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Abstract

Hybrid Reinforcement Learning (RL), where an agent learns from both an offline
dataset and online explorations in an unknown environment, has garnered signif-
icant recent interest. A crucial question posed by Xie et al. (2022b) is whether
hybrid RL can improve upon the existing lower bounds established for purely of-
fline or online RL without requiring that the behavior policy visit every state and
action the optimal policy does. While Li et al. (2023b) provided an affirmative
answer for tabular PAC RL, the question remains unsettled for both the regret-
minimizing and non-tabular cases. In this work, building upon recent advance-
ments in offline RL and reward-agnostic exploration, we develop computationally
efficient algorithms for both PAC and regret-minimizing RL with linear function
approximation, without requiring concentrability on the entire state-action space.
We demonstrate that these algorithms achieve sharper error or regret bounds that
are no worse than, and can improve on, the optimal sample complexity in offline
RL (the first algorithm, for PAC RL) and online RL (the second algorithm, for
regret-minimizing RL) in linear Markov decision processes (MDPs), regardless
of the quality of the behavior policy. To our knowledge, this work establishes the
tightest theoretical guarantees currently available for hybrid RL in linear MDPs.

1 Introduction
Reinforcement learning (RL) holds great promise in attaining reliable decision-making in adaptive
environments for a broad range of modern applications. Typical RL algorithms often require an enor-
mous number of training samples, motivating a line of recent efforts to study the sample efficiency
of RL algorithms. There are two mainstream paradigms of RL, distinguished by how samples are
collected: online RL and offline RL. In online RL, an agent learns in a real-time manner, exploring
the environment to maximize her cumulative rewards by executing a sequence of adaptively chosen
policies (e.g. Azar et al. (2017); Jin et al. (2018); Sutton and Barto (2018); Zhang et al. (2023)).
Whereas, in offline RL, an agent has only access to a pre-collected dataset, and tries to figure out
how to perform well in a different environment without ever experiencing it (e.g. Jin et al. (2021b);
Lange et al. (2012); Levine et al. (2020); Li et al. (2024)). Online methods are often sample-hungry,
but offline methods often impose stringent requirements on the quality of the pre-collected data.

To address the limitations of both, the setting of hybrid RL (Song et al., 2023; Xie et al., 2022b) has
recently received considerable attention from both theoretical and practical perspectives (Amortila
et al., 2024; Ball et al., 2023; Kausik et al., 2024; Li et al., 2023b; Nair et al., 2020; Nakamoto et al.,
2023; Song et al., 2023; Tan and Xu, 2024; Vecerik et al., 2017; Wagenmaker and Pacchiano, 2023;
Zhou et al., 2023). In hybrid RL, an agent learns from a combination of both offline and online data,
extracting information from offline data to enhance online exploration. Theoretical guarantees for
hybrid RL algorithms can be categorized on: (1) the type of function approximation considered, (2)
the level of coverage required by the behavior policy, (3) whether it improves on the minimax lower
bounds for online-only and offline-only learning, and (4) whether they minimize regret or obtain a
PAC guarantee. We elaborate below, and summarize the prior art in Table 1.
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Paper Function Type Concentrability? Improvement? Regret or PAC?
Song et al. (2023) General Required No Regret

Nakamoto et al. (2023)
Tan and Xu (2024) General Not Required No Regret

Amortila et al. (2024)
Wagenmaker and Pacchiano (2023) Linear Not Required No PAC

Li et al. (2023b) Tabular Not Required Yes PAC
This work Linear Not Required Yes Regret, PAC

Table 1: Comparison of our contributions to previous work in hybrid RL.

While much of the prior literature (Amortila et al., 2024; Nakamoto et al., 2023; Song et al., 2023;
Tan and Xu, 2024; Zhou et al., 2023) tackles general function approximation in hybrid RL, they
either require stringent concentrability assumptions on behavior policy quality, or fail to obtain tight
theoretical guarantees. Under such single-policy concentrability assumptions (explained below),
Xie et al. (2022b) show the optimal RL algorithm is either a purely offline reduction or a purely
online algorithm if the agent can choose the ratio of offline to online samples, rendering the benefits
of hybrid RL questionable. Without this assumption, Li et al. (2023b) show guarantees for PAC RL
that improve over lower bounds for offline-only and online-only RL, but only for tabular MDPs.

This paper focuses on obtaining sharper theoretical guarantees in the setting of linear function ap-
proximation in linear MDPs. First proposed in Jin et al. (2019); Yang and Wang (2019), linear MDPs
parameterize the transition probability kernel and reward function by linear functions of known fea-
tures (e.g. pre-trained neural embeddings). It has been extensively studied due to its benefits in
dimension reduction and mathematical tractability in both the online and offline settings (Du et al.,
2019; Duan and Wang, 2020; He et al., 2023; Hu et al., 2023; Jin et al., 2019; Li et al., 2021; Min
et al., 2021; Qiao and Wang, 2022; Xiong et al., 2023; Yang and Wang, 2019; Yin et al., 2022;
Zanette et al., 2021). Despite these efforts, hybrid RL algorithms for linear MDPs (Amortila et al.,
2024; Nakamoto et al., 2023; Song et al., 2023; Tan and Xu, 2024; Wagenmaker and Pacchiano,
2023) have suboptimal worst-case guarantees (Table 2), which raises the question:
Is it possible to develop sample efficient RL algorithms in the setting of hybrid RL that are provably

better than online-only and offline-only algorithms for linear MDPs?

1.1 Hybrid RL: two approaches
To answer the question above, we introduce two types of approaches widely-adopted in hybrid RL.

The offline-to-online approach: Most of the current literature (e.g. Amortila et al. (2024);
Nakamoto et al. (2023); Song et al. (2023); Tan and Xu (2024)) initializes the online dataset with
offline samples to perform regret-minimizing online RL. We refer to this as the offline-to-online ap-
proach. This method is simple and natural, and as the algorithm optimizes the reward during each
online episode, it is suitable when the agent has to perform well during online exploration.

The online-to-offline approach: However, if our goal is to output a near-optimal policy, espe-
cially in real-world situations in medicine and defense, randomizing between policies can be subop-
timal or even unethical. Recently, Wagenmaker and Pacchiano (2023) and Li et al. (2023b) propose
using reward-agnostic online exploration to explore parts of the state space unseen by the behavior
policy, to construct a dataset that is especially amenable to leverage the sharp performance guaran-
tees of offline RL. We refer to this as the online-to-offline approach. While this approach does not
optimize the “true reward” during online exploration, it avoids the need to deploy mixed policies to
achieve a PAC bound, allowing for the deployment of fixed, and thus more interpretable, policies.

1.2 Our contributions
• We propose an online-to-offline method called Reward-Agnostic Pessimistic PAC

Exploration-initialized Learning (RAPPEL) in Algorithm 1. It employs reward-agnostic
online exploration to enhance the offline dataset, then learns a policy through a pessimistic
offline RL algorithm. Algorithm 1 significantly improves upon the sample complexity of
the only dedicated hybrid RL algorithm for linear MDPs (Wagenmaker and Pacchiano,
2023) by a factor of at least H3. This performs no worse than the offline-only minimax-
optimal error bound from Xiong et al. (2023), with the potential of significant gains from
online data. This is the first work to explore the online-to-offline approach in linear MDPs.

• In addition, we propose an offline-to-online method called Hybrid Regression for Upper-
Confidence Reinforcement Learning (HYRULE) in Algorithm 2, where one warm-starts an
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Upper Bound Lower Bound

Offline (Error)
?
d ¨

řH
h“1 Eπ˚ }ϕ psh, ahq}Σ˚´1

off,h

?
d ¨

řH
h“1 Eπ˚ }ϕ psh, ahq}Σ˚´1

off,h

ď
a

C˚d2H4{Noff (Xiong et al., 2023) ě
a

C˚d2H2{Noff (Xiong et al., 2023)

Online (Regret)
?
d2H3T (He et al., 2023)

?
d2H3T (Zhou et al., 2021)

Result

Hybrid
a

d2H7{N (Wagenmaker and Pacchiano, 2023)
(Online-to-offline Error)

a

coffpXoffqdH3 mintcoffpXoffq, Hu{Noff `
a

dondH3 mintdon, Hu{Non (Alg. 1)
Hybrid C˚

?
d2H6Non (Nakamoto et al., 2023; Song et al., 2023)

(Offline-to-online Regret)
a

pC˚ ` conpX qqd3H6Non (Amortila et al., 2024)
a

coffpXoffqdH5N2
on{Noff `

?
dondH5Non (Tan and Xu, 2024)

a

coffpXoffq2dH3N2
on{Noff `

a

dondH3Non (Alg. 2)

Table 2: Comparisons of our results to the best upper and lower bounds for offline and online RL,
and existing results for hybrid RL, in linear MDPs. Often, offline data is cheaper or easier to obtain.
When this happens, Noff " Non, and the online term in our results (depending on Non) dominates.

online RL algorithm with parameters estimated from offline data. In addition to improving
the ambient dimension dependence, this algorithm enjoys a regret (or sample complexity)
bound that is no worse than the online-only minimax optimal bound, with the potential of
significant gains if the offline dataset is of high quality (Agarwal et al., 2022; He et al.,
2023; Hu et al., 2023; Zhou et al., 2021). Our result demonstrates the provable benefits of
hybrid RL in scenarios where offline samples are much cheaper or much easier to acquire.

To the best of our knowledge, we are the first to show improvements over the aforementioned lower
bounds of hybrid RL algorithms (in the same vein as Li et al. (2023b)) in the presence of function
approximation, without any explicit requirements on the quality of the behavior policy, and with both
the offline-to-online and online-to-offline approaches. Our results are also, at the point of writing,
the best bounds available in the literature for hybrid RL in linear MDPs (see Table 2).

Technical contributions. In this work, we build on recent advancements in offline and online RL,
demonstrating that intuitive modifications suffice to achieve state-of-the-art sample complexity for
hybrid RL in linear MDPs. At a high level, our sample efficiency gains are achieved by decomposing
the error of interest into offline and online partitions, and optimizing them respectively, following
the same idea in Tan and Xu (2024). Below, we summarize our specific technical contributions.

1. We sharpen the dimensional dependence from d to don and coffpXoffq via projections onto
those partitions. The former is accomplished in Algorithm 1 by Kiefer-Wolfowitz in
Lemma 1, and in Algorithm 2 by proving a sharper variant of Lemma B.1 from Zhou and
Gu (2022) in Lemma 18, using this in Lemma 14 to reduce the dimensional dependence in
the summation of bonuses, which helps achieve the desired result.

2. We maintain a H3 dependence for the error or regret for both algorithms, which is non-
trivial, in Algorithm 1 and for the offline partition in Algorithm 2 by combining the total
variance lemma with a novel truncation argument for “bad” trajectories in Lemma 17.

2 Preliminaries
2.1 Basics of Markov decision processes
An episodic MDP is a tuple M “

`

S,A, H, pPhqHh“1, prhqHh“1

˘

, where S is the state space, A the
action space, H the horizon, pPhqHh“1 the collection of transition probability kernels Ph : S ˆ A Ñ

∆pSq, and prhqHh“1 the collection of reward functions rh : S ˆA Ñ r0, 1s. ∆p¨q is the collection of
distributions over a set. At each h P rHs “ t1, ...,Hu, an agent observes the current state sh P S,
takes an action ah P A according to πh : S Ñ ∆pAq, and observes the reward rh and next state
sh`1 „ Php¨ | sh, ahq. We write Π for the set of policies π “ tπhuHh“1, with value and Q-functions

for every ps, hq P S ˆ rHs : V π
h psq :“ Eπr

řH
h1“h rh1 |sh “ ss, (1)

and for every ps, a, hq P S ˆ A ˆ rHs : Qπ
hps, aq :“ Eπr

řH
h1“h rh1 |sh “ s, ah “ as. (2)

π˚ “ tπ˚uHh“1 is the optimal policy attaining the highest value and Q-functions, and we write
V ˚ “ tV ˚

h uHh“1 and Q˚ “ tQ˚
huHh“1 for the optimal value and Q-functions. We consider the setting

of hybrid RL, where an agent has access to two sources of data:
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• Noff independent episodes of length H collected by a behavior policy πb where the n-th
sample trajectory is a sequence of data ps

pnq

1 , a
pnq

1 , r
pnq

1 , ..., s
pnq

H , a
pnq

H , r
pnq

H , s
pnq

H`1q;
• Non sequential episodes of online data, where at each episode n “ 1, ..., Non, the algorithm

has knowledge of the Noff offline episodes and the previous online episodes 1, ..., n ´ 1.
The quality of the behavior policy πb is measured by the all-policy and single-policy concentrability
coefficients proposed by Xie et al. (2023); Zhan et al. (2022):
Definition 1 (Occupancy Measure). For a policy π “ tπhuHh“1, its occupancy measure dπ “

tdπhuHh“1 corresponds to the collection of distributions over states and actions induced by running π
within M, where for some initial distribution ρ and s1 „ ρ, we have

dπhps, aq :“ Ppsh “ s, ah “ a | s1 „ ρ, πq. (3)

Definition 2 (Concentrability Coefficient). The all-policy and single-policy concentrability coeffi-
cients of π with regard to the occupancy measure µ “ tµhuHh“1 of a behavior policy πb are

Call :“ sup
π

sup
h,s,a

dπhps, aq

µhps, aq
and C˚ :“ sup

h,s,a

d˚
hps, aq

µhps, aq
, (4)

Policy learning and regret minimization. Hybrid RL aims to either learn an ϵ-optimal policy
pπ such that V ˚ ´ V pπ ď ϵ with high probability, or to minimize the regret. Here, the regret of an
online algorithm L : H Ñ Π is RegLpT q :“ Er

řT
t“1pV ˚

1 ps
ptq
1 q ´

řH
h“1 r

ptq
h qs. We write T “ Non

interchangeably for the number of episodes taken by a regret-minimizing online RL algorithm.

2.2 Linear MDPs
Throughout this paper, we study linear MDPs, where the transition probabilities and rewards are
linearly parametrizable as functions of known features. This was first proposed by Jin et al. (2019);
Yang and Wang (2019), and further studied in He et al. (2023); Hu et al. (2023); Wagenmaker and
Jamieson (2023); Wagenmaker and Pacchiano (2023); Xiong et al. (2023); Zanette et al. (2021).

Assumption 1 (Linear MDP, Jin et al. (2019)). There exists a known feature map ϕ : S ˆ A Ñ Rd,
d unknown signed measures µh “ pµ

p1q

h , ¨ ¨ ¨ , µ
pdq

h q over S for each h, and an unknown vector
θh P Rd, such that for any s, a, h we have Php¨ | s, aq “ xϕps, aq, µhp¨qy , rhps, aq “ xϕps, aq, θhy.
Assume }ϕps, aq} ď 1 for all s, a, and max t}µhpSq} , }θh}u ď

?
d for all h.

