0.01 and 0.03.
For each setting, we reported the average and standard deviation of the test accuracy over 5 seeds.

Env Ratio ME/ME ME/R M/M M/R

Halfcheetah 0.01 99.76± 0.28 99.87± 0.15 99.79± 0.11 99.74± 0.13
0.03 99.98± 0.01 99.93± 0.04 99.95± 0.06 99.96± 0.21
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