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Abstract

In this paper, we propose a novel generalization
of rested and restless bandits where the evolution
of the arms’ expected rewards is governed by a
graph defined over the arms. An edge connect-
ing a pair of arms (i, j) represents the fact that a
pull of arm i triggers the evolution of arm j, and
vice versa. Interestingly, rested and restless ban-
dits are both special cases of our model for some
suitable (degenerate) graphs. Still, the model can
represent way more general and interesting sce-
narios. We first tackle the problem of computing
the optimal policy when no specific structure is
assumed on the graph, showing that it is NP-hard.
Then, we focus on a specific structure, forcing
the graph to be composed of a set of fully con-
nected sub-graphs (i.e., cliques), and we prove
that the optimal policy can be easily computed
in closed form. Subsequently, we move to the
learning problem presenting regret minimization
algorithms for deterministic and stochastic cases.
Our regret bounds highlight the complexity of
the learning problem by incorporating instance-
dependent terms that encode specific properties
of the underlying graph structure. Moreover, we
illustrate how the knowledge of the underlying
graph is not necessary for achieving the no-regret
property.

1. Introduction
In the basic stochastic Multi-Armed Bandit (MAB, Lat-
timore & Szepesvári, 2020) problem, at each round, the
agent is asked to choose an action (a.k.a. arm) among a
finite action set observing a reward drawn from an unknown
probability distribution. MABs are particularly appealing
machine learning models as they provide important theoreti-
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cal guarantees on the convergence to the optimal solution
and the lower and upper bounds to the convergence rate
(usually referred to as regret bounds). However, the stan-
dard MAB model is too naı̈ve for many real-world appli-
cations, and understanding which kind of additional prob-
lem structure allows recovering good theoretical properties
is a central scientific challenge. Examples include non-
stationary (Gur et al., 2014), delayed (Pike-Burke et al.,
2018), linear (Abbasi-Yadkori et al., 2011), contextual (Chu
et al., 2011) and continuous-action spaces (Kleinberg et al.,
2008) bandits.

We focus on rather recent MAB structures, called restless
and rested bandits (Tekin & Liu, 2012). In the former, the
expected rewards evolve following the time (i.e., as an ef-
fect of nature); in the latter, the expected reward of an arm
evolves as a function of the pulls we perform on that spe-
cific arm. In particular, we study a specific shape of the
expected reward evolution, namely rising (Heidari et al.,
2016). In a rising bandit, expected rewards increase accord-
ing to monotonic and concave functions. Restless and rested
rising bandits can capture many settings of practical interest.
Consider, for instance, the scenario in which we have to
choose which product to advertise (i.e., our arms), and the
reward is the number of sales for such a product. The prod-
uct we advertise will increase its sales and favor the sales
of complementary products. This scenario corresponds to a
rested problem in which some elements present a restless
behavior.

In this paper, we propose a generalization of restless and
rested bandits. We define a novel space of MABs called
Graph-Triggered Rising Bandits (GTRBs). A GTRB is rep-
resented by a bandit with a graph describing the interactions
between arms. Specifically, an arm triggers the evolution
of its own expected reward (as for rested bandit) and the
evolution of the “connected” arms. Figure 1b shows an
example of this scenario. Interestingly, rested and restless
bandits are two vertices in the space of GTRB. In particular,
restless bandits correspond to the case of a fully-connected
graph (Figure 1a), while rested ones correspond to the graph
with the self-loops only (Figure 1c).

Contributions. In this paper, we present Graph-Triggered
Rising Bandits (GTRBs), a setting aiming at generalizing

1



Graph-Triggered Rising Bandits

1

2

3

(a) Restless Setting.

1

2

3

(b) This work.

1

2

3
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Figure 1. Examples of 3-armed GTRBs with graph representation.

the rested and restless bandit settings by introducing a graph
representing the interaction between the arms. We focus on
the case of rising bandits as they represent an interesting
case study that will allow us to obtain no-regret algorithms.
More in detail, the contributions are as follows.

• In Section 2, we formally present the fundamental no-
tions on the rested and restless bandits and the assump-
tions related to the rising scenario. Then, we introduce
the novel setting of GTRBs and discuss the relevant
quantities characterizing an instance, including a repre-
sentation of the graph based on the adjacency matrix.
Finally, we present the learning problem and the perfor-
mance index to evaluate the algorithms.

• In Section 3, we discuss the notion of optimal policy.
We start with a negative result, proving that comput-
ing the optimal policy for a generic graph is NP-hard
(Theorem 1). Then, we characterize the optimal policy
for block-diagonal adjacency matrices, which can be
computed in polynomial time (Theorem 2).

• In Section 4, we discuss the deterministic scenario and
we propose two algorithms, the first (DR-BG-UB) for
block-diagonal matrices and the second (DR-G-UB) for
general graphs. We analyze their regret guarantees, high-
lighting the dependence on the graph structure.

• In Section 5, we analyze the seminal algorithm
R-□-UCB (Metelli et al., 2022), designed for rested
and restless stochastic rising bandits that does not re-
quire the knowledge of the graph. We analyze its regret
guarantees, focusing on the dependence on the charac-
teristics of the underlying graph.

The relevant literature is discussed in Appendix A. The state-
ments’ proofs are provided in Appendix B. An extensive
numerical validation of the proposed algorithms is provided
in Appendix D.

2. Problem Formulation
In this section, we first introduce notions related to Stochas-
tic Rising Bandits (Section 2.1). Then, we present the Graph-

Triggered Rising Bandits setting (Section 2.2). Finally, we
formalize the learning problem (Section 2.3).

2.1. Notions on Rested and Restless Rising Bandits

Before introducing the setting, we present the fundamen-
tal notions concerning stochastic rising rested and restless
bandits, and the related assumptions.

Let T ∈ N be the learning horizon. We define an instance
ν = (νi)i∈[k] of a k-armed bandit as a vector of probability
distributions with support defined over R, where k ∈ N,
where [k] := {1, 2, . . . , k}. The agent interacts with the
environment as follows. At every round t ∈ [T ], the agent
is asked to select an action It among the k available ones
and it observes a reward XIt,t ∼ νIt . We define Ni,t :=∑

τ∈[t] 1{It = i} as the number of pulls of the arm i ∈ [k]
until round t. In this work, we consider two specific types
of MAB, namely restless and rested bandits (Tekin & Liu,
2012). In both cases, to each arm i ∈ [k] corresponds a
sequence of probability distributions ν = (νi,n)i∈[k], n∈[T ],
where the expected reward µi(n) = EX∼νi,n

[X] evolves
following an history-dependent quantity n ∈ N. In the
rested scenario, we consider the case in which the expected
reward of a generic arm i evolves according to the number
of pulls of such an arm, i.e., n← Ni,t. On the other hand,
in the restless case, the expected reward of a generic arm
i evolves according to the current time t, i.e., n ← t. In
other words, in rested bandits, the reward distribution of
an arm evolves only when it is pulled, while in restless
bandits, it evolves at each round. As customary in this field,
we consider expected rewards µi(n) bounded in [0, 1], for
every i ∈ [k] and n ∈ [T ]. Finally, we assume distributions
to be subgaussian1 for every arm i and n ∈ N, with their
subgaussianity constants uniformly upper bounded by σ2.

Among the various types of restless and rested bandits avail-
able in the literature, we focus on Stochastic Rising Ban-
dits (Metelli et al., 2022). They are a specific class of bandits
in which the expected reward of each arm evolves in a non-
decreasing and concave manner. The following assumption
formalizes such a behavior.

Assumption 1 (Non-decreasing and Concave Payoffs). Let
ν be an instance of a Stochastic Rising Bandit, then, defining
γi(n) := µi(n+ 1)− µi(n) for every i ∈ [k] and n ∈ [T ],
it holds that:

Non-decreasing: γi(n) ≥ 0, (1)
Concave: γi(n− 1) ≥ γi(n). (2)

The two parts of this assumption allow us to provide the-
oretical guarantees in both the restless and rested settings.

1A (zero-mean) random variable X is σ2-subgaussian if it
holds E [exp (λX)] ≤ exp

(
σ2λ2

2

)
for every λ ∈ R.
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Such guarantees cannot be provided without the concavity
assumption (see Theorem 4.2 of Metelli et al., 2022).

Instance Characterization. Assumption 1 ensures suffi-
cient structure on the problem to allow for algorithms with
provably strong theoretical guarantees. In this scenario,
given an instance ν, we define the total increment as:

Υν(M, q) :=
∑

t∈[M−1]

max
i∈[k]

γi(t)
q, (3)

where M ∈ N and q ∈ [0, 1]. This quantity figures in the
(instance-dependent) theoretical guarantees of algorithms
operating in this setting and characterizes the difficulty of
learning in the instance ν.

2.2. Graph-Triggered Rising Bandits

In the Stochastic Rising Bandits, either in the rested or
restless fashions, there exists no structure among different
actions. In this work, we generalize the rested and restless
bandits by adding a structure allowing arms to interact. We
consider arms as connected through an undirected graph,
that can be either known or unknown to the agent.2 If we
pull an arm i ∈ [k], we get its reward, and we trigger
an evolution of the expected reward of the arm i and of
all the arms connected to i. We do not get nor observe
rewards from the connected arms (i.e., bandit feedback).
Such a graph can be represented by a symmetric adjacency
matrix G ∈ {0, 1}k×k. If the matrix contains the value 1 in
position (i, j), this implies that a pull of arm i determines
the evolution of the expected reward of arm j. If the matrix
contains a 0 in position (i, j), this implies that a pull of arm
i does not cause an evolution of the expected reward of arm
j. The pull of an arm i always implies the evolution of its
own expected reward, formally Gi,i = 1, ∀i ∈ [k].

For every round t ∈ [T ] and arm i ∈ [k], we define the
number Ñi,t of triggers that it has undergone as follows:

Ñi,t =
∑
τ∈[t]

1{GIτ ,i = 1} = e⊤i G
⊤Nt, (4)

where ei is a vector belonging to the standard basis of
Rk whose all components are all zero except for the i-
th and Nt := (N1,t, . . . , Nk,t)

⊤ is the vector contain-
ing the number of pulls of each arm up to round t. In
GTRBs, rewards are sampled from probability distributions
whose average rewards vary with the number of triggers,
i.e., n ← Ñi,t and, consequently, the expected reward
of an arm i evolves as µi(Ñi,t). Furthermore, we define
ti,n :=

∑
l∈[T ] 1{Ni,l ≤ n} as the round in which arm i

has been pulled for the n-th time. With ti,t := (ti,n)n≤Ni,t

we refer to the vector containing all the rounds in which the

2All the results we present also hold for directed graphs.

arm i has been pulled, up to time t. Moreover, we introduce
tIi,n := Ñi,ti,n , namely the internal time of the n-th pull
of arm i, which is the number of triggers of arm i at the
time of the n-th pull. Finally, we introduce the concept of
degree. In a graph, the degree of a node is the number of
edges incident to the node. Formally, given an arm i ∈ [k],
we define:

deg(i) := 1⊤
k Gei.

Given the adjacency matrix of a graph G, we define k̄1 :=
|{i ∈ [k] : deg(i) = 1}| as the number of arms having
degree of 1. We now observe the relationship between
rested and restless bandits and our setting.

Remark 1 (Inclusion of Rested and Restless bandits in
GTRBs). The GTRB setting includes both rested and rest-
less bandits (Tekin & Liu, 2012). These two settings can
be recovered by considering G = Ik and G = 1k×k for
rested and restless settings, respectively.3 Indeed, a restless
bandit can be seen as a particular instance of GTRB where
all arms are triggered at each round, making them change
every round independently from which action has been cho-
sen (Ñi,t = t, for every i ∈ [k]). Instead, in a rested bandit
an arm changes its expected reward only when is directly
chosen Ñi,t = Ni,t.4

Block-Diagonal Adjacency Matrix. We now discuss a
particular case of GTRB that is interesting from both the
practical and analytical point of view. Until now, we con-
sidered G ∈ {0, 1}k×k to be a generic binary symmetric
matrix. However, we now focus on the specific case in
which G is a block-diagonal matrix, i.e., a matrix in which
the main-diagonal blocks are square matrices of all ones,
and all off-diagonal blocks are zero matrices. Formally, let
Bk̃ ⊂ {0, 1}k×k be the set of block-diagonal matrices with
exactly k̃ ∈ [k] distinct blocks of 1s. We call the GTRB with
block connectivity the set of instances where Assumption 1
holds and the adjacency matrix G ∈ Bk̃ for some k̃ ≤ k.
Moreover, we identify with CG = {Cm,G}m∈[k̃] the parti-
tion of [k] corresponding to the diagonal blocks of G. In
particular, when G ∈ Bk̃, the graph associated to the adja-
cency matrix is only composed by completely connected
components, or cliques. Thus, CG represents the set of
cliques. Moreover, we indicate with ÑCm,t :=

∑
i∈Cm

Ni,t

the number of times an arm belonging to clique Cm ∈ CG
has been pulled, namely the number of triggers of the clique
Cm.

3We denote Ik the identity matrix of dimension k and 1k×k

the square matrix of dimension k whose entries are all equal to 1.
4This can be easily seen by looking at Equation (4) considering

G = Ik and observing that the vector ei selects the i-th element
of vector Nt.
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2.3. Learning Problem

We define Ht = {(Il, XIl,l)}l∈[t] as the history of interac-
tions at a given round t ∈ [T ]. We define a policy π(t) as a
function π(t) : Ht−1 7→ It returning the next action given
the history up to that round. For a given instance ν of a
GTRB, the performance of a policy π is measured by the
means of expected cumulative reward throughout T rounds,
formally:

Jν,G,T (π) := E

∑
t∈[T ]

µIt(ÑIt,t)

 , (5)

where the expectation is taken over the randomness of both
the environment and the policy/algorithm. A policy is opti-
mal for instance ν, an adjacently matrix G, and time horizon
T if it maximizes the expected cumulative reward, formally:

π∗
ν,G,T ∈ argmax

π
Jν,G,T (π).