This allows for sample-efficient RL for a few reasons. Firstly, linear MDPs are Bellman complete
(Jin et al., 2021a), a common assumption for sample-efficient RL in the literature (Duan and Wang,
2020; Fan et al., 2020; Munos and Szepesvári, 2008). Secondly, the value and Q-functions are
linearly parametrizable in the features, allowing one to learn them via ridge regression. This allows
for sample-efficient online (He et al., 2023; Hu et al., 2023) and offline (Xiong et al., 2023; Yin
et al., 2022) RL with function approximation. However, existing guarantees for hybrid RL in linear
MDPs (Wagenmaker and Pacchiano, 2023) are loose (Li et al., 2023b), inspiring our work.
Further notation. Write ϕn,h “ ϕps

pnq

h , a
pnq

h q for the feature vector at episode n and hori-
zon h. Let Λh “

řN
n“1 ϕn,hϕ

J
n,h ` λI and Λoff,h “

řNoff

n“1 ϕn,hϕ
J
n,h ` λI be the co-

variance matrices of the entire dataset and the offline dataset respectively, and Ω the set
of all covariates. We consider two kinds of variance-weighted covariance matrices, namely
Σ˚

n,h “
řN

n“1 ϕn,hϕ
J
n,h{

“

VhV
˚
h`1

‰

psτh, a
τ
hq ` λI and Σn,h “

řN
n“1 σ̄

´2
n,hϕn,hϕ

J
n,h ` λI, where

“

VhV
˚
h`1

‰

psτh, a
τ
hq “ max

␣

1,
“

Varh V
˚
h`1

‰

ps, aq
(

is the truncated variance of the optimal value
function (where s, a are random variables) and σ̄´2

n,h is the variance estimator from He et al. (2023).

2.3 Exploring the state-action space
We aim to develop efficient hybrid RL algorithms for linear MDPs that do not rely on single-policy
concentrability over the entire state-action space, which entails that the behavior policy covers every
state-action pair that π˚ visits. A natural idea from Li et al. (2023b) is to partition this space into a
component that is well-covered by the behavior policy, which we call the offline partition Xoff , and
a component requiring further exploration, which we call the online partition Xon. Based on this
partition, similarly to Tan and Xu (2024), the estimation error or regret of a hybrid RL algorithm can
be analyzed on each component separately. We define Xon YXoff “ rHsˆS ˆA, with their images
under the feature map Φoff “ SpanpϕpXoff,hqqhPrHs Ď Rd and Φon “ SpanpϕpXon,hqqhPrHs Ď

Rd being subspaces of dimension doff and don respectively. Write Poff ,Pon for the orthogonal
projection operators onto these subspaces respectively. Let λkpMq denote the k-th largest eigenvalue
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Algorithm 1 Reward-Agnostic Pessimistic PAC Exploration-initialized Learning (RAPPEL)
1: Input: Offline dataset Doff , samples sizes Non, Noff , feature maps ϕh, tolerance parameter for

reward-agnostic exploration τ .
2: Initialize: Dp0q

h Ð H @h P rHs, λ “ 1{H2, β2 “ Õp
?
dq.

3: for horizon h “ 1, ...,H do
4: Run an exploration algorithm (OPTCOV, Wagenmaker and Jamieson (2023)) to collect co-

variates Λh such that maxϕhPΦ ϕJ
h pΛh ` λI ` Λoff,hq´1ϕh ď τ.

5: end for
6: Output: pπ from running a pessimistic offline RL algorithm (LinPEVI-ADV+, Xiong et al.

(2023)) with hyperparameters λ, β2 on the combined dataset Doff Y tDpNonq

h uhPrHs.

of a symmetric matrix M. We borrow the definition of partial offline all-policy concentrability,1

coffpXoffq :“ max
h

1
L

λdoff
pEµh

rpPoffϕhqpPoffϕhqJsq, (5)

from Tan and Xu (2024), where we use the convention that coffpHq “ 0. This corresponds to
the inverse of the doff -th largest eigenvalue of the covariance matrix of the projected feature maps.
Similarly, the partial all-policy analogue of the coverability coefficient from Xie et al. (2022a) is

conpXonq :“ inf
π

max
h

1
L

λdon
pEdπ

h
rpPonϕhqpPonϕhqJsq. (6)

As we shall see, these quantities characterize the estimation error of our proposed algorithms.

3 Algorithms and main results
We provide two algorithms with improved statistical guarantees to tackle the unsolved (Table 2)
problem of achieving sharp guarantees with hybrid RL in linear MDPs, with different approaches:

1. Performing reward-agnostic online exploration (Wagenmaker and Pacchiano, 2023) to aug-
ment the offline data, then invoking offline RL (Xiong et al., 2023) to learn an ϵ-optimal
policy on the combined dataset, in the same vein of Li et al. (2023b). This is Algorithm 1.

2. Warm-starting an online RL algorithm (He et al., 2023) with parameters estimated from an
offline dataset to minimize regret, as in Song et al. (2023), with details in Algorithm 2.

3.1 Offline RL after online exploration
Algorithm 1 collects online samples informed by the degree of coverage (or lack thereof) of the
offline dataset Doff with a reward-agnostic online exploration algorithm called OPTCOV from Wa-
genmaker and Jamieson (2023). OPTCOV explores so that the smallest eigenvalue of the covari-
ance matrix, λminpΛhq, is no smaller than a tolerance parameter 1{τ . We then learn a policy from
the combined dataset using a minimax-optimal pessimistic offline RL algorithm from Xiong et al.
(2023), LinPEVI-ADV+. To employ OPTCOV, one requires a modified analogue of the full-rank
covariate assumption from Wagenmaker and Pacchiano (2023) that ensures that the MDP is ”ex-
plorable” enough. This assumption is only imposed for Algorithm 1.
Assumption 2 (Full Rank Projected Covariates). For any partition Xon Y Xoff “ rHs ˆ S ˆ A,

conpXonq ă 8, or equivalently that inf
π

min
h

λdonpEdπ
h

rpPonϕhqpPonϕhqJsq “ λ˚
don

ą 0.

Informally, this states that for any partition, there exists some “optimal exploration policy” that
ensures that the projected covariates onto the online partition have the same rank as its dimension
at every timestep. In practice, this is achievable for any linear MDP via projecting the features onto
the eigenspace corresponding to the nonzero singular values. We can then establish the following:
Lemma 1 (Partial Coverability Is Bounded In Linear MDPs). For any partition Xoff ,Xon, it satisfies
that conpXonq ď don. Also, there exists at least one partition such that coffpXoffq “ Opdq.
The proof of this lemma is deferred to Appendix D. This result allows us to bound the error on
the offline and online partitions by the dimensionality of the partitions, instead of the coverability
coefficient. Define αoff :“ Noff{N , αon :“ Non{N , and the minimal online samples for exploration

N˚pτq :“ min
N

N s.t. inf
ΛPΩ

max
ϕPΦ

ϕJ
`

NpΛ ` λ̄Iq ` Λoff

˘´1
ϕ ď τ.

We now have, with full proof in Appendix B and sketch at the end of the subsection, the following:
1Some authors regard “partial” as a synonym of “single-policy” and “full” as a synonym of “all-policy”. We

use the term “partial” to refer to concentrability or coverability over only part of the state-action space. There
is always a partition so that the partial all-policy concentrability coefficient is less than the full single-policy
concentrability coefficient (with a larger online partition), and the former can be finite when the latter is infinite.
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Theorem 1 (Error Bound for RAPPEL, Algorithm 1). For every δ P p0, 1q and any partition
Xoff ,Xon, when choosing τ ď Õpmaxtdon{Non, coffpXoffq{Noffuq, RAPPEL achieves w.p. 1 ´ δ:

V ˚
1 ´ V pπ

1 À
?
d

H
ÿ

h“1

Eπ˚ ||ϕpsh, ahq||pΣ˚
off,h`Σ˚

on,hq´1 ď
?
d

H
ÿ

h“1

Eπ˚ ||ϕpsh, ahq||Σ˚´1
off,h

, (7)

V ˚
1 ´ V pπ

1 À min

#

d

coffpXoffqdH4

Noff
`

d

dondH4

Non
,

d

coffpXoffq2dH3

Noffαoff
`

d

d2ondH
3

Nonαon

+

, (8)

given N ě max
␣

α4
ond

´4
on , α

4
offcoffpXoffq´4

(

maxtN˚pτq, polypd,H, coffpXoffq, log 1{δqu.
This result, when applied to tabular MDPs with finite states and actions, yields:
Corollary 1. In tabular MDPs, for every δ P p0, 1q, it satisfies that with probability at least 1 ´ δ,

V ‹
1 psq ´ V pπ

1 psq À
a

H3|S|2|A|

´

a

coffpXoffq{Noff `
a

don{Non

¯

. (9)

In sum, Theorem 1 shows that with a polypd,Hq burn-in cost that is no smaller than N˚ (the minimal
online samples for any algorithm to achieve our choice of OPTCOV tolerance), we require only

coffpXoffqdH3 mintcoffpXoffq, Hu{ϵ2 ` dondH
3 mintdon, Hu{ϵ2

trajectories to learn an Opϵq-optimal policy. N˚, from Wagenmaker and Pacchiano (2023), is essen-
tially unavoidable in reward-agnostic exploration for linear MDPs. To compare with prior literature,
our result leads to a better worst-case guarantee than the error bound of

a

d2H7{N attained in Wa-
genmaker and Pacchiano (2023) (by at least a factor of H3{2), the only other work on hybrid RL in
linear MDPs thus far. While we employ the same online exploration procedure, we combine our ex-
ploration phase with an offline learning algorithm LinPEVI-ADV+ from Xiong et al. (2023) and con-
duct a careful analysis. When comparing with the offline-only and online-only settings, Theorem 1
improves upon the offline-only minimax-optimal error bound of

?
d
řH

h“1 Eπ˚ ||ϕpsh, ahq||Σ˚´1
off,h

from Xiong et al. (2023) as a consequence of Σ˚
off,h ` Σ˚

on,h ľ Σ˚
off,h; the best offline-only er-

ror bound is
a

d2H4{Noff obtained under the “well-covered” assumption (Corollary 4.6, Jin et al.
(2021b)) that λminpΛh,offq ě Ωp1{dq, Theorem 1 enjoys better dimension and horizon dependence
as there is always a partition such that don, coffpXoffq ď d and donH

3 mintdon, Hu ď d2H4.

The literature has experienced considerable difficulty in sharpening the horizon dependence to H3

in offline RL for linear MDPs. While Yin et al. (2022) and Xiong et al. (2023) provide minimax-
optimal algorithms for offline RL in linear MDPs, both only manage to achieve a H3 horizon de-
pendence in the special case of tabular MDPs, even under the aforementioned “well-covered” as-
sumption. We provide the same result in Corollary 1 with proof deferred to Appendix C, but encour-
agingly, hybrid RL lets us bypass the “well-covered” assumption. In Appendix B and G, we use a
novel truncation argument and the total variance lemma (Lemma C.5 of Jin et al. (2018)) to improve
the dependence on H , but our result falls slightly short of

a

coffpXoffqdH3{Noff `
a

dondH3{Non.
Computational efficiency. In terms of computational efficiency, Algorithm 1 inherits the
computational costs of the previous proposed algorithms OPTCOV and LinPEVI-ADV+ (Wa-
genmaker and Jamieson (2023); Xiong et al. (2023). OPTCOV runs in polynomial time
polypd,H, conpXonq, log 1{δq, and LinPEVI-ADV+ runs in Õpd3HN |A|q time when the action
space is discrete. Algorithm 1 therefore remains computationally efficient in this case.
Requirement of choosing don. There is the caveat that we require the user to choose the tolerance
for OPTCOV. In practice, one can achieve this by performing SVD on the offline dataset and looking
at the plot of eigenvalues. One can also choose a tolerance of Opd{mintNoff , Nonuq, but this would
not achieve the reduction in the dependence on dimension from d2 to coffpXoffqd, dond.
Practical benefits of the online-to-offline approach. Algorithm 1 outputs a fixed policy satisfy-
ing a PAC bound. This enables policies to be deployed in critical real-world applications, such as in
medicine or defense, where randomized policies from regret minimization are unacceptable.
Algorithm 1 works for reward-agnostic hybrid RL. The use of reward-agnostic online explo-
ration in Algorithm 1 enables one to use the hybrid dataset D to learn policies for different reward
functions offline. As the online exploration is not influenced by any single reward function, the col-
lected data satisfies good coverage for any possible reward function even if it is revealed only after
exploration, enabling one to use a single dataset to achieve success on many different tasks. This
therefore also serves as an algorithm for the related setting of reward-agnostic hybrid RL, where the
reward function is unknown during online exploration and only revealed to the agent after it.
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Algorithm 2 Hybrid Regression for Upper-Confidence Reinforcement Learning (HYRULE)
1: Input: Offline dataset Doff , samples sizes Non, Noff , feature maps ϕh. Regularization parame-

ter λ ą 0, confidence radii β, β̄, β̃, tlast “ 0.
2: Initialize: For h P rHs, estimate pw1,h, qw1,h, Q1,h, qQ1,h, σ1,h, σ̄1,h from Doff , and assign

Σ0,h “ Σ1,h “ Σoff ` λI “
řNoff

n“1 σ̄
´2
n,hϕn,hϕ

J
n,h ` λI.

3: for episodes t “ 1, ..., T do
4: Update optimistic and pessimistic weights pwt,h, qwt,h for all h.
5: if there exists a stage h1 P rHs such that det pΣt,h1 q ě 2 det pΣtlast ,h1 q then
6: Update optimistic and pessimistic Q-functions Qt,hps, aq, qQt,hps, aq, set tlast “ t.
7: end if
8: for horizon h “ 1, ...,H do
9: Play action a

ptq
h Ð argmaxa Qt,hps

ptq
h , aq, receive reward r

ptq
h , next state s

ptq
h`1

10: Estimate σt,h, σ̄t,h Ð maxtσt,h,
?
H, 2d3H2||ϕps

ptq
h , a

ptq
h q||

1{2

Σ´1
t,h

u2, update Σt`1,h.

11: end for
12: end for
13: Output: Greedy policy pπ “ πQT,h , UnifpπQ1,h , ..., πQT,hq for PAC guarantee.

Proof sketch. The relation (7) in Theorem 1 follows from invoking Theorem 2 from Xiong et al.
(2023) with N ą Ωpd2H6q, λ “ 1{H2, β1 “ Op

?
dq. To establish (8), we first bound

V ˚
1 psq ´ V pπ

1 psq ď
?
d
ÿH

h“1
max

ϕhPΦon

b

ϕJ
hΣ

˚´1
h ϕh `

?
d
ÿH

h“1
max

ϕhPΦoff

b

ϕJ
hΣ

˚´1
h ϕh.

