
Under review as submission to TMLR

Oscillations Make Neural Networks Robust to Quantization

Anonymous authors
Paper under double-blind review

Abstract

We challenge the prevailing view that weight oscillations observed during Quantization
Aware Training (QAT) are merely undesirable side-effects and argue instead that they are
an essential part of QAT. We show in a univariate linear model, that QAT results in an
additional loss term that causes oscillations by pushing weights away from their nearest
quantization level. Based on the mechanism from the analysis, we then derive a regularizer
that induces oscillations in the weights of neural networks during training. Our empirical
results on ResNet-18 and Tiny ViT on CIFAR-10 and Tiny ImageNet datasets demonstrate
across a range of quantization levels that training with oscillations followed by post-training
quantization (PTQ) is sufficient to recover the performance of QAT in most cases. With
this work we shed further light on the dynamics of QAT and contribute a novel insight into
explaining the role of oscillations in QAT which until now have been considered to have a
primarily negative effect on quantization.

1 Introduction

Deep neural networks have grown increasingly successful at solving difficult modelling tasks, but are also
increasingly becoming expensive to use. As model sizes balloon into the hundreds of millions of parameters,
the cost of inference has become a significant bottleneck, particularly for deployment on edge devices or
usage in large-scale services (Sevilla et al., 2022). To reduce this cost, quantization of model weights has
emerged as a prominent strategy (Nagel et al., 2021).

But weight quantization comes with its own cost, namely a drop in accuracy. Reducing precision introduces
quantization error, and naive approaches like Post-Training Quantization (PTQ) often lead to sharp degra-
dations in model performance at low bit widths. To combat this degradation in accuracy, many methods
have been proposed, usually centered around minimizing the quantization error (Hung et al., 2015; Hirose
et al., 2017; Li et al., 2020; Choi et al., 2020; Han et al., 2021; Zhong et al., 2025).

Yet these approaches fall short of Quantization-Aware Training (QAT) (Jacob et al., 2018; Krishnamoorthi,
2018), which integrates quantization directly into the training loop, yielding models that remain robust even
under low-precision constraints. However, despite its empirical success, the underlying behavior of QAT
remains poorly understood. In particular, QAT often exhibits oscillations in the weights during optimization,
while regular training does not. Rather than settling into a stable state, quantized weights fluctuate between
adjacent quantization levels. These oscillations are widely seen as undesirable artifacts. Several works have
tried to suppress these weight oscillations mainly through dampening or weight freezing (Défossez et al.,
2021; Nagel et al., 2022; Huang et al., 2023; Gupta & Asthana, 2024; Liu et al., 2023).

This paper poses the question: What if our understanding of oscillations in QAT has been backwards? To
the best of our knowledge, we are the first to argue that weight oscillations in QAT are not a flaw, but rather
an essential feature of the training dynamics. Using a toy model, we show that oscillations arise from a
gradient component in QAT which pushes weights towards the nearest quantization threshold – this stands
in contrast to aligning weights at the quantization level, which would minimize the quantization error. We
then induce such oscillations to push the weights towards the nearest thresholds deliberately during the
model training. This is realized as a simple regularization term that pushes weights towards their nearest
quantization threshold. Surprisingly, this leads to models that are robust to quantization and in most cases

1

Under review as submission to TMLR

0 5 10 15 20
Epoch

0.0

0.5

1.0

w

Oscillations during Quantization Aware Training

w
q(w)
y
Threshold

L(w)
L

Figure 1: Oscillatory behavior during QAT in a one weight linear model ŷ = q(w)x, with input x = 1 and
target y = 0.75. The gradient of this model during QAT can be decomposed into two terms: ∇L(w) and
∇δL = q(w) − w, where the latter term is what differentiates QAT from just optimizing the full precision
loss L(w). During QAT, ∇L(w) always points towards y, while ∇δL introduces a dynamic which pushes w
towards the nearest bin threshold. This causes w to oscillate when y is not exactly on a quantization level.
In the above case this makes q(w) alternate between 0 and 1. Note the frequency of oscillations of q(w) lets
the quantized weight on average to converge to 0.75.

we find that these regularization-induced oscillations recover the accuracy obtained with QAT. Additionally,
in many cases, oscillations outperform QAT under cross-bit evaluation (i.e. testing at precision levels not
simulated during training). These findings further deepen our understanding of QAT and point to a more
nuanced role for weight oscillations; suggesting they may be beneficial to QAT rather than being solely
detrimental as argued in most existing literature.

Our primary contributions supporting this claim are:

1. Using a univariate model we illustrate how the Straight Through Estimator (STE) leads to oscillations
and clustering of model weights during QAT (Sec. 3);

2. We show experimentally that by using a mechanism inspired by the toy model, we can induce oscillations
and clustering during training in neural networks (Sec. 4).

3. We empirically confirm using the CIFAR-10 (Krizhevsky et al., 2009) and Tiny-ImageNet (Le & Yang,
2015) datasets on a multi-layer perceptron (MLP), ResNet-18 (He et al., 2016) and Tiny Vision trans-
former (Tiny ViT) (Wu et al., 2022) that introducing oscillations through regularization in most cases
recovers the accuracy of QAT (Sec. 5).

2 Preliminaries and Related Work

Quantization: A quantizer divides a continuous input range into quantization bins, where each bin is
represented by a specific quantization level. The boundaries between bins are called quantization thresholds.
During quantization, any value within a bin is mapped to that bin’s quantization level. With a uniform
quantizer, the step size (the distance between two adjacent quantization levels) is equal to the scale factor s.

We consider a uniform symmetric, scalar quantizer, q(·), that can then be expressed as:

q(w) = s ·
⌈w

s

⌋
(1)

Here, s represents the scale factor and ⌈·⌋ denotes the rounding operation.

2

Under review as submission to TMLR

The scale factor s is set to cover the range of w as this removes the need for the clamping operation
clamp(q(w); α, β) in the quantizer. The function clamp(.) restricts α ≤ qi ≤ β and any values less or greater
than is set to α and β respectively. Additionally we set the number of positive and negative quantization
levels to be 2b−1 − 1, so we have symmetric number of levels around 0:

s = max(|w|)
2b−1 − 1 (2)

where b is the number of bits the quantizer can use.

The quantization process introduces quantization error ∆, defined as the difference between the original and
quantized values:

∆(w) = w − q(w) (3)

Due to the uniform quantizer each component of the absolute error is bounded between 0 ≤ |∆i| ≤ s/2, for
all the bins. This is maximized at quantization thresholds and is 0 at quantization levels.

