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Abstract

We challenge the prevailing view that weight oscillations observed during Quantization
Aware Training (QAT) are merely undesirable side-effects and argue instead that they
are an essential part of QAT. We show in a linear model with a single weight that the
straight-through estimator (STE) results in an additional loss term that causes oscillations
by pushing weights towards the nearest quantization levels. Based on the mechanism from
the analysis, we then derive a regularizer that induces oscillations in the weights of neural
networks during training. Our empirical results on ResNet-18 and Tiny ViT on CIFAR-10
and Tiny ImageNet datasets demonstrate across a range of quantization levels that training
with oscillations followed by post-training quantization (PTQ) is sufficient to recover the
performance of QAT in most cases. With this work we shed further light on the dynamics
of QAT and contribute a novel insight into explaining the role of oscillations in QAT which
until now have been considered to have a primarily negative effect on quantization.

1 Introduction

Deep neural networks have grown increasingly powerful at many tasks, but also increasingly expensive to
use. As model sizes balloon into the hundreds of millions of parameters, the cost of inference has become
a significant bottleneck, particularly for deployment on edge devices or usage in large-scale services (Sevilla
et al., 2022). To reduce this cost, quantization of model weights has emerged as a prominent strategy (Nagel
et al., 2021).

But weight quantization comes with its own cost, namely, drop in accuracy. Reducing precision introduces
quantization error, and naive approaches like Post-Training Quantization (PTQ) often lead to sharp degra-
dations in model performance at low bit widths. To combat this degradation in accuracy, many methods
have been proposed, usually centered around minimizing the quantization error (Hung et al., 2015; Hirose
et al., 2017; Li et al., 2020; Choi et al., 2020; Han et al., 2021; Zhong et al., 2025).

Yet these approaches fall short of Quantization-Aware Training (QAT) (Jacob et al., 2018; Krishnamoorthi,
2018), which simply incorporates quantization into the training loop, resulting in models that are robust to
quantization. Unfortunately, QAT brings its own mysteries. Despite its empirical success, the underlying
behavior of QAT remains poorly understood. In particular, QAT often exhibits a seemingly strange phe-
nomenon: oscillations in the weights. Rather than settling into a stable state, quantized weights fluctuate
between adjacent quantization levels. These oscillations are widely seen as undesirable artifacts introduced
by the Straight-Through Estimator (STE). Several works have tried to suppress these weight oscillations
mainly through dampening or weight freezing (Défossez et al., 2021; Nagel et al., 2022; Huang et al., 2023;
Gupta & Asthana, 2024; Liu et al., 2023).

This paper poses the question: What if we had this view on oscillations in QAT backwards? To the best of
our knowledge, we are the first to argue that the phenomenon of weight oscillations in QAT is not a bug,
but a feature. Using a toy model, we show that oscillations arise from a gradient component in QAT which
pushes weights towards the nearest quantization threshold – this stands in contrast to aligning weights at the
quantization level, which would minimize the quantization error. We then induce such oscillations to push the
weights towards the nearest thresholds deliberately during the model training. This is realized as a simple
regularization term that pushes weights towards their nearest quantization threshold. Surprisingly, this
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Figure 1: Oscillatory behavior during QAT in a one weight linear model ŷ = q(w)x, with input x = 1 and
target y = 0.75. The gradient of this model during QAT can be decomposed into two terms: ∇L(w) and
∇δL = q(w) − w, where the latter term is what differentiates QAT from just optimizing the full precision
loss L(w). During QAT, ∇L(w) always points towards y, while ∇δL introduces a dynamic which pushes w
towards the nearest bin threshold. This causes w to oscillate when y is not exactly on a quantization level.
In the above case this makes q(w) alternate between 0 and 1. Note the frequency of oscillations of q(w) lets
the quantized weight on average to converge to 0.75.

leads to models that are robust to quantization and in most cases we find that these regularization-induced
oscillations recover the accuracy obtained with QAT. Additionally, in many cases, oscillations outperform
QAT under cross-bit evaluation (i.e. testing at precision levels not simulated during training). These findings
further deepen our understanding of QAT and point to a more nuanced role for weight oscillations; suggesting
they may be beneficial to QAT rather than being solely detrimental as argued in most existing literature.

Our primary contributions supporting this claim are:

1. Using a toy model we illustrate how the Straight Through Estimator (STE) leads to oscillations and
clustering of model weights during QAT (Sec. 3);

2. We show experimentally that by using a mechanism inspired by the toy model, we can induce oscillations
and clustering during training in neural networks (Sec. 4).

3. We empirically confirm using the CIFAR-10 (Krizhevsky et al., 2009) and Tiny-ImageNet (Le & Yang,
2015) datasets on a multi-layer perceptron (MLP), ResNet-18 (He et al., 2016) and Tiny Vision trans-
former (Tiny ViT) (Wu et al., 2022) that introducing oscillations through regularization in most cases
recovers the accuracy of QAT (Sec. 5).

2 Preliminaries and Related Work

Quantization: A quantizer divides a continuous input range into quantization bins, where each bin is
represented by a specific quantization level. The boundaries between bins are called quantization thresholds.
During quantization, any value within a bin is mapped to that bin’s quantization level. With a uniform
quantizer, the step size (the distance between two adjacent quantization levels) is equal to the scale factor s.

We consider a uniform symmetric quantizer with a max-range scale factor. The quantization operation q(·)
can then be expressed as

q(w) = s ·
⌈w

s

⌋
(1)
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Here, s represents the scale factor and ⌈·⌋ denotes the rounding operation.

The scale factor s is set to cover the range of w as this removes the need for the usual clamping operation
in the quantizer, while keeping the number of bins symmetric around 0:

s = max(|α|, |β|)
2b−1 − 1 (2)

where b is the bit in the quantizer and α, β are the minimum and maximum values, respectively, of the layer
wise weights w.