As Σ˚´1
h ĺ H2Λ´1

h (see Xiong et al. (2023)), it therefore boils down to controlling
maxϕhPΦ ϕJ

hΛ
´1
h ϕh. Towards this, first, we make the observation that Lemma 1 suggests

that conpXonq ď don. If we run OPTCOV with tolerance Õpmaxtdon{Non, coffpXoffq{Noffuq

on partitions where the above hold, in Lemma 5, we prove that maxϕhPΦ ϕJ
hΛ

´1
h ϕh À

max tcoffpXoffq{Noff , don{Nonu . This yields the coffpXoffqdH4, dondH
4 result.

To tighten the horizon dependence to H3, we employ an useful truncation argument. More
specifically, from the total variance lemma (Lemma C.5 of Jin et al. (2018)), the average vari-
ance VhV

˚
h`1 is asymptotically on the order of H . We therefore define the sets of trajectories

Ehpδhq “ tτ P D :
“

VhV
˚
h`1

‰

psτh, a
τ
hq ě H1`δhu. The cardinality of each set can be bounded

by |Ehpδhq| À NH1´δh , and so truncating at the level where NH1´δh « minp
Noff

coff pXoff q
, Non

don
q

leads to minϕhPΦ ϕJ
hΣ

‹
hϕh Á 1

NH2 minp
Noff

coff pXoff q
, Non

don
q2. Putting things together yields the last

coffpXoffq2dH3, d2ondH
3 result needed, and the theorem then follows.

3.2 Online regret minimization
Thus far, we described an online-to-offline strategy which collects online samples to augment the of-
fline dataset. However, in certain critical cases, such as with a doctor treating patients, performance-
agnostic online exploration is untenable. One may wish to minimize the regret of the online actions
taken while learning a policy. We therefore explore another approach inspired by the work of Song
et al. (2023); Tan and Xu (2024) – that of warm-starting an online RL algorithm with parameters
estimated from an offline dataset. We describe this in Algorithm 2, and show that hybrid RL enables
provable gains over minimax-optimal online-only regret bounds in the offline-to-online case as well.

In order to warm-start an online RL algorithm with an offline dataset, we modify LSVI-UCB++
from He et al. (2023) by estimating its parameters from Doff with the same formulas it would use
as if it had experienced the Noff offline episodes itself. As Tan and Xu (2024) suggest, this can be
understood as including the offline episodes in the “experience replay buffer” that the algorithm uses
to learn parameters. The full version can be found in Appendix E as Algorithm 4. Doing so allows
us prove a regret bound depending on the partial all-policy concentrability coefficient. Below we
state our theoretical guarantees for this algorithm. The proof of this result is deferred to Appendix E,
and a brief proof sketch is provided at the end of this subsection.

2He et al. (2023) write σ̄t,h Ð maxtσt,h, H, ...u, not
?
H , which we believe is a typo. In the proof of

Lemma B.1, after equation D.7, they state that 0 ď σ̄´1
ih ď 1{

?
H . In the proof of Lemma B.5, the argument

after equation D.22, particularly that
›

›

›
σ̄´1
i,hϕ

`

sih, a
i
h

˘

›

›

›

2
ď

›

›ϕ
`

sih, a
i
h

˘›

›

2
{
?
H , only holds if this is

?
H .
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Theorem 2 (Regret Bound for HYRULE, Algorithm 2). Given any δ P p0, 1q, for every partition
Xoff ,Xon, if Non, Noff “ Ω̃pd13H14q, the regret of HYRULE is bounded w.p. at least 1 ´ δ by

RegpNonq À inf
Xoff ,Xon

a

coffpXoffq2dH3N2
on{Noff `

a

dondH3Non.

Corollary 2. By the regret-to-PAC conversion, Algorithm 2 achieves a sub-optimality gap w.p. 1´δ:

V ˚
1 psq ´ V pπ

1 psq À inf
Xoff ,Xon

a

coffpXoffq2dH3{Noff `
a

dondH3{Non.

To understand this result, we first note that bounding the regret over all possible partitions yields an
improvement over the

?
d2H3Non regret bound obtained by He et al. (2023), as we can take Xon “

X ,Xoff “ H to recover the
?
d2H3Non bound. In the scenario where offline samples are abundant

(where Noff " Non), it is possible to achieve significant improvements over online-only learning.
Furthermore, in view of Lemma 1, there always exists a partition such that coffpXoffq, don ď d.
This result therefore yields provable improvements over the minimax-optimal online regret bound
in linear MDPs (Agarwal et al., 2022; He et al., 2023; Hu et al., 2023; Zhou et al., 2021).

Additionally, Theorem 2 shows that Algorithm 2 attains the best known regret bound in hybrid RL
for linear MDPs, as we illustrate in Table 2. The current best known result is that of Tan and Xu
(2024), with a dependence of

a

coff pXoffq dH5N2
on{Noff `

?
dondH5Non. Notably, we achieve

the same a reduction in the dimension dependence on the online partition from d2 to dond that
Tan and Xu (2024) do by proving a sharper variant of Lemma B.1 from Zhou and Gu (2022) in
Lemma 18, using this in Lemma 14 to reduce the dimensional dependence in the summation of
bonuses. Song et al. (2023) and Amortila et al. (2024), on the other hand, have bounds on the order
of C˚

?
d2H6Non and

a

pC˚ ` conpX qqd3H6Non respectively. We produce a better bound than
Amortila et al. (2024); Song et al. (2023); Tan and Xu (2024) by at least a factor of H2 by combining
the total variance lemma and a novel truncation argument that rules out “bad” trajectories in Lemma
17, which allows us to maintain a desirable H3 dependence on both partitions.
Computational efficiency. When the action space is finite and of cardinality |A|, the compu-
tational complexity of Algorithm 2 is of order rO

`

d4H3N |A|
˘

, as outlined in He et al. (2023).
Algorithm 2 is therefore computationally efficient and runs in polynomial time in this case. When
the action space is continuous, one may need to solve an optimization problem over the continuous
action space, making the computational complexity highly problem-dependent.
Algorithm 2 is unaware of the partition. Unlike Algorithm 1, Algorithm 2 is fully unaware of
the choice of partition, and there is therefore no need to estimate don or any relevant analogue to
the choice of tolerance for OPTCOV. The regret bound therefore automatically adapts to the best
possible partition, even though Algorithm 2 is unaware of it.
Practical benefits of the offline-to-online approach. While Algorithm 2 only satisfies a PAC
bound with a randomized policy, it minimizes the regret of the actions it takes. This enables the
algorithm to be deployed in situations where its performance during online exploration is of critical
importance, e.g. in applications like mobile health (Nahum-Shani et al., 2017).
Technical challenges. Although Algorithm 2 is a straightforward generalization of LSVI-UCB++
in He et al. (2023), with Σ0 initialized with the offline dataset, we had to decompose the regret into
the regret on the offline and online partitions to achieve the regret guarantee in Theorem 2. In the
process, we faced the following challenges:

• Bounding the regret on the offline partition was challenging, as the argument of He et al.
(2023) was not applicable. Instead, we used a truncation argument in Lemma 17 to bound
the maximum eigenvalue of Σ´1

off,h, maintaining a H3 dependence on the offline partition.
• Bounding the regret on the online partition allowed us to use an analysis that was close to

that of He et al. (2023). However, directly following their argument would have left us with
a d2H3 dependence. To reduce the dimensional dependence to dond, we prove a sharper
variant of Lemma B.1 from Zhou and Gu (2022) in Lemma 18. We use this in Lemma 14
to reduce the dimensional dependence in the sum of bonuses, achieving the desired result.

• Without the above two techniques, one could have used a simpler analysis to achieve a far
looser

a

coffpXoffq2d6H8N2
on{Noff `

?
d2H3 regret bound by using the maximum magni-

tude of the variance weights for the offline partition and the analysis from He et al. (2023)
verbatim for the online partition, but this would not have yielded the same improvement.

We accordingly provide a proof sketch below.
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Proof sketch. We first adopt the regret decomposition as in He et al. (2023) and bound
RegpT q À

?
H3T `

ř

h,tβ}Σ
´1{2
t,h ϕhps

ptq
h , a

ptq
h q1Xoff

}2 `
ř

h,tβ}Σ
´1{2
t,h ϕhps

ptq
h , a

ptq
h q1Xon}2.

It then boils down to controlling the second and third terms separately. We prove
in Lemma 12 that the sum of bonuses on the offline partition can be bounded by
ř

h

b

dNon
Non

Noff
maxϕhPΦoff

ϕJ
h Σ̄

´1
off,hϕh. Further,

ř

h maxϕhPΦoff

b

ϕJ
h Σ̄

´1
off,hϕh À coffpXoffq2H3

by Lemma 13. Putting things together, the second term can be controlled as
β
ř

h,t}Σ
´1{2
t,h ϕhps

ptq
h , a

ptq
h q1Xoff

}2 À
a

coffpXoffq2dH3N2
on{Noff .

With respect to the third term, Lemma 14 (a sharpened version of Lemma E.1 in He et al. (2023)),
combined with the Cauchy-Schwartz inequality, yields

β
ř

h,t}Σ
´1{2
t,h ϕhps

ptq
h , a

ptq
h q1Xon}2 À d4H8 ` βd7H5 ` β

b

donHT ` donH
ř

h,t σ
2
t,h.

By the total variance lemma (Appendix B, He et al. (2023)),
ř

h,t σ
2
t,h ď rO

`

H2T ` d10.5H16
˘

.
Taking everything collectively establishes the desired result.

4 Numerical experiments
To demonstrate the benefits of hybrid RL in the offline-to-online and online-to-offline settings, we
implement Algorithms 1 and 2 on a scaled-down Tetris environment (as in Tan and Xu (2024)). For
the purposes of brevity, we defer the details of the environment to Appendix H.3

Figure 1 depicts the coverage (defined by 1{λminpΛq, 1{λdoff
pΛoffq, 1{λdon

pΛonq) achieved by the
reward-agnostic exploration algorithm, OPTCOV, when initialized with 200 trajectories from (1) a
uniform behavioral policy, (2) an adversarial behavior policy obtained by the negative of the weights
of a fully-trained agent under Algorithm 1, and (3) no offline trajectories at all. Although hybrid RL
with the uniform behavior policy achieves the best coverage throughout as expected, hybrid RL with
even adversarially collected offline data achieves better coverage than online-only exploration. This
demonstrates the potential of hybrid RL as a tool for taking advantage of poor quality offline data.

Figure 2 shows the benefits of hybrid RL in the online-to-offline setting when the behavior policy is
of poor quality. When applying LinPEVI-ADV to the hybrid dataset of 200 trajectories and 100 on-
line trajectories, 300 trajectories of adversarially collected offline data, and 300 trajectories of online
data under reward-agnostic exploration, we see that the hybrid dataset is most conducive for learn-
ing. Additionally, without a warm-start from offline data, online-only reward-agnostic exploration
performs worse than the adversarially collected offline data due to significant burn-in costs. Hybrid
RL, in this instance, performs better than both offline-only and online-only learning alone. Figure
3 compares the performances of LSVI-UCB++ and Algorithm 2. Initializing a regret-minimizing
online algorithm (LSVI-UCB++, (He et al., 2023)) with an offline dataset as in Algorithm 2 yields
lower regret than LSVI-UCB++ without an offline dataset. This shows that even a nearly minimax-
optimal online learning algorithm can stand to benefit from offline data.

Figure 1: Coverage achieved by OPTCOV with 200 trajectories of offline data collected under a
uniform and an adversarial behavior policy, and with no offline data. Results averaged over 30
trials, with the shaded area depicting 1.96-standard errors. Lower is better.

3For ease of implementation, we implement LSVI-UCB++ (He et al., 2023) for Algorithm 2 as-is, while
substituting LSVI-UCB (Jin et al., 2019) for FORCE (Wagenmaker et al., 2022) within OPTCOV and LinPEVI-
ADV for LinPEVI-ADV+ (Xiong et al., 2023). The code can be found at github.com/hetankevin/hybridlin.
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Figure 2: Value of policies learned by applying LinPEVI-ADV to the hybrid, offline, and online
datasets, with an adversarial behavior policy. The reward is negative as it is the negative of the
excess height. Results over 30 trials. Higher is better.

Figure 3: Comparison of LSVI-UCB++ and Algorithm 2 over 10 trials, with 1 s.d. error bars.

5 Discussion, limitations and future work
In this paper, we develop two hybrid RL algorithms for linear MDPs with desirable statistical guar-
antees for the online-to-offline and offline-to-online settings. Both algorithms demonstrate provable
gains over the minimax-optimal rates in offline or online-only reinforcement learning, and provide
the sharpest worst-case bounds for the performance of hybrid RL in linear MDPs thus far.

Throughout this paper, we have used both optimism and pessimism in our algorithm design. Other
work in hybrid RL (Amortila et al., 2024; Li et al., 2023b; Nakamoto et al., 2023; Song et al., 2023;
Tan and Xu, 2024; Wagenmaker and Pacchiano, 2023) uses optimism, pessimism, or sometimes
even neither. We conjecture that optimism is still helpful in aiding online exploration within hybrid
RL and that pessimism helps in hybrid RL when learning from a combined dataset. However,
determining if or when optimism or pessimism is beneficial in hybrid RL remains an open question.

Achieving a H3 horizon dependence in offline RL for linear MDPs has proven challenging. Even
under strong coverage assumptions, Yin et al. (2022) and Xiong et al. (2023) only manage to achieve
a H3 horizon dependence for tabular MDPs. Obtaining a

a

d2H3{N bound is an open problem.

A result depending on a partial single-policy concentrability coefficient would be desirable, but may
provide only limited benefits as we take the infimum over partitions. A good offline partition for the
partial all-policy concentrability contains the portion of the state-action space well-covered by the
offline dataset, while the same for the partial single-policy concentrability would be well-covered
by both the offline dataset and the optimal policy. The smaller size of the latter offline partition may
be offset by the larger size of the latter’s online partition, and as such any gains may be limited.

Furthermore, while Algorithm 1 improves upon the offline-only error lower bound in Xiong et al.
(2023) and Algorithm 2 improves upon the online-only regret lower bound in Zhou et al. (2021), we
still desire a single algorithm that improves upon both the best possible offline-only and online-only
rates at once. Additionally, the burn-in costs for Algorithms 1 and 2 are nontrivial. The former is
inherited from OPTCOV (Wagenmaker and Jamieson, 2023), while the latter is inherited from He
et al. (2023) and the truncation argument. Improving the former by devising new reward-agnostic
exploration algorithms for linear MDPs, perhaps in the vein of Li et al. (2023a), would be welcome.

While we tackle the setting of linear MDPs, it remains a first step towards showing that hybrid RL
breaks minimax-optimal barriers in the presence of function approximation. Further work in this
vein on other types of function approximation would be an interesting contribution to the literature.
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A Unabridged versions of our algorithms

Algorithm 3 Reward-Agnostic Exploration-initialized Pessimistic PAC Learning (RAPPEL, Full)
1: Input: Offline dataset Doff , samples sizes Non, Noff , feature maps ϕh, , tolerance parameter for

reward-agnostic exploration τ .
2: Initialize: Dp0q

h Ð H @h P rHs, λ “ 1{H2, β2 “ Õp
?
dq. Set functions to optimize

fipΛq “ η´1
i log

´

ř

ϕPΦ exppηi}ϕ}2AipΛq´1q

¯

,AipΛq “ Λ`pTiKiq
´1pΛ0,i`Λoffq for some

Λ0,i satisfying Λ0,i ľ Λ0 for all i, and ηi “ 22i{5.
Exploration Phase: Run an exploration algorithm (OPTCOV, Wagenmaker and Jamieson

(2023)) to collect covariates Λh such that maxϕhPΦ ϕJ
h pΛh ` λI ` Λoff,hq´1ϕh ď τ.