Straight-Through Estimator (STE): STE is a heuristic gradient approximation technique commonly
used to enable backpropagation through functions f(·) whose gradients are zero almost everywhere (Bengio
et al., 2013). In the forward pass, the function f(x) is applied as usual. During the backward pass, however,
its gradient is approximated by replacing the derivative of f with the constant 1. Formally, STE defines the
approximate gradient of a function f as

∂f

∂x ≈ ∂̂f

∂̂x
= 1. (4)

Quantization-Aware Training (QAT): In QAT, the network maintains full-precision weights for learn-
ing but quantizes them during the forward pass before computation. This allows training to proceed with
gradients applied to full-precision weights, while the network effectively operates on quantized values. While
there exist many variants of QAT, the typical forward pass is performed using the quantized weights q(w) (Ja-
cob et al., 2018; Krishnamoorthi, 2018). The gradient for the weights during QAT is given by:

∂L(q(w))
∂w = ∂L(q(w))

∂q(w) · ∂q(w)
∂w (5)

A problem with the above formulation is that the gradient of the quantizer ∂q(w)
∂w is zero almost everywhere,

causing the last term to interrupt gradient-based learning. A popular solution to this problem is to use the
STE (Eq. 4).

Weight Oscillations: We use the definition from Nagel et al. (2022) which defines a weight oscillation
during QAT to occur in iteration t if it satisfies both the following conditions:

1. The quantized value of the weight needs to change between iterations i.e. q(wt) ̸= q(wt−1).

2. The direction of the change in the quantized domain needs to be the opposite than that of its previous
change i.e. sign(Γt) ̸= sign(Γτ), where τ is the iteration of the last change, and Γt = q(wt)−q(wt−1)
is the direction of the change.

Related Work: Minimizing the quantization error is the most commonly used strategy to reduce the
impact of quantization on model accuracy. Extensive research has been dedicated to developing techniques
that explicitly minimize the quantization error during optimization (Hung et al., 2015; Hirose et al., 2017; Li
et al., 2020; Choi et al., 2020; Han et al., 2021; Zhong et al., 2025). Despite these efforts, the aforementioned
strategies often fall short of the accuracy obtained with QAT (Jacob et al., 2018) at individual bits or
indirectly rely upon QAT themselves.

However, there is limited understanding of how QAT affects model optimization and why it outperforms other
methods. One phenomenon observed during QAT is weight oscillations (Défossez et al., 2021; Nagel et al.,

3

Under review as submission to TMLR

2022), which are periodic changes in the value of the quantized weight between two adjacent quantization
levels. It is speculated in these works that the abrupt changes in values caused by oscillations can interfere
negatively with optimization. Oscillations are assumed to be undesirable side effects caused by the use of
the STE during backpropagation, as the STE allows gradients to pass through the rounding operation in
the quantizer, which has a gradient of zero almost everywhere (Défossez et al., 2021; Nagel et al., 2022).

Several approaches have been suggested to mitigate oscillations by either freezing or dampening (Défossez
et al., 2021; Nagel et al., 2022; Huang et al., 2023; Gupta & Asthana, 2024; Liu et al., 2023). However,
the reported accuracy gains are sometimes marginal, and these methods may inadvertently also hinder
the optimization process. For instance, Nagel et al. (2022) notes that freezing or dampening weights too
early during training can hurt optimization, indicating that oscillations might contribute to finding better
quantized minima of the loss. Liu et al. (2023) propose that weights with low oscillation frequency should be
frozen, where as high-frequency ones should be left unfrozen, under the rationale that high frequency means
the network has little confidence in what value to quantize the weight to, whereas low frequency means the
optimal weight lies close to a quantization level.

3 Oscillations in QAT

Previous studies have explored linear models to analyze the behavior of QAT and the phenomenon of weight
oscillations (Défossez et al., 2021; Nagel et al., 2022; Liu et al., 2023; Gupta & Asthana, 2024). Inspired
by these works, we also analyze a linear regression model to gain insights into the optimization dynamics
during QAT.

3.1 Toy Model

Consider a linear model with a single weight w, input x and target y ∈ R. The quantized version of this
model is defined as ŷ = q(w)x, where q(·) is the quantizer from Eq. 1. The quadratic loss for the quantized
model is given by

L(q(w)) = 1
2(ŷ − y)2 = 1

2(q(w)x − y)2. (6)

Our goal in this section is to understand how QAT affects the full precision optimization process. For a
given loss function L(·) with quantized weights, we have

L(q(w)) = L(w) + L(q(w)) − L(w) (7)

We can then expand the difference in loss caused by quantization as follows:

δL = L(q(w)) − L(w) = 1
2

(
(q(w)x − y)2 − (wx − y)2)

(8)

= 1
2

(
x2 (

q(w)2 − w2))
+ (yx(w − q(w))) (9)

This expression decomposes the loss difference δL into a quadratic term 1
2 x2(q(w)2 − w2) and a linear term

yx(w − q(w)).

Next we derive the gradient of δL wrt. w:

∂δL

∂w
= ∂

∂w

(
L(q(w)) − L(w)

)
= ∂

∂w

(
1
2x2(q(w)2 − w2) + yx(w − q(w))

)
(10)

= x2
(

q(w)∂q(w)
∂w

− w

)
+ yx

(
1 − ∂q(w)

∂w

)
(11)

4

Under review as submission to TMLR

Using the STE and recalling that ∂̂q

∂̂w
= 1 the expression of the STE gradient simplifies to1

∂̂δL

∂̂w
= x2(q(w) − w) = −x2∆(w). (12)

3.2 Oscillation Mechanism

To see how the observations in Sec. 3.1 gives rise to oscillations, for an arbitrary w, denote w0 the upper
quantization threshold w0 = q(w)+s/2. For ε ∈ (0, s/2) note that we have q(w0 −ε) = q(w) and q(w0 +ε) =
q(w) + s so that

∆(w0 + ε) = q(w) + s/2 + ε − (q(w) + s) = −s/2 + ε, (13)
∆(w0 − ε) = q(w) + s/2 − ε − q(w) = s/2 − ε. (14)

Assuming x ̸= 0, the negative STE gradient “flips" from −s/2 to +s/2 as the weight w passes the quantization
threshold w0 from above, pushing the weight back towards the threshold. We note that the STE gradient is
0 at the special value w = q(w), but the preceding argument shows that this is an unstable critical point and
gradient noise will immediately cause the weights to move away from it. When combined with (stochastic)
gradient descent and a finite discretization timestep we can identify this as the driving mechanism behind
oscillations during training with QAT (Fig. 1).

3.3 Weight Clustering

We can also see how the dynamics described above can lead to weight clustering around quantization thresh-
olds by looking at the sign of ∆ for different values of w. For a weight w let dlow(w) and dup(w) denote
the distance from w to the upper and lower thresholds, dlow(w) = w −

(
q(w) − s

2
)

= ∆(w) + s
2 and

dup(w) =
(
q(w) + s

2
)

− w = s
2 − ∆(w) respectively. If w is closest to the upper threshold we have

dup < dlow =⇒ s
2 − ∆ < ∆ + s

2 =⇒ ∆ > 0 (15)

While if w is closest to the lower threshold

dlow < dup =⇒ ∆ + s
2 < s

2 − ∆ =⇒ ∆ < 0 (16)

We emphasize that this mechanism causes the weight to move towards the quantization thresholds (the edges
of quantization "bins") as opposed to the quantization levels (the centers of the quantization "bins"). As we
saw above, the magnitude of the pull towards the threshold increases as the weight approach the threshold,
so that the weight eventually crosses the threshold and ends up oscillating, unless L(w) and δL exactly cancel
out, which is unlikely to happen with a finite step size of gradient descent.