The quantization process introduces quantization error ∆, defined as the difference between the original and
quantized values:

∆(w) = w − q(w) (3)

Due to the uniform quantizer, for all bins the absolute error is bounded between 0 ≤ |∆| ≤ s/2, which is
maximized at quantization thresholds and 0 at quantization levels.

Quantization-Aware Training: While there exist many variants of QAT, fundamentally the forward pass
is performed using the quantized weights q(w) in most variants of QAT (Jacob et al., 2018; Krishnamoorthi,
2018), simulating the effect of using low-precision weights. In principle the gradient for the weights during
QAT is given by:

∂L(q(w))
∂w = ∂L(q(w))

∂q(w) · ∂q(w)
∂w (4)

A problem with the above formulation is that the gradient of the rounding operation used in the quantizer
is zero almost everywhere, causing the last term to interrupt gradient-based learning. A popular solution
to this problem is to use the so-called Straight-Through Estimator (STE) (Bengio et al., 2013). We define
the STE to be the operator ∂̂

∂̂x such that ∂̂f

∂̂x
is obtained by computing ∂f

∂x and in the resulting expression
replacing q′ (the derivative of q) by the constant function equal to 1. In other words, if ∂f

∂x = g(. . . , q′, . . .)
then ∂̂f

∂̂x
= g(. . . , 1, . . .).

Related Work: Minimizing the quantization error is the most commonly used strategy to reduce the
impact of quantization on model accuracy. This can be achieved by adjusting the granularity of the quantizer
– for instance, using per-channel (Nagel et al., 2019) or block-wise quantization (Dettmers et al., 2022) instead
of per-tensor quantization. While these methods reduce quantization error without additional training, they
come with increased storage requirements due to extra quantization parameters and may still fall short at
low bit widths, necessitating the combination with other approaches.

Consequently, extensive research has been dedicated to developing techniques that explicitly minimize the
quantization error during optimization (Hung et al., 2015; Hirose et al., 2017; Li et al., 2020; Choi et al.,
2020; Han et al., 2021; Zhong et al., 2025).

Despite these efforts, the aforementioned strategies often fall short of the accuracy obtained with QAT (Jacob
et al., 2018) at individual bits or indirectly rely upon QAT themselves. In short, QAT integrates the quan-
tization process into the training loop allowing the model to adapt to the quantization effects directly. This
is done by quantizing the weights during the forward pass and using techniques like STE to approximate the
gradient of the quantizer (which has a derivative of zero almost everywhere) during backpropagation (Bengio
et al., 2013).

There is limited understanding of how QAT affects model optimization and why it outperforms other meth-
ods. One phenomenon observed during QAT is weight oscillations (Défossez et al., 2021; Nagel et al., 2022),
which are periodic changes in the value of the quantized weight between two adjacent quantization levels. It
is speculated in these works that the abrupt changes in values caused by oscillations can interfere negatively
with optimization. Oscillations are assumed to be undesirable side effects caused by the use of the STE dur-
ing backpropagation, as the STE allows gradients to pass through the rounding operation in the quantizer,
which has a gradient of zero almost everywhere (Défossez et al., 2021; Nagel et al., 2022).
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Several approaches have been suggested to mitigate oscillations by either freezing or dampening (Défossez
et al., 2021; Nagel et al., 2022; Huang et al., 2023; Gupta & Asthana, 2024; Liu et al., 2023). However,
the reported accuracy gains are sometimes marginal, and these methods may inadvertently also hinder
the optimization process. For instance, Nagel et al. (2022) notes that freezing or dampening weights too
early during training can hurt optimization, indicating that oscillations might contribute to finding better
quantized minima of the loss. Liu et al. (2023) propose that weights with low oscillation frequency should be
frozen, where as high-frequency ones should be left unfrozen, under the rationale that high frequency means
the network has little confidence in what value to quantize the weight to, whereas low frequency means the
optimal weight lies close to a quantization level.

3 Oscillations in QAT

Previous studies have explored linear models to analyze the behavior of QAT and the phenomenon of weight
oscillations (Défossez et al., 2021; Nagel et al., 2022; Liu et al., 2023; Gupta & Asthana, 2024). Inspired
by these works, we also analyze a linear regression model to gain insights into the optimization dynamics
during QAT.

3.1 Toy Model

Consider a linear model with a single weight w, input x and target y ∈ R. The quantized version of this
model is defined as ŷ = q(w)x, where q(·) is the quantizer from Eq. 1. The quadratic loss for the quantized
model is given by

L(q(w)) = 1
2(ŷ − y)2 = 1

2(q(w)x − y)2. (5)

Our goal in this section is to understand how QAT affects the full precision optimization process. For a
given loss function L(·) with quantized weights, we have

L(q(w)) = L(w) + L(q(w)) − L(w) (6)

We can then expand the difference in loss caused by quantization as follows:

δL = L(q(w)) − L(w) = 1
2

(
(q(w)x − y)2 − (wx − y)2)

(7)

= 1
2

(
x2 (

q(w)2 − w2))
+ (yx(w − q(w))) (8)

This expression decomposes the loss difference δL into a quadratic term 1
2 x2(q(w)2 − w2) and a linear term

yx(w − q(w)).