We denote by J∗
ν,G,T = Jν,G,T (π

∗
ν,G,T ) the expected cu-

mulative reward attained by the optimal policy. We can now
define the expected policy regret as:

Rν,G,T (π) = J∗
ν,G,T − Jν,G,T (π). (6)

Therefore, our learning problem is to find a policy π min-
imizing the expected policy regret Rν,G,T (π). Since the
optimal policy depends simultaneously on ν, G, and T ,
from now on, we consider an instance of the GTRB prob-
lem the triple (ν,G, T ), instead of the reward distributions
ν only.

Remark 2 (On the chosen notion of regret). In GTRBs, we
consider a notion of policy regret (Dekel et al., 2012). In
this setting, diverging from the optimal sequence of actions
influences not only instantaneous regret but also leads to
a sub-optimal history, implying future regret even when re-
turning to an optimal policy from there on. This notion of
regret, which shares similarities with the one of Reinforce-
ment Learning, is more challenging to optimize.

3. Optimality in GTRB
In this section, we discuss the notion of optimality, in our
learning problem. We first characterize the complexity of
finding the optimal policy followed by the clairvoyant.

Theorem 1 (Complexity of finding the Optimal Policy in
GTRBs). Computing the optimal policy in GTRBs with
arbitrary matrices G is NP-Hard.

This theorem follows from a reduction to the NP-Hard prob-
lem of determining if a large clique in a given graph ex-
ists (Karp, 1972). Intuitively, given a graph (V,E), we build
an instance in which the cumulative reward is maximum

only if the learner plays a sequence of arms that “represent”
vertexes in a clique. Theorem 1 implies that the class of
problems of GTRBs is computationally harder than all rest-
less bandits and rested rising bandits, for which the optimal
policy can be computed in polynomial time (Heidari et al.,
2016). Moreover, the optimal policy does not admit a simple
closed-form representation. Thus, in general, the optimal
policy cannot be reduced to a greedy one or to a fixed-arm
policy. The result highlights how this definition of optimal
policy is closer to the one of MDPs rather than the one of
standard bandit settings.

3.1. Optimality in GTRB with Block Diagonal
Connectivity Matrix

We now show how, for this special case of GTRBs with
block-diagonal connectivity matrices, the optimal policy
can be efficiently computed in a closed-form fashion.

Theorem 2 (Optimal Policy in Rising GTRB with Block
Diagonal Connectivity). For any instance (ν,G, T ) s.t.
G ∈ Bk̃, under Assumption 1, the optimal policy π∗

ν,G,T ∈
argmaxπ Jν,G,T (π) is given by:

π∗
ν,G,T (t) ∈ argmax

j∈C∗
ν,G,T

µj(t), ∀t ∈ [T ], (7)

where C∗
ν,G,T is the “best” cumulative reward clique:

C∗
ν,G,T ∈ argmax

C∈CG

∑
t∈[T ]

max
j∈C

µj(t).

This result characterizes the optimal policy when the graph
linking the actions is only composed of cliques. In particular,
the clairvoyant would play a greedy policy but always inside
the same predefined subset of arms composing a clique.
Naturally, the chosen clique would be the one having the
maximum cumulative reward at the end of the trial. We
point out how this policy “combines” the optimal policies
from both rising rested bandits (corresponding to always
playing the arm with the highest cumulative reward), and
the optimal policy from rising restless bandits (the greedy
policy). From now on, for the sake of simplicity in the
notation, we will omit explicit references to T .

4. Regret Minimization in Deterministic
Settings

In this section, we propose a novel algorithm to solve the de-
terministic GTRB, i.e., all instances of GTRB where σ = 0.
The deterministic scenario allows for a better understanding
of the complex structure of this setting since it ignores the
statistical learning problem.

We start by introducing a novel biased estimator which, for
every arm i ∈ [k], propagates its reward function to the
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Algorithm 1: DR-BG-UB.
Input :Adjacency matrix G

1 Initialize Ni,0 ← 0, ∀i ∈ [k]
2 for t ∈ [T ] do
3 Compute µ̄i(t) as in Equation (8)
4 Select It ∈ argmaxi∈[k] µ̄i(t)

5 Play It and observe µIt(ÑIt,t)
6 NIt,t ← NIt,t−1 + 1
7 Ni,t ← Ni,t−1, ∀i ∈ [k]
8 end

current time t by estimating the first derivative using the last
two observations:

µ̄i(t) := µ(tIi,Ni,t−1
)+

+(t− tIi,Ni,t−1
)
µ(tIi,Ni,t−1

)− µ(tIi,Ni,t−1−1)

tIi,Ni,t−1
− tIi,Ni,t−1−1

.
(8)

This estimator relies on the concept of internal time. Internal
times are particularly useful since they can separate the bias
in two components:

t− tIi,Ni,t−1
= (t− tIi,Ni,t

)︸ ︷︷ ︸
(A)

+(tIi,Ni,t
− tIi,Ni,t−1

)︸ ︷︷ ︸
(B)

.

As we will see in Section 4.1, this decomposition assumes
a particular meaning in instances where G ∈ Bk̃, where
(A) represents the rested component of the bias, since
tIi,Ni,t

= ÑCm,ti,Ni,t
making it equivalent to the bias of

a rested bandit where cliques are the arms; and (B) repre-
sents the restless component of the bias, since from arm i
perspective tIi,Ni,t

= Ñi,t can be interpreted as the current
time inside the clique.

4.1. Algorithm for Deterministic GTRBs with
Block-Diagonal Matrices

In this part, we introduce DR-BG-UB, an optimistic any-
time regret minimization algorithm for the deterministic
GTRB setting with block-diagonal matrices, whose pseu-
docode is provided in Algorithm 1. The algorithm takes as
input the matrix G and employs the estimator presented in
Equation (8). Then, after having initialized the counters of
the number of pulls, it starts the interaction with the envi-
ronment. At each round t ∈ [T ], it estimates (line 3) the
µ̄i(t) for every i ∈ [k] as in Equation (8) and plays greedy
according to it (line 5).5

Regret Analysis. We recall that block-diagonal matrices
represent a special case of graph structure for GTRB where
the optimal policy can be characterized in a closed form
(Theorem 2). The following result provides the regret bound

5At the beginning of the run, the algorithm is required to play
every arm 2 times in a round-robin fashion in order to be able to
compute µ̄i(t).

of DR-BG-UB highlighting the impact of the graph topol-
ogy.

Theorem 3 (Regret Upper Bound for DR-BG-UB in Block-
-Diagonal Matrices in Deterministic Settings). Let (ν,G)
be an instance of the GTRB problem, where G ∈ Bk̃ and
σ = 0. Then, Algorithm 1 suffers a regret bounded by:

Rν,G(DR-BG-UB)

≤ Õ
(

inf
q∈[0,1]

{
T q

∑
Cm∈C

|Cm|Υν

(⌈
ÑCm,T

|Cm|

⌉
, q

)
︸ ︷︷ ︸

(A) Rested Bias Contribution

+

+
∑

Cm∈C
|Cm|Ñ

q
1+q

Cm,TΥν

(⌈
ÑCm,T

|Cm|

⌉
, q

) 1
1+q

︸ ︷︷ ︸
(B) Restless Bias Contribution

})
.

In this theorem, we report the result as a function of the
number of triggers ÑCm,T of the cliques in order to better
discuss the properties of the graph. However, this depen-
dence can be removed by simply observing ÑCm,T ≤ T .
This choice allows us to have an interesting discussion on
the nature of this result w.r.t. the graph structure. First of
all, we observe that we can separate two contributions to
the regret: one coming from the rested behavior (part (A)
of the bound) determined by the need for identifying the
best clique, and the other from the restless behavior needed
for identifying the best arm inside the clique (part (B) of
the bound). If we compare this result to the bounds in The-
orems 4.4 and 5.2 of (Metelli et al., 2022), we can notice
how the shapes of the two contributions correspond. We
also remark that, in the two corner cases, i.e., rested and
restless bandits, the regret bound is actually smaller and cor-
responds exactly to the bounds presented in (Metelli et al.,
2022), even though this is not immediately visible in Theo-
rem 3 because of a mathematical artifact of the proof. More
details can be found in Remark 5 (Appendix B).

In Theorem 3, the graph topology emerges by means of
cliques’ sizes, that act as multiplicative constants. The major
consequence is that having fewer cliques leads, in general, to
a better bound. As intuition suggests, the rested scenario can
lead to a worst-case bound in the first component (which is,
by the way, the one having the greater order in T ), and this
can be seen by a simple application of Jensen’s Inequality,
and by noticing that Υν is a concave function:

∑
Cm∈C

|Cm|Υν

(⌈
ÑCm,T

|Cm|

⌉
, q

)
≤ kΥν

(⌈
T

k

⌉
, q

)
.

We remark that in the two corner cases, one of the two
contributions vanishes, even though it cannot be directly
seen in Theorem 3. However, since the restless regret has a
better order than the rested one, graphs with fewer cliques
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may lead, in general, to better bounds. Unfortunately, to
precisely quantify this property, one would need to know
the exact shape of Υν and to solve a difficult optimization
problem.

4.2. Algorithm for Deterministic GTRBs for General
Matrices

After having studied the scenario of block-diagonal matri-
ces, we now consider the case in which G can be arbitrary.
Before introducing the algorithm, we need to define the
concept of block sub-matrix.
Definition 1 (Block Sub-matrix). Let G ∈ {0, 1}k×k, a
block-diagonal matrix GL ∈ Bk̃ is a sub-matrix of G if it
satisfies:

Gi,j −GL
i,j ≥ 0, ∀i, j ∈ [k]. (9)

Moreover, we say that ḠL ∈ Bk̃ is maximal if it also satis-
fies:

ḠL ∈ argmin
GL satisfying Eq. (9)

|CGL | .

Informally, GL ∈ Bk̃ is a sub-matrix of G if its graph
can be obtained by only removing 1s from G. Finally, a
maximal sub-matrix has the least number of cliques. Note
that such a maximal sub-matrix is, in general, not unique.

For this algorithm, we need to introduce a novel estimator
whose definition recalls the one of Equation (8):

µ̄L
i (t) := µ(tI,Li,Ni,t−1

)+

+(t− tI,Li,Ni,t−1
)
µ(tI,Li,Ni,t−1

)− µ(tI,Li,Ni,t−1−1)

tI,Li,Ni,t−1
− tI,Li,Ni,t−1−1

,
(10)

where tI,Li,l := e⊤i (Ḡ
L)⊤Nti,l is the internal time w.r.t. a

maximal sub-matrix ḠL of the actual matrix G.

Given this new estimator, we can generalize Algorithm 1
to attain comparable performance even for an arbitrary G.
We introduce DR-G-UB, whose pseudocode is provided in
Algorithm 2. The algorithm takes as input a generic matrix
G and computes ḠL. Then, the algorithm interacts with
the environment as before and uses the estimator defined
in Equation (10). In other words, DR-G-UB pretends to be
interacting with a bandit with a graph defined by ḠL.

Regret Analysis. We now provide a regret upper bound for
DR-G-UB.
Theorem 4 (Regret Upper Bound for DR-G-UB for Gen-
eral Matrices in Deterministic Settings). Let (ν,G) be an
instance of the GTRB problem, where G ∈ {0, 1}k×k and
σ = 0. Then, DR-G-UB suffers a regret bounded as:

Rν,G(DR-G-UB)

≤ Õ
(

min
q∈[0,1]

{
T q
∑

CL
m∈CḠL

|CL
m|Υν

(⌈
ÑCL

m,T

|CL
m|

⌉
, q

)
+

Algorithm 2: DR-G-UB.
Input :Connectivity matrix G

1 Initialize Ni,0 ← 0, ∀i ∈ [k]

2 Compute maximal sub-matrix ḠL from G
3 for t ∈ [T ] do
4 Compute µ̄L

i (t) as in Equation (10)
5 Select It ∈ argmaxi∈[k] µ̄

L
i (t)

6 Play It and observe µL
It(ÑIt,t)

7 NIt,t ← NIt,t−1 + 1
8 Ni,t ← Ni,t−1, ∀i ∈ [k]
9 end

+
∑

CL
m∈CḠL

|CL
m|Ñ

q
1+q

CL
m,T

Υν

(⌈
ÑCL

m,T

|CL
m|

⌉
, q

) 1
1+q
})

,

where ḠL ∈ Bk̃ is a maximal sub-matrix of G.

This result provides a formal justification to the intuition
that the performance of Algorithm 2 can be bounded with
the upper bound attained in a less favorable scenario, i.e.,
a block-diagonal instance that is “closer” to the worst-case
instance of a rested bandit. The regret bound of DR-G-UB
can be found by applying Theorem 3 using the matrix ḠL.

Remark 3 (Computational Complexity). Note that, even
if the optimal policy in this setting for a general G is NP-
hard to be retrieved, with DR-G-UB, we achieved sublinear
regret w.r.t. the optimal policy with a polynomial-time al-
gorithm. This has been made possible by the ability of
DR-G-UB to identify a convenient matrix ḠL that is subse-
quently adopted as a proxy of the real environment in order
to play in a computationally efficient manner.