4 Regularization Method

Our theoretical observations in the linear model in Sec. 3, show that the oscillation component is the only
part that differentiates QAT from normal, full precision, training. We now confirm empirically that the
mechanism in Eq. (12) is sufficient to introduce weight oscillations during training of neural networks, and
study if this also results in QAT-like behaviour with respect to the quantization noise.

From the quantization difference in Eq. 9 and the STE gradient derived in Eq. 12, we have:

∂L(q(w))
∂w

= ∂L(w)
∂w

− x2∆(w) (17)

where the first term is the gradient of the original full-precision loss, and the second term causes the quan-
tization oscillations in QAT.

1Note that there is no clamping in the quantizer because of the scale factor Eq. (2).

5

Under review as submission to TMLR

In order to emulate the effects described in Section 3, we propose a regularization term so that the training
objective becomes:

L(w) + Rλ(w) (18)

where we let the regularization term be similar to the quadratic term in Eq. (9):

Rλ(w) = λ

2
∑

ℓ

1
nℓ

nℓ∑
i=1

(
q(wℓ

i)2 − (wℓ
i)2)

. (19)

Here λ ≥ 0 is a hyperparameter that controls the amount of regularization, ℓ ranges over the layers in the
model and i over the weights in each layer. In this term, we replaced the factor x2 by a hyperparameter λ,
since the precise expression of x2 is specific to the model studied in Sec. 3. We empirically find that this
regularizer is sufficient to induce oscillations. The exploration of the design space of oscillation-inducing
regularizers, including layer-dependent and/or adaptive scale factors, is left to future work.

Using the STE, ∂̂q
∂w = 1, we have the following expression for the gradient:

∂̂

∂̂wℓ
i

Rλ(w) = λ

nℓ

(
q(wℓ

i) − wℓ
i

)
= − λ

nℓ
∆(wℓ

i). (20)

By the same reasoning as in Sec. 3 this pulls the weight wℓ
i towards the quantization threshold and causes

the gradient to “flip" as wℓ
i crosses the threshold. We expect this to lead to oscillations based on the same

mechanism as in the model from Sec. 3.

Figures 2 and 3 show the results of an experiment where we observe the weight distributions, and measured
the oscillations, during training of a neural network (ResNet-18) with varying degrees of regularization,
respectively. For comparison purposes the figures also show the weight distributions and oscillations observed
during training with QAT.

Comparison t-score p-value

λ0 vs. λ1 25.133 2.302 × 10−124

λ0 vs. λ10 38.857 1.226 × 10−248

λ0 vs. QAT 18.828 1.314 × 10−74

Table 1: Welch’s t-test comparing the
frequency of oscillations for the different
cases in Fig. 3. We note how the baseline
λ = 0 differs significantly in oscillation
frequency both from QAT and regulariza-
tion induced oscillations with λ = 1, 10.

Our first observation is that QAT displays more oscillations
Fig. 2-a) than a baseline model without QAT or regularization
(corresponding to λ = 0 in Fig. 3-b)). As we increase λ we ob-
serve that the number of oscillations as well as the clustering
increases. This confirms that the regularizer from Eq. 19 can
indeed induce oscillations similar to QAT during the training of
deep neural networks. At λ = 1 (Fig. 3-c)) the number of oscil-
lations observed with regularization is similar to the behaviour
of QAT, lending support to our hypothesis that the mechanism
in (13) is indeed at the root of the oscillations observed when
training neural networks with QAT. We use Welch’s t-test to test
if the oscillation frequencies in Fig. 3 is significantly different to
the λ = 0 baseline, reported in Table 1. Each of the pairwise comparison shows that the distribution of
oscillations are different.

5 Experiments & Results

In this section, using empirical evidence we empirically answer the question: Is it sufficient to induce weight
oscillations during training in order to get the benefits of QAT?

We answer this question affirmatively based on the results of training ResNet-18 and Tiny ViT on the
CIFAR-10 and Tiny-ImageNet datasets. This is both in the training-from-scratch setting and when fine-
tuning pretrained models.

In the following subsections we first describe the experimental setup, then we present the accuracy results
from training-from-scratch and fine-tuning models trained with different quantization levels for the quantizer
in Rλ or QAT and finally, we present the cross-bit accuracy of the fine-tuned models. We train models at
ternary (3 possible values: -1, 0, 1), 3-bit and 4-bit. This is in line with contemporary research, where

6

Under review as submission to TMLR

0.2 0.1 0.0 0.1 0.2
w value

0

10

20

30

40

De
ns

ity

QAT weight distribution

Threshold

(a)

0.3 0.2 0.1 0.0 0.1 0.2 0.3
w value

0

10

20

30

40

De
ns

ity

=0 weight distribution

Threshold

(b)

0.2 0.1 0.0 0.1 0.2
w value

0

10

20

30

40

De
ns

ity

=1 weight distribution

Threshold

(c)

0.15 0.10 0.05 0.00 0.05 0.10 0.15
w value

0

10

20

30

40

De
ns

ity

=10 weight distribution

Threshold

(d)

Figure 2: Weight distribution analysis of ResNet-18’s first convolutional layer after 50 epochs of training
from scratch. a) Weight distribution under QAT with a 3-bit quantizer. b)-d) Our proposed regulariza-
tion approach with a 3-bit quantizer at varying regularization strengths (λ = 0, 1, 10, from left to right).
When λ = 0, the training reduces to standard optimization. The QAT distribution (leftmost) exhibits the
characteristic threshold clustering behavior. As λ increases, we observe progressively stronger clustering
of weights around quantization thresholds, illustrating the relationship between regularization strength and
weight clustering.

.

1 5 9 13 17 21 25 29 33
Number of oscillations

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

QAT

(a)

1 5 9 13 17 21 25 29 33
Number of oscillations

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

=0

(b)

1 5 9 13 17 21 25 29 33
Number of oscillations

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

=1

(c)

1 5 9 13 17 21 25 29 33
Number of oscillations

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

=10

(d)

Figure 3: Distribution of weight oscillations. The plots show the distribution of weights with oscillation
counts > 0 when training with a) QAT and b)-d) the regularizer for different values of λ. Here λ = 0
corresponds to a full precision model where the regularizer has no influence on training. The y-axis represents
the percentage of total weights in the first convolutional layer of a ResNet-18 trained from scratch for 50
epochs, while the x-axis shows the oscillation count. Following the oscillation definition from (Nagel et al.,
2022), we count oscillations at each epoch during training. The results demonstrate that QAT produces a
significantly higher proportion of oscillating weights compared to λ = 0. Furthermore, we observe that as
we increase λ a greater percentage of weights oscillates.

the emphasis lies on quantization at 4-bit and below since the challenges of maintaining accuracy are more
significant compared to quantization at higher bit widths.