Next we derive the gradient of δL wrt. w:

∂δL

∂w
= ∂

∂w

(
L(q(w)) − L(w)

)
= ∂

∂w

(
1
2x2(q(w)2 − w2) + yx(w − q(w))

)
(9)

= x2
(

q(w)∂q(w)
∂w

− w

)
+ yx

(
1 − ∂q(w)

∂w

)
(10)

Using the STE and recalling that ∂̂q

∂̂w
= 1 the expression of the STE gradient simplifies to1

∂̂δL

∂̂w
= x2(q(w) − w) = −x2∆(w). (11)

1Note that there is no clamping in the quantizer because of the scale factor Eq. (2).
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3.2 Oscillation Mechanism

To see how the observations in Sec. 3.1 gives rise to oscillations, for an arbitrary w, denote w0 the upper
quantization threshold w0 = q(w)+s/2. For ε ∈ (0, s/2) note that we have q(w0 −ε) = q(w) and q(w0 +ε) =
q(w) + s so that

∆(w0 + ε) = q(w) + s/2 + ε − (q(w) + s) = −s/2 + ε, (12)
∆(w0 − ε) = q(w) + s/2 − ε − q(w) = s/2 − ε. (13)

Assuming x ̸= 0, the negative STE gradient “flips" from −s/2 to +s/2 as the weight w passes the quantization
threshold w0 from above, pushing the weight back towards the threshold. We note that the STE gradient is
0 at the special value w = q(w), but the preceding argument shows that this is an unstable critical point and
gradient noise will immediately cause the weights to move away from it. When combined with (stochastic)
gradient descent and a finite discretization timestep we can identify this as the driving mechanism behind
oscillations during training with QAT (Fig. 1).

3.3 Weight Clustering

We can also see how the dynamics described above can lead to weight clustering around quantization thresh-
olds by looking at the sign of ∆ for different values of w. For a weight w let dlow(w) and dup(w) denote
the distance from w to the upper and lower thresholds, dlow(w) = w −

(
q(w) − s

2
)

= ∆(w) + s
2 and

dup(w) =
(
q(w) + s

2
)

− w = s
2 − ∆(w) respectively. If w is closest to the upper threshold we have

dup < dlow =⇒ s
2 − ∆ < ∆ + s

2 =⇒ ∆ > 0 (14)

While if w is closest to the lower threshold

dlow < dup =⇒ ∆ + s
2 < s

2 − ∆ =⇒ ∆ < 0 (15)

We emphasize that this mechanism causes the weight to move towards the quantization thresholds (the edges
of quantization "bins") as opposed to the quantization levels (the centers of the quantization "bins"). As we
saw above, the magnitude of the pull towards the threshold increases as the weight approach the threshold,
so that the weight eventually crosses the threshold and ends up oscillating, unless L(w) and δL exactly cancel
out, which is unlikely to happen with a finite step size of gradient descent.

4 Regularization Method

Our theoretical observations in the linear model in Sec. 3, show that the oscillation component is the only
part that differentiates QAT from normal, full precision, training. We now confirm empirically that the
mechanism in Eq. (11) is sufficient to introduce weight oscillations during training of neural networks, and
study if this also results in QAT-like behaviour with respect to the quantization noise.

From the quantization difference in Eq. 8 and the STE gradient derived in Eq. 11, we have:
∂L(q(w))

∂w
= ∂L(w)

∂w
− x2∆(w) (16)

where the first term is the gradient of the original full-precision loss, and the second term causes the quan-
tization oscillations in QAT.

In order to emulate the effects described in Section 3, we propose a regularization term so that the training
objective becomes:

L(w) + Rλ(w) (17)
where we let the regularization term be similar to the quadratic term in Eq. (8):

Rλ(w) = λ

2
∑

ℓ

1
nℓ

nℓ∑
i=1

(
q(wℓ

i )2 − (wℓ
i )2)

. (18)
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Figure 2: Weight distribution analysis of ResNet-18’s first convolutional layer after 50 epochs of training
from scratch. a) Weight distribution under QAT with a 3-bit quantizer. b)-d) Our proposed regulariza-
tion approach with a 3-bit quantizer at varying regularization strengths (λ = 0, 1, 10, from left to right).
When λ = 0, the training reduces to standard optimization. The QAT distribution (leftmost) exhibits the
characteristic threshold clustering behavior. As λ increases, we observe progressively stronger clustering
of weights around quantization thresholds, illustrating the relationship between regularization strength and
weight clustering.

.

Here λ ≥ 0 is a hyperparameter that controls the amount of regularization, ℓ ranges over the layers in the
model and i over the weights in each layer. In this term, we replaced the factor x2 by a hyperparameter λ,
since the precise expression of x2 is specific to the model studied in Sec. 3. We empirically find that this
regularizer is sufficient to induce oscillations. The exploration of the design space of oscillation-inducing
regularizers, including layer-dependent and/or adaptive scale factors, is left to future work.

Using the STE, ∂̂q
∂w = 1, we have the following expression for the gradient:

∂̂

∂̂wℓ
i

Rλ(w) = λ

nℓ

(
q(wℓ

i ) − wℓ
i

)
= − λ

nℓ
∆(wℓ

i ). (19)

By the same reasoning as in Sec. 3 this pulls the weight wℓ
i towards the quantization threshold and causes

the gradient to “flip" as wℓ
i crosses the threshold. We expect this to lead to oscillations based on the same

mechanism as in the model from Sec. 3.

Figures 2 and 3 show the results of an experiment where we observe the weight distributions, and measured
the oscillations, during training of a neural network (ResNet-18) with varying degrees of regularization,
respectively. For comparison purposes the figures also show the weight distributions and oscillations observed
during training with QAT. Using the definition of an oscillation established in Nagel et al. (2022), we count
an oscillation at epoch i > 1 if q(wt) ̸= q(wt−1) and the direction of the change in the quantized space is
opposite to that of the previous change.

Our first observation is that QAT displays more oscillations Fig. 2-a) than a baseline model without QAT
or regularization (corresponding to λ = 0 in Fig. 3-b)). As we increase λ we observe that the number of
oscillations as well as the clustering increases. This confirms that the regularizer from Eq. 18 can indeed
induce oscillations similar to QAT during the training of deep neural networks. At λ = 1 (Fig. 3-c)) the
number of oscillations observed with regularization is similar to the behaviour of QAT, lending support to
our hypothesis that the mechanism in (12) is indeed at the root of the oscillations observed when training
neural networks with QAT.

5 Experiments & Results

In this section, using empirical evidence we empirically answer the question: Is it sufficient to induce weight
oscillations during training in order to get the benefits of QAT?