5. Regret Minimization in Stochastic Setting
In this section, we focus on the stochastic GTRBs scenario.
We characterize the performances of R-□-UCB (Metelli
et al., 2022) in the GTRBs setting. We show that such an
algorithm achieves good performances for a general G. In
particular, we develop a new proof strategy for the regret
upper bound that makes graph-dependent terms explicit.

As anticipated in Section 1, we aim at obtaining a com-
putationally efficient algorithm enjoying sub-linear regret
guarantees. Surprisingly, our analysis shows that R-□-UCB
not only enjoys sub-linear regret for any matrix G, but also
that the graph-dependent quantities actually interpolate the
regret between the two corner cases. Moreover, we show
that there is no need to solve any additional NP-Hard prob-
lem before or during the algorithm’s executions, letting
R-□-UCB keep it affordable computational costs, as in the
two corner settings. Furthermore, in this case, the algorithm
is completely unaware of the graph structure.

The algorithm employs a biased estimator which, for every

6
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Algorithm 3: R-□-UCB.
Input : Sub-gaussianity proxy upper bound σ,

confidence levels {δt}t∈[T ], window size
parameter ϵ ∈ (0, 1/2).

1 Initialize Ni,0 ← 0, ∀i ∈ [k]
2 for t ∈ [T ] do
3 Select It ∈ argmaxi∈[k] µ̂

hi,t

i (t) + β
hi,t

i (t, δt)

4 Play It and observe XIt,t

5 NIt,t ← NIt,t−1 + 1
6 end

arm i, propagates its reward function to the current round t
by estimating the first derivative over the last 2h samples:

µ̂h
i (t) :=

1

h

Ni,t−1∑
l=Ni,t−1−h+1

(
Xi,ti,l+(t− l)

Xi,ti,l
−Xi,ti,l−h

h

)
,

where h ∈ N is the window size. We report the estimator’s
concentration rate, which is a function of the window size
h. The proof of this result originally appeared in (Metelli
et al., 2022). However, it can be extended to GTRBs (more
details are provided in Appendix C).

Lemma 5 (Concentration of Estimator, adapted from
Metelli et al. 2022). For every arm i ∈ [k], every round

t ∈ [T ], and window width 1 ≤ h ≤
⌊
Ni,t−1

2

⌋
, let:

βh
i (t, δ) := σ(t−Ni,t−1 + h− 1)

√
10 log 1

δ

h3
.

Then, if the window size depends on the number of pulls
only hi,t = h(Ni,t−1) and if δt = t−α for some α > 2, it
holds for every round t ∈ [T ] that:

P
(∣∣∣µ̂hi,t

i (t)− µ̃
hi,t

i (t)
∣∣∣ > β

hi,t

i (t, δt)
)
≤ 2t1−α.

The algorithm, whose pseudocode is reported in Algo-
rithm 3, takes as input the subgaussianity constants upper
bound σ, sliding window size parameter ϵ, and a sequence
of confidence levels δt, where t ∈ [T ]. R-□-UCB relies on
the previously defined biased estimator and uses its confi-
dence interval to make decisions in an optimistic manner.
R-□-UCB does not require the time horizon T as an input,
making it an anytime algorithm. Moreover, the algorithm
exploits the sliding window mechanism to deal with the
environment’s uncertainty while controlling the confidence
degree by means of {δt}t∈[T ]. In particular, the window
size employed by the algorithm is proportional to param-
eter ϵ ∈ (0, 1/2), in the form of hi,t = ⌊ϵNi,t−1⌋. As we
show below, ϵ controls the bias-variance trade-off, where
low values for ϵ result in less bias but higher variance, and
vice versa.

Remark 4 (Computational Complexity). At each round,
Algorithm 3 only needs to update the estimator and the
related confidence bounds for every arm, which can be done
in a time linear in the number of arms at every step. For an
efficient update, we refer the reader to (Mussi et al., 2024).

5.1. Regret Analysis for Block-Diagonal Matrices

We analyze its performance in the block-diagonal case be-
fore bounding the regret of Algorithm 3 for general matrices.
Theorem 6 (Regret Upper Bound for R-□-UCB in Block-
-Diagonal Matrices). Let (ν,G) be an instance of the
GTRB problem, where G ∈ Bk̃. Let hi,t = ⌊ϵNi,t−1⌋ for
ϵ ∈ (0, 1/2) and δt = t−α for α > 2. Then, Algorithm 3
suffers an expected regret bounded as:

Rν,G(R-□-UCB)

≤ Õ
(

min
q∈[0,1]

{ ∣∣∣∣(σT ) 2
3

∣∣∣∣︸ ︷︷ ︸
(A) Variance Contribution

+ k̄1T
qΥν

(⌈
T

k̄1

⌉
, q

)
︸ ︷︷ ︸
(B) Rested Bias Contribution

+

+ T
2q

1+q

∑
Cm∈CG:|Cm|>1

|Cm|Υν

(⌈
T

|Cm|

⌉
, q

) 1
1+q

︸ ︷︷ ︸
(C) Restless Bias Contribution

})
,

where k̄1 is the number of cliques in G containing only one
action.

Existence of a Bias-Variance Trade-off. In the regret up-
per bound, we can observe three distinct contributions. First,
(A) represents the variance contribution, which is the regret
suffered by the algorithm due to the stochastic nature of
the environment. This contribution is due to the estimator’s
concentration properties and sets a minimum order of regret
to Õ(T 2/3). This term is independent of the total increment
Υν but, differently from the others, is the only contribution
depending on σ. The contribution due to the estimator’s bias
is split into two distinct parts. The term (B) represents the
rested contribution, which scales with the number of blocks
containing only one arm. The term (C), instead, represents
the restless contribution that scales with the number and the
sizes of cliques. The bias contributions depend explicitly on
the shape of average reward functions by total increment Υν .
The only term common to variance and bias contribution
is ϵ. Indeed, ϵ regulates such a trade-off between bias and
variance, and this effect can be observed in the complete
form of the regret upper bound in Appendix B. The variance
contribution depends linearly on ϵ−1; thus, a smaller win-
dow size implies a higher variance in the estimate. On the
contrary, the bias tends to increase with ϵ: this is expected
since a larger window means including older samples in the
estimate.

Dependence on Graph Topology. In the regret upper
bound of Theorem 6, the only contribution depending on

7
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graph topology is the one coming from bias (terms (B) and
(C)). Indeed, the environment’s randomness contribution has
been decoupled from estimation bias to get a fully tractable
stochastic structure. We observe how the different behav-
iors of arms not connected with the others (size-1 cliques,
corresponding to rested arms) and arms belonging to larger
cliques. The regret scales as T q in rested arms, but the de-
pendence on the total increment Υν is linear. Instead, for
cliques with size greater than 1, regret scales as T

2q
1+q , which

is greater than in rested contribution, but scales with Υν to
the 1

1+q , that is indeed a better dependence. Moreover, each
clique contributes differently, based on its size. Overall, the
higher the size, the higher the contribution is since the linear
term is dominant w.r.t. the inverse term inside the total incre-
ment Υν . Another interesting dependence is the one on ϵ−1

for the restless contribution, which can be observed in the
complete form of the bound in Appendix B. For connected
arms, stochasticity and graph topology produce an interac-
tion. Indeed, if one could design an estimator with strong
concentration properties for connected arms, this would sim-
plify the analysis of the restless contribution, eliminating
the bad dependence on stochasticity. With such an estimator,
we could reduce the dependence up to T

q
1+q , matching the

deterministic setting bound.

Comparison with Known Results from Literature. Given
that rested and restless rising bandits are special instances
of GTRBs, we now comment on how the presented bound
links to existing results when Algorithm 3 is run over one
of those instances. We start from the rested scenario, i.e.,
when G = Ik. Then, we would have k̄1 = k and an empty
summation in the restless bias contribution. The bound
would thus assume the following form:

Rν,Ik(R-□-UCB) ≤

Õ
(

min
q∈[0,1]

{
(σT )

2
3 + kT qΥν

(⌈
T

k

⌉
, q

)})
.

The only other existing result for the rested rising bandit
setting is the one of Theorem 4.4 of (Metelli et al., 2022),
which is matched up to constants by ours. In the restless
scenario, i.e., when G = 1k×k, we have a unique clique
of size k, and k̄1 = 0. Thus, the bound we presented in
Theorem 6 becomes:

Rν,1k×k
(R-□-UCB) ≤

Õ
(

min
q∈[0,1]

{
(σT )

2
3 + kT

2q
1+q Υν

(⌈
T

k

⌉
, q

) 1
1+q

})
.

Once again, this result matches (up to constants) the result
from Theorem 5.3 of (Metelli et al., 2022), the current state-
of-the-art for the restless rising bandit problem. To conclude,
we generalize the stochastic rising rested/restless bandit
setting, with regret bounds that are tight w.r.t. the known
results for the two corner scenarios.

5.2. Regret Analysis for General Matrices

We are now ready to generalize Theorem 6 to general ma-
trices in G ∈ {0, 1}k×k. We first introduce the notion of
block super-matrix.

Definition 2 (Block Super-matrix). Let G ∈ {0, 1}k×k, a
block-diagonal matrix GU ∈ Bk̃ is super-matrix of G if it
satisfies:

Gi,j −GU
i,j ≤ 0, ∀i, j ∈ [k]. (11)

Moreover, we say that ḠU ∈ Bk̃ is minimal if it also satis-
fies:

ḠU ∈ argmax
GU satisfying Eq. (11)

|CGU | .

This concept of minimal super-matrix plays an analogous
role as the maximal sub-matrix in Theorem 4. We now have
all the elements to present the upper bound on the regret for
the stochastic case and general matrices.

Theorem 7 (Regret Upper Bound for R-□-UCB in Gen-
eral Matrices). Let (ν,G) be an instance of the GTRB
problem, where G ∈ {0, 1}k×k. Let hi,t = ⌊ϵNi,t−1⌋ for
ϵ ∈ (0, 1/2) and δt = t−α for α > 2. Then, Algorithm 3
suffers an expected regret bounded as:

Rν,G(R-□-UCB)

= Õ
(

min
q∈[0,1]

{
(σT )

2
3 + T qk̄1Υν

(
T

k̄1
, q

)
+

+ T
2q

1+q

∑
CU

m

|CU
m|Υν

(
T

|CU
m|

, q

) 1
1+q

})
,

where ḠU is the minimal super-matrix of G.

We remark that the result has been obtained by bounding
ÑU

CU
m,T ≤ T for every CU

m ∈ CḠU to remove any stochastic
quantity from the regret, but a more precise bound can be
provided by finding the worst-case allocation of the triggers
among the cliques (as discussed for the similar result in The-
orem 4). However, this would require solving a challenging
optimization problem that does not admit any closed-form
solution, as discussed for the optimal policy (Theorem 1).
This result is similar to the one presented in Theorem 4,
with the only difference being that the dependence on graph
topology is linked to the minimal super-matrix. In principle,
the result holds for any super-matrix of G. Still, in the
stochastic setting, the upper bound for the rested scenario
is better than the one for the restless scenario. Hence, a
block-diagonal matrix with as many cliques as possible will,
in most cases, lead to better bounds.

About the Knowledge of G. In the stochastic scenario, we
avoid extracting the super-matrix structure from the graph
before executing the algorithm, as it plays the same policy,

8
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regardless of the graph. Indeed, Algorithm 3 does not re-
quire the knowledge on the graph: the algorithm plays as
if the true matrix is the identity one (i.e., a rested instance).
To justify this behavior in an intuitive way, we point out to
Theorems 4.4 and 5.3 of (Metelli et al., 2022): in stochastic
scenarios, the rested contribution to regret’s upper bound has
a better dependence on T w.r.t. the restless one. Moreover,
our optimistic estimator computed by assuming a less con-
nected graph will always be higher than the one computed
from any more densely connected graph. Thus, by playing
a purely rested policy, we are always sure to over-estimate
the true reward (i.e., optimism holds) and we are guaranteed
that the rested contribution to the regret is maximized w.r.t.
the restless contribution. The final form of the regret bound
is obtained by including the minimal super-matrix as a pes-
simistic proxy of the effect of connected arms (informally,
the minimal super-matrix represents the maximum possible
contribution to the regret that is due to the graphical con-
nections). We point out that Algorithm 3 does not require
the minimal super-matrix as an input, as it is needed only
in the analysis. For this reason, one could reformulate the
following result by removing the dependence on the min-
imal super-matrix and including a minimization over the
set of all super-matrices. As a side effect, this dramatically
reduces the computational burden w.r.t. the deterministic
setting at the cost of a slightly higher regret bound.

Comparison with Deterministic Regret Bounds. In deter-
ministic scenarios (Theorems 3 and 4), the restless contri-
butions are always of smaller order compared to the rested
one, which is the contrary of what we observe in stochastic
settings (Theorems 6 and 7). Due to this reason, in Algo-
rithm 2, the regret bound scales with the maximal sub-matrix
instead of the minimal super-matrix. In the deterministic
setting, the maximal sub-matrix represents the maximum
possible contribution to the regret that is due to the absence
of graphical connections. In principle, we could remove
the necessity for graph knowledge also in the deterministic
setting by simply playing as in a rested scenario (i.e., run
Algorithm 1 by setting G = Ik). This would be sensibly
sub-optimal since any graphical connection can be used to
obtain a strictly better regret bound. This is not the case
for the stochastic setting, where over-estimating the number
of connections (e.g., by playing as in a restless scenario)
may result in a non-optimistic estimator, compromising the
analysis of our algorithms.