5.1 Experimental setup

We conducted our experiments using the CIFAR-10 (Krizhevsky et al., 2009) and Tiny-ImageNet (Le &
Yang, 2015) datasets. We evaluated three architectures; A multi-layer perceptron with 5 hidden layers and
256 neurons per layer (MLP5), ResNet-18 (He et al., 2016) and Tiny Vision transformer (Tiny ViT) (Wu
et al., 2022).

For each architecture we used the Adam optimizer (Kingma, 2014) and tested multiple configurations: A
baseline model to establish optimal floating-point accuracy and PTQ performance, a model with QAT and
a model with regularization using Eq. 19. The two latter configurations are trained using 3-bit and 4-bit
quantizers. In all our experiments we use the regularizer Rλ defined in Eq. (19) to induce oscillations
(Marked as "Oscillations" in the result table).

Training from Scratch: For the MLP5 architecture, we used a learning rate of 10−3 and regularization
parameter λ=1. The ResNet-18 was trained with a learning rate of 10−3 and λ=0.75 (see Appx. A.2 for
our hyperparameter selection). We modified the ResNet-18 architecture by replacing the input layer with
a smaller 3 × 3 kernel and adapting the final layer for 10-class classification of both ResNet-18 and Tiny
ViT. Training proceeded for a maximum of 100 epochs with early stopping triggered after 10 epochs with-

7

Under review as submission to TMLR

Quantization MLP5 (FS) ResNet-18 (FS) Tiny ViT (FT) ResNet-18 (FT)

Baseline FP32 51.43 ± 0.39 83.26 ± 1.07 96.11 ± 0.31 88.50 ± 0.64

3-bit PTQ 20.97 ± 5.64 77.79 ± 4.00 11.56 ± 1.99 10.28 ± 0.48
3-bit QAT 50.53 ± 1.43 82.51 ± 2.14 88.13 ± 0.60 85.69 ± 1.83
3-bit Oscillations 48.48 ± 0.29 81.77 ± 0.46 88.68 ± 1.08 84.94 ± 1.59

4-bit PTQ 46.50 ± 0.76 82.11 ± 1.21 21.57 ± 5.33 35.56 ± 9.05
4-bit QAT 51.39 ± 0.60 82.66 ± 2.57 94.96 ± 0.33 87.71 ± 1.14
4-bit Oscillations 50.72 ± 0.47 83.74 ± 0.59 94.82 ± 0.51 87.08 ± 0.72

Table 2: Performance comparison on CIFAR-10 dataset. Results show classification accuracy for MLP5,
ResNet-18, and Tiny ViT across different quantization approaches and bit-widths. Models trained from
scratch are marked FS, and fine-tuning experiments are marked FT. FT experiments are based on models
pre-trained on ImageNet-1k. In all cases oscillations followed by quantization of the weights matches QAT
accuracy. Results are means and standard deviations over 5 random seeds. PTQ results are from the FP32
baseline.

out improvement in validation performance. For quantized models, we monitored the quantized validation
accuracy at the target bit precision, while for the baseline, we tracked floating-point accuracy.

Fine-tuning: We fine-tuned two ImageNet-1k (Deng et al., 2009) pre-trained models on CIFAR-10 and
Tiny-ImageNet: a Tiny ViT (learning rate: 10−4, λ=1, 0.75, 0.5 depending on bit) and a ResNet-18 (learning
rate: 10−3, λ=1, 0.75, 0.5 depending on bit). To maintain compatibility with the pre-trained architectures,
we up-sampled both CIFAR-10 and Tiny-Imagenet images to 224 × 224 pixels. The λ parameter selection
process for Tiny ViT is detailed in Appendix A.2. Fine-tuning continued for up to 200 epochs on CIFAR-10
and 50 epochs for Tiny-ImageNet, with early stopping after 30 epochs without improvement, using the same
accuracy metrics as training from scratch.

Quantization: We implemented weight quantization using a per-tensor uniform symmetric quantizer as
defined in Eq. 1. PTQ is applied in its most minimal form, by simply quantizing the weights without any
calibration. QAT is used as defined in Eq.5. The quantization range was determined by computing min-
imum and maximum values per layer. In our implementation of ResNet-18 (11M parameters) all layers
except batch normalization were quantized, covering 99.96% of parameters. For Tiny ViT (5.5M parame-
ters) quantization was applied to MLP, Self-Attention, and key-query-value projection layers, encompassing
97.18% of parameters. And lastly for the MLP5 model all layers were quantized. For Tiny-ImageNet models
are trained at 3 and 4-bit precision only.

5.2 Results

The performance on the two datasets in training-from-scratch and fine-tuning settings is presented in the
following sections, along with the observations about cross-bit generalization.

5.2.1 Performance on CIFAR-10

Training-from-scratch: Table 2 (A) shows the results from training an MLP and ResNet-18 from scratch
on the CIFAR-10 dataset. Doing only regularization with Eq. 19 demonstrates improvements compared to
the PTQ baseline. More importantly, it also matches the performance of QAT at bit widths of 3 and 4.

For both models we see that at 3-bit and 4-bit, using the Rλ regularizer from Eq. 19 exhibits similar
performance as QAT but with less variability. With both models, QAT and Rλ regularization are competitive
with the full-precision baseline. Notably, both Rλ regularization and QAT significantly outperform PTQ
when applied to the full precision baseline.

Fine-tuning: Table 2 (B) summarizes the test accuracies for fine-tuning using our Rλ regularization and
QAT on ResNet-18 and Tiny ViT architectures with CIFAR-10 and Tiny-ImageNet. The observations are
roughly in line with the results observed for training from scratch in the previous section.