We answer this question affirmatively based on the results of training ResNet-18 and Tiny ViT on the
CIFAR-10 and Tiny-ImageNet datasets. This is both in the training-from-scratch setting and when fine-
tuning pretrained models.
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Figure 3: Distribution of weight oscillations. The plots show the distribution of weights with oscillation
counts > 0 when training with a) QAT and b)-d) the regularizer for different values of λ. Here λ = 0
corresponds to a full precision model where the regularizer has no influence on training. The y-axis represents
the percentage of total weights in the first convolutional layer of a ResNet-18 trained from scratch for 50
epochs, while the x-axis shows the oscillation count. Following the oscillation definition from (Nagel et al.,
2022), we count oscillations at each epoch during training. The results demonstrate that QAT produces a
significantly higher proportion of oscillating weights compared to λ = 0. Furthermore, we observe that as
we increase λ a greater percentage of weights oscillates.

In the following subsections we first describe the experimental setup, then we present the accuracy results
from training-from-scratch and fine-tuning models trained with different quantization levels for the quantizer
in Rλ or QAT and finally, we present the cross-bit accuracy of the fine-tuned models. We train models at
ternary (3 possible values: -1, 0, 1), 3-bit and 4-bit. This is in line with contemporary research, where
the emphasis lies on quantization at 4-bit and below since the challenges of maintaining accuracy are more
significant compared to quantization at higher bit widths.

5.1 Experimental setup

We conducted our experiments using the CIFAR-10 (Krizhevsky et al., 2009) and Tiny-ImageNet (Le &
Yang, 2015) datasets. We evaluated three architectures; A multi-layer perceptron with 5 hidden layers and
256 neurons per layer (MLP5), ResNet-18 (He et al., 2016) and Tiny Vision transformer (Tiny ViT) (Wu
et al., 2022).

For each architecture we used the Adam optimizer (Kingma, 2014) and tested multiple configurations: A
baseline model to establish optimal floating-point accuracy and PTQ performance, a model with QAT and
a model with regularization using Eq. 18. The two latter configurations are trained using 3-bit and 4-bit
quantizers. In all our experiments we use the regularizer Rλ defined in Eq. (18) to induce oscillations
(Marked as "Oscillations" in the result table).

Training from Scratch: For the MLP5 architecture, we used a learning rate of 10−3 and regularization
parameter λ=1. The ResNet-18 was trained with a learning rate of 10−3 and λ=0.75 (see Appx. A.2 for
our hyperparameter selection). We modified the ResNet-18 architecture by replacing the input layer with
a smaller 3 × 3 kernel and adapting the final layer for 10-class classification of both ResNet-18 and Tiny
ViT. Training proceeded for a maximum of 100 epochs with early stopping triggered after 10 epochs with-
out improvement in validation performance. For quantized models, we monitored the quantized validation
accuracy at the target bit precision, while for the baseline, we tracked floating-point accuracy.

Fine-tuning: We fine-tuned two ImageNet-1k (Deng et al., 2009) pre-trained models on CIFAR-10 and
Tiny-ImageNet: a Tiny ViT (learning rate: 10−4, λ=1, 0.75, 0.5 depending on bit) and a ResNet-18 (learning
rate: 10−3, λ=1, 0.75, 0.5 depending on bit). To maintain compatibility with the pre-trained architectures,
we up-sampled both CIFAR-10 and Tiny-Imagenet images to 224 × 224 pixels. The λ parameter selection
process for Tiny ViT is detailed in Appendix A.2. Fine-tuning continued for up to 200 epochs on CIFAR-10
and 50 epochs for Tiny-ImageNet, with early stopping after 30 epochs without improvement, using the same
accuracy metrics as training from scratch.

Quantization: We implemented weight quantization using a per-tensor uniform symmetric quantizer as
defined in Eq. 1. PTQ is applied in its most minimal form, by simply quantizing the weights without any
calibration. QAT is used as defined in Eq.4. The quantization range was determined by computing min-
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Quantization MLP5 (FS) ResNet-18 (FS) Tiny ViT (FT) ResNet-18 (FT)

Baseline FP32 51.43 ± 0.39 83.26 ± 1.07 96.11 ± 0.31 88.50 ± 0.64

3-bit PTQ 20.97 ± 5.64 77.79 ± 4.00 11.56 ± 1.99 10.28 ± 0.48
3-bit QAT 50.53 ± 1.43 82.51 ± 2.14 88.13 ± 0.60 85.69 ± 1.83
3-bit Oscillations 48.48 ± 0.29 81.77 ± 0.46 88.68 ± 1.08 84.94 ± 1.59

4-bit PTQ 46.50 ± 0.76 82.11 ± 1.21 21.57 ± 5.33 35.56 ± 9.05
4-bit QAT 51.39 ± 0.60 82.66 ± 2.57 94.96 ± 0.33 87.71 ± 1.14
4-bit Oscillations 50.72 ± 0.47 83.74 ± 0.59 94.82 ± 0.51 87.08 ± 0.72

Table 1: Performance comparison on CIFAR-10 dataset. Results show classification accuracy for MLP5,
ResNet-18, and Tiny ViT across different quantization approaches and bit-widths. Models trained from
scratch are marked FS, and fine-tuning experiments are marked FT. FT experiments are based on models
pre-trained on ImageNet-1k. In all cases oscillations followed by quantization of the weights matches QAT
accuracy. Results are means and standard deviations over 5 random seeds. PTQ results are from the FP32
baseline.

imum and maximum values per layer. In our implementation of ResNet-18 (11M parameters) all layers
except batch normalization were quantized, covering 99.96% of parameters. For Tiny ViT (5.5M parame-
ters) quantization was applied to MLP, Self-Attention, and key-query-value projection layers, encompassing
97.18% of parameters. And lastly for the MLP5 model all layers were quantized. For Tiny-ImageNet models
are trained at 3 and 4-bit precision only.