6. Discussion and Conclusions
In this paper, we proposed the graph-triggered rising ban-
dits (GTRBs), a generalization of the rested and restless
bandit settings, where the expected rewards of the differ-
ent arms evolve by means of a graph. We focused on the
stochastic rising bandits, a peculiar type of bandits where

the expected rewards are non-decreasing and concave w.r.t.
the number of triggers. As a first result, we showed that,
in this setting, computing the optimal policy without addi-
tional assumptions on the graph structure is NP-Hard. Then,
we characterized the optimal policy for the special class
of block-diagonal adjacency matrices, and we showed that
the optimal policy can be computed in closed form. This
special family of instances allowed us to express a strong
inter-dependence between the graph topology and the regret
bounds and it plays a crucial role also in bounding the regret
for the general case. In particular, we presented and studied
the performance of two new algorithms, DR-BG-UB and
DR-G-UB, to handle the deterministic scenarios in which
the adjacency matrix is block-diagonal and for the general
case, respectively. Finally, we studied R-□-UCB (Metelli
et al., 2022), an algorithm from the SRB literature, and we
showed that it can provide regret guarantees also in this
more general setting. This work aspires to be a first step
in the study of graph-triggered bandits. We started from a
special set of instances, namely rising bandits, with the goal
of extending this framework to other classes of bandits, e.g.,
rotting bandits.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Metelli, A. M. Best arm identification for stochastic rising
bandits. In Proceedings of the International Conference
on Machine Learning (ICML). PMLR, 2024.

Pike-Burke, C., Agrawal, S., Szepesvári, C., and
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A. Related Works
In this appendix, we discuss the relevant literature for the GTRB setting. We divide this appendix into two parts. First,
we discuss the relevant works concerning graph feedback, then, the literature related to restless and rested bandits, with
particular attention to rotting and rising bandits.

Graphical Relationships in Bandits. The graph-triggered restless bandit setting has been introduced in this work. Thus, no
prior literature is available on this setting. However, we mention similar settings that appeared in the last years. Herlihy &
Dickerson (2023) propose the networked restless bandit setting. Despite some similarities with our setting, e.g., the presence
of a graph among arms, their action space and learning objectives radically differ from ours, and thus the two settings are not
comparable. In (Jhunjhunwala et al., 2018), a restless bandit setting is proposed in which the graph structure is not explicit
in the formulation; however, the authors develop a graphical representation of the policies in the deterministic scenario.
Their algorithm builds and exploits a graph in an online fashion. Once again, we cannot properly compare this setting to
ours, despite some sparse similarities. Finally, we mention bandits with graph feedback (Alon et al., 2015). Despite this
setting being conceptually different from ours since arms do not interact, we report it here just because it features graph
topology-dependent bounds. We remark that in this case, the graph has not to be intended as a structure for arms interactions
but rather as a feedback structure for the learner, in GTRB the feedback is purely bandit.

Rested and Restless Bandits. Restless and rested bandits are a well-established research field. Starting from the seminal
paper of Whittle (1988) on restless bandits, several approaches have been proposed over the years to deal with non-stationary
bandits (Tekin & Liu, 2012; Raj & Kalyani, 2017). Then, specialization of these settings such as rising (Metelli et al., 2022;
Mussi et al., 2024) and rotting (Levine et al., 2017) has been introduced. In particular, rotting bandits are a family of restless
bandits where the reward is assumed to decrease (contrary to rising bandits). Over the last years, several works tackled
rotting bandits (Levine et al., 2017; Seznec et al., 2019). Remarkably, (Seznec et al., 2020) provide a single algorithm for
dealing with both rested and restless rotting bandits but show that in the rotting setting, achieving sub-linear regret is not
possible when there are both rested and restless arms in the same instance. We remark that for any two-armed rotting bandit
where one arm is rested and the other is restless, we can construct an (asymmetric) matrix G such that the instance can be
mapped to a graph-triggered rotting bandit instance. This highlights a crucial difference between rotting and rising bandits
for what concerns graph-triggering.

B. Omitted Proofs
Theorem 1 (Complexity of finding the Optimal Policy in GTRBs). Computing the optimal policy in GTRBs with arbitrary
matrices G is NP-Hard.

Proof. We reduce from a decision problem related to finding cliques in graphs. In particular, given a graph (V,E) and
M̃ ∈ N, it is NP-Hard to determine if there exists a clique of size M̃ (Karp, 1972). In the following, we design an instance
of our problem such that the reward of the optimal policy is at least

∑T
t=1(1 +

t
T 2 ) if and only if there exists a clique of size

M̃ = T .

Construction. Given a graph (V,E), we build an instance such that the horizon is T . Our set of actions can be constructed
by assigning an action to every node and time step couple, i.e., A = {av,t}v∈V, t∈[T ]. We define the matrix G̃ is such that
for any v, v′ ∈ V and t, t′ ∈ [T ], it holds Gav,t,av′,t′ = 1 if (v, v′) ∈ E. Finally, for each arm av,t ∈ A, the reward is
deterministic and evolves as µ̃av,t(n) = min{1 + ηt, n+1

t (1 + ηt)}, where η = T−2. We call ν̃ the set of this functions. It
is easy to see that the GTRB instance (ν̃, G̃, T ) satisfies Assumption 1.

if. We show that if there exists a clique C⋆ = {v1, . . . , vT } of size T , then there exists a policy with a cumulative reward
of at least

∑T
t=1(1 + ηt). Consider the policy π̃ s.t. π̃(t) = avt,t. It is easy to see that Ñavt,t,t

= t− 1 for every t ∈ [T ].
Hence, the reward of the policy π̃ at time t is

µavt,t
(Ñavt,t,t

) = min{1 + ηt,
(t− 1) + 1

t
(1 + ηt)} = 1 + ηt.

Thus, Jµ̃,G̃,T (π̃) =
∑T

t=1(1 + ηt) and the claim is proven.

only if. We show that if there is a policy π̃ s.t. Jµ̃,G̃,T (π̃) ≥
∑T

t=1(1 + ηt), then there exists a clique of size T . First, we
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show that for each t′, t ∈ [T ] it holds that

max
t′∈[T ]

min{1 + ηt′,
t

t′
(1 + ηt′)} = 1 + ηt.

Indeed, for each t′ < t, it holds

min{1 + ηt′,
t

t′
(1 + ηt′)} ≤ 1 + ηt′ < 1 + ηt.

On there other hand, for each t′ > t it holds

min{1 + ηt′,
t

t′
(1 + ηt′)} ≤ t

t′
(1 + ηt′) ≤ t

t+ 1
(1 +

1

T
) ≤ 1,

where in the second inequality we use η = T−2. Putting together, the previous inequalities imply that for each t′ ̸= t we
have

min{1 + ηt′,
t

t′
(1 + ηt′)} < 1 + ηt. (12)

This implies that, at any round t, the best obtainable reward is

max
t′∈[T ]

max
v∈V

max
l≤t−1

µ̃av,t′ (l) = max
t′∈[T ]

max
v∈V

µ̃av,t′ (t− 1)

= max
t′∈[T ]

min

{
1 + ηt′,

t

t′
(1 + ηt′)

}
= min

{
1 + ηt,

t

t
(1 + ηt)

}
= 1 + ηt.

Since by assumption there is a policy with reward at least
∑T

t=1(1 + ηt), then there is a policy such that at each round
t ∈ [T ] the reward is exactly 1 + ηt.

Consider a round t ∈ [T ]. let av,t′ be the arm played by the policy at this round. It must be the case that: i) t′ = t, otherwise

µav,t′ (Ñav,t,t) ≤ µav,t′ (t− 1) < 1 + ηt

by Equation (12), and ii) Ñav,t′ ,t = t− 1, otherwise

µav′,t′ (Ñav,t,t) ≤
t− 1

t
(1 + ηt) < 1 + ηt.

Let avt,t be the arm chosen at round t. Then, each arm in {avt,t}t∈[T ], is chosen while having exactly t− 1 triggers. By the
definition of G̃ this directly implies that {vt}t=1 is a clique of size T .

Theorem 2 (Optimal Policy in Rising GTRB with Block Diagonal Connectivity). For any instance (ν,G, T ) s.t. G ∈ Bk̃,
under Assumption 1, the optimal policy π∗

ν,G,T ∈ argmaxπ Jν,G,T (π) is given by:

π∗
ν,G,T (t) ∈ argmax

j∈C∗
ν,G,T

µj(t), ∀t ∈ [T ], (7)

where C∗
ν,G,T is the “best” cumulative reward clique:

C∗
ν,G,T ∈ argmax

C∈CG

∑
t∈[T ]

max
j∈C

µj(t).

Proof. For each clique Cm ∈ CG, we substitute the reward function of every arm i ∈ Cm with µ∗
i (t) = maxi∈Cm

µi(t), for
every t ∈ [T ]. Now, since all arms sharing the same clique have the same reward function, our instance is equivalent to a
k̃-armed bandit problem. Since arms in different cliques are not connected, this corresponds to a rested bandit problem, and
we use Proposition 1 from Heidari et al. (2016) to get that the optimal policy would only pull the best action in terms of
cumulative reward at the end of the time horizon T . To conclude the proof, we remark that playing greedily inside a clique
corresponds exactly to play on the reward function defined above, which dominates the initial problem, and so the maximum
cumulative reward is exactly the one attained in the problem with k̃ arms.

12
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Lemma 8 (DR-BG-UB Estimator’s Instantaneous Bias). For every arm i ∈ [k], every round t = 1, let us define:

µ̄i(t) := µi(t
I
i,Ni,t−1

) + (t− tIi,Ni,t−1
)
µi(t

I
i,Ni,t−1

)− µi(t
I
i,Ni,t−1−1)

tIi,Ni,t−1
− tIi,Ni,t−1−1

,

Then, µ̄i(t) ≥ µi(t
I
i,Ni,t−1

) and, if Ni,t−1 ≥ 2 it holds that:

µ̄i(t)− µi(Ñi,t) ≤ (t− tIi,Ni,t−1)γi(t
I
i,Ni,t−1−1).

Proof. Let us start by observing the following equality holding:

µi(Ñi,t) = µi(t
I
i,Ni,t−1

) +

Ñi,t−1∑
j=tIi,Ni,t−1

γi(j).

We have:

µi(Ñi,t) = µi(t
I
i,Ni,t−1

) +

Ñi,t−1∑
j=tIi,Ni,t−1

γi(j)

≤ µi(t
I
i,Ni,t−1

) + (Ñi,t − tIi,Ni,t−1
)γi(t

I
i,Ni,t−1−1) (13)

≤ µi(t
I
i,Ni,t−1

) + (t− tIi,Ni,t−1
)γi(t

I
i,Ni,t−1−1) (14)

where line (13) follows from Assumption 1, and line (14) is obtained from observing that Ñi,t ≤ t. Concerning the bias,
when Ni,t−1 ≥ 2, we have:

µ̄i(t)− µi(Ñi,t) ≤ µi(t
I
i,Ni,t−1

)− µi(Ñi,t) + (t− tIi,Ni,t−1
)
µi(t

I
i,Ni,t−1

)− µi(t
I
i,Ni,t−1−1)

tIi,Ni,t−1
− tIi,Ni,t−1−1

(15)

≤ (t− tIi,Ni,t−1
)
µi(t

I
i,Ni,t−1

)− µi(t
I
i,Ni,t−1−1)

tIi,Ni,t−1
− tIi,Ni,t−1−1

(16)

≤ (t− tIi,Ni,t−1
)γi(t

I
i,Ni,t−1−1), (17)

where line (16) follows from observing that µi(t
I
i,Ni,t−1

) ≤ µi(Ñi,t), and line (17) derives from bounding
µi(t

I
i,Ni,t−1

)−µi(t
I
i,Ni,t−1−1)

tIi,Ni,t−1
−tIi,Ni,t−1−1

≤ γi(t
I
i,Ni,t−1−1) thanks to Assumption 1.

Theorem 3 (Regret Upper Bound for DR-BG-UB in Block-Diagonal Matrices in Deterministic Settings). Let (ν,G) be an
instance of the GTRB problem, where G ∈ Bk̃ and σ = 0. Then, Algorithm 1 suffers a regret bounded by:

Rν,G(DR-BG-UB)

≤ Õ
(

inf
q∈[0,1]

{
T q

∑
Cm∈C

|Cm|Υν

(⌈
ÑCm,T

|Cm|

⌉
, q

)
︸ ︷︷ ︸

(A) Rested Bias Contribution

+

+
∑

Cm∈C
|Cm|Ñ

q
1+q

Cm,TΥν

(⌈
ÑCm,T

|Cm|

⌉
, q

) 1
1+q

︸ ︷︷ ︸
(B) Restless Bias Contribution

})
.