3: for i “ 1, 2, 3, ... do
4: Set the number of iterates Ti Ð 2i, episodes per iterate Ki Ð 2i.
5: Play any policy for Ki episodes to collect covariates Γ0 and data D0.
6: Initialize covariance matrix Λ1 Ð Γ0{K.
7: for t “ 1, ..., Ti do
8: if

ři
j“1 TjKj ě Non then

9: break
10: end if
11: Run FORCE (Wagenmaker et al., 2022) or another regret-minimizing algorithm on the

exploration-focused synthetic reward g
ptq
h ps, aq9trp´∇ΛfipΛq|Λ“Λtϕps,aqϕps,aqJ q.

12: Collect covariates Γt, data Dt.
13: Perform Frank-Wolfe update: Γt`1 Ð p1 ´ 1

t`1 qΛt ` 1
t`1Γt{Ki.

14: end for
15: Assign yΛi,h Ð ΛTi`1,Di Ð Y

Ti
t“0Dt.

16: Set Λh “ yΛi,h,Don “ Di.
17: if fipxΛiq ď KiTiτ then
18: break
19: end if
20: end for

Planning Phase: Estimate pπ using a pessimistic offline RL algorithm (LinPEVI-ADV+,
Xiong et al. (2023)) with hyperparameters λ, β2 on the combined dataset Doff YtDpNonq

h uhPrHs.

21: Split the dataset Doff Y tDpNonq

h uhPrHsinto D and D1. Estimate, on D1,

rβh,2 “ argmin
βPRd

ÿ

τPD1

”

xϕ psτh, a
τ
hq , βy ´

`

pV 1
h`1

˘2 `
sτh`1

˘

ı2

` λ}β}22,

rβh,1 “ argmin
βPRd

ÿ

τPD1

”

xϕ psτh, a
τ
hq , βy ´ pV 1

h`1

`

sτh`1

˘

ı2

` λ}β}22.

pσ2
hps, aq :“ max

!

1,
“

ϕps, aqJ
rβh,2

‰

r0,H2s
´
“

ϕps, aqJ
rβh,1

‰2

r0,Hs
´ Õ

´ dH3

?
Nκ

¯)

.

22: for h “ 1, ...,H do
23: Compute covariance matrix Σh “

ř

τPD ϕ psτh, a
τ
hqϕ psτh, a

τ
hq

J
{pσ2

h psτh, a
τ
hq ` λId.

24: Compute weights pwh “ Σ´1
h

´

ř

τPD ϕ psτh, a
τ
hq

rτh` pVh`1psτh`1q

pσ2
hpsτh,a

τ
hq

¯

.

25: Compute pessimistic penalty Γhp¨, ¨q Ð β2}ϕp¨, ¨q}Σ´1
h
.

26: Compute pessimistic Q-function pQhp¨, ¨q Ð
␣

ϕp¨, ¨qqJ
pwh ´ Γhp¨, ¨q

(

r0,H´h`1s
.

27: Set pπhp¨ | ¨q Ð argmaxπh

@

pQhp¨, ¨q, πhp¨ | ¨q
D

A, pVhp¨q Ð
@

pQhp¨, ¨q, pπhp¨ | ¨q
D

A.
28: end for
29: Output: pπ.
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Algorithm 4 Hybrid Regression for Upper-Confidence Reinforcement Learning (HYRULE, Full)
1: Input: Offline dataset Doff , samples sizes Non, Noff , feature maps ϕh. Regularization parame-

ter λ ą 0, confidence radii β, β̄, β̃, tlast “ 0.
2: Initialize: For h P rHs, estimate pw1,h, qw1,h, Q1,h, qQ1,h, σ1,h, σ̄1,h from Doff with the same

formulas outlined below, and assign Σ0,h “ Σ1,h “ Σoff ` λI “
řNoff

n“1 σ̄
´2
n,hϕn,hϕ

J
n,h ` λI.

3: for episodes t “ 1, ..., T do
4: Receive the initial state s

ptq
1 .

5: for horizon h “ 1, ...,H do
6: pwk,h “ Σ´1

t,h

řt´1
i“1 σ̄

´2
i,hϕps

piq
h , a

piq
h qVt,h`1ps

piq
h`1q.

7: qwt,h “ Σ´1
t,h

řt´1
i“1 σ̄

´2
i,hϕps

piq
h , a

piq
h qqVt,h`1ps

piq
h`1q.

8: if there exists a stage h1 P rHs such that det pΣt,h1 q ě 2 det pΣtlast ,h1 q then
9: Qt,hps, aq “ min

!

rhps, aq ` pwJ
t,hϕps, aq ` β

b

ϕps, aqJΣ´1
t,hϕps, aq, Qt´1,hps, aq, H

)

.

10: qQt,hps, aq “ max
!

rhps, aq ` qwJ
t,hϕps, aq ´ β̄

b

ϕps, aqJΣ´1
t,hϕps, aq, qQt´1,hps, aq, 0

)

.
11: Set the last updating episode tlast “ t.
12: else
13: Qt,hps, aq “ Qt´1,hps, aq, qQt,hps, aq “ qQt´1,hps, aq.
14: end if
15: Vt,hpsq “ maxa Qt,hps, aq, qVt,hpsq “ maxa qQt,hps, aq.
16: end for
17: for horizon h “ 1, ...,H do
18: Play action a

ptq
h Ð argmaxa Qt,hps

ptq
h , aq.

19: Estimate σt,h “

c

“

Vt,hVt,h`1

‰

´

s
ptq
h , a

ptq
h

¯

` Et,h ` Dt,h ` H, setting Et,h and Dt,h:

Et,h “min
!

rβ
›

›

›
Σ

´1{2
t,h ϕps

ptq
h , a

ptq
h q

›

›

›

2
, H2

)

` min
!

2Hβ̄
›

›

›
Σ

´1{2
t,h ϕps

ptq
h , a

ptq
h q

›

›

›

2
, H2

)

,

Dt,h “min

#

4d3H2

˜

pwJ
t,hϕps

ptq
h , a

ptq
h q ´ qwJ

t,hϕps
ptq
h , a

ptq
h q

` 2β̄

b

ϕps
ptq
h , a

ptq
h qJΣ´1

t,hϕps
ptq
h , a

ptq
h q

¸

, d3H3

+

.

20: σ̄t,h Ð max

"

σt,h,
?
H, 2d3H2

›

›

›
ϕ
´

s
ptq
h , a

ptq
h

¯
›

›

›

1{2

Σ´1
t,h

*

4.

21: Σt`1,h “ Σt,h ` σ̄´2
t,hϕ

´

s
ptq
h , a

ptq
h

¯

ϕ
´

s
ptq
h , a

ptq
h

¯J

.

22: Receive reward r
ptq
h , next state s

ptq
h`1.

23: end for
24: end for
25: Output: Greedy policy pπ “ πQT,h , UnifpπQ1,h , ..., πQT,hq for PAC guarantee.

4He et al. (2023) write σ̄t,h Ð maxtσt,h, H, ...u instead of
?
H . We believe that this is a typo in their paper,

given that in the proof of Lemma B.1, they state right after equation D.7 that 0 ď σ̄´1
i,h ď 1{

?
H . Moreover,

in the proof of Lemma B.5 the array of equations right after equation D.22, particularly
›

›

›
σ̄´1
i,hϕ

`

sih, a
i
h

˘

›

›

›

2
ď

›

›ϕ
`

sih, a
i
h

˘
›

›

2
{
?
H , only holds true if this is

?
H .
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B Proofs for Theorem 1

The proof of Theorem 1 follows from a series of distinct results, presented as three lemmas below.
The first lemma demonstrates that RAPPEL achieves no higher error than LinPEVI-ADV+ itself,
the second produces a dondH

4 error bound, while the third produces a d2ondH
3 error bound via a

slightly different truncation argument. We will prove Equation 7 in Lemma 2, which act as a general
statistical guarantee for RAPPEL. We show the validity of the instance-dependent bound developed
from Equation 7 in Lemmas 3 and 4. We observe that Theorem 1 follows immediately after.
Lemma 2 (General Statistical Guarantee for RAPPEL, Algorithm 1). For every δ P p0, 1q and any
partition Xoff ,Xon, with probability at least 1 ´ δ, RAPPEL achieves

V ˚
1 psq ´ V pπ

1 psq À
?
d

H
ÿ

h“1

Eπ˚ ||ϕpsh, ahq||pΣ˚
off,h`Σ˚

on,hq´1 ď
?
d

H
ÿ

h“1

Eπ˚ ||ϕpsh, ahq||Σ˚´1
off,h

.

Proof. Before we proof the desired result, we first recall that

Λh “
ÿ

τPD
ϕ psτh, a

τ
hqϕ psτh, a

τ
hq

J
` Id, (10)

Σ˚
h “

ÿ

τPD
ϕ psτh, a

τ
hqϕ psτh, a

τ
hq

J
{
“

VhV
˚
h`1

‰

psτh, a
τ
hq ` λId. (11)

Then, by invoking Theorem 2 from Xiong et al. (2023) with N ą Ωpd2H6q, λ “ 1{H2, β1 “

Op
?
dq, we see that

V ˚
1 psq ´ V pπ

1 psq À
?
d

H
ÿ

h“1

Eπ˚

”

}ϕpsh, ahq}Σ˚´1
h

| s1 “ s
ı

“
?
d

H
ÿ

h“1

Eπ˚

”

}ϕpsh, ahq}pΣ˚
off,h`Σ˚

on,hq´1 | s1 “ s
ı

,

as Σh “ Σ˚
off,h ` Σ˚

on,h. Noting that Σ˚
on,h is positive semi-definite, it then follows Σ˚

off,h ĺ

Σ˚
off,h ` Σ˚

on,h. Therefore,

?
d

H
ÿ

h“1

Eπ˚ ||ϕpsh, ahq||pΣ˚
off,h`Σ˚

on,hq´1 ď
?
d

H
ÿ

h“1

Eπ˚ ||ϕpsh, ahq||Σ˚´1
off,h

,

and the inequality holds.

Lemma 3 (First Error Bound for RAPPEL, Algorithm 1). For every δ P p0, 1q and any partition
Xoff ,Xon, with probability at least 1 ´ δ, RAPPEL achieves

V ˚
1 psq ´ V pπ

1 psq À

d

coffpXoffqdH4

Noff
`

d

dondH4

Non
, where

N ě max
␣

α4
ond

´4
on , α

4
offcoffpXoffq´4

(

maxtN˚, polypd,H, coffpXoffq, log 1{δqu, where we define
the quantities αoff “

Noff

N , αon “ Non

N , and the minimal samples for coverage is

N˚ “ min
N

C¨N s.t. inf
ΛPΩ

max
ϕPΦ

ϕJ
`

NpΛ ` λ̄Iq ` Λoff

˘´1
ϕ ď Õpmaxtdon{Non, coffpXoffq{Noffuq.

Proof. Let Xoff ,Xon be an arbitrary partition of S ˆ A ˆ rHs. Let us leave the choice of OPTCOV
tolerance unspecified for the moment, and simply assume for now that we have data D collected
under the success event of Lemma 16.

We now invoke Theorem 2 from Xiong et al. (2023) on this dataset. As we choose N ą Ωpd2H6q,
λ “ 1{H2 and β1 “ Op

?
dq, we obtain the suboptimality gap decomposition below:

V ˚
1 psq ´ V pπ

1 psq À
?
d

H
ÿ

h“1

Eπ˚

”

}ϕpsh, ahq}Σ˚´1
h

| s1 “ s
ı

.
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This decomposition can be further decomposed into the sum of bonuses on the offline and online
partitions Xoff and Xon, respectively:

?
d

H
ÿ

h“1

Eπ˚

”

}ϕpsh, ahq}Σ˚´1
h

| s1 “ s
ı

“
?
d

H
ÿ

h“1

´

Eπ˚

”

}ϕpsh, ahq}Σ˚´1
h

1Xon
| s1 “ s

ı

` Eπ˚

”

}ϕpsh, ahq}Σ˚´1
h

1Xoff
| s1 “ s

ı¯

“
?
d

H
ÿ

h“1

Eπ˚

„

b

ϕpsh, ahqJΣ˚´1
h ϕpsh, ahq1Xon

| s1 “ s

ȷ

`
?
d

H
ÿ

h“1

Eπ˚

„

b

ϕpsh, ahqJΣ˚´1
h ϕpsh, ahq1Xoff

| s1 “ s

ȷ

.

We can further upper bound the above expectations under the optimal policy π˚ by taking the max-
imum of the quadratic form over each partition, yielding

?
d

H
ÿ

h“1

Eπ˚

”

}ϕpsh, ahq}Σ˚´1
h

| s1 “ s
ı

“
?
d

H
ÿ

h“1

max
ϕhPΦon

b

ϕJ
hΣ

˚´1
h ϕh1Xon

`
?
d

H
ÿ

h“1

max
ϕhPΦoff

b

ϕJ
hΣ

˚´1
h ϕh1Xoff

ď
?
d

H
ÿ

h“1

max
ϕhPΦon

b

ϕJ
hΣ

˚´1
h ϕh `

?
d

H
ÿ

h“1

max
ϕhPΦoff

b

ϕJ
hΣ

˚´1
h ϕh.

From Xiong et al. (2023), as
“

VhV
˚
h`1

‰

p¨, ¨q P
“

1, H2
‰

, the weighted covariance matrix is uniformly
upper bounded by the unweighted covariance matrix in the following manner:

Σ˚´1
h ĺ H2Λ´1

h ,

which leads to our conclusion that

V ˚
1 psq ´ V pπ

1 psq À
?
d

H
ÿ

h“1

max
ϕhPΦon

b

H2ϕJ
hΛ

´1
h ϕh `

?
d

H
ÿ

h“1

max
ϕhPΦoff

b

H2ϕJ
hΛ

´1
h ϕh.

We now further bound the above two quadratic forms over the online and offline partitions respec-
tively. By Lemma 1, the partial online coverage coefficient is bounded by the dimensionality of the
online partition:

conpXonq “ inf
π

max
ϕhPΦon

ϕJ
hEϕ̄h„dπ

h
rϕ̄hϕ̄

J
h s´1ϕh ď don.

As we have Non online episodes, the optimal covariates for online exploration would then yield

inf
Λ

max
ϕhPΦon

ϕJ
hΛ

´1ϕh À conpXonq{Non ď don{Non.