5.2 Results

The performance on the two datasets in training-from-scratch and fine-tuning settings is presented in the
following sections, along with the observations about cross-bit generalization.

5.2.1 Performance on CIFAR-10

Training-from-scratch: Table 1 (A) shows the results from training an MLP and ResNet-18 from scratch
on the CIFAR-10 dataset. Doing only regularization with Eq. 18 demonstrates improvements compared to
the PTQ baseline. More importantly, it also matches the performance of QAT at bit widths of 3 and 4.

For both models we see that at 3-bit and 4-bit, using the Rλ regularizer from Eq. 18 exhibits similar
performance as QAT but with less variability. With both models, QAT and Rλ regularization are competitive
with the full-precision baseline. Notably, both Rλ regularization and QAT significantly outperform PTQ
when applied to the full precision baseline.

Fine-tuning: Table 1 (B) summarizes the test accuracies for fine-tuning using our Rλ regularization and
QAT on ResNet-18 and Tiny ViT architectures with CIFAR-10 and Tiny-ImageNet. The observations are
roughly in line with the results observed for training from scratch in the previous section.

For CIFAR-10 as with the case for training from scratch, with both ResNet-18 and Tiny Vit we see an
increase in performance compared to PTQ when using the regularization in Eq. 18. Regularization with Rλ

and QAT show comparable performance when quantized at 3 bits and 4 bits, while achieving test accuracy
close to the full precision model at 4-bits.

Performance comparison and related discussions for ternary quantization are presented in Appendix A.3.

Robustness to cross-bit quantization: In this experiment we evaluated the robustness of oscillations-
only and QAT towards quantization at bit widths different from the ones used during training.

When using the Rλ regularization approach, we applied the regularization term with the training bit width
during training and applied PTQ after training at a different quantization level. For QAT we trained using
the training bit width and afterwards applied PTQ to the latent weights. For each method we also evaluated
the corresponding model without PTQ, directly using the latent weights for inference (reported as FP32).
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Model Method ↓ / Eval. bit → FP32 Tern. 3-bit 4-bit 8-bit

ResNet-18 (FT)

Baseline PTQ 88.50 10.01 10.28 35.56 88.45

3-bit QAT 16.89 10.01 85.69 17.42 16.56
3-bit Oscillations 87.86 20.19 84.94 87.56 87.86

4-bit QAT 87.75 10.13 82.08 87.71 87.76
4-bit Oscillations 87.85 11.91 85.57 87.08 87.87

Tiny ViT (FT)

Baseline PTQ 96.11 9.39 11.56 21.57 96.03

3-bit QAT 86.94 19.78 88.13 86.69 86.95
3-bit Oscillations 96.47 9.48 88.68 95.35 96.50

4-bit QAT 95.14 11.11 59.86 94.96 95.13
4-bit Oscillations 96.54 11.90 70.23 94.82 96.55

Table 2: Cross-bit evaluation of pre-trained ImageNet-1k models fine-tuned on CIFAR-10. Grey background
is the target-bit accuracy. Models are trained using different quantization methods (QAT and ours) and bit-
widths (ternary, 3-bit, and 4-bit), then evaluated across various bit-widths ranging from ternary to FP32.
The grey diagonal shows the results for the bit used during training. Results are means and standard
deviations over 5 random seeds. All significant differences between QAT and Oscillations are shown in bold
face.

In Table 6 shows the results from the experiment. A first observation is that the models produced by
Rλ regularization consistently achieve nearly full-precision accuracy when quantized at 8-bit or when used
without quantization, irrespective of the quantization level used during training. This contrasts with QAT,
which produces a viable 8-bit or full-precision model only when trained with at least 4-bit.

Furthermore we see that regularizing using Eq. 18 mostly maintains performance when trained at 3 or 4-bit
and quantized at bit level of 3 or 4-bit. QAT also achieves this for Tiny ViT but for ResNet, the accuracy
of QAT trained at 3-bit and quantized at other bit widths is barely above random guessing.

Regarding training with ternary quantization, we see that Rλ regularization produces models that achieve
near full precision performance for ResNet when quantized at 3-bit or higher. Ternary training for ViT is
somewhat peculiar in that it fails to produce a model that is viable when quantized to ternary, whereas the
performance of the resulting models starts to show a high level of variability at 4-bit and finally reaches
close to full-precision accuracy at 8-bit. In contrast, for both ResNet and ViT, the performance of QAT
degrades completely to random guessing when trained with ternary quantization and evaluated at any other
quantization level.

5.2.2 Performance on Tiny-ImageNet

Fine-tuning: Table 3 summarizes the test accuracies for the Tiny-ImageNet Dataset. Here we observe
the same tendency as with CIFAR-10; oscillations provides a significant increase in accuracy compared to
the PTQ baseline. While for the Tiny ViT model Rλ regularization is sufficient to recover the quantized
accuracy of QAT in both the 3 and 4-bit case, for ResNet18 there is a degradation in accuracy at 3-bit.

Robustness to cross-bit quantization: In Table 4 we see the cross-bit results from the Tiny-ImageNet
experiments. As with CIFAR-10 we note that the models produced by Rλ regularization achieves a better
cross-bit performance at bits higher than the target bit. Though we do note a changes in the cross-bit
behaviour; The cross-bit results for 3 and 4-bit is generally lower and not as close tot he FP baseline as in
the CIFAR-10 case, yet still there is a significant difference between QAT and Rλ regularization.