Proof. Let C∗
ν,G ∈ CG be the optimal clique of the instance. We analyze the following expression:

Rν,G(DR-BG-UB) =
T∑

t=1

µi∗t
(t)− µIt(ÑIt,t),

13
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where i∗t ∈ argmaxi∈C∗
ν,G

µi(t) for all t ∈ [T ]. Then:

RDR-BG-UB
ν,G =

T∑
t=1

µi∗t
(t)− µIt(ÑIt,t)

=

T∑
t=1

µi∗t
(t)± µ̄It(t)− µIt(ÑIt,t)

≤
T∑

t=1

min{1, µ̄It(t)− µIt(ÑIt,t)} (18)

≤
T∑

t=1

min{1, (t− tIIt,NIt,t−1
)γIt(t

I
It,NIt,t−1−1)} (19)

=

T∑
t=1

min{1, (t± tIIt,NIt,t
− tIIt,NIt,t−1

)γIt(t
I
It,NIt,t−1−1)}

≤
T∑

t=1

min{1, (t− tIIt,NIt,t
)γIt(t

I
It,NIt,t−1−1)}+

∑
t=1

min{1, (tIIt,NIt,t
− tIIt,NIt,t−1

)γIt(t
I
It,NIt,t−1−1)} (20)

= 4k +
∑

Cm∈CG

∑
i∈Cm

Nj,T∑
j=3

min{1, (t− tIi,j)γ(t
I
i,j−2)}︸ ︷︷ ︸

(a)

+
∑

Cm∈CG

∑
i∈Cm

Nj,T∑
j=3

min{1, (tIi,j − tIi,j−1)γ(t
I
i,j−2)}︸ ︷︷ ︸

(b)

,

(21)

where lines (18) and (19) follow from Lemma 8, line (20) from the fact that min{1, x+ y} ≤ min{1, x}+min{1, y} for
any x, y ≥ 0, line (21) from a decomposition over the cliques, the arms in the cliques and the number of pulls of every arm.

Let us bound the two terms separately, let q ∈ [0, 1]:

(a) ≤
∑

Cm∈CG

∑
i∈Cm

Nj,T∑
j=3

min{1, Tγ(tIj,j−2)} (22)

≤
∑

Cm∈CG

∑
i∈Cm

Nj,T∑
j=3

T qγ(tIi,j−2)
q (23)

≤
∑

Cm∈CG

T q|Cm|Υν

(⌈
ÑCm,T

|Cm|

⌉
, q

)
, (24)

where line (22) follows by bounding t − tIi,j ≤ T for every i and every j, line (23) from the inequality min{1, x} ≤
min{1, x}q ≤ xq for q ∈ [0, 1], line (24) from Lemma 13.

Then, let y ∈ [0, 1
2 ], and q := y

1−y :

(b) ≤
∑

Cm∈CG

∑
i∈Cm

Ni,T∑
j=3

(tIi,j − tIi,j−1)
yγ(tIi,j−2)

y (25)

≤
∑

Cm∈CG

∑
i∈Cm

Ni,T∑
j=3

(tIi,j − tIi,j−1)

yNi,T∑
j=3

γ(tIi,j−2)
y

1−y

1−y

(26)

≤
∑

Cm∈CG

∑
i∈Cm

Ñy
Cm,T

Ni,T∑
j=3

γ(j − 2)
y

1−y

1−y

(27)

14
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≤
∑

Cm∈CG

Ñy
Cm,T |Cm|y

∑
i∈Cm

Ni,T∑
j=3

γ(j − 2)
y

1−y

1−y

(28)

≤
∑

Cm∈CG

Ñy
Cm,T |Cm|Υν

(⌈
ÑCm,T

|Cm|

⌉
,

y

1− y

)1−y

, (29)

where line (25) follows from the inequality min{1, x} ≤ min{1, x}q ≤ xq for q ∈ [0, 1], line (26) is obtained from Hölder’s
inequality with exponents 1

y ≥ 1 and 1
1−y ≥ 1 respectively, line (27) follows from bounding

∑Ni,T

j=3 (tIi,j− tIi,j−1) ≤ ÑCm,T

and by Assumption 1, line (28) is obtained by an application of Jensen’s Inequality, and line (29) follows from Lemma 13.

By setting q = y
1−y ∈ [0, 1], and putting all together:

RDR-BG-UB
ν,G ≤ 4k +

∑
Cm∈CG

T q|Cm|Υν

(⌈
ÑCm,T

|Cm|

⌉
, q

)
+

∑
Cm∈CG

Ñ
q

1+q

Cm,T |Cm|Υν

(⌈
ÑCm,T

|Cm|

⌉
, q

) 1
1+q

.

Remark 5 (Regret Bound in Rested and Restless Rising Bandits). When we are in a purely rested/restless scenario,
the contribution term associated to the restless/rested scenario vanish, and we get the same regret orders from (Metelli
et al., 2022). In particular, we can avoid to split the minimum in (20) and instead notice that in a rested setting we have
t− tIIt,NIt,t−1

= t−NIt,t−1, and thus we can bound the cumulative regret as we bound the term (a). Instead, in a restless
setting we have t− tIIt,NIt,t−1

= t− tIt,NIt,t−1
, and thus we can bound the cumulative regret as we bound the term (b).

Theorem 4 (Regret Upper Bound for DR-G-UB for General Matrices in Deterministic Settings). Let (ν,G) be an instance
of the GTRB problem, where G ∈ {0, 1}k×k and σ = 0. Then, DR-G-UB suffers a regret bounded as:

Rν,G(DR-G-UB)

≤ Õ
(

min
q∈[0,1]

{
T q
∑

CL
m∈CḠL

|CL
m|Υν

(⌈
ÑCL

m,T

|CL
m|

⌉
, q

)
+

+
∑

CL
m∈CḠL

|CL
m|Ñ

q
1+q

CL
m,T

Υν

(⌈
ÑCL

m,T

|CL
m|

⌉
, q

) 1
1+q
})

,

where ḠL ∈ Bk̃ is a maximal sub-matrix of G.

Proof. The theorem can be proved by showing that estimator’s bias is always larger when internal times are decreased. For
every arm i ∈ [k] we define:

fi(t; x, y) = µi(x) + (t− x)
µi(x)− µi(y)

x− y
, (30)

for every triplet of natural numbers y ≤ x ≤ t ≤ T . Note that µ̄i(t) = fi(t; t
I
i,Ni,t−1

, tIi,Ni,t−1−1), so if we can show that
fi is decreasing in both x and y we can prove the previous claim. We start with the second argument: fix t and x, then for
any y:

fi(t;x, y)− fi(t;x, y − 1) = (t− x)

(∑x−1
j=y γi(j)

x− y
−
∑x−1

j=y−1 γi(j)

x− y + 1

)

=

∑x−1
j=y γi(j)− (x− y)γi(y − 1)

(x− y)(x− y + 1)
≤ 0, (31)

where line (31) follows from Assumption 1. With slightly more calculations we show that fi is also decreasing in the first
argument, fix t and y, then for any x:

fi(t; x, y)−fi(t; x− 1, y) = (32)
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Graph-Triggered Rising Bandits

= γi(x− 1) + (t− x)

∑x−1
j=y γi(j)

x− y
− (t− x+ 1)

∑x−2
j=y γi(j)

x− 1− y

= γi(x− 1) +
(t− x)(x− 1− y)

∑x−1
j=y γi(j)− (x− y)(t− x+ 1)

∑x−2
j=y

(x− y)(x− 1− y)

= γi(x− 1) +

∑x−2
j=y γi(j)[(t− x)(x− 1− y)− (x− y)(t− x+ 1)] + (t− x)(x− 1− y)γi(x− 1)

(x− y)(x− 1− y)
(33)

= γi(x− 1)

(
1 +

t− x

x− y

)
+ γi(x− 2)

x− y − 1

x− y − 1

(t− x)(x− 1− y)− (x− y)(t− x+ 1)

x− y

= γi(x− 1)
t− y

x− y
− γi(x− 2)

t− y

x− y

≤ t− y

x− y
(γi(x− 1)− γi(x− 2)) ≤ 0, (34)

where line (33) follows from observing that (t−x)(x−1−y)− (x−y)(t−x+1) ≤ 0, line (34) follows from Assumption
1. We proved that the estimator is decreasing with internal times.

Now we observe that, for every i and every t, we have tIi,Ni,t
≥ tI,Li,Ni,t

. This is a trivial consequence of Definition 1, since

tIi,Ni,t
− tI,Li,Ni,t

=

t∑
j=1

(GIt,i − ḠL
It,i) ≥ 0.

As a consequence of this, we have

fi(t; t
I
i,Ni,t−1

, tIi,Ni,t−1) ≤ fi(t; t
I,L
i,Ni,t−1

, tI,Li,Ni,t−1), (35)

and
µi(t

I
i,Ni,t

) ≥ µi(t
I,L
i,Ni,t

). (36)

Finally, given the optimal policy as a sequence (i∗t )t∈[T ], we bound the regret:

Rν,G(DR-G-UB) =
T∑

t=1

µi∗t
(t)− µIt(ÑIt,t)

=

T∑
t=1

µi∗t
(t)− µIt(t

I
It,NIt,t

)

=

T∑
t=1

µi∗t
(t)± µ̄It(t)− µIt(t

I
It,NIt,t

)

≤
T∑

t=1

µ̄It(t)− µIt(t
I
It,NIt,t

)

≤
T∑

t=1

µ̄L
It(t)− µIt(t

I,L
It,NIt,t

), (37)

where line (37) follows from (35) and (36). The proof can be concluded the same way as in Theorem 3.

Lemma 9 (Estimator’s Instantaneous Bias). For every arm i ∈ [k], every round t ∈ [T ], and window width 1 ≤ h ≤⌊
Ni,t−1

2

⌋
, let us define:

µ̃h
i (t) :=

1

h

Ni,t−1∑
l=Ni,t−1−h+1

(
µi(t

I
i,l) + (t− l)

µi(t
I
i,l)− µi(t

I
i,l−h)

h

)
,
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otherwise if h = 0, we set µ̃h
i (t) := +∞. Then, µ̃h

i (t) ≥ µi(ti,Ni,t−1
) and, if Ni,t−1 ≥ 2 it holds that:

µ̃h
i (t)− µi(Ñi,t) ≤

(2t− 2Ni,t−1 + h− 1)(tIi,Ni,t−1
− tIi,Ni,t−1−2h+1)

2h
γi(t

I
i,Ni,t−1−2h+1).

Proof. Let us start by observing the following equality holding for every l ∈ {2, . . . , Ni,t−1}:

µi(Ñi,t) = µi(t
I
i,l) +

Ñi,t−1∑
j=tIi,l

γi(j).

By averaging over a window of length h, we obtain:

µi(Ñi,t) =
1

h

Ni,t−1∑
l=Ni,t−1−h+1

µi(t
I
i,l) +

Ñi,t−1∑
j=tIi,l

γi(j)


≤ 1

h

Ni,t−1∑
l=Ni,t−1−h+1

(
µi(t

I
i,l) + (Ñi,t − tIi,l)γi(t

I
i,l − 1)

)
(38)

≤ 1

h

Ni,t−1∑
l=Ni,t−1−h+1

µi(t
I
i,l) +

Ñi,t − tIi,l
tIi,l − tIi,l−h

tIi,l−1∑
j=tIi,l−h

γi(j)

 (39)

≤ 1

h

Ni,t−1∑
l=Ni,t−1−h+1

(
µi(t

I
i,l) + (t− l)

µi(t
I
i,l)− µi(t

I
i,l−h)

h

)
=: µ̃h

i (t), (40)

where lines (38) and (39) follow from Assumption 1, and line (40) is obtained from observing that tIi,l ≥ l, Ñi,t ≤ t and
tIi,l − tIi,l−h ≥ h.

Concerning the bias, when Ni,t−1 ≥ 2, we have:

µ̃h
i (t)− µi(Ñi,t) =

1

h

Ni,t−1∑
l=Ni,t−1−h+1

(
µi(t

I
i,l) + (t− l)

µi(t
I
i,l)− µi(t

I
i,l−h)

h

)
− µi(Ñi,t)

≤ 1

h

Ni,t−1∑
l=Ni,t−1−h+1

(t− l)
µi(t

I
i,l)− µi(t

I
i,l−h)

h
(41)

=
1

h

Ni,t−1∑
l=Ni,t−1−h+1

(t− l)
µi(t

I
i,l)− µi(t

I
i,l−h)

tIi,l − tIi,l−h

tIi,l − tIi,l−h

h

≤ 1

h

Ni,t−1∑
l=Ni,t−1−h+1

(t− l)γi(t
I
i,l−h)

tIi,l − tIi,l−h

h
(42)

≤
tIi,Ni,t−1

− tIi,Ni,t−1−2h+1

h2
γi(t

I
i,Ni,t−1−2h+1)

Ni,t−1∑
l=Ni,t−1−h+1

(t− l) (43)

=
(2t− 2Ni,t−1 + h− 1)(tIi,Ni,t−1

− tIi,Ni,t−1−2h+1)

2h
γi(t

I
i,Ni,t−1−2h+1), (44)

where line (41) follows from observing that µi(t
I
i,l) ≤ µi(Ñi,t), line (42) derives from Assumption 1 and bounding

µi(t
I
i,l)−µi(t

I
i,l−h)

tIi,l−tIi,l−h

≤ γi(t
I
i,l−h), line (43) is obtained by bounding tIi,l− tIi,l−h ≤ tIi,Ni,t−1

− tIi,Ni,t−1−2h+1 and γi(t
I
i,l−h) ≤

γi(t
I
i,Ni,t−1−2h+1), and line (44) follows from computing the summation.
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Lemma 10 (Bound on Estimator’s Cumulative Bias for Block Diagonal Matrices). Let (It)t=1 be a sequence of actions.
For every action i ∈ [k], every round t ∈ [T ], let window width hi,t = ⌊ϵNi,t−1⌋. Let G ∈ Bk̃ be a block diagonal matrix,
then for every q ∈ [0, 1], we have

T∑
t=1

min
{
1, µ̃

hIt,t

It
(t)− µIt(ÑIt,t)

}
≤

≤ 2k + k̄1T
q

⌈
1

1− 2ϵ

⌉
Υν

(⌈
(1− 2ϵ)

T

k̄1

⌉
, q

)
+

+ T
2q

1+q (1 + log(ϵT ))
q

1+q

⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉ ∑
Cm∈CG:|Cm|>1

|Cm|Υν

(⌈
(1− 2ϵ)

T

|Cm|

⌉
, q

) 1
1+q

, (45)

where C is the set of blocks of matrix G, and k̄1 ≤ k is the number of blocks of size 1.