Conversely, we also have access to Noff episodes of offline data with the following guarantee that
follows from an application of Matrix Chernoff:

max
ϕhPΦoff

ϕJ
hΛ

´1
off ϕh À coffpXoffq{Noff .

Therefore, by Lemma 5, we can conclude that on its success event, running OPTCOV with tolerance
Õpmaxtdon{Non, coffpXoffq{Noffuq, provides us covariates such that

max
ϕhPΦ

ϕJ
hΛ

´1
h ϕh À max tcoffpXoffq{Noff , don{Nonu ,

yielding the desired result.
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It now remains to work out the burn-in cost from running OPTCOV. The following quantity of the
minimal online samples any algorithm requires to establish coverage was first proposed in Wagen-
maker and Pacchiano (2023):

N˚ “ min
N

C¨N s.t. inf
ΛPΩ

max
ϕPΦ

ϕJ
`

NpΛ ` λ̄Iq ` Λoff

˘´1
ϕ ď

Õpmaxtdon{Non, coffpXoffq{Noffuq

6
.

We can use this as follows. Invoking Lemma 16, we see that OPTCOV incurs

max

#

ˆ

Noff

coffpXoffq

˙4{5

,

ˆ

Non

don

˙4{5
+

maxtN˚, polypd,H, coffpXoffq, log 1{δqu

episodes of online exploration, for an overall burn-in cost of

Noff ` Non ě max

"

α4
on

d4on
,

α4
off

coffpXoffq4

*

maxtN˚, polypd,H, coffpXoffq, log 1{δqu

episodes, where αoff “
Noff

Noff`Non
and αon “ Non

Noff`Non
.

Note that the more even the proportion of offline to online samples, the smaller αoff , αon are. In
fact, as α4

off , α
4
on P r0.0625, 1s, this term contributes no more than a constant factor that is no greater

than 1 to the final sample complexity.

We then have that

V ˚
1 psq ´ V pπ

1 psq À inf
Xoff ,Xon

˜

d

coffpXoffqdH4

Noff
`

d

dondH4

Non

¸

with probability at least 1´δ, when N ě max
!

α4
on

d4
on
,

α4
off

coff pXoff q4

)

maxtN˚, polypd,H, coffpXoffq, log 1{δqu.

Lemma 4 (Second Error Bound for RAPPEL, Algorithm 1). For every δ P p0, 1q and any partition
Xoff ,Xon, with probability at least 1 ´ δ, RAPPEL achieves

V ˚
1 psq ´ V pπ

1 psq À

d

coffpXoffq2dH3

Noffαoff
`

d

d2ondH
3

Nonαon
, where

N ě max
␣

α4
ond

´4
on , α

4
offcoffpXoffq´4

(

maxtN˚, polypd,H, coffpXoffq, log 1{δqu, we define the
quantities αoff “

Noff

N , αon “ Non

N , and the minimal samples for coverage is

N˚ “ min
N

C¨N s.t. inf
ΛPΩ

max
ϕPΦ

ϕJ
`

NpΛ ` λ̄Iq ` Λoff

˘´1
ϕ ď Õpmaxtdon{Non, coffpXoffq{Noffuq.

Proof. First, we set up some preliminaries. Following the same argument as the proof of Lemma 3,
we can establish that, for arbitrary partition X “ Xon Y Xoff , we have

conpXonq ď don,

and running OPTCOV with tolerance Õpmaxtdon{Non, coffpXoffq{Noffuq, yields:

max
ϕhPΦ

ϕJ
hΛ

´1
h ϕh À max tcoffpXoffq{Noff , don{Nonu .

This incurs

max

#

ˆ

Noff

coffpXoffq

˙4{5

,

ˆ

Non

don

˙4{5
+

maxtN˚, polypd,H, coffpXoffq, log 1{δqu

episodes of online exploration, for an overall burn-in cost of

Noff ` Non ě max

"

α4
on

d4on
,

α4
off

coffpXoffq4

*

maxtN˚, polypd,H, coffpXoffq, log 1{δqu
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episodes.

To tighten the horizon dependence even further from the result of Lemma 3, we turn to the total
variance lemma. i.e. Lemma C.5 in Jin et al. (2018), indicating that

1

NH

ÿ

τPD

H
ÿ

h“1

“

VhV
˚
h`1

‰

psτh, a
τ
hq À Õ

ˆ

H `
H2

N

˙

.

Then, we directly apply Lemma 17 with γ “ max tdon{Non, coffpXoffq{Noffu and σ̄ “ H `H2{N ,
we will then obtain that

H
ÿ

h“1

max
ϕhPΦ

b

ϕJ
hΣ

‹
h

´1ϕh ď

ˆ

don
Non

`
coffpXoffq

Noff

˙

H

d

N

ˆ

H `
H2

N

˙

ď

ˆ

don
Non

`
coffpXoffq

Noff

˙

a

NH3 ` H4

ď

d

coffpXoffq2H3

Noffαoff
`

coffpXoffq2H4

N2
off

`

d

d2onH
3

Nonαon
`

d2onH
4

N2
on

(12)

À

d

coffpXoffq2H3

Noffαoff
`

d

d2onH
3

Nonαon
, (13)

which leads to our final result:

V ˚
1 psq ´ V pπ

1 psq À inf
Xoff ,Xon

˜

d

coffpXoffq2dH3

Noffαoff
`

d

d2ondH
3

Nonαon

¸

,

where αoff “ Noff{N and αon “ Non{N .

C Proof of Corollary 1

Proof. In tabular case, we set ϕps, aq “ 1s,a and d “ |S| ¨ |A|. Let Nhps, aq be the number of visits
to a specific state-action pair ps, a, hq. As the exploration algorithm OPTCOV ensures that

max
s,a,h

1

Nhps, aq
ď max

ˆ

don
Non

,
coffpXoffq

Noff

˙

,

we bound the error in the following way follows from Lemma 2,

V ˚
1 psq ´ V pπ

1 psq À
?
d

H
ÿ

h“1

Eπ˚ ||ϕpsh, ahq||pΣ˚
off,h`Σ˚

on,hq´1

ď
a

|S||A|

H
ÿ

h“1

ÿ

s,a

d‹
hps, aq

d

“

VhV
˚
h`1

‰

ps, aq

Nhps, aq
,

where the last inequality follows from the fact that Σ‹
h “ diag

`

Nhps, aq{
“

VhV
˚
h`1

‰

ps, aq
˘

sPS,aPA.
We will then decompose the state-action space into Xoff and Xon, and bound the two parts seperately
based on the tolerance level of OPTCOV,

V ˚
1 psq ´ V pπ

1 psq À
a

|S||A|

H
ÿ

h“1

ÿ

s,a

d‹
hps, aq

d

“

VhV
˚
h`1

‰

ps, aq

Nhps, aq
1Xoff

`
a

|S||A|

H
ÿ

h“1

ÿ

s,a

d‹
hps, aq

d

“

VhV
˚
h`1

‰

ps, aq

Nhps, aq
1Xon

ď

d

|S||A|coffpXoffq

Noff

H
ÿ

h“1

ÿ

s,a

d‹
hps, aq

b

“

VhV
˚
h`1

‰

ps, aq1Xoff
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`

d

|S||A|don
Non

H
ÿ

h“1

ÿ

s,a

d‹
hps, aq

b

“

VhV
˚
h`1

‰

ps, aq1Xon

ď
a

|S||A|

˜

d

coffpXoffq

Noff
`

c

don
Non

¸

H
ÿ

h“1

ÿ

s,a

b

d‹
hps, aq

“

VhV
˚
h`1

‰

ps, aq.

As the optimal policy π‹ executes a deterministic action π‹psq for any state s, the inequality can be
further bounded as

V ˚
1 psq ´ V pπ

1 psq À
a

|S||A|

˜

d

coffpXoffq

Noff
`

c

don
Non

¸

H
ÿ

h“1

ÿ

s

b

d‹
hps, π‹psqq

“

VhV
˚
h`1

‰

ps, π‹psqq

ď
a

H|S|2|A|

˜

d

coffpXoffq

Noff
`

c

don
Non

¸

g

f

f

e

H
ÿ

h“1

ÿ

s

d‹
hps, π‹psqq

“

VhV
˚
h`1

‰

ps, π‹psqq

ď
a

H|S|2|A|

˜

d

coffpXoffq

Noff
`

c

don
Non

¸

g

f

f

e

H
ÿ

h“1

Eps,aq„dπ‹

“

VhV
˚
h`1

‰

ps, aq

ď
a

H3|S|2|A|

˜

d

coffpXoffq

Noff
`

c

don
Non

¸

, (14)

where the last inequality follows from the proof of Lemma C.5. in Jin et al. (2018).

D On concentrability and coverability

Lemma 1. For any partition Xoff ,Xon, we have that conpXonq ď don. Similarly, there exists a
partition such that coffpXoffq “ Opdq.

Proof. This proof follows a similar strategy to that of Lemma B.10 in Wagenmaker and Jamieson
(2023), except that we exploit the projections onto don to get a bound that depends on don ď d,
instead of d. We wish to bound

conpXonq “ inf
π

max
h

1

λdon
pEdπ

h
rpPonϕhqpPonϕhqJsq

.

Pon P Rdˆd has rank don ď d, so we can decompose this with the thin SVD into Pon “ UonU
J
on,

where Uon P Rdˆdon . It then holds that

λdonpEdπ
h

rpPonϕhqpPonϕhqJsq “ λminpEdπ
h

rpUJ
onϕhqpUJ

onϕhqJsq,

and from Lemma 20 that

conpXonq “ inf
π

sup
vhPΦon

vJ
hUonEdπ

h
rpUJ

onϕhqpUJ
onϕhqJs´1UJ

onvh.

Apply Jensen’s inequality to find that for any vh P Φon,

vJ
hUonEdπ

h
rpUJ

onϕhqpUJ
onϕhqJsUJ

onvh ě vJ
hUonEϕh„dπ

h
rUJ

onϕhsEϕh„dπ
h

rUJ
onϕhsJUJ

onvh.

Then, we can bound

conpXonq “ inf
π

sup
vhPΦon

vJ
hUonEdπ

h
rpUJ

onϕhqpUJ
onϕhqJs´1UJ

onvh

ď inf
ρ

sup
vhPΦon

vJ
hUon

`

Eπ„ρ

“

Eϕh„dπ
h

rUJ
onϕhsEϕh„dπ

h
rUJ

onϕ
J
h s
‰˘´1

UJ
onvh.

By Kiefer-Wolfowitz (Lattimore et al., 2020), this is bounded by don.
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Similarly,

inf
Xoff ,Xon

coffpXoffq “ inf
Xoff ,Xon

max
h

1

λdoff
pEµh

rpPoffϕhqpPoffϕhqJsq

“ inf
Xoff ,Xon

max
h

1

λminpEµh
rpUJ

offϕhqpUJ
offϕhqJsq

ď Opdq.

where the upper bound is achieved when, for instance, we choose Xoff such that Φoff “

Span
`

pvh,1, ..., vh,kh
qhPrHs

˘

, where vh,i is the i-th largest eigenvector of Eµrϕhϕ
J
h s «

1
Noff

ř

τPDoff
ϕhpsτh, a

τ
hqϕhpsτh, a

τ
hqJ, and vh,kh

is the eigenvector corresponding to the largest
eigenvalue λh,kh

ě Ωp1{khq. The largest eigenvalue λh,1 is always Ωp1{dq for non-null features,
so there always exists such a partition where doff is at least 1.

Informally, one can choose the offline partition to be the span of the large eigenvectors of the covari-
ance matrix, so the smallest eigenvalue of the projected covariance matrix, i.e. the partial all policy
concentrability coefficient, is no larger than the dimension of the partition.

Lemma 5 (Maximum Eigenvalue Bound with OPTCOV). On any partition Xoff ,Xon, if we run
OPTCOV with tolerance Õpmaxtdon{Non, coffpXoffq{Noffuq, on this partition we also have that

max
ϕhPΦ

ϕJ
hΛ

´1
h ϕh À max tcoffpXoffq{Noff , don{Nonu .

Proof. By Lemma 1, for any partition, we have that

conpXonq “ inf
π

max
ϕhPΦon

ϕJ
hEϕ̄h„dπ

h
rϕ̄hϕ̄

J
h s´1ϕh ď don,

Applying Matrix Chernoff, we have that with probability at least 1 ´ δ,

max
ϕhPΦoff

ϕJ
hΛ

´1
h,offϕh ď max

ϕhPΦoff

ϕJ
hEϕ̄h„µh

rϕ̄hϕ̄
J
h ` N´1

off Is´1ϕhN
´1
off

˜

1 ´

d

2

Noff
log

ˆ

4d

δ

˙

¸´1

,

and similarly for conpXonq we also have that

inf
π

max
ϕhPΦon

ϕJ
hΛ

´1
h,πϕh ď inf

π
max

ϕhPΦon

ϕJ
hEϕ̄h„µh

rϕ̄hϕ̄
J
h s´1ϕhN

´1
on

˜

1 ´

d

2

Non
log

ˆ

4d

δ

˙

¸´1

.

As Λh,off ` Λh,on “ Λh, we have

max
ϕhPΦ

ϕJ
hΛ

´1
h ϕh “ max

"

max
ϕhPΦoff

ϕJ
hΛ

´1
h ϕh, max

ϕhPΦon

ϕJ
hΛ

´1
h ϕh

*

À max

"

coffpXoffq{Noff , max
ϕhPΦon

ϕJ
hΛ

´1
h ϕh

*

,

where the last step follows from the choice of partition. So it suffices to run OPTCOV with tolerance
Õpmaxtdon{Non, coffpXoffq{Noffuq,

to find that there exists at least one partition such that

max
ϕhPΦ

ϕJ
hΛ

´1
h ϕh À max tcoffpXoffq{Noff , don{Nonu .

Lemma 6 (Coverability Coefficient Is Bounded In Tabular MDPs). If the underlying MDP is tabular,
for any partition Xoff ,Xon, we have that conpXonq ď don.
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Proof. First, we write the concentrability coefficient in terms of densities.

conpXonq “ min
π

max
h

1

λdon
pEdπ

h
rpPonϕhqpPonϕhqJsq

ď min
π

max
h

1Xon

mins,a dπhps, aq1Xon

ď min
π

max
h,s,a

1Xon

dπhps, aq1Xon

.

By the same trick that Xie et al. (2022a) use in their Lemma 3,

1Xon

dπhps, aq1Xon

ď
1Xon

supπ2 dπ
2

h ps, aq1Xon
{
ř

s1,a1 supπ1 dπ
1

h ps1, a1q1Xon

ď

ř

s,a supπ d
π
h ps, aq1Xon

supπ d
π
h ps, aq1Xon

ď don.