6 Discussion

We have shown that training with weight oscillations induced via Rλ regularization is sufficient in most cases
to maintain performance after quantization for ResNet and Tiny ViT. This begs the question whether weight
oscillations are also a necessary part of the QAT training process. Indeed, some previous work already points
towards this. There are examples claiming that both dampening and/or freezing of oscillations too early in
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Quantization Tiny ViT (FT) ResNet-18 (FT)

Baseline FP32 67.17 ± 0.67 62.93 ± 0.55

3-bit PTQ 0.58 ± 0.16 0.51 ± 0.03
3-bit QAT 44.29 ± 0.49 54.08 ± 0.52
3-bit Oscillations 44.62 ± 2.47 49.34 ± 0.76

4-bit PTQ 11.02 ± 2.11 20.02 ± 4.80
4-bit QAT 60.61 ± 0.16 58.31 ± 0.19
4-bit Oscillations 60.54 ± 0.37 57.26 ± 0.33

Table 3: Accuracy on Tiny-ImageNet dataset. Mean and standard deviation is over 3 runs. The models is
fine-tuned for 50 epochs on the pretrained ImageNet models. PTQ results is from the FP32 baseline. In
both the 3 and 4 bit case, oscillations followed by quantization of the weights matches QAT and is noticeably
above the PTQ baseline which has neither oscillations nor QAT.

Model Method ↓ / Eval. bit → FP32 Tern. 3-bit 4-bit 8-bit

ResNet-18 (FT)

Baseline PTQ 62.93 0.50 0.51 20.02 62.83

3-bit QAT 50.81 4.51 54.08 49.76 50.85
3-bit Oscillations 56.67 1.48 49.34 55.96 56.68

4-bit QAT 56.57 0.65 39.65 58.31 56.66
4-bit Oscillations 61.58 0.53 30.16 57.26 61.58

Tiny ViT (FT)

Baseline PTQ 67.17 0.49 0.58 11.02 67.06

3-bit QAT 39.19 1.73 44.29 36.02 39.18
3-bit Oscillations 56.75 1.51 44.62 56.22 56.78

4-bit QAT 59.75 0.49 34.42 60.61 59.73
4-bit Oscillations 65.58 0.54 22.26 60.54 65.60

Table 4: Cross-bit evaluation of pre-trained ImageNet-1k models fine-tuned on Tiny-ImageNet.

the training process is detrimental to performance after quantization (Nagel et al., 2022; Han et al., 2021).
And in other case presented in Liu et al. (2023), freezing only the low frequency oscillating weights improves
performance. This suggests that weight oscillations are both a necessary and sufficient part of QAT, at least
in the early phases of the training process. This further supports our hypothesis that oscillations in QAT
have a positive effect on quantization robustness overall.

Yet we do note deviations from QAT when regularizing with Eq. 18: QAT outperforms Rλ regularization
at ternary quantization (Appendix A.3), whereas Rλ regularization outperforms QAT in cross-bit accuracy
for the ternary and 3-bit case. In A.6, we see how it seems that the cross-bit performance for QAT is upper-
bounded by the target-bit performance, which might explain the subpar QAT performance at cross-bit
compared to Rλ regularization which seems bounded by the full precision accuracy.

Limitations and Future Work Our theoretical analysis was performed using the toy model in Section 3,
and the regularization term is motivated using this analysis. We expect other effects that are not entirely
captured by this analysis to be part of QAT. This is explored further in Appendix A.1, where we show how
the second term is not zero in the gradient, when there are multiple layers.

The second term in Eq. 24 is closely related to the oscillations-dampening methods such as the one presented
in Equation 6 in (Nagel et al., 2022). This shows that at least for the linear cases as analyzed in Appendix A.1,
QAT consists solely of two components; one that creates oscillations and one that dampens them. In a way
we can consider our work and (Nagel et al., 2022) as introducing unstructured oscillations and dampening,
respectively. Whereas, in general, QAT could consists of more structured oscillations and dampening.

7 Conclusions

Based on the analysis of a linear model we hypothesized that weight oscillations during training in deep
neural networks make the model robust to quantization akin to QAT. In Sections 3 and 4 we explain how
training with QAT and STE leads to oscillations and propose a regularizer that encourages this oscillating
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behaviour. We confirm that as we increase the strength of the regularization, and empirically observe the
appearance of clustering together with oscillations.

Finally, we experimentally confirm that the regularizer indeed leads to consistent robustness towards quan-
tization for 3-bit and 4-bit quantization levels. Our oscillations by regularization approach achieves com-
parable performance to QAT above ternary quantization when quantizing to the target-bit seen during the
optimization. Furthermore, we also observe that it shows increased robustness compared to QAT in cross-bit
quantization with quantization levels higher than the target-bit used in the quantizer during training. All
this being evidence of our hypothesis.

Our insights on weight oscillations and their role in quantization robustness open new horizons for model
quantization approaches which usually build on the idea of aligning weights at quantization levels – the
opposite of what seems to be the core dynamic in QAT. The regularization approach especially creates
interesting possibilities for cross-bit robustness, potentially making the regularization method more appealing
than QAT when the goal is to deploy or release a single set of model weights that can work across different
bit widths or maybe even quantizers. While the regularizer used in our experiments should be viewed as
an initial step, we expect that quantization robustness could be further improved by developing oscillation-
inducing methods that are adaptive to different learning rates, layer statistics or phases of the training
process.