Proof. We proceed decomposing over the cliques and then over the arms, splitting cliques with only one arm from the
others:
T∑

t=1

min
{
1, µ̃

hIt,t

It
(t)− µIt(ÑIt,t)

}
≤

≤ 2k +
∑

Cm∈CG:|Cm|=1
Cm={i}

Ni,T∑
j=3

min
{
1, µ̃

hi,ti,j

i (ti,j)− µi(j)
}

︸ ︷︷ ︸
(a)

+
∑

Cm∈CG:|Cm|>1

∑
i∈Cm

Ni,T∑
j=3

min
{
1, µ̃

hi,ti,j

i (ti,j)− µi(t
I
i,j)
}

︸ ︷︷ ︸
(b)

.

We start from bounding the first term:

(a) ≤
∑

Cm∈CG:|Cm|=1
Cm={i}

Ni,T∑
j=3

min

{
1,

(2ti,j − 2(j − 1) + hi,ti,j − 1)2hi,t

2hi,t
γi(t

I
i,(j−1)−2hi,ti,j

+1)

}
(46)

≤
∑

Cm∈CG:|Cm|=1
Cm={i}

Ni,T∑
j=3

min
{
1, Tγi(t

I
i,j−2⌊ϵ(j−1)⌋)

}
(47)

≤
∑

Cm∈CG:|Cm|=1
Cm={i}

Ni,T∑
j=3

min {1, Tγi(⌊(1− 2ϵ)j⌋)} (48)

≤ T q
∑

Cm∈CG:|Cm|=1
Cm={i}

Ni,T∑
j=3

γi(⌊(1− 2ϵ)j⌋)q (49)

≤ T q

⌈
1

1− 2ϵ

⌉ ∑
Cm∈CG:|Cm|=1

Cm={i}

⌊(1−2ϵ)Ni,T ⌋∑
j=3⌊3(1−2ϵ)⌋

γi(j)
q (50)

≤ k̄1T
q

⌈
1

1− 2ϵ

⌉
Υν

(⌈
(1− 2ϵ)

T

k̄1

⌉
, q

)
, (51)

where line (46) follows from Lemma (9) and the fact that, for cliques with a single arm, internal times are equivalent to
the number of pulls (i.e., tIi,Ni,t−1

− tIi,Ni,t−1−2h+1 = 2h), line (47) follows from Assumption 1, by hi,ti,j = ⌊ϵNi,ti,j−1⌋
and by bounding 2ti,j − 2(j − 1) + hi,ti,j − 1 ≤ T , line (48) by Assumption 1, line (49) from the inequality min{1, x} ≤
min{1, x}q ≤ xq for q ∈ [0, 1], line (50) from Lemma 12, and line (51) from Lemma 13.
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We now proceed on bounding the second term:

(b) ≤
∑

Cm∈CG:|Cm|>1

∑
i∈Cm

Ni,T∑
j=3

min

{
1,

(2ti,j − 2(j − 1) + hi,ti,j − 1)(tIi,j−1 − tIi,j−2hi,t+1)

2hi,t
γi(t

I
i,(j−1)−2hi,ti,j

+1)

}
(52)

≤
∑

Cm∈CG:|Cm|>1

∑
i∈Cm

Ni,T∑
j=3

min

{
1,

T ÑCm,T

⌊ϵ(j − 1)⌋γi(t
I
i,j−2⌊ϵ(j−1)⌋)

}
(53)

≤
∑

Cm∈CG:|Cm|>1

∑
i∈Cm

Ni,T∑
j=3

min

{
1,

T ÑCm,T

⌊ϵ(j − 1)⌋γi(⌊(1− 2ϵ)j⌋)
}

(54)

≤ T z
∑

Cm∈CG:|Cm|>1

∑
i∈Cm

Ñz
Cm,T

Ni,T∑
j=3

(
γi(⌊(1− 2ϵ)j⌋)
⌊ϵ(j − 1)⌋

)z

(55)

≤ T z
∑

Cm∈CG:|Cm|>1

∑
i∈Cm

Ñz
Cm,T

Ni,T∑
j=3

1

⌊ϵ(j − 1)⌋

zNi,T∑
j=3

γi(⌊(1− 2ϵ)j⌋) z
1−z

1−z

(56)

≤ T z

⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉ ∑
Cm∈CG:|Cm|>1

∑
i∈Cm

Ñz
Cm,T

⌊ϵ(Ni,T−1)⌋∑
j=⌊2ϵ⌋

1

j

z⌊(1−2ϵ)Ni,T ⌋∑
j=⌊3(1−2ϵ)⌋

γi(j)
z

1−z

1−z

(57)

≤ T z(1 + log(ϵT ))z
⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉ ∑
Cm∈CG:|Cm|>1

∑
i∈Cm

Ñz
Cm,T

⌊(1−2ϵ)Ni,T ⌋∑
j=⌊3(1−2ϵ)⌋

γi(j)
z

1−z

1−z

(58)

≤ T z(1 + log(ϵT ))z
⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉ ∑
Cm∈CG:|Cm|>1

Ñz
Cm,T |Cm|z

∑
i∈Cm

⌊(1−2ϵ)Ni,T ⌋∑
j=⌊3(1−2ϵ)⌋

γi(j)
z

1−z

1−z

(59)

≤ T z(1 + log(ϵT ))z
⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉ ∑
Cm∈CG:|Cm|>1

Ñz
Cm,T |Cm|Υν

(
(1− 2ϵ)

⌊
ÑCm,T

|Cm|

⌋
,

z

1− z

)1−z

(60)

≤ T 2z(1 + log(ϵT ))z
⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉ ∑
Cm∈CG:|Cm|>1

|Cm|Υν

(
(1− 2ϵ)

⌊
T

|Cm|

⌋
,

z

1− z

)1−z

, (61)

where line (52) follows from the bias bound of Lemma 9, line (53) is obtained from bounding (2ti,j − 2(j − 1) + hi,ti,j −
1)(tIi,j−1 − tIi,j−2hi,t+1) ≤ 2TÑi,T and using the definition of hi,t, line (54) derives from observing that γi(ti,j) ≤ γi(j)

for Assumption 1, line (55) from the inequality min{1, x} ≤ min{1, x}z ≤ xz for z ∈ [0, 1/2], line (56) is obtained
from Hölder’s inequality with exponents 1

z ≥ 1 and 1
1−z ≥ 1 respectively, line (57) is an application of Lemma 12

to independently to both inner summations, line (58) derives from bounding the harmonic sum, i.e.,
∑⌊ϵ(Ni,T−1)⌋

⌊2ϵ⌋
1
j ≤

1 + log(ϵ(Ni,T − 1)) ≤ 1 + log(ϵT ), line (59) follows from Jensen’s inequality, line (60) is obtained from Lemma 13,
line (61) by bounding Ñi,T ≤ T . By recalling q = z

1−z ∈ [0, 1], we obtain:

(b) ≤ T
2q

1+q (1 + log(ϵT ))
q

1+q

⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉ ∑
Cm∈CG:|Cm|>1

|Cm|Υν

(⌈
(1− 2ϵ)

T

|Cm|

⌉
, q

) 1
1+q

.

Theorem 6 (Regret Upper Bound for R-□-UCB in Block-Diagonal Matrices). Let (ν,G) be an instance of the GTRB
problem, where G ∈ Bk̃. Let hi,t = ⌊ϵNi,t−1⌋ for ϵ ∈ (0, 1/2) and δt = t−α for α > 2. Then, Algorithm 3 suffers an
expected regret bounded as:

Rν,G(R-□-UCB)
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≤ Õ
(

min
q∈[0,1]

{ ∣∣∣∣(σT ) 2
3

∣∣∣∣︸ ︷︷ ︸
(A) Variance Contribution

+ k̄1T
qΥν

(⌈
T

k̄1

⌉
, q

)
︸ ︷︷ ︸
(B) Rested Bias Contribution

+

+ T
2q

1+q

∑
Cm∈CG:|Cm|>1

|Cm|Υν

(⌈
T

|Cm|

⌉
, q

) 1
1+q

︸ ︷︷ ︸
(C) Restless Bias Contribution

})
,

where k̄1 is the number of cliques in G containing only one action.

Proof. Let us define the good events Et =
⋂

i∈[k] Ei,t that correspond to the event in which all confidence intervals hold:

Ei,t :=
{∣∣∣µ̂hi,t

i (t)− µ̃
hi,t

i (t)
∣∣∣ ≤ β

hi,t

i (t)
}

∀i ∈ [T ], i ∈ [k].

We have to analyze the following expression:

Rν,G,T (DR-BG-UB) = E

[
T∑

t=1

µi∗t
(t)− µIt(t)

]
,

where i∗t ∈ argmaxi∈C∗
ν,G,T

µi(t) for all t = 1. We decompose according to the good events Et:

Rν,G,T (π
DR-BG-UB) =

T∑
t=1

E
[(
µi∗t

(t)− µIt(t)
)
1{Et}

]
+

T∑
t=1

E
[(
µi∗t

(t)− µIt(t)
)
1{¬Et}

]
≤

T∑
t=1

E
[(
µi∗t

(t)− µIt(t)
)
1{Et}

]
+

T∑
t=1

E [1{¬Et}] ,

where we exploited µi∗t
(t)− µIt(t) ≤ 1 in the inequality. Now, we bound the second summation, recalling that α > 2:

T∑
t=1

E [1{¬Et}] =
T∑

t=1

P (¬Et) ≤ 1 +

T∑
t=2

P

¬ ⋂
i∈[k]

Ei,t

 = 1 +

T∑
t=2

P

 ⋃
i∈[k]

¬Ei,t

 ≤ 1 +
∑
i∈[k]

T∑
t=2

P (¬Ei,t) ,

where the first inequality is obtained with P(¬E1) ≤ 1 and the second with a union bound over [k]. Recalling P(¬Ei,t) was
bounded in Lemma 5, we bound the summation with the integral to get:

∑
i∈[k]

T∑
t=2

P (¬Ei,t) ≤
∑
i∈[k]

T∑
t=2

2t1−α ≤ 2k

∫ +∞

x=1

x1−αdx =
2k

α− 2
.

From now on, we will proceed the analysis under the good event Et, recalling that Bi(t) ≡ µ̂
hi,t

i (t) + β
hi,t

i (t). Let t ∈ [T ],
and we exploit the optimism, i.e., Bi∗t

(t) ≤ BIt(t):

µi∗(t)− µIt(t) +BIt(t)−BIt(t) ≤ min

1, µi∗t
(t)−Bi∗t

(t)︸ ︷︷ ︸
≤0

+BIt(t)− µIt(t)


≤ min {1, BIt(t)− µIt(t)} .

Now, we work on the term inside the minimum:

BIt(t)− µIt(t) = µ̂
hIt,t

It
(t) + β

hIt,t

It
(t)− µIt(t) (62)
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≤ µ̃
hIt,t

It
(t)− µIt(t)︸ ︷︷ ︸

(a)

+2β
hIt,t

It
(t)︸ ︷︷ ︸

(b)

, (63)

where line (62) follows from the definition of Bi(t) and line (63) from the good event Et. We make use of Lemma 10 and
Lemma 14 to bound the summations over t of (a) and (b), respectively.

Putting all together, we obtain:

Rν,G,T (DR-BG-UB) ≤ 1 +
2k

α− 2
+ 5k +

k

ϵ
+

3k

ϵ
(2σT )

2
3 (10α log T )

1
3

+ T
2q

1+q (1 + log(ϵT ))
q

1+q

⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉
kΥµ

(⌈
(1− 2ϵ)

T

k

⌉
, q

) 1
1+q

+ 2k + k̄1T
q

⌈
1

1− 2ϵ

⌉
Υν

(⌈
(1− 2ϵ)

T

k̄1

⌉
, q

)
+ T

2q
1+q (1 + log(ϵT ))

q
1+q

⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉ ∑
Cm∈CG:|Cm|>1

|Cm|Υν

(⌈
(1− 2ϵ)

T

|Cm|

⌉
, q

) 1
1+q

.

Lemma 11 (Bound on Estimator’s Cumulative Bias for General Matrices). Let {It}t=1 be a sequence of actions. For every
action i ∈ [k], every round t ∈ [T ], let window width hi,t = ⌊ϵNi,t−1⌋. Let G ∈ {0, 1}k×k, then for every q ∈ [0, 1], we
have

T∑
t=1

min
{
1, µ̃

hIt ,t
It

(t)− µIt(ÑIt,t)
}
≤

≤ 2k + k̄1T
q

⌈
1

1− 2ϵ

⌉
Υν

(⌈
(1− 2ϵ)

T

k̄1

⌉
, q

)
+

+ T
2q

1+q (1 + log(ϵT ))
q

1+q

⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉
(k − k̄1)Υν

(⌈
(1− 2ϵ)

T

k − k̄1

⌉
, q

) 1
1+q

, (64)

where k̄1 ≤ k is the number of arms having degree of 1, i.e., k̄1 := |{i ∈ [k] : deg(i) = 1}|.

Proof. The proof follows similar steps as Lemma 10. We decide to split arms based on their degree, in particular we bound
separately the bias due to arms having degree of 1 (i.e., they only are triggered by themselves).