E Proofs for Algorithm 2

E.1 Setup

We consider the same state-action space splitting framework of Tan and Xu (2024). Let XonYXoff “

rHs ˆ S ˆ A. Then, their images under the feature map Φoff “ SpanpϕpXoff,hqqhPrHs Ď Rd and
Φon “ SpanpϕpXon,hqqhPrHs Ď Rd are subspaces of X with dimension doff and don, respectively.
We denote Poff ,Pon as the orthogonal projection operators onto these subspaces respectively. The
partial offline all-policy concentrability coefficient

coffpXoffq “ max
h

1

λdoff
pEµh

rpPoffϕhqpPoffϕhqJsq
,

is bounded by the inverse of the doff -th largest eigenvalue of the covariance matrix of the projected
feature maps onto the offline partition, where λk is the k-th largest eigenvalue. Write 1Xon

as
shorthand for 1pps, a, hq P Xonq, and similarly for 1Xoff

.

Now, we work through the analysis of He et al. (2023) to ensure that their result holds in our
setting, where the regret decomposes into online part }Σ

´1{2
t,h ϕhps

ptq
h , a

ptq
h q1Xon}2 and offline part

}Σ
´1{2
t,h ϕhps

ptq
h , a

ptq
h q1Xoff

}2 respectively, instead of }Σ
´1{2
t,h ϕhps

ptq
h , a

ptq
h q}2.

E.2 High-probability events

We define several “high probability” events which are similar to those defined in He et al. (2023).

• We define rwt,h as the solution of the weighted ridge regression problem for the squared
value function

rwt,h “ Σ´1
t,h

t´1
ÿ

i“1

σ̄´2
i,hϕps

piq
h , a

piq
h qV 2

t,h`1ps
piq
h`1q. (15)

• We define E as the event where the following inequalities hold for all s, a, t, h P S ˆ A ˆ

rT s ˆ rHs:

ˇ

ˇ

pwJ
t,hϕps, aq ´ rPhVt,h`1s ps, aq

ˇ

ˇ ď β̄
b

ϕps, aqJΣ´1
t,hϕps, aq, (16)

ˇ

ˇ

rwJ
t,hϕps, aq ´

“

PhV
2
t,h`1

‰

ps, aq
ˇ

ˇ ď rβ
b

ϕps, aqJΣ´1
t,hϕps, aq, (17)
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ˇ

ˇ

ˇ
qwJ
t,hϕps, aq ´

”

Ph
qVt,h`1

ı

ps, aq

ˇ

ˇ

ˇ
ď β̄

b

ϕps, aqJΣ´1
t,hϕps, aq, (18)

rβ “ O

ˆ

H2
?
dλ `

b

d3H4 log2pdHN{pδλqq

˙

, β̄ “ O

ˆ

H
?
dλ `

b

d3H2 log2pdHN{pδλqq

˙

.

This is the “coarse event” as mentioned in their paper, where concentration holds for the
value and squared value function with all three estimators.

• We define rEh as the event that for all episodes t P rT s, stages h ď h1 ď H and state-action
pairs ps, aq P S ˆ A, the weight vector pwt,h satisfies

ˇ

ˇ

pwJ
t,h1ϕps, aq ´ rPhVt,h1`1s ps, aq

ˇ

ˇ ď β
b

ϕps, aqJΣ´1
t,h1ϕps, aq, (19)

where

β “ O

ˆ

H
?
dλ `

b

d log2p1 ` dNH{pδλqq

˙

.

Furthermore, let rE “ rE1 denotes the event that (19) holds for all stages h P rHs. This is
the fine event where concentration for ŵ is tighter than that required in (16) to (18).

Equipped with these definitions, we recall the following lemmas from He et al. (2023):
Lemma 7 (Lemma B.1, He et al. (2023)). E holds with probability at least 1 ´ 7δ.

Lemma 8 (Lemma B.2, He et al. (2023)). On the event E and rEh`1, for each episode t P rT s and
stage h, the estimated variance satisfies

ˇ

ˇ

ˇ

“

VhVt,h`1

‰

´

s
ptq
h , a

ptq
h

¯

´ rVhVt,h`1s

´

s
ptq
h , a

ptq
h

¯
ˇ

ˇ

ˇ
ď Et,h,

ˇ

ˇ

ˇ

“

VhVt,h`1

‰

´

s
ptq
h , a

ptq
h

¯

´
“

VhV
˚
h`1

‰

´

s
ptq
h , a

ptq
h

¯
ˇ

ˇ

ˇ
ď Et,h ` Dt,h.

Lemma 9 (Lemma B.3, He et al. (2023)). On the event E and rEh`1, for any episode t and i ą t, we
have

“

Vh

`

Vi,h`1 ´ V ˚
h`1

˘‰

´

s
ptq
h , a

ptq
h

¯

ď Dt,h{
`

d3H
˘

.

Lemma 10 (Lemma B.4, He et al. (2023)). On the event E and rEh, for all episodes t P rT s and
stages h ď h1 ď H , we have Qt,hps, aq ě Q˚

hps, aq ě qQt,hps, aq. In addition, we have Vt,hpsq ě

V ˚
h psq ě qVt,hpsq.

Lemma 11 (Lemma B.5, He et al. (2023)). On event E , event rE holds with probability at least 1 ´

δ.

E.3 Regret decomposition

From He et al. (2023), based on Lemma B.4 of their paper, Qt,hps
ptq
h , a

ptq
h q “ Vt,hps

ptq
h q ě V ˚

h ps
ptq
h q,

i.e. optimism holds for all episodes and timesteps. Therefore,

RegpT q À

T
ÿ

t“1

H
ÿ

h“1

!”

Ph

´

Vt,h`1 ´ V πptq

t,h`1

¯ı´

s
ptq
h , a

ptq
h

¯

´

´

Vt,h`1

´

s
ptq
h`1

¯

´ V πptq

t,h`1

´

s
ptq
h`1

¯¯)

` β
T
ÿ

t“1

H
ÿ

h“1

}Σ
´1{2
t,h ϕhps

ptq
h , a

ptq
h q}2.

Accordingly, given a partition Xoff ,Xon of rHs ˆ S ˆ A, we can further decompose this into the
fraction of episodes where each partition is visited,

T
ÿ

t“1

H
ÿ

h“1

}Σ
´1{2
t,h ϕhps

ptq
h , a

ptq
h q}2 “

ÿ

h,t

}Σ
´1{2
t,h ϕhps

ptq
h , a

ptq
h q1Xoff

}2`
ÿ

h,t

}Σ
´1{2
t,h ϕhps

ptq
h , a

ptq
h q1Xon

}2.

He et al. (2023) define the events
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E1 “

#

@h P rHs,
T
ÿ

t“1

H
ÿ

h1“h

”

Ph

´

Vt,h`1 ´ V πptq

t,h`1

¯ı´

s
ptq
h , a

ptq
h

¯

´

T
ÿ

t“1

H
ÿ

h1“h

´

Vt,h`1

´

s
ptq
h`1

¯

´ V πptq

t,h`1

´

s
ptq
h`1

¯¯

ď 2
a

2H3T logpH{δq

+

,

E2 “

#

@h P rHs,
T
ÿ

t“1

H
ÿ

h1“h

”

Ph

´

Vt,h`1 ´ qVt,h`1

¯ı´

s
ptq
h , a

ptq
h

¯

´

T
ÿ

t“1

H
ÿ

h1“h

´

Vt,h`1

´

s
ptq
h`1

¯

´ qVt,h`1

´

s
ptq
h`1

¯¯

ď 2
a

2H3T logpH{δq

+

,

which they show that by Azuma-Hoeffding, both hold with probability 1´δ each. As such, we have
that

RegpT q À
a

H3T logpH{δq`
ÿ

h,t

β
›

›Σ
´1{2
t,h ϕhps

ptq
h , a

ptq
h q1Xoff

›

›

2
`
ÿ

h,t

β
›

›Σ
´1{2
t,h ϕhps

ptq
h , a

ptq
h q1Xon

›

›

2
.

Here, we denote

RegoffpT q “
ÿ

h,t

β
›

›Σ
´1{2
t,h ϕhps

ptq
h , a

ptq
h q1Xoff

›

›

2
, RegonpT q “

ÿ

h,t

β
›

›Σ
´1{2
t,h ϕhps

ptq
h , a

ptq
h q1Xon

›

›

2
,

as the offline regret and online regret, respectively.

E.4 Offline regret control

Now, we bound the regret on the offline partition. We first perform a similar argument to that in
Tan and Xu (2024); Xie et al. (2022a) to show that the sum of bonuses can be controlled by the
maximum eigenvalue of the inverse weighted average covariance matrix in Lemma 12. We will then
show that the maximum eigenvalue can be nicely bounded in Lemma 13.
Lemma 12 (Sum of Bonuses on Offline Partition). For any partition Xoff ,Xon, we can bound the
sum of bonuses on the offline partition with the following:

RegoffpT q À

H
ÿ

h“1

d

dN2
on

Noff
max

ϕhPΦoff

ϕJ
h Σ̄

´1
off,hϕh,

where Σ̄off,h “ pΣoff,h ` λIq{Noff and T “ Non.

Proof. It is sufficient to show the following holds true

ÿ

t

β
›

›Σ
´1{2
t,h ϕhps

ptq
h , a

ptq
h q1Xoff

›

›

2
ď

d

dN2
on

Noff
max

ϕhPΦoff

ϕJ
h Σ̄

´1
off,hϕh,

then the desired inequality directly follows. With a direct calculation, one may observe that

}Σ
´1{2
t,h ϕhps

ptq
h , a

ptq
h q1Xoff

}2 “

b

ϕJ
h ps

ptq
h , a

ptq
h qΣ´1

t,hϕhps
ptq
h , a

ptq
h q1Xoff

À

b

ϕJ
h ps

ptq
h , a

ptq
h qpΣoff,h ` λIq´1ϕhps

ptq
h , a

ptq
h q1Xoff

,

where the last inequality holds as Σoff,h ĺ Σt,h. As a result, we are able to bound the desired
inequality with the maximum eigenvalue of the inverse weighted matrix,

ÿ

t

}Σ
´1{2
t,h ϕhps

ptq
h , a

ptq
h q1Xoff

}2 ď Non

c

max
ϕhPΦoff

ϕJ
h pΣoff,h ` λIq´1ϕh

“

d

Non
Non

Noff
max

ϕhPΦoff

ϕJ
h Σ̄

´1
off,hϕh,
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where Σ̄off,h “ pΣoff,h ` λIq{Noff . As β “ Õp
?
dq, we obtain the bound we desired:

ÿ

t

β}Σ
´1{2
t,h ϕhps

ptq
h , a

ptq
h q1Xoff

}2 ď

d

dNon
Non

Noff
max

ϕhPΦoff

ϕJ
h Σ̄

´1
off,hϕh.

Lemma 13 (Partial Concentrability Bound). For any partition Xoff ,Xon, we have that

H
ÿ

h“1

max
ϕhPΦoff

b

ϕJ
h Σ̄

´1
off,hϕh À

a

coffpXoffq2H3,

when Non, Noff ě Ω̃pd13H14q, where we define Σ̄off,h “ pΣoff,h ` λIq{Noff .

Proof. Similar to the definition of Σ̄off,h, we define Λ̄off,h “ pΛoff,h ` λIq{Noff in a similar way.
Then, one may observe that

max
ϕhPΦoff

´

ϕJ
h Λ̄

´1
off,hϕh

¯

“ max
ϕhPΦoff

¨

˝ϕJ
h

˜

1

Noff

˜

Noff
ÿ

n“1

ϕn,hϕ
J
n,h ` λI

¸¸´1

ϕh

˛

‚

ď max
ϕhPΦoff

ϕJ
hEµh

rΛ̄off,hs´1ϕh

˜

1 ´

d

2

Noff
log

ˆ

4d

δ

˙

¸´1

,

where the last line holds by an application of the Matrix Chernoff inequality. Then, we may further
bound the quantity with the partial offline all-policy concentrability coefficient,

max
ϕhPΦoff

´

ϕJ
h Λ̄

´1
off,hϕh

¯

À inf
Xoff ,Xon

max
h

1

λdoff
pEµpPoffϕhqpPoffϕhqJq

“ inf
Xoff ,Xon

max
h

1

λmin

`

EµpUJ
offϕhqpUJ

offϕhqJ
˘

“ coffpXoffq.

To tighten the dependence of the regret of the offline partition on H , we again employ a truncation
argument that used in Lemma 4. Recall that in Section B of the appendix in He et al. (2023), by the
total variance lemma of Jin et al. (2019), it holds that

T
ÿ

t“1

H
ÿ

h“1

σ2
t,h ď rO

`

H2T ` d10.5H16
˘

.

Again, recall that we have
ÿ

h,t

}Σ
´1{2
t,h ϕhps

ptq
h , a

ptq
h q1Xoff

}2

À

g

f

f

f

eH2Non
Non

Noff
max

ϕhPΦoff

¨

˝ϕJ
h

˜

1

Noff

˜

Noff
ÿ

n“1

σ̄´2
n,hϕn,hϕJ

n,h ` λI

¸¸´1

ϕh

˛

‚.

As σ̄2
n,h “ max

!

σ2
n,h, H, 4d6H4||ϕn,h||Σ´1

n,h

)

. Consider the sets

I1 “
␣

n P rNoff s : @h : σ̄2
n,h “ maxpσ2

n,h, Hq
(

, I2 “ Ic
1.

Here, I2 roughly correspond to the “bad” set of trajectories where there exists some timestep h such
that σ̄2

n,h ą maxtσ2
n,h, Hu, and I1 to be the “good” set of trajectories where the monotonic variance

estimator is controlled.
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We need to bound the cardinality of the latter before employing our truncation argument on the
estimated variances. As we note that for all n P I2 we have that maxhPrHs

b

ϕJ
n,hΣ

´1
n,hϕn,h ě

1{p4d6H2q, which indicates that

H
ÿ

h“1

min
␣

1, 16d12H4ϕJ
n,hΣ

´1
n,hϕn,h

(

ě 1,

and so we can conclude that

|I2| ď

H
ÿ

h“1

Noff
ÿ

n“1

min
␣

1, 16d12H4ϕJ
n,hΣ

´1
n,hϕn,h

(

À d13H5 logp1 ` N{dq,

by Lemma D.5 of Zhou and Gu (2022) and the fact that ||ϕn,h{σ̄n,h||2 ď 1{H2. As we require in
Theorem 2 that Non, Noff “ Ω̃pd13H14q, we come to the following result

|I2|{Noff À 8d13H5 logp1 ` N{dq{Noff “ õp1q, |I1|{Noff “ 1 ´ õp1q.

Informally, this means that the proportion of trajectories in the “bad set” I2 is asymptotically zero,
and the proportion in the “good set” I1 is asymptotically one. As for every n P I1 we have that for
any h P rHs,

max
ϕhPΦoff

´

ϕJ
h Σ̄

´1
off,hϕh

¯

“ max
ϕhPΦoff

¨

˝ϕJ
h

˜

1

Noff

˜

Noff
ÿ

n“1

σ̄´2
n,hϕn,hϕ

J
n,h ` λI

¸¸´1

ϕh

˛

‚

“ max
ϕhPΦoff

Noff

¨

˝ϕJ
h

˜

Noff
ÿ

n“1

σ̄´2
n,hϕn,hϕ

J
n,h ` λI

¸´1

ϕh

˛

‚

ď max
ϕhPΦoff

Noff

¨

˝ϕJ
h

˜

ÿ

nPI1

ϕn,hϕ
J
n,h

σ2
n,h ` H

` λI

¸´1

ϕh

˛

‚.