8

Under review as submission to TMLR

Model Train bit ↓ / Eval. bit → FP32 Ternary 3-bit 4-bit 8-bit

ResNet-18

Baseline (PTQ) 88.50 ± 0.64 10.01 ± 0.01 10.28 ± 0.48 35.56 ± 9.05 88.45 ± 0.64

3-bit QAT 16.89 ± 4.97 10.01 ± 0.04 85.69 ± 1.83 17.42 ± 4.96 16.56 ± 4.32
3-bit Oscillations 87.86 ± 0.42 20.19 ± 10.74 84.94 ± 1.59 87.56 ± 0.38 87.86 ± 0.42

4-bit QAT 87.75 ± 1.13 10.13 ± 0.29 82.08 ± 6.25 87.71 ± 1.14 87.76 ± 1.12
4-bit Oscillations 87.85 ± 0.49 11.91 ± 0.87 85.57 ± 1.10 87.08 ± 0.72 87.87 ± 0.49

Tiny ViT

Baseline (PTQ) 96.11 ± 0.31 9.39 ± 1.11 11.56 ± 1.99 21.57 ± 5.33 96.03 ± 0.34

3-bit QAT 86.94 ± 0.91 19.78 ± 6.04 88.13 ± 0.60 86.69 ± 0.62 86.95 ± 0.89
3-bit Oscillations 96.47 ± 0.11 9.48 ± 1.64 88.68 ± 1.08 95.35 ± 0.18 96.50 ± 0.11

4-bit QAT 95.14 ± 0.29 11.11 ± 1.84 59.86 ± 19.95 94.96 ± 0.33 95.13 ± 0.28
4-bit Oscillations 96.54 ± 0.09 11.90 ± 1.29 70.23 ± 12.75 94.82 ± 0.51 96.55 ± 0.09

Table 3: Cross-bit evaluation of pre-trained ImageNet-1k models fine-tuned on CIFAR-10. Grey background
is the target-bit accuracy. Models are trained using different quantization methods (QAT and ours) and bit-
widths (ternary, 3-bit, and 4-bit), then evaluated across various bit-widths ranging from ternary to FP32.
The grey diagonal shows the results for the bit used during training. Results are means and standard
deviations over 5 random seeds. All significant differences between QAT and Oscillations are shown in bold
face.

For CIFAR-10 as with the case for training from scratch, with both ResNet-18 and Tiny Vit we see an
increase in performance compared to PTQ when using the regularization in Eq. 19. Regularization with Rλ

and QAT show comparable performance when quantized at 3 bits and 4 bits, while achieving test accuracy
close to the full precision model at 4-bits.

Performance comparison and related discussions for ternary quantization are presented in Appendix A.3.

Robustness to cross-bit quantization: In this experiment we evaluated the robustness of oscillations-
only and QAT towards quantization at bit widths different from the ones used during training.

When using the Rλ regularization approach, we applied the regularization term with the training bit width
during training and applied PTQ after training at a different quantization level. For QAT we trained using
the training bit width and afterwards applied PTQ to the latent weights. For each method we also evaluated
the corresponding model without PTQ, directly using the latent weights for inference (reported as FP32).

In Table 3 the results from the experiment are reported. A first observation is that the models produced by
Rλ regularization consistently achieve nearly full-precision accuracy when quantized at 8-bit or when used
without quantization, irrespective of the quantization level used during training. This contrasts with QAT,
which produces a viable 8-bit or full-precision model only when trained with at least 4-bit.

Furthermore we see that regularizing using Eq. 19 mostly maintains performance when trained at 3 or 4-bit
and quantized at bit level of 3 or 4-bit. QAT also achieves this for Tiny ViT but for ResNet, the accuracy
of QAT trained at 3-bit and quantized at other bit widths is barely above random guessing.

Regarding training with ternary quantization, we see that Rλ regularization produces models that achieve
near full precision performance for ResNet when quantized at 3-bit or higher. Ternary training for ViT is
somewhat peculiar in that it fails to produce a model that is viable when quantized to ternary, whereas the
performance of the resulting models starts to show a high level of variability at 4-bit and finally reaches
close to full-precision accuracy at 8-bit. In contrast, for both ResNet and ViT, the performance of QAT
degrades completely to random guessing when trained with ternary quantization and evaluated at any other
quantization level.

5.2.2 Performance on Tiny-ImageNet

Fine-tuning: Table 4 summarizes the test accuracies for the Tiny-ImageNet Dataset. Here we observe
the same tendency as with CIFAR-10; oscillations provides a significant increase in accuracy compared to
the PTQ baseline. While for the Tiny ViT model Rλ regularization is sufficient to recover the quantized
accuracy of QAT in both the 3 and 4-bit case, for ResNet18 there is a degradation in accuracy at 3-bit.

9

Under review as submission to TMLR

Quantization Tiny ViT (FT) ResNet-18 (FT)

Baseline FP32 67.17 ± 0.67 62.93 ± 0.55

3-bit PTQ 0.58 ± 0.16 0.51 ± 0.03
3-bit QAT 44.29 ± 0.49 54.08 ± 0.52
3-bit Oscillations 44.62 ± 2.47 49.34 ± 0.76

4-bit PTQ 11.02 ± 2.11 20.02 ± 4.80
4-bit QAT 60.61 ± 0.16 58.31 ± 0.19
4-bit Oscillations 60.54 ± 0.37 57.26 ± 0.33

Table 4: Accuracy on Tiny-ImageNet dataset. Mean and standard deviation is over 3 runs. The models is
fine-tuned for 50 epochs on the pretrained ImageNet models. PTQ results is from the FP32 baseline. In
both the 3 and 4 bit case, oscillations followed by quantization of the weights matches QAT and is noticeably
above the PTQ baseline which has neither oscillations nor QAT.

Model Method ↓ / Eval. bit → FP32 Ternary 3-bit 4-bit 8-bit

ResNet-18 (FT)

Baseline PTQ 62.93 ± 0.55 0.50 ± 0.00 0.51 ± 0.03 20.02 ± 4.80 62.83 ± 0.43

3-bit QAT 50.81 ±1.85 4.51 ±1.00 54.08 ±2.39 49.76 ±1.82 50.85 ±1.85
3-bit Oscillations 56.67 ±0.01 1.48 ±0.10 49.34 ±0.76 55.96 ±0.18 56.68 ±0.03

4-bit QAT 56.57 ±1.59 0.65 ±0.12 39.65 ±7.33 58.31 ±0.19 56.66 ±1.58
4-bit Oscillations 61.58 ±0.57 0.53 ±0.02 30.16 ±4.64 57.26 ±0.33 61.58 ±0.52

Tiny ViT (FT)

Baseline PTQ 67.17 ±0.67 0.49 ±0.05 0.58 ±0.16 11.02 ±2.11 67.06 ±0.69

3-bit QAT 39.19 ±1.18 1.73 ±0.05 44.29 ±0.16 36.02 ±2.11 39.18 ±0.69
3-bit Oscillations 56.75 ±4.11 1.51 ±0.86 44.62 ±2.47 56.22 ±4.00 56.78 ±4.07

4-bit QAT 59.75 ±0.73 0.49 ±0.02 34.42 ±1.93 60.61 ±0.16 59.73 ±0.80
4-bit Oscillations 65.58 ±0.29 0.54 ±0.09 22.26 ±4.76 60.54 ±0.37 65.60 ±0.31

Table 5: Cross-bit evaluation of pre-trained ImageNet-1k models fine-tuned on Tiny-ImageNet.