T∑
t=1

min
{
1, µ̃

hIt,t

It
(t)− µIt(ÑIt,t)

}
≤

≤ 2k +
∑
i∈[k]

deg−(i)=1

Ni,T∑
j=3

min
{
1, µ̃

hi,ti,j

i (ti,j)− µi(j)
}

︸ ︷︷ ︸
(a)

+
∑
i∈[k]

deg−(i)>1

Ni,T∑
j=3

min
{
1, µ̃

hi,ti,j

i (ti,j)− µi(t
I
i,j)
}

︸ ︷︷ ︸
(b)

.

We start from bounding the first term:

(a) ≤
∑
i∈[k]

deg−(i)=1

Ni,T∑
j=3

min

{
1,

(2ti,j − 2(j − 1) + hi,ti,j − 1)2hi,t

2hi,t
γi(ti,(j−1)−2hi,ti,j

+1)

}
(65)

≤
∑
i∈[k]

deg−(i)=1

Ni,T∑
j=3

min
{
1, Tγi(t

I
i,j−2⌊ϵ(j−1)⌋)

}
(66)

21



Graph-Triggered Rising Bandits

≤
∑
i∈[k]

deg−(i)=1

Ni,T∑
j=3

min {1, Tγi(⌊(1− 2ϵ)j⌋)} (67)

≤ T q
∑
i∈[k]

deg−(i)=1

Ni,T∑
j=3

γi(⌊(1− 2ϵ)j⌋)q (68)

≤ T q

⌈
1

1− 2ϵ

⌉ ∑
i∈[k]

deg−(i)=1

⌊(1−2ϵ)Ni,T ⌋∑
j=3⌊3(1−2ϵ)⌋

γi(j)
q (69)

≤ T q

⌈
1

1− 2ϵ

⌉ ∑
i∈[k]

deg−(i)=1

⌊(1−2ϵ)Ni,T ⌋∑
j=3⌊3(1−2ϵ)⌋

γi(j)
q (70)

≤ k̄1T
q

⌈
1

1− 2ϵ

⌉
Υν

(⌈
(1− 2ϵ)

T

k̄1

⌉
, q

)
, (71)

where line (65) follows from Lemma (9) and the fact that, for cliques with a single arm, internal times are equivalent to
the number of pulls (i.e., tIi,Ni,t−1

− tIi,Ni,t−1−2h+1 = 2h), line (66) follows from Assumption 1, by hi,ti,j = ⌊ϵNi,ti,j−1⌋
and by bounding 2ti,j − 2(j − 1) + hi,ti,j − 1 ≤ T , line (68) by Assumption 1, line (69) from the inequality min{1, x} ≤
min{1, x}q ≤ xq for q ∈ [0, 1], line (70) from Lemma 12, and line (71) from Lemma 13.

As a trivial consequence of Definition 1, we observe that

tIi,Ni,t
− tI,Ui,Ni,t

=

t∑
j=1

(GIt,i − ḠU
It,i) ≤ 0.

As a consequence of this, we have that, for every i and for every t:

Ñi,t ≤ ÑU
i,t, (72)

where ÑU
i,t := e⊤i (Ḡ

U )⊤Nt.

We now proceed on bounding the second term:

(b) ≤
∑
i∈[k]

deg−(i)>1

Ni,T∑
j=3

min

{
1,

(2ti,j − 2(j − 1) + hi,ti,j − 1)(tIi,j−1 − tIi,j−2hi,t+1)

2hi,t
γi(t

I
i,(j−1)−2hi,ti,j

+1)

}
(73)

≤
∑
i∈[k]

deg−(i)>1

Ni,T∑
j=3

min

{
1,

T Ñi,T

⌊ϵ(j − 1)⌋γi(t
I
i,j−2⌊ϵ(j−1)⌋)

}
(74)

≤
∑
i∈[k]

deg−(i)>1

Ni,T∑
j=3

min

{
1,

T Ñi,T

⌊ϵ(j − 1)⌋γi(⌊(1− 2ϵ)j⌋)
}

(75)

≤
∑

CU
m∈CḠU

|CU
m|>1

∑
i∈CU

m

Ni,T∑
j=3

min

{
1,

T ÑU
Cm,T

⌊ϵ(j − 1)⌋γi(⌊(1− 2ϵ)j⌋)
}

(76)

≤ T z
∑

CU
m∈CḠU

|CU
m|>1

∑
i∈CU

m

(ÑU
Cm,T )

z

Ni,T∑
j=3

(
γi(⌊(1− 2ϵ)j⌋)
⌊ϵ(j − 1)⌋

)z

(77)
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≤ T z
∑

CU
m∈CḠU

|CU
m|>1

∑
i∈CU

m

(ÑU
Cm,T )

z

Ni,T∑
j=3

1

⌊ϵ(j − 1)⌋

zNi,T∑
j=3

γi(⌊(1− 2ϵ)j⌋) z
1−z

1−z

(78)

≤ T z

⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉ ∑
CU

m∈CḠU

|CU
m|>1

∑
i∈CU

m

(ÑU
Cm,T )

z

⌊ϵ(Ni,T−1)⌋∑
j=⌊2ϵ⌋

1

j

z⌊(1−2ϵ)Ni,T ⌋∑
j=⌊3(1−2ϵ)⌋

γi(j)
z

1−z

1−z

(79)

≤ T z(1 + log(ϵT ))z
⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉ ∑
CU

m∈CḠU

|CU
m|>1

∑
i∈CU

m

(ÑU
Cm,T )

z

⌊(1−2ϵ)Ni,T ⌋∑
j=⌊3(1−2ϵ)⌋

γi(j)
z

1−z

1−z

(80)

≤ T z(1 + log(ϵT ))z
⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉ ∑
CU

m∈CḠU

|CU
m|>1

|CU
m|z

∑
i∈CU

m

⌊(1−2ϵ)Ni,T ⌋∑
j=⌊3(1−2ϵ)⌋

γi(j)
z

1−z

1−z

(81)

≤ T 2z(1 + log(ϵT ))z
⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉ ∑
CU

m∈CḠU

|CU
m|>1

|CU
m|Υν

(
(1− 2ϵ)

⌊
ÑU

Cm,T

|CU
m|

⌋
,

z

1− z

)1−z

, (82)

where line (73) follows from the bias bound of Lemma 9, line (74) is obtained from bounding (2ti,j − 2(j − 1) + hi,ti,j −
1)(tIi,j−1−tIi,j−2hi,t+1) ≤ 2TÑi,T and using the definition of hi,t, line (75) derives from observing that γi(ti,j) ≤ γi(j) for
Assumption 1, line (76) follows (72) and a decomposition of the pulls over the cliques of ḠU , line (77) from the inequality
min{1, x} ≤ min{1, x}z ≤ xz for z ∈ [0, 1/2], line (78) is obtained from Hölder’s inequality with exponents 1

z ≥ 1 and
1

1−z ≥ 1 respectively, line (79) is an application of Lemma 12 to independently to both inner summations, line (80) derives

from bounding the harmonic sum, i.e.,
∑⌊ϵ(Ni,T−1)⌋

⌊2ϵ⌋
1
j ≤ 1 + log(ϵ(Ni,T − 1)) ≤ 1 + log(ϵT ), line (81) follows from

Jensen’s inequality and by bounding ÑU
CU

m,T ≤ T , line (82) is obtained from Lemma 13. By recalling q = z
1−z ∈ [0, 1], we

obtain:

(b) ≤ T
2q

1+q (1 + log(ϵT ))z
⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉ ∑
CU

m∈CḠU

|CU
m|>1

|CU
m|Υν

(
(1− 2ϵ)

⌊
T

|CU
m|

⌋
,

z

1− z

) 1
1+q

.

Theorem 7 (Regret Upper Bound for R-□-UCB in General Matrices). Let (ν,G) be an instance of the GTRB problem,
where G ∈ {0, 1}k×k. Let hi,t = ⌊ϵNi,t−1⌋ for ϵ ∈ (0, 1/2) and δt = t−α for α > 2. Then, Algorithm 3 suffers an
expected regret bounded as:

Rν,G(R-□-UCB)

= Õ
(

min
q∈[0,1]

{
(σT )

2
3 + T qk̄1Υν

(
T

k̄1
, q

)
+

+ T
2q

1+q

∑
CU

m

|CU
m|Υν

(
T

|CU
m|

, q

) 1
1+q

})
,

where ḠU is the minimal super-matrix of G.

Proof. The proof follows similar steps of the proof of Theorem 6, but uses Lemma 11 instead of Lemma 10 to bound
cumulative estimator’s bias.
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Let us define the good events Et =
⋂

i∈[k] Ei,t that correspond to the event in which all confidence intervals hold:

Ei,t :=
{∣∣∣µ̂hi,t

i (t)− µ̃
hi,t

i (t)
∣∣∣ ≤ β

hi,t

i (t)
}

∀i ∈ [T ], i ∈ [k].

We have to analyze the following expression:

Rν,G,T (DR-BG-UB) = E

[
T∑

t=1

µi∗t
(t)− µIt(t)

]
,

where i∗t ∈ argmaxi∈C∗
ν,G,T

µi(t) for all t ∈ [T ]. We decompose according to the good events Et:

Rν,G,T (DR-BG-UB) =
T∑

t=1

E
[(
µi∗t

(t)− µIt(t)
)
1{Et}

]
+

T∑
t=1

E
[(
µi∗t

(t)− µIt(t)
)
1{¬Et}

]
≤

T∑
t=1

E
[(
µi∗t

(t)− µIt(t)
)
1{Et}

]
+

T∑
t=1

E [1{¬Et}] ,

where we exploited µi∗t
(t)− µIt(t) ≤ 1 in the inequality. Now, we bound the second summation, recalling that α > 2:

T∑
t=1

E [1{¬Et}] =
T∑

t=1

P (¬Et) ≤ 1 +

T∑
t=2

P

¬ ⋂
i∈[k]

Ei,t

 = 1 +

T∑
t=2

P

 ⋃
i∈[k]

¬Ei,t

 ≤ 1 +
∑
i∈[k]

T∑
t=2

P (¬Ei,t) ,

where the first inequality is obtained with P(¬E1) ≤ 1 and the second with a union bound over [k]. Recalling P(¬Ei,t) was
bounded in Lemma 5, we bound the summation with the integral to get:

∑
i∈[k]

T∑
t=2

P (¬Ei,t) ≤
∑
i∈[k]

T∑
t=2

2t1−α ≤ 2k

∫ +∞

x=1

x1−αdx =
2k

α− 2
.

From now on, we will proceed the analysis under the good event Et, recalling that Bi(t) ≡ µ̂
hi,t

i (t) + β
hi,t

i (t). Let t = 1,
and we exploit the optimism, i.e., Bi∗t

(t) ≤ BIt(t):

µi∗(t)− µIt(t) +BIt(t)−BIt(t) ≤ min

1, µi∗t
(t)−Bi∗t

(t)︸ ︷︷ ︸
≤0

+BIt(t)− µIt(t)


≤ min {1, BIt(t)− µIt(t)} .

Now, we work on the term inside the minimum:

BIt(t)− µIt(t) = µ̂
hIt,t

It
(t) + β

hIt,t

It
(t)− µIt(t) (83)

≤ µ̃
hIt,t

It
(t)− µIt(t)︸ ︷︷ ︸

(a)

+2β
hIt,t

It
(t)︸ ︷︷ ︸

(b)

, (84)

where line (83) follows from the definition of Bi(t) and line (84) from the good event Et. We make use of Lemma 11 and
Lemma 14 to bound the summations over t of (a) and (b), respectively.

Putting all together, we obtain:

Rν,G,T (R-□-UCB) ≤

≤ 1 +
2k

α− 2
+ 5k +

k

ϵ
+

3k

ϵ
(2σT )

2
3 (10α log T )

1
3 +
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+ 2k + k̄1T
q

⌈
1

1− 2ϵ

⌉
Υν

(⌈
(1− 2ϵ)

T

k̄1

⌉
, q

)
+

+ T
2q

1+q (1 + log(ϵT ))
q

1+q

⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉
×

×
∑

CU
m∈CḠU

|CU
m|>1

|Cm|Υν

(⌈
(1− 2ϵ)

T

|Cm|

⌉
, q

) 1
1+q

.

C. Technical Lemmas for Stochastic Rising Bandits
In this appendix, we report some useful technical lemmas from the literature of stochastic rising bandits that will play a role
in the results of Section B.

Lemma 12 (Lemma C.1 of Metelli et al. 2022). Let M ≥ 3, and let f : N→ R, and β ∈ (0, 1). Then it holds that:

M∑
j=3

f(⌊βj⌋) ≤
⌈
1

β

⌉ ⌊βM⌋∑
l=⌊3β⌋

f(l).

Proof. We simply observe that the minimum value of ⌊βj⌋ is ⌊3β⌋ and its maximum value is ⌊βM⌋. Each element ⌊βj⌋
changes value at least one time every

⌈
1
β

⌉
times.

Lemma 13 (Lemma C.2 of Metelli et al. 2022). Under Assumption 1, it holds that:

max
(Ni,T )i∈[k]

Ni,T≥0,
∑

i∈[k] Ni,T=T

∑
i∈[k]

Ni,T−1∑
l=1

γi(l)
q ≤ kΥν

(⌈
T

k

⌉
, q

)
.

Lemma 5 (Concentration of Estimator, adapted from Metelli et al. 2022). For every arm i ∈ [k], every round t ∈ [T ], and

window width 1 ≤ h ≤
⌊
Ni,t−1

2

⌋
, let:

βh
i (t, δ) := σ(t−Ni,t−1 + h− 1)

√
10 log 1

δ

h3
.