Acknowledgments: Authors like to thank several people.
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A Appendix

A.1 2-layer with single weights

Consider a linear model f(x) = w2w1x, with w1, w2, input x, and target y ∈ R. The quantized version of
this model is defined as fq(x) = q(w2)q(w1)x, where q(·) is the quantizer from Eq. 1. The quadratic loss for
the model is given by

L(f(x)) = 1
2

(
w2w1x − y

)2
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The difference compared to full-precision optimization is then given as

δL = L(fq(x)) − L(f(x)) (20)

= 1
2

[(
q(w2)q(w1)x − y

)2 −
(
w2w1x − y

)2
]

(21)

= 1
2

[(
q(w2)q(w1)x

)2 −
(
w2w1x

)2 − 2y
(
q(w2)q(w1)x − w2w1x

)]
(22)

= 1
2x2

[
q(w2)2q(w1)2 − w2

2w2
1

]
+ yx

[
w2w1 − q(w2)q(w1)

]
(23)

The loss difference decomposes into:
1
2x2

(
q(w2)2q(w1)2 − w2

2w2
1

)
︸ ︷︷ ︸

quadratic term (Oscillator)

+ yx
(

w2w1 − q(w2)q(w1)
)

︸ ︷︷ ︸
linear term (Oscillation Dampener)

(24)

Taking the derivative of L with respect to w1:
∂δL

∂w1
= ∂

∂w1

(
L(fq(x)) − L(f(x))

)
(25)

= ∂

∂w1

[
1
2x2

(
q(w2)2q(w1)2 − w2

2w2
1

)
+ yx

(
w2w1 − q(w2)q(w1)

)]
(26)

= x2
[
q(w2)2q(w1)∂q(w1)

∂w1
− w2

2w1

]
+ yx

[
w2 − q(w2)∂q(w1)

∂w1

]
(27)

Using the STE approximation from Eq. 4, we get:

∂δ̂L

∂w1
= x2

[
q(w2)2q(w1) − w2

2w1

]
+ yx

[
w2 − q(w2)

]
(28)

We note that the linear term is no longer zero in the gradient and thus for a model consisting of 2 single
weight layers we see that there is additional effects from QAT other than oscillations. Additionally because
of the non-linearity of the rounding operation, even with the absence of a non-linear activation function, we
can no longer reduce the model to a single weight.
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Figure 4: We repeat the toy model experiments, but this time with 2 weights, taking into account that
the linear term is no longer 0 in the gradient. We notice at epoch 15 and 18 where the prediction of the
quantized model is greater than y, the effect of the terms flip for w2.

A.2 Hyperparameters

A.2.1 ResNet-18

In Fig. 5 and Fig. 6 we see the results of the λ hyperparameter search over different learning rates for a
ResNet-18 model. There is a clear trend of seeing the best performance at a learning rate of 10−3. We note
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that interestingly there is a comparable performance for a wide range of λs, indicating that it is the presence
of oscillations which is important for quantization robustness, and not the exact frequency of oscillations.
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Figure 5: Mean over 3 runs of the best test accuracy for different lambdas. Fine-tuning a pretrained ResNet-
18 on CIFAR-10 for 50 epochs. Quantizer is set to 3-bit and 10−3 learning rate and 100% of the training
data is used.
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Learning rate comparison 3-bit regularization

LR: 0.0001
LR: 0.001
LR: 0.01

λ 3-bit (%) Ternary (%)
0.25 68.77 ± 0.19 47.85 ± 5.51
0.50 69.47 ± 1.11 46.77 ± 4.83
0.75 70.08 ± 0.40 46.86 ± 3.01
1.00 66.20 ± 4.05 47.33 ± 2.06
1.25 69.31 ± 0.32 43.14 ± 6.62
1.50 68.96 ± 0.30 46.73 ± 3.91
1.75 69.92 ± 0.11 47.02 ± 4.19

Figure 6: Mean over 3 runs of the best validation accuracy for different lambdas. Training a ResNet-18 from
scratch. Both ternary and 3-bit is at 10−3 learning rate and 50% of the data used for training. The plot
shows three learning rates, where we for each learning ratue evaluate with the λs in the rhs. table. The
colored background covers the range between the maximum and minimum value of the quantized validation
accuracy with the given λs.

A.2.2 Tiny ViT

Fig. 7 We note how also the Tiny Vit seems to allow for a wide range of λs even though we this time note
that λ = 1 performs significantly better than the others.

A.3 Ternary Quantization

Performance comparison for the ternary quantization for different models and datasets is reported in Table 5.
While both QAT and oscillations improve the PTQ baseline significantly, oscillations degrade compared to
QAT, especially for the Tiny ViT. This is in line with previous literature (Liu et al., 2023), where transformers
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Figure 7: Validation accuracy at different λ values and the corresponding best validation accuracies for 3-bit
and 2-bit configurations for a single run. Learning rate is set to 1e-4 for fine-tuning. For the 2-bit we test
higher λ but still see no improvemenet in accuracy. We note how all the λs lies close to each other, except
for the low of 10−2

have been identified as especially sensitive to oscillations. But if oscillations are fundamental to QAT, why
does QAT still deliver better ternary performance? In appendix A.1 we are given a clue. Looking at the
gradient of the two-layer toy model, in Eq.24 we note that the second term is no longer zero in the gradient.
This term bears close resemblance to existing formulations of oscillation dampeners, such as in Eq. 6 (Nagel
et al., 2022). These works by pushing weights towards their nearest quantization level, thereby dampening or
nullifying the effect of any oscillator (Which pushes weights towards their nearest threshold). We therefore
speculate that the main component of QAT is still oscillations, but that QAT also has an inherent dampening
mechanism. Given that in a uniform quantizer, the quantization error increases exponentially as we decrease
the bits in the quantizer, ternary quantization’s large error magnitude makes the absence of dampening
particularly detrimental, resulting in sub-optimal quantized performance compared to QAT.

Quantization MLP5 (FS) ResNet-18 (FS) ResNet-18 (FT) Tiny ViT (FT)

Baseline FP32 51.43 ± 0.39 83.26 ± 1.07 83.26 ± 1.07 96.11 ± 0.31

Ternary PTQ 10.00 ± 0.02 10.00 ± 0.01 10.00 ± 0.01 9.39 ± 1.11
Ternary QAT 49.20 ± 1.34 79.62 ± 6.42 77.02 ± 7.57 73.53 ± 0.77
Ternary Oscillations 36.49 ± 0.51 61.50 ± 1.82 44.59 ± 3.30 13.51 ± 1.32

Table 5: Performance comparison with ternary quantization on CIFAR-10 dataset. Mean and standard
deviation is over 3 runs. The models is fine-tuned for 50 epochs on the pretrained ImageNet models. PTQ
results is from the FP32 baseline. For both oscillations only and QAT we see a significant improvement over
the PTQ baseline. Yet oscillations degrade significantly compared to QAT, especially for the Tiny Vit. FS:
Train from scratch. FT: Fine-tuned.