Robustness to cross-bit quantization: In Table 5 we see the cross-bit results from the Tiny-ImageNet
experiments. As with CIFAR-10 we note that the models produced by Rλ regularization achieves a better
cross-bit performance at bits higher than the target bit. Though we do note a changes in the cross-bit
behavior; The cross-bit results for 3 and 4-bit is generally lower and not as close tot he FP baseline as in
the CIFAR-10 case, yet still there is a significant difference between QAT and Rλ regularization.

6 Discussion

We have shown that training with weight oscillations induced via Rλ regularization is sufficient in most cases
to maintain performance after quantization for ResNet and Tiny ViT. The primary effect of our regularizer
is to push weights toward quantization thresholds, which results in weights that are robust to quantization.
This “threshold-pushing” dynamic naturally leads to two observable phenomena: weight clustering and
oscillations. This begs the question whether weight oscillations are also a necessary part of the QAT training
process. Indeed, some previous work already points towards this. There are examples claiming that both
dampening and/or freezing of oscillations too early in the training process is detrimental to performance after
quantization (Nagel et al., 2022; Han et al., 2021). And in other case presented in Liu et al. (2023), freezing
only the low frequency oscillating weights improves performance. This suggests that weight oscillations are
both a necessary and sufficient part of QAT, at least in the early phases of the training process. This further
supports our hypothesis that oscillations in QAT have a positive effect on quantization robustness overall.

Yet we do note deviations from QAT when regularizing with Eq. 19: QAT outperforms Rλ regularization
at ternary quantization (Appendix A.3), whereas Rλ regularization outperforms QAT in cross-bit accuracy
for the ternary and 3-bit case. In A.5, we see how it seems that the cross-bit performance for QAT is upper-
bounded by the target-bit performance, which might explain the subpar QAT performance at cross-bit
compared to Rλ regularization which seems bounded by the full precision accuracy.

10

Under review as submission to TMLR

Limitations and Future Work Our theoretical analysis was performed using the toy model in Section 3,
and the regularization term is motivated using this analysis. We expect other effects that are not entirely
captured by this analysis to be part of QAT. This is explored further in Appendix A.1, where we show how
the second term in Eq. 9 is not zero in the gradient when there are multiple layers.

The second term in Eq. 9 is closely related to the oscillations-dampening methods such as the one presented
in Equation 6 in (Nagel et al., 2022), which works by adding a linear pull towards the quantization level. In
Appendix A.1 we show how for the linear case with two weights, the second term is no longer 0 in the gradient
and as such QAT then consists of two components; one that creates oscillations and one that dampens them.
From this we can see that oscillations alone does not capture the full dynamics of QAT as analyzed in linear
models.

7 Conclusions

Based on the analysis of a linear model we hypothesized that weight oscillations during training in deep
neural networks make the model robust to quantization akin to QAT. In Sections 3 and 4 we explain how
training with QAT and STE leads to oscillations and propose a regularizer that encourages this oscillating
behaviour. We confirm that as we increase the strength of the regularization, and empirically observe the
appearance of clustering together with oscillations.

Finally, we experimentally confirm that the regularizer indeed leads to consistent robustness towards quan-
tization for 3-bit and 4-bit quantization levels. Our oscillations by regularization approach achieves com-
parable performance to QAT above ternary quantization when quantizing to the target-bit seen during the
optimization. Furthermore, we also observe that it shows increased robustness compared to QAT in cross-bit
quantization with quantization levels higher than the target-bit used in the quantizer during training. All
this is evidence in favor of our hypothesis.

Our insights on weight oscillations and their role in quantization robustness open new horizons for model
quantization approaches which usually build on the idea of aligning weights at quantization levels – the
opposite of what seems to be the core dynamic in QAT. The regularization approach especially creates
interesting possibilities for cross-bit robustness, potentially making the regularization method more appealing
than QAT when the goal is to deploy or release a single set of model weights that can work across different
bit widths or maybe even quantizers. While the regularizer used in our experiments should be viewed as
an initial step, we expect that quantization robustness could be further improved by developing oscillation-
inducing methods that are adaptive to different learning rates, layer statistics or phases of the training
process.

Acknowledgments: The authors acknowledge funding received from XXXX. The authors thank YYYY,
ZZZZ and others from ABCD Lab for useful discussions throughout.

References
Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through

stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Learning sparse low-precision neural networks with
learnable regularization. IEEE Access, 8:96963–96974, 2020.

Alexandre Défossez, Yossi Adi, and Gabriel Synnaeve. Differentiable model compression via pseudo quanti-
zation noise. arXiv preprint arXiv:2104.09987, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

11

Under review as submission to TMLR

Kartik Gupta and Akshay Asthana. Reducing the side-effects of oscillations in training of quantized yolo
networks. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp.
2452–2461, 2024.

Tiantian Han, Dong Li, Ji Liu, Lu Tian, and Yi Shan. Improving low-precision network quantization via
bin regularization. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
5261–5270, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Kazutoshi Hirose, Kota Ando, Kodai Ueyoshi, Masayuki Ikebe, Tetsuya Asai, Masato Motomura, and Shinya
Takamaeda-Yamazaki. Quantization error-based regularization in neural networks. In Artificial Intelli-
gence XXXIV: 37th SGAI International Conference on Artificial Intelligence, AI 2017, Cambridge, UK,
December 12-14, 2017, Proceedings 37, pp. 137–142. Springer, 2017.

Xijie Huang, Zhiqiang Shen, Pingcheng Dong, and Kwang-Ting Cheng. Quantization variation: A new
perspective on training transformers with low-bit precision. arXiv preprint arXiv:2307.00331, 2023.

Pei-Hen Hung, Chia-Han Lee, Shao-Wen Yang, V Srinivasa Somayazulu, Yen-Kuang Chen, and Shao-Yi
Chien. Bridge deep learning to the physical world: An efficient method to quantize network. In 2015
IEEE Workshop on Signal Processing Systems (SiPS), pp. 1–6. IEEE, 2015.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam,
and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-arithmetic-
only inference. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2704–2713, 2018.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A whitepaper.
arXiv preprint arXiv:1806.08342, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015. URL https://api.
semanticscholar.org/CorpusID:16664790.

Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-two quantization: An efficient non-uniform
discretization for neural networks. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=BkgXT24tDS.

Shih-Yang Liu, Zechun Liu, and Kwang-Ting Cheng. Oscillation-free quantization for low-bit vision trans-
formers. In International Conference on Machine Learning, pp. 21813–21824. PMLR, 2023.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart Van Baalen, and Tijmen
Blankevoort. A white paper on neural network quantization. arXiv preprint arXiv:2106.08295, 2021.

Markus Nagel, Marios Fournarakis, Yelysei Bondarenko, and Tijmen Blankevoort. Overcoming oscillations in
quantization-aware training. In International Conference on Machine Learning, pp. 16318–16330. PMLR,
2022.

Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn, and Pablo Villalobos. Compute
trends across three eras of machine learning. In 2022 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. IEEE, 2022.

Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan. Tinyvit:
Fast pretraining distillation for small vision transformers. In European conference on computer vision, pp.
68–85. Springer, 2022.

Yunshan Zhong, Yuyao Zhou, Fei Chao, and Rongrong Ji. Mbquant: A novel multi-branch topology method
for arbitrary bit-width network quantization. Pattern Recognition, 158:111061, 2025.

12

https://api.semanticscholar.org/CorpusID:16664790
https://api.semanticscholar.org/CorpusID:16664790
https://openreview.net/forum?id=BkgXT24tDS

Under review as submission to TMLR

A Appendix

A.1 2-layer with single weights

Consider a linear model f(x) = w2w1x, with w1, w2, input x, and target y ∈ R. The quantized version of
this model is defined as fq(x) = q(w2)q(w1)x, where q(·) is the quantizer from Eq. 1. The quadratic loss for
the model is given by

L(f(x)) = 1
2

(
w2w1x − y

)2

The difference compared to full-precision optimization is then given as

δL = L(fq(x)) − L(f(x)) (21)

= 1
2

[(
q(w2)q(w1)x − y

)2 −
(
w2w1x − y

)2
]

(22)

= 1
2

[(
q(w2)q(w1)x

)2 −
(
w2w1x

)2 − 2y
(
q(w2)q(w1)x − w2w1x

)]
(23)

= 1
2x2

[
q(w2)2q(w1)2 − w2

2w2
1

]
+ yx

[
w2w1 − q(w2)q(w1)

]
(24)

The loss difference decomposes into:

1
2x2

(
q(w2)2q(w1)2 − w2

2w2
1

)
︸ ︷︷ ︸

quadratic term (Oscillator)

+ yx
(

w2w1 − q(w2)q(w1)
)

︸ ︷︷ ︸
linear term (Oscillation Dampener)

(25)

Taking the derivative of L with respect to w1:

∂δL

∂w1
= ∂

∂w1

(
L(fq(x)) − L(f(x))

)
(26)

= ∂

∂w1

[
1
2x2

(
q(w2)2q(w1)2 − w2

2w2
1

)
+ yx

(
w2w1 − q(w2)q(w1)

)]
(27)

= x2
[
q(w2)2q(w1)∂q(w1)

∂w1
− w2

2w1

]
+ yx

[
w2 − q(w2)∂q(w1)

∂w1

]
(28)

Using the STE approximation from Eq. 5, we get:

∂δ̂L

∂w1
= x2

[
q(w2)2q(w1) − w2

2w1

]
+ yx

[
w2 − q(w2)

]
(29)

We note that the linear term is no longer zero in the gradient and thus for a model consisting of two single
weight layers we see that there are additional effects from QAT other than oscillations. Furthermore, we
like to clarify that even though the two layered model under consideration does not have explicit non-linear
activation functions, it cannot be reduced to a single layer model. This is because of the non-linearity of the
rounding operation.

A.2 Hyperparameters

A.2.1 ResNet-18

In Fig. 5 and Fig. 6 we see the results of the λ hyperparameter search over different learning rates for a
ResNet-18 model. There is a clear trend of seeing the best performance at a learning rate of 10−3. We note
that interestingly there is a comparable performance for a wide range of λs, indicating that it is the presence
of oscillations which is important for quantization robustness, and not the exact frequency of oscillations.

13

Under review as submission to TMLR

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
iteration

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

w
va

lu
e

w1

w1
q(w1)
q pred
Target
Linear Reg
Quadratic Reg

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
iteration

w
va

lu
e

w2

w2
q(w2)
q pred
Target
Linear Reg
Quadratic Reg

Figure 4: We repeat the toy model experiments, but this time with 2 weights, taking into account that
the linear term is no longer 0 in the gradient. We notice at epoch 15 and 18 where the prediction of the
quantized model is greater than y, the effect of the terms flip for w2.

10 2 10 1 100 101 102

Regularization Lambda (log scale)

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y
(%

)

Test Accuracy vs Regularization Lambda (3-bit)

Figure 5: Mean over 3 runs of the best test accuracy for different lambdas. Fine-tuning a pretrained ResNet-
18 on CIFAR-10 for 50 epochs. Quantizer is set to 3-bit and 10−3 learning rate and 100% of the training
data is used.

A.2.2 Tiny ViT

Fig. 7 We note how also the Tiny Vit seems to allow for a wide range of λs even though we this time note
that λ = 1 performs significantly better than the others.

A.3 Ternary Quantization

Performance comparison for the ternary quantization for different models on CIFAR-10 is reported in Table 6.
While both QAT and oscillations improve the PTQ baseline significantly, oscillations degrade compared to
QAT, especially for the Tiny ViT. This is in line with previous literature (Liu et al., 2023), where transformers
have been identified as especially sensitive to oscillations. But if oscillations are fundamental to QAT, why
does QAT still deliver better ternary performance? In appendix A.1 we are given a clue. Looking at the
gradient of the two-layer toy model, in Eq.25 we note that the second term is no longer zero in the gradient.
This term bears close resemblance to existing formulations of oscillation dampeners, such as in Eq. 6 (Nagel
et al., 2022). These works by pushing weights towards their nearest quantization level, thereby dampening or
nullifying the effect of any oscillator (Which pushes weights towards their nearest threshold). We therefore
speculate that the main component of QAT is still oscillations, but that QAT also has an inherent dampening
mechanism. Given that in a uniform quantizer, the quantization error increases exponentially as we decrease

14

Under review as submission to TMLR

0 10 20 30 40 50
Epoch

0

10

20

30

40

50

60

70

80

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)
Learning rate comparison 3-bit regularization

LR: 0.0001
LR: 0.001
LR: 0.01

λ 3-bit (%) Ternary (%)
0.25 68.77 ± 0.19 47.85 ± 5.51
0.50 69.47 ± 1.11 46.77 ± 4.83
0.75 70.08 ± 0.40 46.86 ± 3.01
1.00 66.20 ± 4.05 47.33 ± 2.06
1.25 69.31 ± 0.32 43.14 ± 6.62
1.50 68.96 ± 0.30 46.73 ± 3.91
1.75 69.92 ± 0.11 47.02 ± 4.19

Figure 6: Mean over 3 runs of the best validation accuracy for different lambdas. Training a ResNet-18
from scratch. Both ternary and 3-bit is at 10−3 learning rate and 50% of the data used for training. The
plot shows three learning rates, where we evaluate with the λs for each learning rate (shown in the table on
right). The colored background covers the range between the maximum and minimum value of the quantized
validation accuracy with the given λs.