Then, if the window size depends on the number of pulls only hi,t = h(Ni,t−1) and if δt = t−α for some α > 2, it holds for
every round t ∈ [T ] that:

P
(∣∣∣µ̂hi,t

i (t)− µ̃
hi,t

i (t)
∣∣∣ > β

hi,t

i (t, δt)
)
≤ 2t1−α.

Proof Sketch. Using a Doob’s optional skipping argument (Doob, 1953; Bubeck et al., 2008), and noting that, at
round t, tIi,l is a stopping time for every arm i ∈ [k] and pull number l ∈ {1, . . . , Ni,t−1} w.r.t. the filtration
Fτ−1 = σ(I1, X1, . . . , Iτ−1, Xτ−1, Iτ ), we can proceed to prove this lemma as in Metelli et al. (2022) also for GTRB.

Lemma 14 (Bound on Estimator’s Variance, Metelli et al. (2022), Theorem 4.4). Let (It)t∈[T ] be a sequence of actions
such that ∣∣∣µ̂hIt,t

It
(t)− µ̃

hIt,t

It
(t)
∣∣∣ ≤ β

hIt,t

It
(t, t−α), ∀t ∈ [T ], (85)

where α > 2. For every action i ∈ [k], every round t ∈ [T ], let window width hi,t = ⌊ϵNi,t−1⌋. Then, we have

T∑
t=1

min
{
1, 2β

hIt,t

It
(t, t−α)

}
≤ k

(
3 +

1

ϵ

)
+

3k

ϵ
(2σT )

2
3 (10α log T )

1
3 . (86)

25



Graph-Triggered Rising Bandits

0 1 2 3 4 5
·104

0

0.2

0.4

0.6

0.8

1

nt

µ0
µ1
µ2
µ3
µ4

(a) ν1, µi = mi(1− e−κint).

0 2 4 6
·104

0

0.2

0.4

0.6

0.8

1

nt

µ0
µ1
µ2
µ3
µ4

(b) ν2, µi = min{κint,mi}.

0 1 2 3 4 5
·104

0

0.2

0.4

0.6

0.8

1

nt

(c) ν3, µi = mi(1− e−κint).

Figure 2. Sets of functions used in the experimental campaign over deterministic settings with block-diagonal adjacency matrices. Under
each figure, we report the family of analytical functions used for the instance construction, where κi > 0 and mi ∈ [0, 1].

D. Experiments
In this appendix, we provide an experimental campaign to validate the proposed algorithmic solutions from an empirical
perspective.

We start with the deterministic setting: in Appendix D.1 we evaluate DR-BG-UB in 15 GTRB instances, varying both
the functions and the adjacency matrices; in Appendix D.2 we evaluate DR-G-UB in 3 GTRB instances, but varying the
sub-matrix used in the Algorithm 2 routine. Finally, we evaluate R-□-UCB in 10 stochastic GTRB instances, varying both
the functions and the adjacency matrices, and comparing its performances to a baseline from the literature, Sliding Window
UCB (Garivier & Moulines, 2011). We decided not to evaluate R-□-UCB under general adjacency matrices since there is
no feasible way to compute a clairvoyant and no reasonable sensitivity analysis can be conducted on the algorithm’s inputs
as we did in the deterministic setting studying the impact of the specified sub-matrix.

D.1. Deterministic Setting with Block-Diagonal Matrices

This section assesses the empirical performances of DR-BG-UB in a synthetic environment. To do so, we propose a total of
15 different instances of Graph-Triggered Rising Bandits with block-diagonal matrices and adding no noise in the rewards
generation process.

Setting. In Figure 2, we report three different set of functions satisfying Assumption 1, {ν1,ν2,ν3}, of 5, 5 and 15 arms,
respectively.

Some remarks are in order. The total increment assumes different behaviors depending on the set of functions, indeed
Υν1 = O(log T ) and Υν3 = O(log T ), while Υν2 = O(T ). This has been done voluntarily to stress the algorithm towards
these two corner cases and assess its performance on both. Moreover, in F1 we can see one function, namely µ3, dominating
all the others. This is a corner case in which, whatever the underlying graph, all the optimal policies coincide. Instead, in F2,
we observe that the optimal policy in the restless scenario would include pulling 4 different actions across the trial. Instead,
F3 is aimed at assessing Algorithm 1 performance when the action space is larger.

We now introduce a compact notation for block-diagonal matrices. Let G ∈ {0, 1}k×k a block-diagonal matrix with k̃
distinct blocks. Then, we indicate the matrix by means of its block sizes as G := {b1, . . . , bk̃}, with the convention that the
first block is the one on the upper-left corner, and so on. Note that

∑
i∈[k̃] bi = k.

Together with those, we define two sets of block-diagonal matrices, namely B1 and B2, composed of 5 matrices each:

B1 = {I5, {2, 1, 1, 1}, {2, 1, 2}, {3, 2},15×5},
B2 = {I15, {3, 3, 3, 3, 3}, {5, 5, 5}, {5, 10},115×15}.

Note that the definition of sub-matrix partially orders matrices increasingly, i.e., every matrix is a sub-matrix of the following
one. When referring to a set of ”increasing” matrices, we will indicate with G0 the minimum (e.g., G0 = I5), and so on
until the maximum (e.g., G4 = 15×5). Set B1 is composed of sequentially nested matrices, while set B2 is composed of
matrices. Both have a decreasing number of blocks.
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(a) ν1, Gi ∈ B1, T = 5 · 104.
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(c) ν3, Gi ∈ B2, T = 5 · 104.

Figure 3. Cumulative regrets obtained by DR-BG-UB. The algorithm faces every set of functions 5 times under a different adjacency
matrix, from the sparser (G0 = I) to the complete matrix (G4 = 1).
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Figure 4. Sets of functions used in the experimental campaign over stochastic settings with non-block-diagonal adjacency matrices. Under
each figure, we report the family of analytical functions used for the instance construction, where κi > 0 and mi ∈ [0, 1].

Together with the reward functions, the matrices will form the 15 instances as follows: (ν1,G)G∈B1 , (ν2,G)G∈B1 ,
(ν3,G)G∈B2 , where G0 Thus, every set of functions will be evaluated on 5 different block-diagonal matrices.

Results. In Figure 3, we report the cumulative regrets obtained by DR-BG-UB on the three instances previously described,
setting T to 50.000, 75.000 and 50.000, respectively. Since DR-BG-UB is an anytime algorithm, for every time t ∈ [T ]
we computed the cumulative reward achieved by the optimal policy for that specific time horizon and then tracked the
algorithm’s cumulative regret at every time.

Some comments are in order. The instances corresponding to purely restless settings (i.e., G4) are the ones in which
DR-BG-UB achieves the best performances. This is expected since the restless contribution to the regret’s upper bound is
sensibly lower than the contribution given by rested arms (Theorem 3). In general, this phenomenon is even more evident
when looking at the progression of regret when the number of blocks increases. The higher cumulative regret is always
observed when the matrix is the identity (i.e., G0). However, the cumulative regret always assumes a sub-linear shape, thus
validating the theoretical findings of Theorem 3. Finally, the cumulative regret’s shape assumes a non-concave behavior
(see, e.g., Figure 3b): this is expected since the clairvoyant is computed for every possible t and the optimal policy may
drastically change from one time to the subsequent.

D.2. Deterministic Setting with General Matrices

This section assesses the empirical performances of DR-G-UB in a synthetic environment. To do so, we propose a total of 3
different instances of Graph-Triggered Rising Bandits with non-block-diagonal matrices and adding no noise in the rewards
generation process. Moreover, we analyze the behavior of DR-G-UB under different choices of the employed sub-matrix,
also deviating from the maximal sub-matrix choice prescribed by the pseudo-code in Algorithm 2.

Setting. In Figure 4, we report three different set of functions satisfying Assumption 1, {ν4,ν5,ν6}, of 5, 5 and 15
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Figure 5. Cumulative rewards obtained by DR-G-UB. The algorithm faces every set of functions 5 times under the same different
adjacency matrix, however the used sub-matrix GL

i changes, from the sparser (GL
0 = I) to the maximal sub-matrix (GL

3 ).

functions, respectively.

These set of functions are very similar to the ones in the previous section. Thus, all the remarks done before still apply.

We define two non-block-diagonal matrices, namely Ga ∈ {0, 1}5×5 and Gb ∈ {0, 1}15×15:

Ga =


1 1 1 1 0
1 1 1 1 0
1 1 1 0 0
1 1 0 1 1
0 0 0 1 1

 , Gb =



1 1 1 1 1 0 0 0 1 0 0 0 0 1 0
1 1 1 1 1 0 0 0 0 0 0 0 1 0 1
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 0 1 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 1 1 1 1 1 1 1 1 1 1


Together with the set of functions, these will constitute the 3 instances as follows: (ν4,Ga), (ν5,Ga), and (ν6,Gb).

The goal of this section is mainly to study the behaviour of DR-G-UB under different choices of the sub-matrix, and to
validate that the maximal sub-matrix is empirically the best choice. Thus, we will propose 4 possible sub-matrices of Ga

and Gb, respectively, and run Algorithm 2 for every possible choice.

We define two sets of sub-matrices, namely BLa and BLb , s.t.

BLa = {I5, {2, 1, 1, 1}, {2, 1, 2}, {3, 2}}, (87)

BLb = {I15, {3, 3, 3, 3, 3}, {5, 5, 5}, {5, 10}}. (88)

We will indicate with GL
0 the minimum sub-matrix (e.g., G0 = I5), and so on until the maximal sub-matrix (e.g.,

GL
4 = {3, 2}), that is here uniquely defined.

Results. When the matrix is non-block-diagonal, computing the clairvoyant is NP-hard. Thus, in Figure 5, we report the
cumulative rewards obtained by DR-G-UB on the three instances defined above when varying the sub-matrix that is used,
setting T to 50.000, 75.000 and 50.000, respectively.

The cumulative regret is always sub-linear, independent of the choice of the used sub-matrix. However, the best performances
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Figure 6. Cumulative regrets obtained by R-□-UCB and SW-UCB. The algorithms face the same set of functions ν1 for 5 times under
different adjacency matrices. Gi moves from the sparser (G0 = I5) to the complete matrix (G4 = 15×5). For each instance, we
performed 20 trials and reported mean ± std.

are obtained using the maximal sub-matrix, and this is an expected consequence of Theorem 4. When the provided sub-
matrix becomes smaller in the number of blocks, the cumulative reward improves despite keeping the true matrix underlying
the process fixed. This outcome validates the design choice in Algorithm 2 to use the maximal sub-matrix.

D.3. Stochastic Setting with Block-Diagonal Matrices, and comparison with Sliding-Window UCB

In this section, we validate the need for ad-hoc algorithmic solutions to solve the Graph-Triggered Rising Bandits problem.
In particular, we evaluate the performance of Algorithm 3 in a stochastic setting with block-diagonal adjacency matrices and
compare it to the one of Sliding Window UCB (shortly, SW-UCB, Garivier & Moulines (2011)). To the authors’ knowledge,
no existing algorithm from the literature deals appropriately with the GTRB setting. So, as a comparison baseline, we
decided to use SW-UCB since it is one of the most robust and known algorithms from the non-stationary bandit literature.

Setting. We evaluate the two algorithm on a total of 10 instances, corresponding to the first 10 instances of the experimental
campaign in Appendix D.1 (rescaled), i.e., (ν1,G)G∈B1 and (ν2,G)G∈B1 . The hyper-parameters of SW-UCB have been
set according to the original paper (Garivier & Moulines, 2011) and then optimized to get the smaller regret upper bound.
Instead, the hyper-parameters of R-□-UCB have been fixed for all experiments, using ϵ = 0.1 and α = 3. The time horizon
was set to T = 75.000, and the optimal policy’s cumulative reward has been computed for every time t ∈ [T ]. We perform
20 trials for each setting, varying the seed to the additive, zero-mean, Gaussian noise generator, where σ = 0.1.

Results. In Figure 6, we report the average cumulative regrets obtained by the two algorithms in the first 5 instances and
their standard deviations. We can observe that, in most of these, the performance of the two algorithms is comparable, even
if SW-UCB tends to achieve a lower regret. However, the shape of SW-UCB cumulative regret has a linear behavior. We
remark that the set of functions ν1 contains a dominant function, µ3, thus the optimal policy prescribes to always play such
arm, independently from the matrix. In this kind of setting, standard algorithms for non-stationary bandits can still achieve
satisfactory performance in practice.

However, as we can observe in Figure 7, which contains the regrets for the second half of the instances, the performance of
SW-UCB quickly deteriorates w.r.t. R-□-UCB as the optimal policy becomes less trivial. Indeed, when ”increasing” the
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Figure 7. Cumulative regrets obtained by R-□-UCB and SW-UCB. The algorithms face the same set of functions ν2 for 5 times under
different adjacency matrices. Gi moves from the sparser (G0 = I5) to the complete matrix (G4 = 15×5). For each instance, we
performed 20 trials and reported mean ± std.

adjacency matrix, the optimal policy pulls a larger set of different arms, and standard techniques for non-stationary bandits
fail to model this kind of interaction among the arms. The results of this section highlight the need for a specific algorithm
to deal with GTRB problems, as standard algorithms from the non-stationary bandits literature may perform well in simpler
instances but will severely deteriorate in harder ones. Finally, this section also assesses the good performance of R-□-UCB
in stochastic settings. Indeed, all the cumulative regrets assume a sub-linear shape.
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