Now we invoke the total variance lemma. Recall that in Section B of the appendix in He et al.
(2023), by the total variance lemma of Jin et al. (2019), if Noff ě Ω̃pd10.5H14q, it holds that

1

Noff

Noff
ÿ

n“1

H
ÿ

h“1

σ2
n,h “ rO

`

H2 ` d10.5H16{Noff

˘

“ rO
`

H2
˘

.

With a direct application of Lemma 17, as we set T “ ÕpHq and γ “ coffpXoffq{Noff , we will then
get to

H
ÿ

h“1

max
ϕhPΦoff

b

ϕJ
hΣ

´1
off,hϕh À

coffpXoffqH

Noff

a

NoffH “

d

coffpXoffqH3

Noff
,

which indicates that
H
ÿ

h“1

max
ϕhPΦoff

b

ϕJ
h Σ̄

´1
off,hϕh À

a

coffpXoffq2H3.

Now, from Lemmas 12 and 13, for any partition Xoff ,Xon, the offline regret satisfies

RegoffpT q À

H
ÿ

h“1

d

dNon
Non

Noff
max

ϕhPΦoff

ϕJ
h Σ̄

´1
off,hϕh À

c

coffpXoffq2dH3Non
Non

Noff
.
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E.5 Online regret control

We will then bound the online term, RegonpT q. He et al. (2023) show in Lemma E.1 that it is
possible to use Cauchy-Schwarz to bound this by

RegonpT q “ rO

¨

˝d4H8 ` βd7H5 ` β

g

f

f

edHT ` dH
T
ÿ

t“1

H
ÿ

h“1

σ2
t,h

˛

‚,

and in Section B of the appendix, state that by the total variance lemma of Jin et al. (2019),

T
ÿ

t“1

H
ÿ

h“1

σ2
t,h ď rO

`

H2T ` d10.5H16
˘

We will seek to use the online partition to tighten the dimensional dependence in the first result
accordingly.

Lemma 14 (Modified Lemma E.1 in He et al. (2023)). For any parameters β1 ě 1 and C ě 1, and
any partition Xoff ,Xon, the summation of bonuses on the online partition is upper bounded by

T
ÿ

t“1

min

˜

β1

c

ϕ
´

s
ptq
h , a

ptq
h

¯J

Σ´1
t,hϕ

´

s
ptq
h , a

ptq
h

¯

1Xon
, C

¸

ď 4d4H6Cι ` 10β1d5onH
4ι ` 2β1

g

f

f

e2donι
T
ÿ

t“1

´

σ2
t,h ` H

¯

where ι “ logp1 ` N{pdλqq.

Proof. For each horizon h P rHs, we first note that the summation can be bounded by the sum of
two terms, where the first term is tight-bounded and the second term stands for a tail event where
ϕTΣ´1ϕ gets large.

T
ÿ

t“1

min

˜

β1

c

ϕ
´

s
ptq
h , a

ptq
h

¯J

Σ´1
t,hϕ

´

s
ptq
h , a

ptq
h

¯

1Xon , C

¸

ď

T
ÿ

t“1

β1 min

˜

c

ϕ
´

s
ptq
h , a

ptq
h

¯J

Σ´1
t,hϕ

´

s
ptq
h , a

ptq
h

¯

1Xon
, 1

¸

` C
T
ÿ

t“1

1

#

c

ϕ
´

s
ptq
h , a

ptq
h

¯J

Σ´1
t,hϕ

´

s
ptq
h , a

ptq
h

¯

1Xon
ě 1

+

.

We first bound
řT

t“1 β
1 min

˜

c

ϕ
´

s
ptq
h , a

ptq
h

¯J

Σ´1
t,hϕ

´

s
ptq
h , a

ptq
h

¯

1Xon , 1

¸

, using a variant of

Lemma B.1 from Zhou and Gu (2022) in Lemma 18. With this, we have that

T
ÿ

t“1

β1 min

˜

c

ϕ
´

s
ptq
h , a

ptq
h

¯J

Σ´1
t,hϕ

´

s
ptq
h , a

ptq
h

¯

1Xon , 1

¸

ď

T
ÿ

t“1

β1 min

¨

˚

˝

g

f

f

eϕ
´

s
ptq
h , a

ptq
h

¯J

˜

Noff`t
ÿ

n“1

pϕn,h1Xon
qpϕn,h1Xon

qJ ` λId

¸´1

ϕ
´

s
ptq
h , a

ptq
h

¯

1Xon
, 1

˛

‹

‚

ď 10β1d5onH
4ι ` 2β1

g

f

f

e2donι
K
ÿ

k“1

´

σ2
k,h ` H

¯

,

where ι “ logp1 ` N{pdλqq.
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From this, it suffices to follow the rest of the proof of Lemma E.1 from He et al. (2023) to bound the
remaining term by

T
ÿ

t“1

1

#

c

ϕ
´

s
ptq
h , a

ptq
h

¯J

Σ´1
t,hϕ

´

s
ptq
h , a

ptq
h

¯

1Xon
ě 1

+

ď 4d4H6Cι.

As a result, we obtain the following bound for the online regret

RegonpT q À d7H9 ` β
a

dondH3T .

E.6 Putting everything together

Combining our results in E.4 and E.5, we come to the bound of total regret that

RegpNonq À
a

H3Non logpH{δq `

c

coffpXoffq2dH3Non
Non

Noff
`
a

dondH3Non ` d7H9.

When we set Non, Noff “ Ω̃pd13H14q and choose Xoff , Xon be the partition that minimize the right
hand side, we have

RegpNonq À inf
Xoff ,Xon

ˆ

c

coffpXoffq2dH3Non
Non

Noff
`
a

dondH3Non

˙

,

proving Theorem 2.

F OPTCOV from Wagenmaker and Jamieson (2023)

We lean on the OPTCOV algorithm from Wagenmaker and Pacchiano (2023) for reward-agnostic
exploration , first proposed in Wagenmaker and Jamieson (2023), as well as the Frank-Wolfe sub-
routine used, for completeness.

Algorithm 5 Collection of Optimal Covariates (OPTCOV), Wagenmaker and Pacchiano (2023)
1: Input: functions to optimize pfiqi, constraint tolerance ϵ, confidence δ.
2: for i “ 1, 2, 3, ... do
3: Set the number of iterates Ti Ð 2i, episodes per iterate Ki Ð 2i.
4: Play any policy for Ki episodes to collect covariates Γ0 and data D0.
5: Initialize covariance matrix Λ1 Ð Γ0{K.
6: for t “ 1, ..., Ti do
7: Run FORCE (Wagenmaker et al., 2022) or another regret-minimizing algorithm on the

exploration-focused synthetic reward g
ptq
h ps, aq9trp´∇ΛfipΛq|Λ“Λtϕps,aqϕps,aqJ q.

8: Collect covariates Γt, data Dt.
9: Perform Frank-Wolfe update: Γt`1 Ð p1 ´ 1

t`1 qΛt ` 1
t`1Γt{Ki.

10: end for
11: Assign xΛi Ð ΛTi`1,Di Ð Y

Ti
t“0Dt.

12: if fipxΛiq ď KiTiϵ then
13: Return: pΛ,KiTi,Di.
14: end if
15: end for

The algorithm essentially performs the doubling trick to determine how many samples to collect,
terminating when the minimum eigenvalue of the covariance matrix is above the set tolerance.

Wagenmaker and Pacchiano (2023) then prove the following guarantee for OPTCOV in the hybrid
setting:
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Lemma 15 (Termination of OPTCOV, Lemma C.2 (Wagenmaker and Pacchiano, 2023)). Let

fipΛq “
1

ηi
log

˜

ÿ

ϕPΦ

e
ηi}ϕ}

2
AipΛq´1

¸

, AipΛq “ Λ `
1

TiKi
Λ0,i `

1

TiKi
Λoff

for some Λ0,i satisfying Λ0,i ľ Λ0 for all i, and ηi “ 22i{5. Let pβi,Miq denote the smoothness
and magnitude constants for fi. Let pβ,Mq be some values such that βi ď ηiβ,Mi ď M for all i.
Then, if we run OPTCOV on pfiqi with constraint tolerance ϵ and confidence δ, we have that with
probability at least 1 ´ δ, it will run for at most

max

"

min
N

16N s.t. inf
ΛPΩ

max
ϕPΦ

ϕJ pNΛ ` Λ0 ` Λoffq
´1

ϕ ď
ϵ

6
,

polypβ, d,H,M, log 1{δq

ϵ4{5

*

.

episodes, and will return data tϕτu
N
τ“1 with covariance pΣN “

řN
τ“1 ϕτϕ

J
τ such that

fî

´

N´1
pΣN

¯

ď Nϵ

wherepi is the iteration on which OPTCOV terminates.

We use this to obtain a modified guarantee for OPTCOV that does not require a call to the CONDI-
TIONEDCOV algorithm of Wagenmaker and Jamieson (2023).
Lemma 16 (Modified Bound on OPTCOV, Theorem 4, Wagenmaker and Pacchiano (2023)). Con-
sider running OPTCOV with some ϵexp ą 0 and functions fi as defined in Lemma 15, instantiated
with the regularization λ̄ ě 0. Then with probability 1 ´ δ, this procedure will collect at most

max

#

min
N

C ¨ N s.t. inf
ΛPΩ

max
ϕPΦ

ϕJ
`

NpΛ ` λ̄Iq ` Λoff

˘´1
ϕ ď

ϵexp
6

,
poly pd,H, conpXonq, log 1{δq

ϵ
4{5
exp

+

episodes, and will produce covariates pΣ such that

max
ϕhPΦ

ϕh

´

pΣ ` λ̄I ` Λoff

¯´1

ϕh ď ϵexp.

Proof. This is essentially the proof of Theorem 4 in Wagenmaker and Pacchiano (2023), except
where we chase around a few terms that differ in the analysis. By Lemma D.5 of Wagenmaker and
Jamieson (2023), it suffices to bound the smoothness constants of fipΛq by

Li “
1

λ̄2
, βi “

2

λ̄3

´

1 `
ηi
λ̄

¯

, Mi “
1

λ̄2
.

Assume that the termination condition of OPTCOV is met forpi satisfying

pi ď log

ˆ

poly

ˆ

1

ϵexp
, d,H, log 1{δ, conpXonq, λ̄

˙˙

.

We assume this holds and justify it at the conclusion of the proof. For notational convenience, define

ι :“ poly

ˆ

log
1

ϵexp
, d,H, log 1{δ, conpXonq, λ̄

˙

.

Given this upper bound onpi, set

L “ M :“
1

λ̄2
, β :“ ι.

With this choice of L,M, β, we have Li ď L,Mi ď M,βi ď ηiβ for all i ď pi.
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Now apply Lemma 15 with Λ0 “ λ̄ ¨ I and get that, with probability at least 1 ´ δ, OPTCOV
terminates after at most

max

"

min
N

16N s.t. inf
ΛPΩ

max
ϕPΦ

ϕJ
`

NΛ ` λ̄ ¨ I ` Λoff

˘´1
ϕ ď

ϵexp
6

poly pd,H, λ, coffpXoffq, log 1{ϵexp, log 1{δq

ϵ
4{5
exp

+

episodes, and returns data tϕτu
N
τ“1 with covariance pΣ “

řN
τ“1 ϕτϕ

J
τ such that

fî

´

N´1
pΣ
¯

ď Nϵexp

wherepi is the iteration on which OPTCOV terminates.

By Lemma D.1 of Wagenmaker and Jamieson (2023) we have

N ¨ max
ϕhPΦ

ϕh

´

pΣ ` Λî,0 ` Λoff

¯´1

ϕh ď fî

´

N´1
pΣ
¯

,

and the upper bound on the tolerance follows from Lemma D.8 of Wagenmaker and Jamieson
(2023).

It remains to justify the bound on pi. We do so with the same argument that Wagenmaker and
Pacchiano (2023) use. Note that by the definition of OPTCOV, if we run for a total of N̄ episodes,
we can bound pi ď 1

4 log2pN̄q. However, we see that the bound on pi given above upper bounds
1
4 log2pN̄q for N̄ the upper bound on the number of samples collected by OPTCOV stated above.
Thus, the bound on î is valid.

G Miscellanous lemmas

Lemma 17. Let Φ Ă Rd be a linear subspace. Suppose tϕh,nuhPrHs,nPrNs P Φ be a collection
of unit vectors and tσh,nuhPrHs,nPrNs P R` be a collection of positive real numbers with mean
σ̄ “ pNHq´1

ř

h,n σh,n. Suppose it holds that maxhPrHs maxϕhPΦpϕT
hΛ

´1
h ϕhq ď γ, then the

following result satisfies
H
ÿ

h“1

max
ϕhPΦ

b

ϕT
hΣ

´1
h ϕh À γH

?
Nσ̄,

with

Λh “

N
ÿ

n“1

ϕh,nϕ
T
h,n ` λId, Σh “

N
ÿ

n“1

ϕh,nϕ
T
h,n

σh,n
` λId.

Proof. First, we denote σ̄h “ N´1
ř

n σh,n. Informally, this implies that most individuals of σh,¨

is asymptotically on the order of σ̄h, with only a small amount of individuals being higher in order.
To rule out the effect of the “large” ones, we group them into the following collection of sets:

EhpChq “ tn P rN s : σh,n ě Chσ̄hu.

Here, we leave the choice of the truncation level Ch open for now, but note that we allow the
truncation levels Ch vary across different timesteps h and related to σ̄h. It follows by definition that
řH

h“1 σ̄h “ Hσ̄. From an application of Markov’s Inequality, the cardinality of set EhpChq can be
upper bounded as

|EhpChq| ď
N

Ch
.

We now choose the truncation level Ch. To do so, we follow the steps below to quantify the effect
induced by the trajectories with high variance (i.e. those that belong to EhpChq):

min
ϕhPΦ

ϕJ
hΣ

‹
hϕh ě min

ϕhPΦ
ϕJ
h

˜

N
ÿ

n“1

ϕh,nϕ
T
h,n

σh,n

¸

ϕh
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ě min
ϕhPΦ

ϕJ
h

ˆ

ÿ

nPrNszEhpChq

ϕh,nϕ
T
h,n

σh,n

˙

ϕh

ě
1

Chσ̄h
min
ϕhPΦ

ϕJ
h

ˆ

ÿ

nPrNszEhpChq

ϕh,nϕ
T
h,n

˙

ϕh.