0 20 40 60 80 100 120 140
Epoch

20

40

60

80

Va
lid

at
io

n
Ac

cu
ra

cy

Different Lambdas in ViT

0.01
0.5
0.75
1
2

λ 3-bit (%) Ternary (%)
0.01 18.85 -
0.5 85.21 15.10

0.75 87.68 -
1.0 90.29 13.04
2.0 89.31 14.16
2.5 - 13.70
5.0 - 14.20

Figure 7: Validation accuracy at different λ values and the corresponding best validation accuracies for 3-bit
and 2-bit configurations for a single run. Learning rate is set to 1e-4 for fine-tuning. For the 2-bit we test
higher λ but still see no improvement in accuracy. We note how all the λs lies close to each other, except
for the low of 10−2

the bits in the quantizer, ternary quantization’s large error magnitude makes the absence of dampening
particularly detrimental, resulting in sub-optimal quantized performance compared to QAT.

A.4 Epochs and cross-bit robustness

There is an interesting interaction between number of epochs trained and robustness both of our method
and QAT. We note how QAT converges first for the target-bit and then over time also converges for the 4
and 8-bit. Additionally we see that QAT seems upper-bounded by the target-bit performance, while this is
not the case for oscillations only as shown in Fig. 8.

15

Under review as submission to TMLR

Quantization MLP5 (FS) ResNet-18 (FS) ResNet-18 (FT) Tiny ViT (FT)

Baseline FP32 51.43 ± 0.39 83.26 ± 1.07 83.26 ± 1.07 96.11 ± 0.31

Ternary PTQ 10.00 ± 0.02 10.00 ± 0.01 10.00 ± 0.01 9.39 ± 1.11
Ternary QAT 49.20 ± 1.34 79.62 ± 6.42 77.02 ± 7.57 73.53 ± 0.77
Ternary Oscillations 36.49 ± 0.51 61.50 ± 1.82 44.59 ± 3.30 13.51 ± 1.32

Table 6: Performance comparison with ternary quantization on CIFAR-10 dataset. Mean and standard
deviation is over 3 runs. The models is fine-tuned for 50 epochs on the pretrained ImageNet models. PTQ
results is from the FP32 baseline. For both oscillations only and QAT we see a significant improvement over
the PTQ baseline. Yet oscillations degrade significantly compared to QAT, especially for the Tiny Vit. FS:
Train from scratch. FT: Fine-tuned.

Figure 8: Left is the validation accuracy during training of a ViT with QAT at different bits, right is for our
regularization. Both QAT and regularization is trained with a 3-bit quantizer. We note how the order of
convergences for cross-bit changes between QAT and our model and that QAT cross-bit robustness especially
depends on number of epochs trained.

A.5 Convergence behaviour during oscillations-only optimization

Fig. 9 shows the convergence behaviour of the full precision weights and the quantized weights at target-bit.
We note how the Tiny ViT displays a peculiar convergence behaviour, where the accuracy will break, only
to go up again. In the Tiny Vit model we regularize the self-attention layers. It is already noted in Liu
et al. (2023) that ViTs are especially vulnerable to oscillations in the query and key of self-attention layers,
which might be related to the convergence behaviour observed when regularizing with Eq.19.

A.6 Weight Distribution and Oscillation Frequency

16

Under review as submission to TMLR

Figure 9: In the right plot we see the convergence behaviour of ResNet-18. In the left plot we see the conver-
gence behaviour of a Tiny ViT with regularization with a 3-bit quantizer. We note the peculiar behaviour
of the orange line, which is the validation accuracy on the target-bit performance. The performances cycles
between ≈ 90% and 10%, while the full precision accuracy (The model evaluated without quantized weights)
stays some-what stable.

QAT λ = 0 λ = 10

Oscillation Weights Oscillation Weights Oscillation Weights

1_0_conv1
1 5 9 13 17

Number of oscillations

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

QAT

0.2 0.1 0.0 0.1 0.2
w value

0

200

400

600

800

De
ns

ity

QAT weight distribution

Threshold

1 5 9 13 17
Number of oscillations

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

=0

4 3 2 1 0 1 2 3
w value

0

500

1000

1500

2000

2500

De
ns

ity

=0 weight distribution

Threshold

1 5 9 13 17
Number of oscillations

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

=10

0.75 0.50 0.25 0.00 0.25 0.50 0.75
w value

0

1000

2000

3000

4000

5000

6000

De
ns

ity

=10 weight distribution

Threshold

2_0_conv1
1 5 9 13 17

Number of oscillations

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

QAT

0.2 0.1 0.0 0.1 0.2
w value

0
200
400
600
800

1000
1200

De
ns

ity

QAT weight distribution

Threshold

1 5 9 13 17
Number of oscillations

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

=0

3 2 1 0 1 2 3
w value

0

1000

2000

3000

De
ns

ity

=0 weight distribution

Threshold

1 5 9 13 17
Number of oscillations

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

=10

1.0 0.5 0.0 0.5 1.0
w value

0

1000

2000

3000

4000

5000

6000

De
ns

ity

=10 weight distribution

Threshold

4_1_conv2
1 5 9 13 17

Number of oscillations

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

QAT

0.2 0.1 0.0 0.1 0.2
w value

0

20000

40000

60000

80000

100000

De
ns

ity

QAT weight distribution

Threshold

1 5 9 13 17
Number of oscillations

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

=0

3 2 1 0 1 2 3
w value

0

50000

100000

150000

200000

De
ns

ity

=0 weight distribution

Threshold

1 5 9 13 17
Number of oscillations

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

=10

2 1 0 1 2
w value

0

100000

200000

300000

400000

500000

600000

De
ns

ity

=10 weight distribution

Threshold

fc
1 5 9 13 17

Number of oscillations

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

QAT

0.10 0.05 0.00 0.05 0.10
w value

0

20

40

60

80

De
ns

ity

QAT weight distribution

Threshold

1 5 9 13 17
Number of oscillations

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

=0

1.5 1.0 0.5 0.0 0.5 1.0 1.5
w value

0

50

100

150

200

De
ns

ity

=0 weight distribution

Threshold

1 5 9 13 17
Number of oscillations

0.00

0.05

0.10

0.15

0.20

Fr
eq

ue
nc

y

=10

0.4 0.2 0.0 0.2 0.4
w value

0
50

100
150
200
250
300

De
ns

ity

=10 weight distribution

Threshold

Figure 10: Oscillations count and weight distribution side by side across layers and regularization settings.
Each pair (left: oscillation, right: weights) corresponds to the same λ configuration. Note that weight

distribution plots does not share x and y axis.

17

	Introduction
	Preliminaries and Related Work
	Oscillations in QAT
	Toy Model
	Oscillation Mechanism
	Weight Clustering

	Regularization Method
	Experiments & Results
	Experimental setup
	Results
	Performance on CIFAR-10
	Performance on Tiny-ImageNet

	Discussion
	Conclusions
	Appendix
	2-layer with single weights
	Hyperparameters
	ResNet-18
	Tiny ViT

	Ternary Quantization
	Epochs and cross-bit robustness
	Convergence behaviour during oscillations-only optimization
	Weight Distribution and Oscillation Frequency