A.4 Cross-bit accuracy

Results with standard deviations over three runs for the cross-bit evaluations are reported in Table 7.

A.5 Epochs and cross-bit robustness

There is an interesting interaction between number of epochs trained and robustness both of our method
and QAT. We note how QAT converges first for the target-bit and then over time also converges for the 4
and 8-bit. Additionally we see that QAT seems upper-bounded by the target-bit performance, while this is
not the case for oscillations only as shown in Fig. 8.
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Model Method ↓ / Eval. bit → FP32 Tern. 3-bit 4-bit 8-bit

ResNet-18 (FT)
Baseline PTQ 88.50 10.01 10.28 35.56 88.45

Ternary QAT 10.39 77.02 9.75 10.03 10.35
Ternary Oscillations 87.44 44.59 85.42 87.03 87.42

Tiny ViT (FT)
Baseline PTQ 96.11 9.39 11.56 21.57 96.03

Ternary QAT 10.62 73.53 11.52 11.13 10.61
Ternary Oscillations 95.79 13.51 12.53 54.93 95.76

Table 6: Cross-bit evaluation of pre-trained ImageNet-1k models fine-tuned on CIFAR-10. Grey background
is the target-bit accuracy. Models are trained using different quantization methods (QAT and ours) and bit-
widths (ternary, 3-bit, and 4-bit), then evaluated across various bit-widths ranging from ternary to FP32.
The grey diagonal shows the results for the bit used during training. Results are means and standard
deviations over 5 random seeds. All significant differences between QAT and Oscillations are shown in bold
face.

Model Train bit ↓ / Eval. bit → FP32 Ternary 3-bit 4-bit 8-bit

ResNet-18

Baseline (PTQ) 88.50 ± 0.64 10.01 ± 0.01 10.28 ± 0.48 35.56 ± 9.05 88.45 ± 0.64

Ternary QAT 10.39 ± 0.71 77.02 ± 7.57 9.75 ± 0.77 10.03 ± 0.51 10.35 ± 0.63
Ternary Oscillations 87.44 ± 0.56 44.59 ± 3.30 85.42 ± 1.13 87.03 ± 0.65 87.42 ± 0.56

3-bit QAT 16.89 ± 4.97 10.01 ± 0.04 85.69 ± 1.83 17.42 ± 4.96 16.56 ± 4.32
3-bit Oscillations 87.86 ± 0.42 20.19 ± 10.74 84.94 ± 1.59 87.56 ± 0.38 87.86 ± 0.42

4-bit QAT 87.75 ± 1.13 10.13 ± 0.29 82.08 ± 6.25 87.71 ± 1.14 87.76 ± 1.12
4-bit Oscillations 87.85 ± 0.49 11.91 ± 0.87 85.57 ± 1.10 87.08 ± 0.72 87.87 ± 0.49

Tiny ViT

Baseline (PTQ) 96.11 ± 0.31 9.39 ± 1.11 11.56 ± 1.99 21.57 ± 5.33 96.03 ± 0.34

Ternary QAT 10.62 ± 1.29 73.53 ± 0.77 11.52 ± 1.82 11.13 ± 1.75 10.61 ± 1.26
Ternary Oscillations 95.79 ± 0.58 13.51 ± 1.32 12.53 ± 3.66 54.93 ± 27.32 95.76 ± 0.59

3-bit QAT 86.94 ± 0.91 19.78 ± 6.04 88.13 ± 0.60 86.69 ± 0.62 86.95 ± 0.89
3-bit Oscillations 96.47 ± 0.11 9.48 ± 1.64 88.68 ± 1.08 95.35 ± 0.18 96.50 ± 0.11

4-bit QAT 95.14 ± 0.29 11.11 ± 1.84 59.86 ± 19.95 94.96 ± 0.33 95.13 ± 0.28
4-bit Oscillations 96.54 ± 0.09 11.90 ± 1.29 70.23 ± 12.75 94.82 ± 0.51 96.55 ± 0.09

Table 7: Cross-bit evaluation of pre-trained ImageNet-1k models fine-tuned on CIFAR-10. Grey background
is the target-bit accuracy. Models are trained using different quantization methods (QAT and ours) and bit-
widths (ternary, 3-bit, and 4-bit), then evaluated across various bit-widths ranging from ternary to FP32.
The grey diagonal shows the results for the bit used during training. Results are means and standard
deviations over 5 random seeds. All significant differences between QAT and Oscillations are shown in bold
face.

A.6 Convergence behaviour during oscillations-only optimization

Fig. 9 shows the convergence behaviour of the full precision weights and the quantized weights at target-bit.
We note how the Tiny ViT displays a peculiar convergence behaviour, where the accuracy will break, only
to go up again. In the Tiny Vit model we quantize the self-attention layers, it is already noted in Liu et al.
(2023) that ViTs are especially vulnerable to quantization of the query and key of a self-attention layer,
which might be related to the convergence behaviour we see.
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Figure 8: Left is the validation accuracy during training of a ViT with QAT at different bits, right is for our
regularization. Both QAT and regularization is trained with a 3-bit quantizer. We note how the order of
convergences for cross-bit changes between QAT and our model and that QAT cross-bit robustness especially
depends on number of epochs trained.

Figure 9: In the right plot we see the convergence behaviour of ResNet-18. In the left plot we see the conver-
gence behaviour of a Tiny ViT with regularization with a 3-bit quantizer. We note the peculiar behaviour
of the orange line, which is the validation accuracy on the target-bit performance. The performances cycles
between ≈ 90% and 10%, while the full precision accuracy (The model evaluated without quantized weights)
stays some-what stable.
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