We now utilize a basic matrix inequality that for any matrix A,B, we have

min
ϕhPΦ

ϕJ
hAϕh ě min

ϕhPΦ
ϕJ
h pA ` Bqϕh ´ max

ϕhPΦ
ϕJ
hBϕh,

which allows us to further bound minϕhPΦ ϕJ
hΣ

‹
hϕh as

min
ϕhPΦ

ϕJ
hΣ

‹
hϕh ě

1

Chσ̄h
min
ϕhPΦ

ϕJ
h

ˆ N
ÿ

n“1

ϕh,nϕ
T
h,n ` λId

˙

ϕh

´
1

Chσ̄h
max
ϕhPΦ

ϕJ
h

ˆ

ÿ

nPEhpChq

ϕh,nϕ
T
h,n ` λId

˙

ϕh

Á
1

Chσ̄h

ˆ

γ´1 ´
N

Ch
´ λ

˙

,

This leads to the following result:

min
ϕhPΦ

ϕJ
hΛhϕh “ min

ϕhPΦ
pϕJ

hΛ
´1
h ϕhq´1 Á

"

max

ˆ

coffpXoffq

Noff
,
don
Non

˙*´1

“ γ´1,

where the first equality holds because Λh is a linear transformation on the subspace Φ. Equivalently,
this holds from the variational characterization of the eigenvalues and the fact that the largest abso-
lute eigenvalue is equal to the inverse of the smallest absolute eigenvalue of the inverse. As a result,
in order to rule out the effect of the “high variance trajectories”, we select the truncation level δh
such that N{Ch “ Θpγ´1q, implying Ch “ ΘpNγq. Hence, we obtain the following lower bound:

min
ϕhPΦ

ϕJ
hΣ

‹
hϕh Á

1

γ2Nσ̄h
.

Finally, we note that

H
ÿ

h“1

max
ϕhPΦ

b

ϕJ
hΣ

‹
h

´1ϕh “

H
ÿ

h“1

ˆ

min
ϕhPΦ

b

ϕJ
hΣ

‹
hϕh

˙´1

À γ
?
N

H
ÿ

h“1

?
σ̄h ď γH

?
Nσ̄.

Lemma 18 (Modified Lemma B.1 from Zhou and Gu (2022)). Let Xoff ,Xon be a partition of SˆAˆ

rHs, such that their images under the feature map, Φoff ,Φon are subspaces of dimension doff , don
respectively. Let tσk, βkukě1 be a sequence of non-negative numbers, α, γ ą 0, txkukě1 Ă Rd and
}xk}2 ď L. Let tZkukě1 and tσ̄kukě1 be recursively defined as follows: Z1 “ λI ` Zoff for some
symmetric matrix Zoff , where N “ Noff ` K, and we have

@k ě 1, σ̄k “ max
!

σk, α, γ }xk}
1{2

z´1
k

)

,Zk`1 “ Zk ` 1Xon
xkx

J
k {σ̄2

k

Let ι “ log
`

1 ` NL2{
`

dλα2
˘˘

. Then we have

K
ÿ

k“1

min
!

1, βk }xk}z´1
k
1Xon

)

ď 2donι ` 2 max
kPrKs

βkγ
2donι ` 2

a

donι

g

f

f

e

K
ÿ

k“1

β2
k pσ2

k ` α2q.

Proof. The proof roughly follows that of Lemma B.1 in Zhou and Gu (2022), except that we have
to make modifications as necessary to tighten the dimension dependence to don and incorporate the
offline data.
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Decompose the set rKs into a union of two disjoint subsets rKs “ I1 Y I2,

I1 “

!

k P rKs : }xk{σ̄k}Z´1
k
1Xon ě 1

)

, I2 “ rKszI1.

Then the following upper bound of |I1| holds, where the projector Pon onto Φon has the decompo-
sition Pon “ UonU

J
on by the thin SVD, and we write uk “ UJ

onxk:

|I1| “
ÿ

kPI1

min
!

1, ||xk{σ̄k||2
Z´1

k

1Xon

)

ď

K
ÿ

k“1

min
!

1, ||xk{σ̄k||2
Z´1

k

1Xon

)

ď

K
ÿ

k“1

min
␣

1, σ̄´2
k xJ

kZ
´1
k xk1Xon

(

“

K
ÿ

k“1

min
␣

1, pUonU
J
onxkqJZ´1

k pUonU
J
onxkq1Xon

(

“

K
ÿ

k“1

min
␣

1,xJ
kUonU

J
onZ

´1
k UonU

J
onxk1Xon

(

“

K
ÿ

k“1

min

$

&

%

1,xJ
kUonU

J
on

˜

k
ÿ

n“1

1Xon σ̄
´2
n xnx

J
n ` λId

¸´1

UonU
J
onxk1Xon

,

.

-

.

By Lemma 20, we can take the Uon inside the inverse and conclude that

K
ÿ

k“1

min

$

&

%

1,xJ
kUonU

J
on

˜

k
ÿ

n“1

1Xon
σ̄´2
n xnx

J
n ` λId

¸´1

UonU
J
onxk1Xon

,

.

-

“

K
ÿ

k“1

min

$

&

%

1,xJ
kUon

˜

k
ÿ

n“1

1Xon
σ̄´2
n UJ

onxnx
J
nUon ` λIdon

¸´1

UJ
onxk1Xon

,

.

-

.

Intuitively, this is because all the 1XonU
J
onxn and 1Xonxn are both in Φon, and in that case the

projection is just the identity.

Writing un “ UJ
onxn, and invoking Lemma D.5 of Zhou and Gu (2022) (which is a restatement of

Lemma 11 of Abbasi-yadkori et al. (2011)) and the fact that }xk{σ̄k}2 ď L{α, it holds that

K
ÿ

k“1

min

$

&

%

1,xJ
kUon

˜

k
ÿ

n“1

1Xon
σ̄´2UJ

onxnx
J
nUon ` λIdon

¸´1

UJ
onxk1Xon

,

.

-

K
ÿ

k“1

min

$

&

%

1,uJ
k

˜

k
ÿ

n“1

1Xon
σ̄´2unu

J
n ` λIdon

¸´1

uk1Xon

,

.

-

ď 2donι,

as desired, and conclude that |I1| ď 2donι.

The rest of the proof follows Zhou and Gu (2022) more closely. By the same argument that Zhou
and Gu (2022) use,

ÿ

kPrKs

min
!

1, βk }xk}z´1
k
1Xon

)

ď 2donι `
ÿ

kPI2

βkσ̄k }xk{σ̄k}z´1
k
1Xon

.

Decompose I2 “ J1 Y J2, where

J1 “ tk P I2 : σ̄k “ σk Y σ̄k “ αu ,J2 “

!

k P I2 : σ̄k “ γ
b

}xk}z´1
k
1Xon

)

.
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Similar to Zhou and Gu (2022),
ÿ

kPJ1

βkσ̄k }xk{σ̄k}z´1
k
1Xon

ď
ÿ

kPJ1

βk pσk ` αq1Xon
min

!

1, }xk{σ̄k}z´1
k
1Xon

)

ď

K
ÿ

k“1

βk pσk ` αqmin
!

1, }xk{σ̄k}z´1
k
1Xon

)

ď

g

f

f

e2
K
ÿ

k“1

pσ2
k ` α2qβ2

k

g

f

f

e

K
ÿ

k“1

min
!

1, }xk{σ̄k}z´1
k
1Xon

)2

ď 2

g

f

f

e

K
ÿ

k“1

β2
k pσ2

k ` α2q
a

donι,

and as for k P J2 we have that σ̄k “ γ2 }xk{σ̄k}Z´1
k
1Xon ,

ÿ

kPJ2

βkσ̄k }xk{σ̄k}Z´1
k
1Xon “ γ2 ¨

ÿ

kPJ1

βk }xk{σ̄k}
2
Z´1

k
1Xon

“ γ2 ¨

K
ÿ

k“1

βk min
!

1, }xk{σ̄k}
2
Z´1

k
1Xon

)

ď 2 max
kPrKs

βkγ
2donι.

Therefore,

K
ÿ

k“1

min
!

1, βk }xk}z´1
k
1Xon

)

ď 2donι ` 2 max
kPrKs

βkγ
2donι ` 2

a

donι

g

f

f

e

K
ÿ

k“1

β2
k pσ2

k ` α2q.

Lemma 19 (Modified Version of Theorem 4.3, Zhou and Gu (2022)). Let tGnu
N
n“1 be a filtration,

and txn, ηnu
N
n“1 be a stochastic process such that xn P Rd is Gn-measurable and ηn P R is

Gn`1-measurable. Let L, σ, λ, ϵ ą 0,µ˚ P Rd. Arrange the datapoints from the offline and online
samples as follows, 1, ..., Noff , Noff ` 1, ..., Noff ` Non. For n “ 1, ..., N , let yn “ xµ˚,xny ` ηn
and suppose that ηn,xn also satisfy

E rηn | Gns “ 0,E
“

η2n | Gn

‰

ď σ2, |ηn| ď R, }xn}2 ď L.

For n “ 1, ..., N , let Zn “ λI `
řn

i“1 xix
J
i ,bn “

řn
i“1 yixi,µn “ Z´1

n bn, and

βn “12
a

σ2d log p1 ` nL2{pdλqq log p32plogpR{ϵq ` 1qn2{δq

` 24 log
`

32plogpR{ϵq ` 1qn2{δ
˘

max
1ďiďn

!

|ηi|min
!

1, }xi}z´1
i´1

))

` 6 log
`

32plogpR{ϵq ` 1qn2{δ
˘

ϵ.

Then, for any 0 ă δ ă 1, we have with probability at least 1 ´ δ that,

@n “ 1, ..., N,

›

›

›

›

›

n
ÿ

i“1

xiηi

›

›

›

›

›

z´1
n

ď βn, }µn ´ µ˚}zn
ď βn `

?
λ }µ˚}2

Proof. The proof is merely a small wrapper over Theorem 4.3 of Zhou and Gu (2022), where we
adapt this to our setting in the same way that Tan and Xu (2024) do in Lemma 1 of their paper. That
is, we pre-append the offline data to the online data, and generate the Zn,bn, µn, βn accordingly.

As in Lemma 1 of Tan and Xu (2024), let N “ Noff ` Non. Order the Noff offline episodes
arbitrarily, to form episodes 1, ..., Noff , and then begin the online episodes from episode Noff `

1, ..., N . Then, we can directly apply Theorem 4.3 of Zhou and Gu (2022) to recover the desired
result.
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Lemma 20. Suppose that W “ Rm and V “ Rn, where n ă m. Let U : W ÞÑ V be a linear
transformation and that S “ pUJUqW . As v,v1, . . . ,vn P S, we have

vJUJU
´

k
ÿ

j“1

viv
J
i ` λIm

¯´1

UJUv “ vJUJ
´

k
ÿ

j“1

Uviv
J
i U

J ` λIn

¯´1

Uv

Proof. For projection matrix U , there exists orthogonal matrix Q P Rmˆm and diagonal matrix
D “ pIn,0nˆpm´nqq such that U “ DQ. We further define u “ Uv, ṽ “ Qv, ui “ Uvi

and ṽi “ Qvi for 1 ď i ď n. Then, we note that as v P S, we have v “ UJUv “ QJΛQv,
where Λ “ diagpIn,0m´nq, which is equivalent to ṽ “ Λṽ. As a result, we may conclude that
ṽJ “ puJ,0m´nq.

Therefore, with a direct calculation, one will see that

´

k
ÿ

j“1

viv
J
i ` λIm

¯´1

“

´

k
ÿ

j“1

QJṽiṽ
J
i Q ` λIm

¯´1

“ QJ
´

k
ÿ

j“1

ṽiṽ
J
i ` λIm

¯´1

Q

“ QJ

ˆ

řk
i“1 uiu

J
i ` λIn 0

0 λIm´n

˙´1

Q

“ QJ

˜

´

řk
j“1 uiu

J
i ` λIn

¯´1

0

0 λ´1Im´n

¸

Q.

This will establish our desired conclusion

LHS “ vJ
´

k
ÿ

j“1

viv
J
i ` λIm

¯´1

v “ ṽJ

˜

´

řk
j“1 uiu

J
i ` λIn

¯´1

0

0 λ´1Im´n

¸

ṽ

“ uJ
´

k
ÿ

j“1

uiu
J
i ` λIn

¯´1

u “ RHS.

H Further details on the numerical experiments

The environment, as in Tan and Xu (2024), is a 6-piece wide Tetris board with pieces no larger than
2 ˆ 2, where the action space consists of four actions, differentiated by the degree of rotation in 90
degree intervals and the reward is given by penalizing any increases in the height of the stack from
a tolerance of 2 blocks. As in Tan and Xu (2024), we generate feature vectors by projecting the
640-dimensional one-hot state-action encoding onto a 60-dimensional subspace spanned by the top
60 eigenvectors of the feature covariance matrix under 200 trajectories from the uniform behavior
policy.

All experiments were run on a single computer with an Intel i9-13900k CPU, 128 GB of RAM, and
a NVIDIA RTX3090 GPU, in no more than a couple of hours.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim that our algorithms achieve sharper error or regret bounds that are
no worse than, and can improve on, (1) the optimal sample complexity in offline RL (the
first algorithm, for PAC RL) and online RL (the second algorithm, for regret-minimizing
RL) in linear Markov decide processes (MDPs), and (2) that this work establishes the tight-
est theoretical guarantees currently available for hybrid RL in linear MDPs. Theorems 1
and 2, and the accompanying discussion, support claim (1) by being no worse than the
associated bounds from Xiong et al. (2023) and He et al. (2023) respectively. Table 2 sup-
ports claim (2) by showcasing our improvement over existing hybrid RL methods for linear
MDPs.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include a discussion of the limitations of our algorithms and analysis
in Section 5 and in the discussion immediately after Theorems 1 and 2. The latter also
contains a discussion on the computational efficiency of our algorithms.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Our assumptions and setting are outlined in Assumptions 1 and 2, and Sec-
tion 2. Any further conditions are outlined in the statement of our theorems and lemmas.
Though we provide proof sketches in the main body, the proof of Theorem 1 is found in
Appendix B, and the proof of Theorem 2 is found in Appendix E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code is available on GitHub at github.com/hetankevin/hybridlin. The full
details are in Section 4 and Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code is available on GitHub at github.com/hetankevin/hybridlin.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The full details are in Section 4 and Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: One standard deviation error bars are displayed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

37

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All experiments were run on a single computer with an Intel i9-13900k CPU,
128 GB of RAM, and a NVIDIA RTX3090 GPU, in no more than a couple of hours.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and reviewed the code of ethics. Our paper is a theoretical
contribution to the field of reinforcement learning theory, and as such conforms to the
guidelines outlined.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our paper is a theoretical contribution to the field of reinforcement learning
theory, and as such any societal impact will at the very least be second-order impacts not
directly tied to our work. Having said that, we discuss that Algorithm 1 does not randomize
over policies, allowing learned policies to be deployed in critical real-world applications,
and Algorithm 2 minimizes regret over the online samples, allowing it to be used in situa-
tions where performance-agnostic online exploration is untenable, such as in medicine.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Our paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
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Question: For crowdsourcing experiments and research with human subjects, does the pa-
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as well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
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• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research
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• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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